
Answer to the Editor’s comments 

We are grateful to the Editor for raising the points that require some further discussion. 

Please note, the rating of your manuscript is not overly high and this maybe due to weaknesses in the 

presentation that you now opt for improving. 

It seems that the overall prevailing grade that the reviewers gave for our manuscript was 'good', but 

the second reviewer rated the 'significance of the topic' to be only 'fair' although this reviewer also 

considered the study 'interesting'. We hope the revised manuscript will succeed better in showing 

the topic's significance. In our study, we apply several popular machine learning models to model 

net ecosystem exchange in boreal forests. These machine learning models are often used as ‘black 

box’ models, meaning that their decision making is often not well understood. The novelty of our 

manuscript is that we visualize and examine the models’ decisions on different input parameters 
based on the existing knowledge about ecosystem functioning. The study is truly multidisciplinary 

as the results produced by computer scientists are interpreted by atmospheric and forest scientists. 

We hope that the revised version of our manuscript accounting for the Reviewers’ and Editor’s 

comments will improve the low rating and make our study acceptable for publication. 

But you may consider once more, whether you can discuss and summarise the most important 

achievements of the study a bit clearer. For example when discussing the importance values (Fig. 7 

and Fig. C), add explanation, whether / why these findings make sense (and explainable ML a good 

choice). Did you learn anything unexpected form the explanations from ML? 

We thoroughly went through the text and modified it following the Editor’s suggestions. The 

discussion, addressing point by point the dependence of NEE on all input parameters for separate 

data sets, related to Figs. 7 and 8, was provided in subsection 3.1.2, and for the mixed data sets – in 

subsection 3.2.2 of the previous manuscript version. To improve the clarity of the discussions, we 

have split them into separate subsections focusing on feature importance (current subsections 

3.1.2, 3.2.2) and ALE (current subsections 3.1.3, 3.2.3). We have also introduced similar logic in the 

subsections addressing ALE, starting the discussions with the most important variables as suggested 

by the feature importance diagrams. 

In the case of separate sites and seasons, all the nonlinear models choose similar most powerful 

explanatory parameters (Lines 311-327), and compared to existing knowledge on ecosystem 

functioning, there were largely no surprises, which means that models in general work well. The 

choice of important variables becomes even more aligned when the mixed data sets are used (Lines 

465-478). More surprising was to see how some models treat interdependent parameters (e.g., soil 

temperatures at different depths or VPD/RH), as they may produce strong but opposite 

dependencies of NEE on these parameters (Lines 373-387, 502-504). Another interesting finding 

was that for some models, soil water content that was low in importance among the set of features 

for separate sites suddenly becomes one of the most important variables for mixed data sets (Lines 

471-473). This is accompanied by a drastic change of ALE for this variable (Lines 495-501) in all the 
models. As soil water content is the only variable that has a clear difference between Hyytiälä 
and Värriö data sets (Fig. A2), we interpret this new high position of soil water content in the 



feature importance diagrams so that the models treat it as a site parameter to distinguish 
between the Hyytiälä and Värriö data sets. This interpretation is supported by soil water 
content losing importance when site parameters are added as input variables. 

We have also included text related to the added error bars due to various data splits (Lines 332-

336): ‘For Värriö, Cubist and avNNet place interdependent VPD, RH and air temperature in the 

feature importance diagram within the error bar from each other. Relatively large error bars for 

these variables suggest that the models seem to have difficulties ranking them, as their order may 

likely change depending on the data split. At the same time, the error bars are smallest for Random 

Forest, which seems to be more confident than the other nonlinear models in its treatment of 

interdependent variables.’ 

For example you find that the intensity of diffuse radiation has a higher importance than the fraction 

of diffuse radiation. Why that?  

We added the following discussion on this in the manuscript: 

Lines 337-342: Suppose the model chooses one variable before another correlated one. In that 

case, the second one can be placed low in the feature importance diagram, as the model, in 

principle, does not need it anymore. This does not mean, however, that one of the correlated 

variables explains NEE clearly better than the other: for example, Moffat et al. (2010) showed, using 

an artificial neural network, that intercorrelated diffuse fraction and diffuse radiation (as well as 

intercorrelated VPD and RH) have the same explanatory power for the summertime forest NEE, and 

can be used interchangeably. However, all our models place diffuse PAR higher than diffuse 

fraction, and they typically place VPD higher than RH. 

Lines 391-394: Gross primary production in Hyytiälä has its minimum at the low diffuse PAR and a 

maximum at the high diffuse PAR compared to the weak parabolic dependence on diffuse fraction 

(Ezhova et al., 2018; Neimane-Šroma et al., 2024). That may be why the models choose diffuse PAR 

over diffuse fraction. Most models could then deem the diffuse fraction relatively unimportant as 

they already use diffuse PAR. 

Then you explain that the VPD effect is rather explained by temperature than by relative humidity. 

Why that?  

VPD is a function of both relative humidity and temperature as follows from eq. (2), and it is 

strongly correlated with both (Fig. A1). VPD influences photosynthesis via stomatal control. RH 

contribution to NEE is basically via this VPD effect on photosynthesis, whereas temperature, in 

addition, affects respiration.  

We mention that VPD is dependent on both variables in various parts of the manuscript:  

Lines 322-323: ‘It is good to note that VPD is calculated based on air temperature (see Sec. 2.1), so 

these variables are not independent.’ 

Lines 332-333: ‘For Värriö, Cubist and avNNet place interdependent VPD, RH and air temperature in 

the feature importance diagram within the error bar from each other’.  



Lines 395-397: ‘RH directly influences VPD through a linear relationship (eq. (2), Fig. A1). The higher 

the RH, the closer ambient air is to saturation, and VPD, in this case, is small. Low RH, vice versa, 

favors higher VPD values’.  

Finally, you include the friction velocity as a variable, which doesn't yield a high importance score. 

This might be even trivial as the u* filtering is applied to the data sets, i.e. to exactly remove any 

relationship between u* and NEE. 

We chose u* as one of the parameters following the setup in Moffat et al. (2010) to be able to 

compare with this study (and got the similar result that the variable is unimportant). While it is true 

that filtering is applied to exclude the lowest u* corresponding to non-turbulent conditions from 

the data sets, some relationship might still be there for higher values: actually, for Hyytiälä, there is 

some weak positive correlation, which we briefly mention in lines 405-409. The conclusion about 

NEE not depending on u* may serve as an additional checkpoint for the quality of the data set. 

In your reply to Reviewer 2 you mention that fitting hyper-parameters reduced overall 

performance, which is to be expected. But you do not seem to explain, why and for which 

application a result less prone to over-fitting might be a better choice. 

We are grateful to the Editor for stimulating the discussion on overfitting.  

The K-fold cross-validation technique, which we have now used to find hyperparameters, can also 

be used to estimate the model performance on an unknown data set. K-fold cross-validation 

method shuffles the data set randomly and splits it into K groups or folds. First, each fold is taken as 

a holdout, while the model is fit on the rest of the folds, and then the model is evaluated on the 

holdout set. This procedure is repeated R times. Each time, we can calculate R2-scores and RMSE 

corresponding to the evaluation (holdout) data set. The average accuracy metrics obtained in such a 

procedure provide a reliable estimate of how the model is expected to perform on an unknown or 

test data set (e.g., Refailzadeh et al., 2009).  

The R2-scores obtained from the cross-validation of our models' performance on the data sets from 

separate stations are now reported in Fig. 1 of this document. For all the models, the metrics agree 

with the scores reported in the manuscript for the test data set. The estimate obtained from cross-

validation is even slightly lower than the results obtained on the test data set, likely due to the 

smaller size of the holdout subsets from the folding procedure. Therefore, we can conclude that all 

the models perform on the test data set with their expected scores.  

However, when a final trained model is applied again to the training data set, the resulting scores 

sometimes can be high, as we see for both models based on regression trees, suggesting some 

overfitting. Nevertheless, it is not obvious if this degree of overfitting is necessarily bad, as 

mentioned by e.g., Zhang et al., 2023: ‘Note that overfitting is not always a bad thing. In deep 

learning especially, the best predictive models often perform far better on training data than on 

holdout data’. Based on the abovementioned arguments, we prefer keeping the hyperparameters 

in our models unchanged. 

 



Fig. 1. R2-scores obtained by different ML models (see the legend) on test data (colored bars) and from 

the cross-validation procedure on the training data set (dotted bars). Panels correspond to the following 

setups: Hyytiälä ALL - the whole-year Hyytiälä data set, Hyytiälä PEAK – the peak season Hyytiälä data 

set, Värriö ALL – the whole-year Värriö data set, Värriö PEAK – the peak season Värriö data set. 

Related to the editor’s comment ‘for which application a result less prone to over-fitting might be a 

better choice’, there is unfortunately no general solution. 

We added the following discussion in the manuscript: ‘The difference in scores between the training 

and test data sets is called generalization error. In some cases, large generalization error points to 

overfitting, i.e., the model learns the training data set too well and then performs poorly on the test 

data set. To tune hyperparameters and estimate expected model performance, we applied K-fold 

cross-validation, see subsection 2.3. Additionally, we tried different splits of the data into training 

and test data sets, which showed that the variation of the resulting R2-coefficients and RMSE was 

small. Finally, we obtained similar accuracy metrics on the test data sets from different nonlinear 

ML models, suggesting that our results are robust.’ 

Please reconsider the Reviewer 2's comment on the advantages of density contour plots over scatter 

plots. I do not think that the main point was the file size, but the loss of information when too many 

points are covered and thus hidden by the points on top in scatter plots. Here the density contour plot 

gives more information than scatter plots. Your explanation on why the scatter plots are better is a bit 

vague. Please provide the two alternatives and then justify your choice. 

We thank the reviewer and the editor for the comment. Below, we have provided a density contour 

plot in Figure A and a density scatter plot in Figure B to illustrate what the alternatives would look 

like compared to the plot we considered using, Figure C.   

 



Overall, the problem of showing two scatter plots in one figure is hard to solve in this context as the 

distributions of points are very close to each other (Fig. C). The difference is in the noisy outlier 

points, which disappear entirely when we try contour plots and become almost invisible if we make 

one set of points transparent.   

Our aim with scatter plot Fig. 3 was: 

1. to see if the correlations follow 1:1 lines; 

2. to illustrate obtained R2 and RMSE results for test and train data sets and all setups. The 

figure helps to understand that different R2 could simply be the result of different data 

range for Värriö and Hyytiälä, and it is also helpful when discussing possible overfitting 

issues. 

 

In Fig. 6, we compare the performance of different models on the same setup. The figure clearly 

shows that the RF and linear models look a bit different from the other models. In the case of RF, 

there are fewer black points around orange points, indicating that the RMSE in the training data set 

is smaller compared to the test data, while there are visible clouds of black points around color 

points for other models. 

Overall, our suggestion is to visualize density distributions of points on the sides of the figures and 

reduce the size of the figures as shown in Fig. C of the current document. 

 

Figure A: A density contour plot alternative to Figure 3 of the manuscript. 



Figure B: A density scatter plot alternative to Figure 3 of manuscript. 



Figure C: The scatter plot used in the revised manuscript as Figure 3. 

Finally, we have modified the abstract compared to the version sent to Reviewer 2. We have 

improved the clarity and included a sentence about the mixed data set results, which were 

previously omitted. In the abstract, we have also updated the R-scores compared to how they were 

presented in the response to Reviewer 2. In this response document, we had a small error in Figure 

A illustrating the results for Värriö Peak, with the scores lower (0.71-0.74 while the correct numbers 

were 0.73-0.76) compared to the original manuscript and to its current revised version.   

We thank again the Editor for the useful suggestions. We hope that you will find that the present 

manuscript addresses all the comments raised. 
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