1	Quantifying SO ₂ oxidation pathways to atmospheric sulfate by using
2	stable sulfur and oxygen isotopes: laboratory simulation and field
3	observation
4 5	Ziyan Guo ^a , Keding Lu ^a *, Pengxiang Qiu ^b , Mingyi Xu ^b , Zhaobing Guo ^{b*}
6	^a State Key Joint Laboratory of Environmental Simulation and Pollution Control,
7	State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution
8	Control, College of Environmental Sciences and Engineering, Peking University,
9	Beijing, China.
10	^b Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
11	Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and
12	Equipment Technology (CIC-AEET), School of Environmental Science and
13	Engineering, Nanjing University of Information Science and Technology, Nanjing
14	210044, China
15	
16	* Correspondence to: <u>k.lu@pku.edu.cn</u> (Keding Lu), <u>guocumt@nuist.edu.cn</u>
17	(Zhaobing Guo)

19	Abstract. The formation of secondary sulfate in the atmosphere remains controversial, and it is urgent
20	to seek for a new method to quantify different sulfate formation pathways. Thus, SO_2 and $PM_{2.5}$
21	samples were collected from 4 to 22 Dec. 2019 in Nanjing region. Sulfur and oxygen isotopic
22	compositions were synchronously measured to study the contribution of SO_2 homogeneous and
23	heterogeneous oxidation to sulfate. Meanwhile, the correlation of δ^{18} O values between H ₂ O and sulfate
24	from SO ₂ oxidation by H_2O_2 and Fe^{3+}/O_2 were simulatively investigated in the laboratory. Based on
25	isotope mass equilibrium equations, the ratios of different SO ₂ oxidation pathways were quantified. The
26	results showed that secondary sulfate constituted higher than 80% of total sulfate in $PM_{2.5}$ during the
27	sampling period. Laboratory simulation experiments indicated that $\delta^{18}O$ value of sulfate was linearly
28	dependent on $\delta^{18}O$ value of water, and the slopes of linear curves for SO_2 oxidation by H_2O_2 and
29	Fe^{3+}/O_2 were 0.43 and 0.65, respectively. The secondary sulfate in PM _{2.5} was mainly ascribed to SO ₂
30	homogeneous oxidation by OH radicals and heterogeneous oxidation by H_2O_2 and Fe^{3+}/O_2 . SO ₂
31	heterogeneous oxidation was generally dominant during sulfate formation, and SO_2 oxidation by H_2O_2
32	predominated in SO ₂ heterogeneous oxidation reactions with an average ratio around 54.6%. This study
33	provided an insight into precisely evaluating sulfate formation by combining stable sulfur and oxygen
34	isotopes.
35	
36	
37	
38	
39	
40	

41 1 Introduction

42 Sulfate is one of the prevalent components of PM_{2.5} (Brüggemann et al., 2021; Huang et al., 2014; 43 Yang et al., 2023). Sulfate makes up approximately 25% of PM2.5 mass in Shanghai, 23% in 44 Guangzhou and 10-33% in Beijing (Xue et al., 2016). The rapid sulfate formation is a crucial factor 45 determining the explosive growth of fine particles and the frequent occurrence of severe haze events in 46 China (Lin et al., 2022; Liu et al., 2020; Meng et al., 2023; Wang et al., 2021). Sulfate plays an 47 important role in the chemical and physical processes in the troposphere and lower stratosphere, which 48 significantly affects global climate change by scattering solar radiation and acting as cloud 49 condensation nuclei (Gao et al., 2022; Ramanathan et al., 2001). Meanwhile, sulfate exerts a significant 50 influence on air quality and public health (Abbatt et al., 2006).

51 In the past decades, numerous attempts have been made to evaluate SO₂ oxidation pathways 52 involving in homogeneous and heterogeneous reactions. Traditionally, sulfate formation mechanisms 53 mainly include SO₂ homogeneous oxidation by OH radicals and heterogeneous oxidation by H_2O_2 , O_3 54 and O₂ catalyzed by transition metal ions (TMIs) in cloud/fog water droplets. The relative importance 55 of different sulfate formation pathways is strongly dependent on oxidant concentrations, occurrence of 56 fog/cloud events and pH of aqueous phase (Kuang et al., 2022; Oh et al., 2023). Generally, SO₂ 57 homogeneous oxidation by OH radicals and heterogeneous oxidation by H₂O₂ are considered the most 58 important pathways for sulfate production on the global scale (Seinfeld and Pandis, 1998). The 59 photochemical reactivity during the winter in Beijing has been found to be relatively high, which 60 favored the formation of reactive species such as OH radicals and H2O2, thereby facilitating SO2 61 oxidation (Zhang et al., 2020). Xue et al. (2014) suggested that SO_2 oxidation by O_3 and H_2O_2 in 62 aqueous phase contributed to the majority of total sulfate production. Liu et al. (2020) proposed that 63 S(IV) oxidation by H₂O₂ in aerosol water could be an important pathway considering the ionic strength 64 effect. He et al. (2018) found that the contribution of SO₂ oxidation by H₂O₂ could reach 88% during 65 Beijing haze period. Ye et al. (2018) observed that SO₂ oxidation rate by H_2O_2 was 2-5 times faster 66 than the summed rate of the other three oxidation pathways. As a result, actual contribution of SO_2 67 oxidation by H_2O_2 during the winter might be underestimated in the previous studies. 68 In addition, the presence of NO_2 was obviously favorable for SO_2 oxidation under the conditions of

high relative humidity (RH) and NH₃. NH₃ can promote the hydrolysis of NO₂ dimers to HONO and

70 result in more sulfate formation on particle surface in humid conditions. However, this conclusion was 71 doubted by Liu et al. (2017) who believed that the reaction on actual fine particles with pH at 4.2 was 72 too slow to account for sulfate formation. Li et al. (2020) deemed that SO₂ oxidation by NO₂ might not 73 be a major oxidation pathway in China. Furthermore, GEOS-Chem modeling study suggested that NO₂ 74 oxidation contributed less than 2% of total sulfate production. It is found that TMI pathway was very 75 important in highly polluted regions, and the contribution of metal-catalyzed SO₂ oxidation to sulfate 76 was as high as $49\pm10\%$ in haze. Wang et al. (2021) also argued that SO₂ oxidation via TMI on aerosol 77 surface could be the dominant sulfate formation pathway. They found that manganese-catalyzed 78 oxidation of SO₂ contributed 69.2±5.0% in sulfate production. Overall, the mechanisms for sulfate 79 rapid growth remain unclear and controversial. Therefore, sulfate formation pathways need to be 80 further explored, and it is urgent to develop a new method to quantify different sulfate formation 81 processes.

82 Generally, sulfur isotopes allow for investigating SO₂ oxidation processes in the atmosphere because 83 of distinctive isotope fractionation associated with different oxidation reactions (Harris et al., 2013). 84 Harris et al. (2012) presented the respective sulfur isotope fractionation factors of SO₂ oxidation by OH, 85 O_3/H_2O_2 and iron catalysis. Besides, the observed sulfur isotope fractionation of SO_2 oxidation by H_2O_2 86 and O_3 appeared to be no significant difference. Therefore, the results were particularly useful to 87 determine the importance of transition metal-catalyzed oxidation pathway compared to other oxidation 88 pathways. However, other main SO₂ oxidation pathways could not be distinguished only based on 89 stable sulfur isotope determination.

90 Oxygen isotope ratio (δ^{18} O) can be used to deduce sulfate formation processes due to those SO₂ 91 oxidation pathways affect oxygen isotope of product sulfate differently. Especially, mass-independent fractionation signals of oxygen isotopes (nonzero Δ^{17} O, where Δ^{17} O= δ^{18} O-0.52× δ^{17} O) in sulfate are 92 93 usually adopted to investigate the contribution of different SO2 oxidation pathways. This method can identify the contribution of SO₂+O₃ pathway when high Δ^{17} O value (>3‰) is measured in sulfate. 94 However, there is presence of obvious uncertainty when interpreting the sulfate with low Δ^{17} O value 95 (<1‰). Unfortunately, most sulfate samples in the atmosphere present Δ^{17} O<1‰, suggesting a limited 96 97 contribution of SO_2+O_3 pathway during sulfate formation. It is noteworthy that the contribution of $SO_2+H_2O_2$ and TMI pathway is unclear if solely using $\Delta^{17}O$ (Li et al., 2020). Holt and Kumar (1984) 98

99 found oxygen isotope was a valuable and complementary method to determine probable mechanisms of 100 SO₂ oxidation to sulfate in the atmosphere. This provides us an insight into precisely evaluating sulfate 101 formation pathways by combining oxygen and sulfur isotopes.

In this contribution, $PM_{2.5}$ and SO_2 were sampled from 4 to 22 Dec. 2019 in Nanjing. Sulfur and oxygen isotopic compositions were measured to study the contribution of SO_2 homogeneous and heterogeneous oxidation during sulfate formation. In addition, the linear relationships of $\delta^{18}O$ values between H₂O and sulfate from SO_2 oxidation by H₂O₂ and Fe³⁺/O₂ were synchronously investigated in the laboratory. Based on sulfur and oxygen isotopes mass equilibrium equations, the ratios of different SO_2 oxidation pathways during the sampling period were calculated. The study aims to seek for a novel method to quantify different SO_2 oxidation processes with sulfur and oxygen isotopes.

109 2 Materials and methods

110 2.1 Sampling location

111 $PM_{2.5}$ and SO_2 in the atmosphere were sampled from 4 to 22 Dec. 2019 in Nanjing, China. The 112 sampling site was located at the roof of the library in Nanjing University of Information Science & 113 Technology (NUIST, 32.1 ° N, 118.5 ° E), which is depicted in Fig. 1. The sampling location is at the 114 side of Ningliu Road and closely next to Nanjing chemical industry park. There is presence of some 115 large-scale chemical enterprises such as Nanjing steel plant, Nanjing thermal power plants and Nanjing 116 petrochemical company, which inevitably release lots of SO_2 and iron metal into the atmosphere.

118 Fig.1. Sampling site of NUIST in Nanjing, China. NSP: Nanjing steel plants; NTPP: Nanjing

thermal power plants; NPC: Nanjing petrochemical company; NR: Ningliu Road.

120 2.2 PM_{2.5} and SO₂ Samples collection

PM_{2.5} and SO₂ were sampled by using a modified JCH-1000 sampler (Juchuang Co., Qingdao) with a flow rate of 1.05 m³ min⁻¹ from 8 am to 8 pm from 4 to 22 Dec. 2019. PM_{2.5} and SO₂ were collected with quartz filter (203×254 mm, Munktell, Sweden) and glass fiber filter (203×254 mm, Tisch Environment INC, USA), respectively. The filters were incinerated in a muffle furnace at 450 °C for 2h and then preserved in the desiccators at room temperature. The glass fiber filters were firstly soaked in 2% K₂CO₃ and 2% glycerol solution for 2h and dried in DGG-9070A electric oven. SO₂ can be changed into sulfite immediately during the sampling.

128 2.3 Extractions of water-soluble sulfate

PM_{2.5} sample filters were shredded and soaked in 400 mL of Milli-Q (18 MΩ) water for extractions of water-soluble sulfate. Filters were then isolated from solutions by centrifugation and sulfate was precipitated as BaSO₄ by adding 1 mol L⁻¹ BaCl₂. After the filtration with 0.22 μ m acetate membrane, BaSO₄ precipitate was rinsed with Milli-Q water to remove Cl⁻. Finally, BaSO₄ powers were calcined at 800 °C for 2h to obtain high purity BaSO₄. In addition, a small amount of H₂O₂ solution was added to oxidize sulfite to sulfate.

135 2.4 Laboratory simulation of SO₂ oxidation by H_2O_2 and Fe^{3+}/O_2

For SO₂ oxidation by H₂O₂, 30 mL min⁻¹ Ar was firstly introduced into three kinds of different water about 30 min to drive out air. Sulfate was produced by adding 10 mL H₂O₂ dilute solution (0.1 mL 30% H₂O₂ in 50 mL water) to SO₂ in the reaction chamber at 10 °C. H₂O₂ solution was agitated vigorously for 1min before admission of air. For SO₂ oxidation by Fe³⁺/O₂, 2 mL min⁻¹ SO₂ and 2 mL min⁻¹ O₂ were simultaneously put into Fe³⁺ dilute solution at 10 °C. Then, 10 mL 1 mL min⁻¹ BaCl₂ was added to prepare BaSO₄. Oxygen isotopic compositions of product sulfate and three kinds of water were measured to study their linear relationships.

143 2.5 Sulfur and oxygen isotope determination

144 Sulfur isotopic compositions in sulfate were analyzed using Elemental analyzer (EA, Flash 2000,

- 145 Thermo) and isotope mass spectrometer (IRMS, Delta V Plus, Finningan). High-purity BaSO₄ was
- 146 converted into SO₂ in EA in the presence of Cu₂O. SO₂ from EA was ionized and δ^{34} S value was

- 147 measured using IRMS. For the determination of δ^{18} O, BaSO₄ pyrolysis was conducted in graphite
- 148 furnace at 1450 °C, and δ^{18} O value was obtained in CO produced from the pyrolysis at continuous-flow
- 149 mode. The results of δ^{34} S and δ^{18} O were with respect to international standard V-CDT and V-SMOW,
- and the accuracy were better than $\pm 0.2\%$ and $\pm 0.3\%$, respectively.
- 151 **3 Results and discussion**
- 152 3.1 Concentrations of PM_{2.5}, sulfate and SO₂

As described in Fig. 2, the mass concentrations of $PM_{2.5}$, SO_4^{2-} and SO_2 during the period from 4 to 153 22 Dec. 2019 in NUIST changed from 28.1 to 67.0 μ g m⁻³, 8.3 to 17.8 μ g m⁻³ and 6.2 to 20.9 μ g m⁻³ 154 with an average and standard deviation at 45.7 \pm 12.1 µg m⁻³, 12.7 \pm 3.3 µg m⁻³ and 10.2 \pm 4.4 µg m⁻³, 155 156 respectively. It can be observed that PM_{2.5} average concentration was about 1.3 times of the First Grade 157 National Ambient Air Quality Standard (35 µg m⁻³) and beyond the safety standard of World Health 158 Organization (10 μ g m⁻³). The photochemical reactivity during the winter in Beijing has been found to 159 be relatively high (Zhang et al., 2020), which facilitates the formation of some photooxidants. The 160 relatively clean days during the sampling period indicates the importance of photoinduced oxidation of 161 SO₂.

162 163

Fig. 2. Variations in concentrations of $PM_{2.5}$, SO_4^{2-} and SO_2 .

Meanwhile, the change trends of $PM_{2.5}$, SO_4^{2-} and SO_2 concentrations were found to be basically the same during the sampling period, indicating sulfate was mainly from SO_2 oxidation. Especially, $PM_{2.5}$, SO_4^{2-} and SO_2 concentrations increased to the maximum values on 10 Dec.. It is noted that NO_2 and

CO concentrations were 85 and 1.60 µg m⁻³ on 10 Dec., which were also the maximum values during 167 the sampling period. Based on the wind speed was lower than 3m s⁻¹ and there was presence of static 168 169 weather during the sampling period, we believed that high CO concentration was mainly from local 170 emissions. However, O_3 concentration on 10 Dec. was the minimum value at 24 μ g m⁻³, which 171 preliminarily indicated that SO₂ oxidation by NO₂ might be a major pathway in sulfate formation. 172 Previous studies showed that SO₂ oxidation by NO₂ in aerosol water dominated heterogeneous sulfate 173 formation during wintertime at neutral aerosol pH (Wang et al., 2016; Cheng et al., 2016). However, 174 subsequent studies showed that the calculated aerosol pH was in the range of $4.2 \sim 4.7$, and the 175 reactions between SO₂ and NO₂ during this pH range were too slow to produce sulfate. Taking into 176 account low aerosol pH in Nanjing region, we suggested that SO₂ oxidation by NO₂ was not a 177 dominant pathway for sulfate formation during the sampling period.

In contrast, $PM_{2.5}$, SO_4^{2-} and SO_2 concentrations were observed to be at the minimum values on 6 Dec.. Similarly, NO_2 and CO concentrations were also at the minimum of 36 and 0.6 mg m⁻³, respectively. However, O_3 concentration on 6 Dec. was the maximum at 50 µg m⁻³. Besides, the rate of SO_2 oxidation with O_3 becomes fast only when pH>5, the reaction rate of SO_2 with O_3 is one hundredth of those with H_2O_2 or TMI when pH<5. Therefore, pH values of actual fine particles at 4~5 in Nanjing region could markedly restrain SO_2 oxidation by O_3 . The lowest SO_4^{2-} concentration on 6 Dec. further demonstrated that SO_2 oxidation by O_3 played an insignificant role in sulfate formation.

Generally, aqueous-phase oxidation is deemed to be a main process of sulfate formation in atmospheric environment. Shao et al. (2018) believed that heterogeneous sulfate production on aerosols occurred when RH was higher than 50 %. The RH values of the atmosphere ranging from 50.7 to 88.9% during the sampling period indicated that sulfate formation was closely related to SO_2 heterogeneous oxidation.

190 3.2 Sulfur isotopic compositions in sulfate and SO₂

191 It can be observed from Fig. 3 that the values of δ^{34} S-SO₄²⁻ were generally higher compared to those 192 of δ^{34} S-SO₂ during the sampling period except that on 16 Dec.. The δ^{34} S-SO₄²⁻ values ranged from 3.1 193 to 4.7‰ with an average and standard deviation at 4.0±0.6‰, while δ^{34} S-SO₂ values changed from -2.9 194 to 4.7‰ with an average and standard deviation at -0.2±2.3‰. The discrepancy between the values of 195 δ^{34} S-SO₄²⁻ and δ^{34} S-SO₂ was mainly related to sulfur isotope fractionation effect during SO₂ oxidation

198

Fig. 3. Variations in sulfur isotopic compositions in sulfate and SO₂

It is noteworthy that δ^{34} S-SO₄²⁻ values were similar to that in PM_{2.5} with an average at 4.2‰ during 199 200 Youth Olympic Games in Aug. 2014 in Nanjing (Guo et al., 2016). However, the average value of δ^{34} S-SO₄²⁻ during the sampling period was lower than 5.6‰ in Nanjing during a typical haze event 201 from 21 Dec. 2015 to 1 Jan. 2016 (Guo et al., 2019). The higher δ^{34} S values of sulfate in haze was 202 203 possibly ascribed to SO₂ heterogeneous oxidation, which typically enriched heavy sulfur isotope in sulfate. In this study, the average concentrations of $PM_{2.5}$ was 45.7 µg m⁻³, indicating a not heavily 204 polluted time interval. Besides, the relatively high temperature during the sampling period was 205 206 favorable for photochemical reactions and OH radicals' formation. As a result, the contribution of SO₂ 207 homogenous oxidation increased during sulfate formation, which enriched light sulfur isotope compared to that in haze. Han et al. (2017) determined δ^{34} S values in Beijing PM_{2.5} with an average at 208 6.0%. It is observed that there existed a regional difference in δ^{34} S-SO₄²⁻ values. The δ^{34} S-SO₄²⁻ value 209 in Nanjing was generally lower than that in Beijing. The discrepancy of $\delta^{34}S$ -SO₄²⁻ value illustrated 210 different sulfur sources and SO₂ oxidation pathways in these regions. In addition, $\delta^{34}S-SO_4^{2-}$ values 211 212 presented a seasonal change. δ^{34} S values in Beijing aerosol sulfate varied from 3.4 to 7.0% with an 213 average of 5.0% in summer and from 7.1 to 11.3% with an average of 8.6% in winter. Generally, SO₂ 214 homogeneous oxidation dominated in summer compared to that in winter due to strong solar irradiation 215 (Han et al., 2016). SO₂ oxidation might lead to sulfur isotope fractionation, which was mainly 216 attributed to equilibrium or kinetic discrimination between SO₂ and sulfate. The influence of different 217 oxidants on sulfur isotope fractionation needed to be further investigated.

Fig.4 presents the relationship between δ^{34} S-SO₄²⁻ value and atmospheric temperature during the 218 219 sampling period. It can be observed that there existed an obviously negative correlation. The higher temperature generally corresponded to the lower δ^{34} S-SO₄²⁻ value. This is mainly ascribed to kinetic 220 221 effect of sulfur isotope fractionation during SO₂ oxidation. At high temperature, more OH radicals were 222 produced and the contribution of SO_2 homogeneous oxidation increased. It is reported that sulfur 223 isotope fractionation about SO2 was -9‰ for homogeneous oxidation process (Tanaka et al., 1994). Therefore, low δ^{34} S value in sulfate at high temperature was chiefly due to elevated SO₂ homogeneous 224 225 oxidation.

226

Fig. 4. The correlation between δ^{34} S-SO₄²⁻ value and atmospheric temperature.

228	3.3 Sulfur	isotope	fractionation	during SO2	oxidation
-----	------------	---------	---------------	------------	-----------

229 The secondary sulfate was generally from SO_2 homogeneous and heterogeneous oxidation (Seinfeld 230 and Pandis, 1998). The homogeneous and heterogeneous oxidation of SO_2 might lead to sulfur isotope 231 fractionation, which is described by using fractionation coefficient (α)

$$\alpha = \frac{\frac{\delta^{34} S_{SO_4^2}}{10^3} + 1}{\frac{\delta^{34} S_{SO_2}}{10^3} + 1}$$
(1)

232

Sulfate enriched heavy sulfur isotope (α >1) during SO₂ heterogeneous oxidation for the presence of isotope equilibrium fractionation and kinetic fractionation. However, sulfate enriched light sulfur isotope (α <1) during SO₂ homogeneous oxidation due to this process was only related to kinetic fractionation. As described in Fig. 5, α values ranged from 0.9988 to 1.0201 indicating there existed SO₂ homogeneous and heterogeneous oxidation during the sampling period. α value was at the

Fig. 5. Sulfur isotope fractionation coefficients during SO₂ oxidation.

It is reported that sulfur isotope fractionations during SO_2 heterogeneous and homogeneous oxidation to sulfate were 16.5‰ and -9‰, respectively (Tanaka et al., 1994). Consequently, the contribution of SO_2 heterogeneous and homogeneous oxidation to sulfate could be calculated by sulfur isotope mass equilibrium equations (2) and (3).

245
$$\delta^{34}$$
Sso₂+16.5x-9y= δ^{34} Sso₄²⁻ (2)

(3)

247 where x and y represent the contribution of SO_2 heterogeneous and homogeneous oxidation, 248 respectively.

249 It is observed from Fig. 6 that most of the days (7 out of 11) had more than 50% contributions from 250 SO_2 heterogeneous oxidation, which indicated that SO_2 heterogeneous oxidation was generally 251 dominant during sulfate formation. He et al. (2018) presented the observations of oxygen-17 excess of 252 PM_{2.5} sulfate collected in Beijing haze from Oct. 2014 to Jan. 2015, and found the contribution of 253 heterogeneous sulfate production was about $41 \sim 54\%$ with a mean of $48\pm5\%$. The contribution of SO₂ 254 heterogeneous oxidation reached high-level during 5-7 Dec. and on 19 Dec., which was closely related 255 to the temperature of the atmosphere. The low temperature about 5°C during these days was favorable 256 for SO₂ dissolution in water and further oxidized to sulfate. On 16 Dec., the contribution of SO₂ 257 heterogeneous oxidation was at the minimum of 31.4%. The highest temperature of 15°C on 16 Dec. 258 restrained SO₂ solubility in aqueous solution and produced lots of gaseous oxidants such as OH 259 radicals to promote SO₂ homogeneous oxidation.

261

Fig. 6. The contributions of SO_2 heterogeneous and homogeneous oxidation to sulfate.

Overall, the temperature was an important factor in controlling SO_2 oxidation pathways. High temperature facilitated kinetic fractionation of sulfur isotope during SO_2 oxidation to sulfate, thereby decreasing $\delta^{34}S$ value in sulfate. In addition, there was lack of positive correlation between the contribution of SO_2 heterogeneous oxidation and O_3 or NO_2 concentration. This further demonstrated that SO_2 oxidation by O_3 and NO_2 were not the important pathways during the sampling period. Consequently, we mainly focused on SO_2 heterogeneous oxidation by H_2O_2 and Fe^{3+}/O_2 in the following study.

269 3.4 The correlation of δ^{18} O values between H₂O and SO₄²⁻ from SO₂ oxidation by H₂O₂ and Fe³⁺/O₂

It is known that SO₂ rapidly equilibrates with ambient water for very high molar ratio of H₂O to SO₂ in the atmosphere. As a result, δ^{18} O value of SO₂ is dynamically controlled by δ^{18} O value of water and δ^{18} O value of SO₂ has no obvious effect on δ^{18} O value of sulfate produced from different oxidation pathways. Meanwhile, sulfate is very stable with respect to O atom exchange with ambient water. Consequently, δ^{18} O can be adopted to distinguish SO₂ oxidation processes due to that δ^{18} O value of product sulfate reflected the distinctive signals of different oxidants.

We simulatively studied SO₂ heterogeneous oxidation by H_2O_2 and Fe^{3+}/O_2 in the laboratory, which aims to make clear the relationship of $\delta^{18}O$ values between product sulfate and three kinds of water at 10 °C. It can be observed from Fig. 7 that $\delta^{18}O$ value of sulfate was linearly dependent on $\delta^{18}O$ value of water, and the slope of linear curve for H_2O_2 oxidation approximates a ratio of 0.43, indicating that the isotopy of about two of four oxygen atoms in sulfate was controlled by $\delta^{18}O$ value of water. The other 281 two oxygen atoms were from H_2O_2 molecules, whose O-O bond remained intact during SO₂ oxidation. In addition, we noted from Fig. 7 that the slope of linear curve for Fe^{3+}/O_2 oxidation was about 0.65, 282 which represented that the isotopy of about three of four oxygen atoms in sulfate was related to δ^{18} O 283 284 value of water. A 3/4 control of sulfate oxygens by water is also characteristic of heterogeneous 285 oxidation mechanisms in which HSO_3^- isotopically equilibrated with water prior to significant oxidation to SO_4^{2-} . The other one oxygen atom in sulfate was from O_2 . The higher slope suggested a 286 higher dependence of δ^{18} O value of sulfate on δ^{18} O value of water during SO₂ heterogeneous oxidation 287 288 by Fe^{3+}/O_2 . The discrepancy of the slopes for different SO₂ heterogeneous oxidation processes provides 289 us a potential method to distinguish SO₂ oxidation pathways.

290

Fig.7. The correlation of δ^{18} O values between H₂O and sulfate from SO₂ oxidation by H₂O₂ and Fe³⁺/O₂, respectively.

293 $3.5 \, \delta^{18} \text{O-SO}_4^{2-}$ values in PM_{2.5} and SO₂ main oxidation pathways

As depicted in Fig. 8, δ^{18} O values of sulfate in PM_{2.5} ranged from 11.09 to 12.93‰ with an average and standard deviation of 12.35±0.68‰. δ^{18} O values of sulfate focused on a narrow scope except those on 5 and 22 Dec.. It should be pointed out δ^{18} O value of secondary sulfate was a comprehensive result from different SO₂ oxidation processes. Sulfate in PM_{2.5} usually consisted of primary sulfate and secondary sulfate. The δ^{18} O value of primary sulfate is about 38 ‰ (Holt and Kumar, 1984), which is significantly higher than those of secondary sulfate. The contribution of primary and secondary sulfate

Fig.8. δ^{18} O values of sulfate in PM_{2.5} during the sampling period.

in the atmosphere can be calculated by oxygen isotope mass equilibrium equation (4) (Ben et al.,1982).

$$\delta^{18}O_{PM_2} = \delta^{18}O_{PS} \times (1 - f_{SS}) + \delta^{18}O_{SS} \times f_{SS}$$
(4)

305 where $\delta^{18}O_{PM_{2.5}}$, $\delta^{18}O_{PS}$ and $\delta^{18}O_{SS}$ mean $\delta^{18}O$ values of PM_{2.5}, primary sulfate and secondary sulfate, 306 respectively; f_{SS} is the contribution of secondary sulfate in PM_{2.5}.

307 It is noteworthy from Fig. 9 that there exists a linear relationship between δ^{18} O values in water and 308 secondary sulfate from different SO₂ oxidation pathways, and this can be described by the equations (5)-(7), where the value of $\delta^{18}O_{water}$ is about -6.2% in Nanjing. As discussed above, secondary sulfate 309 310 was mainly ascribed to SO₂ homogeneous oxidation by OH radicals and heterogeneous oxidation by 311 H_2O_2 and Fe³⁺/O₂. Therefore, $\delta^{18}O_{SS}$ value in equation (4) can be obtained based on equations (5)-(7), 312 respectively. As a result, the average contribution of primary and secondary sulfate in PM2.5 are 313 presented in Table 1. It can be observed that the majority of sulfate in PM2.5 was secondary sulfate, 314 which appears to constitute from 79.9 to 86.2% of total sulfate during the sampling period. It is 315 admirable to quantitively describe these formation pathways of secondary sulfate in PM2.5.

316
$$\delta^{18}O_{SS}=0.69 \times \delta^{18}O_{water}+9.5 \%$$
 (OH) (Holt and Kumar, 1984) (5)

317
$$\delta^{18}O_{ss}=0.65 \times \delta^{18}O_{water}+10.6 \% (Fe^{3+}/O_2) (this study)$$
 (6)

318
$$\delta^{18}O_{SS} = 0.43 \times \delta^{18}O_{water} + 12.5 \% (H_2O_2) \text{ (this study)}$$
 (7)

321

322

Fig.9. The correlation between δ^{18} O values in water and sulfate in PM_{2.5}.

Table 1 The average contribution of primary sulfate and secondary sulfate in PM_{2.5}.

 Sampling time	Primary sulfate (%)	Secondary sulfate (%)
 4 Dec.	19.7	80.3
5 Dec.	13.9	86.1
6 Dec.	19.3	80.7
7 Dec.	18.4	81.6
10 Dec.	18.7	81.3
12 Dec.	20.0	80.0
15 Dec.	18.4	81.6
16 Dec.	20.1	79.9
19 Dec.	19.7	80.3
20 Dec.	16.7	83.3
22 Dec.	13.8	86.2

According to the percentages of SO_2 heterogeneous and homogeneous oxidation to sulfate in Fig.6 and the average contributions of primary sulfate and secondary sulfate in $PM_{2.5}$ in Table 1, we can further calculate the ratios of different SO_2 oxidation pathways at 10 °C via oxygen isotope mass

327 equilibrium equations (8)-(10), and the corresponding results are depicted in Table 2.

$$328 \qquad \delta^{18}O_{PM_{2,5}} = \delta^{18}O_{PS} \times f_{PS} + (\delta^{18}O_{SS-OH} \times f_{SS-OH} + \delta^{18}O_{SS-Fe^{3+}/O_2} \times f_{SS-Fe^{3+}/O_2} + \delta^{18}O_{SS-H_{2}O_2} \times f_{SS-H_{2}O_2}) \times f_{SS}$$
(8)

$$329 f_{PS} + f_{SS} = 1 (9)$$

$$330 f_{SS-OH} + f_{SS-Fe^{3+}/O2} + f_{SS-H_2O2} = 1 (10)$$

where $\delta^{18}O_{PM_{2.5}}$ and $\delta^{18}O_{PS}$ are $\delta^{18}O$ values of total sulfate and primary sulfate in PM_{2.5}; $\delta^{18}O_{SS-OH}$, $\delta^{18}O_{SS-Fe^{3+}/O_2}$ and $\delta^{18}O_{SS-H_2O_2}$ are $\delta^{18}O$ values of secondary sulfate from SO₂ oxidation by OH radicals, Fe³⁺/O₂ and H₂O₂, respectively; f_{PS} and f_{SS} are the contribution of primary and secondary sulfate; f_{SS-OH}, f_{SS-Fe³⁺/O₂} and f_{SS-H_2O_2} are the ratios of secondary sulfate from SO₂ oxidation by OH radicals, Fe³⁺/O₂ and H₂O₂, respectively.

336 Unlike heavily polluted days with reduced solar irradiation, the photochemical reactivity can remain 337 high in clean days during the observation period because of relatively intense solar irradiation. As a 338 result, some photochemical reactive species such as OH radicals and H_2O_2 are deemed to be the major 339 oxidants for sulfate formation. Generally, H_2O_2 production in the relatively clean atmosphere is 340 ascribed to self-reaction of HO₂ radicals that mainly come from the reactions of OH radicals with CO 341 and volatile organic compounds. It is observed from Table 2 that the ratios of SO₂ oxidation by OH 342 radicals ranged from 38 to 68% with an average and standard deviation at 48±9.7%. The ratio reached 343 the maximum of 68% on 16 Dec., which is mainly ascribed to the highest temperature of 15°C during 344 the sampling period. The photochemical reactions are favorable for producing more OH radicals. In 345 contrast, the ratio of SO₂ oxidation by OH radicals decreased to the minimum of 38% on 6 Dec. due to 346 the low temperature.

Table 2 The ratios of SO_2 different oxidation pathways to sulfate.

Time	$\mathbf{f}_{\text{SS-OH}}$	$f_{SS\text{-}H_2O_2}$	$f_{SS\text{-}Fe^{3+}\!/O_2}$	$f_{SS\text{-}H_{2}O_{2}}/(f_{SS\text{-}H_{2}O_{2}}+f_{SS\text{-}Fe^{3+}/O_{2}}\left(\%\right)$
4 Dec.	0.45	0.27	0.28	49.1
5 Dec.	0.39	0.24	0.37	39.3
6 Dec.	0.38	0.24	0.38	38.7
7 Dec.	0.41	0.25	0.34	42.3
10 Dec.	0.45	0.27	0.28	49.1
12 Dec.	0.59	0.30	0.11	73.2
15 Dec.	0.44	0.26	0.30	46.5

16 Dec.	0.68	0.26	0.06	81.2
19 Dec.	0.40	0.25	0.35	41.6
20 Dec.	0.54	0.31	0.15	67.4
22 Dec.	0.56	0.32	0.12	72.7

It is known that SO₂ oxidation by H_2O_2 and Fe^{3+}/O_2 are the most important pathways during SO₂ 349 350 heterogeneous oxidation. It can be observed from table 2 that the percentage of sulfate from SO_2 351 oxidation by H₂O₂ in secondary sulfate from SO₂ heterogeneous oxidation changed from 38.7 to 81.2% 352 with an average and standard deviation at 54.6 \pm 15.7%, indicating that SO₂ oxidation by H₂O₂ 353 predominated during SO₂ heterogeneous oxidation. In addition, there existed an obviously positive 354 correlation between the ratios of SO₂ oxidation by H₂O₂ and OH radicals, which was chiefly attributed 355 to the photochemical reactions. The relatively strong solar irradiation on 16 Dec. resulted in the 356 maximum ratio of 81.2% about H₂O₂ oxidation in SO₂ heterogeneous reactions. The sampling site is close to Nanjing steel plant. As companion emitters, Fe³⁺ are present in much higher concentrations 357 than that in other areas. It is believed that SO₂ oxidation by O₂ in the presence of Fe³⁺ was not negligent 358 in the areas where the concentrations of SO_2 and Fe^{3+} were high. This inevitably resulted in high SO_2 359 oxidation ratio by Fe^{3+}/O_2 in SO₂ heterogeneous oxidation processes. 360

361 4 Conclusions

362 There was no serious PM_{2.5} pollution during the sampling period. The secondary sulfate constitutes 363 from about 79.9 to 86.2% of total sulfate in PM2.5. SO2 oxidation by O3 and NO2 played an 364 insignificant role in sulfate formation. The secondary sulfate was mainly ascribed to SO₂ homogeneous 365 oxidation by OH radicals and heterogeneous oxidation by H_2O_2 and Fe^{3+}/O_2 . Compared to 366 homogeneous oxidation, SO₂ heterogeneous oxidation was generally dominant with an average 367 contribution of 51.6%. SO₂ oxidation by H_2O_2 predominated in SO₂ heterogeneous oxidation reactions 368 and the average ratio of which reached 54.6%. Consequently, sulfur and oxygen isotopes can be used to gain an insight into sulfate formation. Sulfur isotopic compositions in SO₂ and sulfate were 369 simultaneously measured to quantify the contributions of SO₂ homogeneous and heterogeneous 370 371 oxidation. Combining field observations of oxygen isotope in the atmosphere with the linear relationships of δ^{18} O values between H₂O and sulfate from different SO₂ oxidation processes can obtain 372

an increased understanding of specific sulfate formation pathways. This study is favorable for deeply

374 investigating sulfur cycle in the atmosphere.

375

376 Author contribution

377 Ziyan Guo carried out the experiment and wrote the original draft. Keding Lu designed the 378 methodology and administrated the project. Pengxiang Qiu and Mingyi Xu performed the data 379 collection. Zhaobing Guo instructed the experiment and revised the paper.

380 **Competing interests**

381 The authors declare that they have no competing interest that can influence the work reported in this 382 paper.

383 Acknowledgement

384 We gratefully acknowledge the financial supports from the National Natural Science Foundation of

China (Nos. 41873016, 51908294, and 21976006), the National Science Fund for Distinguished Young

- 386 Scholars (No. 22325601).
- 387

389 References

- 390 Abbatt, J. P. D., Benz, S., Cziczo, D. J., Kanji, Z., Lohmann, U., and Mohler, O.: Solid ammonium
- sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation, Science, 313, 1770-1773,
 https://doi.org/10.1126/science.1129726, 2006.
- 393 Ben, D. H., Romesh, K., and Paul, T. C.: Primary Sulfates in Atmospheric Sulfates: Estimation by
- 394 Oxygen Isotope Ratio Measurements, Science, 217, 51-53, https://doi.org/10.1126/science.217.4554.51,
- 395 1982.
- 396 Brüggemann, M., Riva, M., Perrier, S., Poulain, L., George, C., and Herrmann, H.: Overestimation of
- Monoterpene Organosulfate Abundance in Aerosol Particles by Sampling in the Presence of SO₂,
 Environ. Sci. Technol. Lett., 8, 206-211, https://doi.org/10.1021/acs.estlett.0c00814, 2021.
- 399 Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao, M., Zhang, Q., He, K. B.,
- 400 Carmichael, G., Pöschl, U., and Su, H.: Reactive Nitrogen Chemistry in Aerosol Water as a Source of
- 401 Sulfate during Haze Events in China, Sci. Adv., 2, e1601530, https://doi.org/10.1126/sciadv.1601530,
- 402 2016.
- 403 Gao, J., Wei, Y., Zhao, H., Liang, D., Feng, Y., and Shi, G.: The role of source emissions in sulfate
- 404 formation pathways based on chemical thermodynamics and kinetics model, Sci. Total. Environ., 851,
- 405 158104, https://doi.org/10.1016/j.scitotenv.2022.158104, 2022.
- 406 Guo, Z. B., Shi, L., Chen, S. L., Jiang, W. J., Wei, Y., Rui, M. L., and Zeng, G.: Sulfur isotopic
- 407 fractionation and source apportionment of PM_{25} in Nanjing region around the second session of the
- 408 Youth Olympic Games, Atmos. Res., 174-175, 9-17, https://doi.org/10.1016/j.atmosres.2016.01.011,
- 409 2016.
- 410 Guo, Z. Y., Guo, Q. J., Chen, S. L., Zhu, B., Zhang, Y., Yu, J., and Guo, Z. B.: Study on pollution
- 411 behavior and sulfate formation during the typical haze event in Nanjing with water soluble inorganic
- 412 ions and sulfur isotopes, Atmos. Res., 217, 198-207, https://doi.org/10.1016/j.atmosres.2018.11.009,
- 413 2019.
- 414 Han, X. K., Guo, Q. J., Liu, C. Q., Fu, P. Q., Strauss, H., Yang, J., Jian, H., Wei, L., Hong, R., Peters,
- 415 M., Wei, R. F., and Tian, L.: Using stable isotopes to trace sources and formation processes of sulfate
- 416 aerosols from Beijing, China, Sci. Rep., 6, 29958, https://doi.org/10.1038/srep29958, 2016.
- 417 Han, X. K., Guo, Q. J., Strauss, H., Liu, C. Q., Hu, J., Guo, Z. B., Wei, R. F., Peters, M., Tian, L., and

- 418 Kong, J.: Multiple Sulfur Isotope Constraints on Sources and Formation Processes of Sulfate in Beijing
- 419 PM_{2.5} Aerosol, Environ. Sci. Technol., 51, 7794-7803, https://doi.org/10.1021/acs.est.7b00280, 2017.
- 420 Harris, E., Sinha, B., Hoppe, P., and Ono, S.: High-precision measurements of ³³S and ³⁴S fractionation
- 421 during SO₂ oxidation reveal causes of seasonality in SO₂ and sulfate isotopic composition, Environ. Sci.
- 422 Technol., 47, 12174-12183, https://doi.org/10.1021/es402824c, 2013.
- 423 Harris, E., Sinha, B., Hoppe, P., Crowley, J. N., Ono, S., and Foley, S.: Sulfur isotope fractionation
- 424 during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H_2O_2 ,
- 425 O₃ and iron catalysis, Atmos. Chem. Phys., 12, 407-424, https://doi.org/10.5194/acp-12-407-2012,
 426 2012.
- 427 He, P. Z., Alexander, B., Geng, L., Chi, X. Y., Fan, S. D., Zhan, H. C., Kang, H., Zheng, G. J., Cheng, Y.
- 428 F., Su, H., Liu, C., and Xie, Z. Q.: Isotopic constraints on heterogeneous sulfate production in Beijing
- 429 haze, Atmos. Chem. Phys., 18, 5515-5528, https://doi.org/10.5194/acp-18-5515-2018, 2018.
- 430 He, X., Wu, J. J., Ma, Z. C., Xi, X., and Zhang, Y. H.: NH₃-promoted heterogeneous reaction of SO₂ to
- 431 sulfate on α -Fe₂O₃ particles with coexistence of NO₂ under different relative humidities, Atmos.
- 432 Environ., 262, 118622, https://doi.org/10.1016/j.atmosenv.2021.118622, 2021.
- 433 Holt, B.D. and Kumar R.: Oxygen-18 study of high-temperature air oxidation of SO₂, Atmos. Environ.,
- 434 18, 2089-2094, https://doi.org/10.1016/0004-6981(84)90194-X, 1984.
- 435 Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R., Slowik, J. G.,
- 436 Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
- 437 Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat,
- 438 S., Baltensperger, U., El Haddad, I., and Prevot, A. S.: High secondary aerosol contribution to
- 439 particulate pollution during haze events in China, Nature, 514, 218-222,
 440 https://doi.org/10.1038/nature13774, 2014.
- 441 Kuang, B., Zhang, F., Shen, J., Shen, Y., Qu, F., Jin, L., Tang, Q., Tian, X., and Wang, Z.: Chemical
- 442 characterization, formation mechanisms and source apportionment of PM_{2.5} in north Zhejiang Province:
- 443 The importance of secondary formation and vehicle emission, Sci. Total. Environ., 851, 158206,
- 444 https://doi.org/10.1016/j.scitotenv.2022.158206, 2022.
- Li, J. H. Y., Zhang, Y. L., Cao, F., Zhang, W., and Michalski, G.: Stable Sulfur Isotopes Revealed a
- 446 Major Role of Transition-Metal Ion-Catalyzed SO₂ Oxidation in Haze Episodes, Environ. Sci. Technol.,

- 447 54, 2626-2634, https://doi.org/10.1021/acs.est.9b07150, 2020.
- 448 Lin, Y. C., Yu, M., Xie, F., and Zhang, Y.: Anthropogenic Emission Sources of Sulfate Aerosols in
- 449 Hangzhou, East China: Insights from Isotope Techniques with Consideration of Fractionation Effects
- 450 between Gas-to-Particle Transformations, Environ. Sci. Technol., 56, 3905-3914.
- 451 https://doi.org/110.1021/acs.est.1c05823, 2022.
- 452 Liu, M. X., Song, Y., Zhou, T., Xu, Z. Y., Yan, C. Q., Zheng, M., Wu, Z. J., Hu, M., Wu, Y. S., and Zhu,
- 453 T.: Fine particle pH during severe haze episodes in northern China, Geophys. Res. Lett., 44, 5213-5221,
- 454 https://doi.org/10.1002/2017GL073210, 2017.
- 455 Liu, T., Clegg, S. L., Abbatt, J. P. D.: Fast oxidation of sulfur dioxide by hydrogen peroxide in
- 456 deliquesced aerosol particles, Proc. Natl Acad. Sci. USA., 117, 1354-1359,
- 457 https://doi.org/10.1073/pnas.1916401117, 2020.
- 458 Liu, Y. Y., Wang, T., Fang, X. Z., Deng, Y., Cheng, H. Y., Nabi, I., and Zhang, L.: Brown carbon: An
- 459 underlying driving force for rapid atmospheric sulfate formation and haze event, Sci. Total. Environ.,
- 460 734, 139415, https://doi.org/10.1016/j.scitotenv.2020.139415, 2020.
- 461 Meng, X., Hang, Y., Lin, X., Li, T. T., Wang, T. J., Cao, J. J., Fu, Q. Y., Dey, S., Huang, K., Liang, F. C.,
- 462 Kan, H. D., Shi, X. M., and Liu, Y.: A satellite-driven model to estimate long-term particulate sulfate
- 463 levels and attributable mortality burden in China, Environ. Int., 171,107740,
 464 https://doi.org/10.1016/j.envint.2023.107740, 2023.
- 465 Oh, S. H., Park, K., Park, M., Song, M., Jang, K. S., Schauer, J. J., Bae, G. N., and Bae, M. S.:
- 466 Comparison of the sources and oxidative potential of PM_{2.5} during winter time in large cities in China
- 467 and South Korea, Sci. Total. Environ., 859, 160369, https://doi.org/10.1016/j.scitotenv.2022.160369,
- 468 2023.
- 469 Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the hydrological
- 470 cycle, Science, 294, 2119-2124, https://doi.org/10.1126/science.1064034, 2001.
- 471 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate
- 472 Change, Phys. Today, 51, 88-90, https://doi.org/10.1063/1.882420, 1998.
- 473 Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song, S., Zhao,
- 474 Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation mechanisms during
- 475 wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen

- 476 isotopes in Beijing, Atmos. Chem. Phys., 19, 6107-6123, https://doi.org/10.5194/acp-19-6107-2019,
 477 2019.
- 478 Tanaka, N., Rye, D. M., Xiao, Y., and Lassaga, A. C.: Use of stable sulfur isotope systematic for
- 479 evaluating oxidation reaction pathways and in-cloud scavenging of sulfur dioxide in the atmosphere,
- 480 Geophys. Res. Lett., 21, 1519-1522, https://doi.org/10.1029/94GL00893, 1994.
- 481 Wang, G. H., Zhang, R. Y., Gomez, M. E., Yang, L. X., Levy Zamora, M., Hu, M., Lin, Y., Peng, J. F.,
- 482 Guo, S., Meng, J. J., Li, J. J., Cheng, C. L., Hu, T. F., Ren, Y. Q., Wang, Y. S., Gao, J., Cao, J. J., An, Z.
- 483 S., Zhou, W. J., Li, G. H., Wang, J. Y., Tian, P. F., Marrero-Ortiz, W., Secrest, J., Du, Z. F., Zheng, J.,
- 484 Shang, D. J., Zeng, L. M., Shao, M., Wang, W. G., Huang, Y., Wang, Y., Zhu, Y. J., Li, Y. X., Hu, J. X.,
- 485 Pan, B., Cai, L., Cheng, Y. T., Ji, Y. M., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R. A., Kolb, C. E.,
- 486 and Molina, M. J.: Persistent sulfate formation from London Fog to Chinese haze, Proc. Natl. Acad. Sci.
- 487 U.S. A., 113, 13630-13635, https://doi.org/10.1073/pnas.1616540113, 2016.
- 488 Wang, W., Liu, M., Wang, T., Song, Y., and Ge, M.: Sulfate formation is dominated by
- 489 manganese-catalyzed oxidation of SO₂ on aerosol surfaces during haze events, Nature Communications,
- 490 12, 1993, https://doi.org/10.1038/s41467-021-22091-6, 2021.
- 491 Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K. H., and Yu, J. Z.: Sulfate Formation Enhanced by a
- 492 Cocktail of High NO_x, SO₂, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities
- 493 in China: An Observation-Based Modeling Investigation, Environ. Sci. Technol., 50, 7325-7334,
- 494 https://doi.org/10.1021/acs.est.6b00768, 2016.
- 495 Xue, J., Yuan, Z., Yu, J. Z., and Lau, A. K. H.: An Observation-Based Model for Secondary Inorganic
- 496 Aerosols, Aerosol Air Qual. Res., 14, 862-878, https://doi.org/10.4209/aaqr.2013.06.0188, 2014.
- 497 Yang, T., Xu, Y., Ye, Q., Ma, Y. J., Wang, Y. C., Yu, J. Z., Duan, Y. S., Li, C. X., Xiao, H. W., Li, Z. Y.,
- 498 Zhao, Y., and Xiao, H. Y.: Spatial and diurnal variations of aerosol organosulfates in summertime
- 499 Shanghai, China: potential influence of photochemical processes and anthropogenic sulfate pollution,
- 500 Atmos. Chem. Phys., 23, 13433-13450, https://doi.org/10.5194/acp-23-13433-2023, 2023.
- 501 Ye, C., Liu, P. F., Ma, Z. B., Xue, C. Y., Zhang, C. L., Zhang, Y. Y., Liu, J. F., Liu, C. T., Sun, X., and
- 502 Mu, Y. J.: High H₂O₂ Concentrations Observed during Haze Periods during the Winter in Beijing:
- 503 Importance of H₂O₂ Oxidation in Sulfate Formation, Environ. Sci. Technol. Lett., 5, 757-763,
- 504 https://doi.org/10.1021/acs.estlett.8b00579, 2018.

- 505 Zhang, R., Sun, X. S., Shi, A. J., Huang, Y. H., Yan, J., Nie, T., Yan, X., and Li, X.: Secondary
- 506 inorganic aerosols formation during haze episodes at an urban site in Beijing, China, Atmos. Environ.,
- 507 177, 275-282, https://doi.org/10.1016/j.jes.2022.01.008, 2018.
- 508 Zhang, Y., Bao, F. X., Li, M., Xia, H. L., Huang, D., Chen C. C., and Zhao, J. C.: Photoinduced Uptake
- 509 and Oxidation of SO_2 on Beijing Urban $PM_{2.5}$, Environ. Sci. Technol., 54,
- 510 14868-14876, https://doi.org/10.1021/acs.est.0c01532, 2020.