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Reply to Comments by Referee #1 

We are thankful for the referee’s constructive comments and suggestions, which helped clarify and improve our 

manuscript.  Below are our responses, copying the comments in italic and red.  In the responses, we also indicate the 

changes made in the manuscript in blue. 

 

General comments 

Ishizawa et al. conduct inverse modeling simulations for Canada to estimate wetland fluxes across the country. I think 

this manuscript addresses several very important topics and makes an important contribution to the literature on 

methane fluxes from high latitudes. I do worry about some aspects of the methodology, and I think there are more 

state-of-the-art approaches to inverse modeling that would mitigate some of the unrealistic or unphysical results that 

the authors highlight at several points in the manuscript. 

We appreciate the referee’s comment on our contribution on methane flux estimation from high latitudes. The general 

and specific comments raised some questions on the selection of inversion model used in this study. Notably that we 

didn’t use non-negative flux constraint to eliminate negative fluxes and high resolution (grid point) inversion model 

to better resolve fluxes. We have included below more detailed explanations and evaluations (pros and cons) of the 

different inversion modelling approaches and the reasons for the selection of the model used in this study.  

The Bayesian inversion model used in this study is a statistical (non-deterministic) optimisation technique for our 

linear mixing model: 

C = MS + E, 

where C = concentration, M = atmospheric transport (linear operator), and S = sources (emissions), and E = errors.  

In our model testing, the Bayesian inversion model worked well if the basic model assumptions are satisfied. The 

important assumptions are (1) no transport errors, and (2) a large data set for robust statistics. From the model testing, 

we found that the main reason for the negative posterior fluxes is model transport errors (the inversion model yields 

the best statistical fit of the observations without accounting for transport biases). By comparing multiple transport 

models, we found that the largest source of inversion model errors in the flux estimates is transport model bias errors. 

For atmospheric transport with random errors (unbiased), the model still works well if there are sufficient constraining 

data (‘observations’) to allow the statistical model to robustly estimate the scaling factors. Imposing positive flux 

constraints (usually for negative solutions resulting from scarcity of constraining data (e.g., Michalak and Kitanidis, 

2003)) does not appear to be addressing the problem of transport biases. Positive flux constraints, or imposing non-
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negativity constraints on the scaling factors, could violate the statistical assumptions in our linear Bayesian inverse 

model, namely linearity and normality. 

As noted by the referee, there are studies doing grid scale inversions to address the aggregation errors issue (e.g., 

Gourdji et al., 2012; Hu et al., 2019; Thompson et al., 2017), but their discussions are typically on the aggregated 

fluxes to larger regions and temporally averaged estimated features. Gourdji et al. (2012) concluded that ‘an expanded 

measurement network will further help to reduce the sensitivity of inversion results to setup assumptions, although 

systematic transport model errors will still remain a concern.’ It seems that the additional covariance assumptions 

needed for grid point inversion could not account for the lack of observations and statistical data requirements. Grid 

inversions appear to have similar statistical and transport error limitations as other inversion models using larger sub-

regions. This is consistent with our inversion model sensitivity analysis; we found that inversion flux errors from the 

transport model errors appear larger than aggregation errors in our case. For example, in the worst-case scenario, the 

difference in the inversion results calculated by different transport models could be greater than 100%. 

In this study, we tried to reduce the effects of transport model biases and insufficient observations for statistical 

Bayesian inversion analysis. We used multiple transport models to lessen the effects of individual transport model 

biases and to provide flux uncertainty estimates associated with the choice of transport model. The inversion model 

was tested with different sub-region definitions (2, 4, 6 sub-regions) to obtain flux estimates that appear robust and 

positive without the added model complications like positivity constraints and non-zero covariance matrices. We were 

able to analyse the spatiotemporal characteristics of our flux estimates as reported in the Results and Discussion 

section. 

Flux estimations by inversion models could be complex, as noted above, the flux estimate uncertainties depend on the 

tracer bio-geochemical characteristics, quantity and quality of the observations, model formulation, setup and 

assumptions. Having a wide range of models (including grid point inversion, non-negative constrained inversion, 

multi-transport with abundant observational constraint inversion used here, etc.) could be helpful to understand the 

strengths and weaknesses of inversion modelling. We have added more explanations in the revised manuscript to 

provide the motivations and reasons for our model setup in response to the specific referee’s comments.  

It is not clear what spatiotemporal information of fluxes could be retrieved (robustly and without significant or large 

negative fluxes for the CH4 case, at the minimum) from a given set of observations using a Bayesian statistical 

optimisation model. We are investigating how to improve our inversion model to resolve fluxes better. Therefore, we 

need to understand better the potential improvements and limitations for our case (inferring CH4 fluxes for Canada). 

We have a study in progress to understand some of the critical factors governing the spatiotemporal resolution of the 

fluxes that could be resolved, using model-simulated CH4 concentrations as the ‘observations’ (pseudo-observations 

study). Some of the factors we are examining include: how much observation and their signal contents or strength 

(synoptic variability for our case and the amount of flux signal mixing as the air flowed over different sources), 
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seasonal variations in transport (winds and PBL characteristics), transport model biases (including background or 

boundary conditions uncertainties and biases, the impact of additional transport models, on inversion results), spatial 

and temporal variations in fluxes and various settings used in the inversion model. General statements on how well 

inversion models can resolve posterior fluxes spatiotemporally are difficult. We have some modelling results 

indicating that due to the diffusive nature of atmospheric transport and the large samples of observations required, the 

inversion model appears to have limited ability to resolve posterior fluxes for the flux types, model domain and 

observation network in our study, and may not be able to resolve grid scale fluxes. We will report our findings and the 

possible improvements for the inversion model after our series of model evaluations and sensitivity studies. 

 

Specific comments and suggestions: 

1. Line 15: What kind of gradients are you referring to here? Spatial gradients, vertical gradients, or some 

other kind of gradient? 

We mean the differences in CH4 mixing ratios among the sites by gradients.   We have modified to clarify as below:  

First, the modelled gradients of differences in atmospheric CH4 among the sites show improvement after inversion 

when compared to observations, implying the CH4 gradients observation differences could help verify the inversion 

results. 

 

2. Line 28: What commitment are you referring to here? Does this line refer to thee Global Methane Pledge or 

to some other commitment? 

Yes, we are referring to the Global Methane Pledge as giving the reference, CCAC (2023).  We have specified it as 

below: 

the Global Methane Pledge has been launched at COP26, as a global effort to reduce anthropogenic CH4 emissions by 

at least 30 percent from 2020 levels by 2030 for global climate mitigation (CCAC, 2023). 

 

3. Line 52: I'd recommend adding a transition at the beginning of this paragraph. Otherwise, the pivot from 

wetlands to natural gas feels really sudden and abrupt. 

We started the paragraph, adding a sentence at the beginning as below: 
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Canada’s anthropogenic emission rates also have differences between inventories and measurement-based estimates. 

Canada is the fourth largest producer of natural gas, .. 

 

4. Line 62: This line mentions that reliable anthropogenic emissions estimates are important for regulation. 

Are there relevant regulations on methane emissions in Canada?  

Yes, there are regulations on methane emissions by federal and provincial governments in Canada. We modified the 

line adding the following phrase and references: 

to regulate Canada’s anthropogenic CH4 emissions as set by both federal and provincial governments (e.g., 

Government of Canada, 2018; 2023; Government of Alberta, 2018; Government of Saskatchewan, 2019).  

 

5. Line 112: The phrase "minimize the impact of local sources" sounds a bit ambiguous or confusing here. For 

example, it wasn't totally clear to me what "local sources" means in this context or why those sources are 

bad. Instead of this motivation, I think a stronger motivation is that nighttime and morning mixed layer 

dynamics are really tricky to simulate, and atmospheric transport models don't always do well at this task. 

This difficulty can lead to large errors in the atmospheric transport model, which can potentially interfere 

with the inverse model. 

As the referee noted, the model simulation is challenging when the PBL is not well mixed, such as, nighttime, and 

early morning. In this study, we used the afternoon mean atmospheric CH4 measurements, which are assumed to 

represent the well-mixed CH4 sources within a region, as aiming to estimate regional-scale emission (~100–1000 km).  

Occasionally, the weather condition and local source (<< ~100 km) interact with each other to yield large CH4 mixing 

ratio. These high mixing ratio events are difficult to capture in transport model. The large model-observation 

mismatches could lead to large flux estimate errors. That is why we minimize the local cause by using the mid-

afternoon mixing ratios representative of larger regions. 

We rephased local sources with local-scale variations of atmospheric CH4.  

 

6. Line 115: What percentage of data are removed as outliers? What do you think causes these outliers (i.e., 

what are the possible "unknown sources" cited in line 114)? I can see the rationale for removing outlier data, 

but I also think it's important to ensure this step doesn't eliminate the atmospheric signal from important 

emissions sources. 
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Less than 2 % of the data were removed as outliers. Even during the daytime, local (point) sources can interact with 

local-scale atmospheric condition, leading abrupt or sporadic spikes in observed atmospheric CH4.  The CH4 emissions 

from oil and gas sectors are mainly fugitive, which could emit irregularly from the ventilation during the extraction 

or refinery processes or storage tanks.    

We also flag the observations if there are any issues with air sampling or instruments. We assume that regional-scale 

emissions are reflected on synoptic-scale variations of the observations. For clarification, we rephrased “unknown 

sources” as follow: 

which indicate contamination from unknown sources probably from sporadic strong local fugitive emissions, issues 

related to air sampling or analysis.    Less than 2 % of the data were removed through this process.  

 

7. Line 136: What is the temporal frequency or resolution of these scaling factors? I.e., do you estimate a single 

scaling factor in each region and apply it to the entire study period (years 2007 - 2017), or do these scaling 

factors vary by month/season/year? The way that lambda is defined in line 136 seems to imply that there is 

only a single scaling factor in each region for the duration of the inverse model. 

The temporal resolution of scaling factor is monthly as we state at the end of this section, Sect. 2.2.1. We estimated 

scaling factors for each month per region for the period of 2007–2017, that is, totally 12×11 per region. For simplicity, 

we describe how the scaling factors are optimized for one time step, namely one month in our study.  We have modified 

the preceding sentence as follows: 

N is the number of time observation points times number of stations (N is for one month in our case and is reduced if 

observations are missing). 𝝀𝝀 (R×1) is the vector of the posterior scaling factors. 

 

8. Line 144 and 145: What are the units on these sigma values, and why were these particular values chosen? 

They are unitless, which could also be expressed in percentage. The sigma value for prior uncertainty, σprior = 0.30 (or 

30 %), is from the uncertainty in the CH4 emission used in Zhao et al. (2009).  The prior model-mismatch, σe = 0.33 

(or 33 %), is comparable to those used in previous regional inversion studies (e.g., Gerbig et al., 2013; Lin et al., 2004, 

Zhao et al., 2009), which considered different error components such as LPDM dispersion, wind field, aggregation, 

and background CH4 mixing ratio. This estimate is based on many assumptions that are difficult to evaluate. In our 

previous study (Ishizawa, et al. 2019), we have tested the sensitivity of the inversion results to various setting by using 

0.33 and 0.66, as the model-data mismatch errors, σe. The posterior fluxes changed by less than 5% for all sub-regions, 



6 
 

indicating that the flux estimates were not highly sensitive to the prior error specification. Therefore, we decided to 

use σe = 0.33. We have added the references for these sigma values in the manuscript and modified the text as follows: 

We assigned σe = 0.33 (uncertainty of 33 %) for the model–observation error (Gerbig et al., 2013; Lin et al., 2004; 

Zhao et al., 2009) and σprior = 0.30 (uncertainty of 30 %) for the prior uncertainty (Ishizawa et al., 2019) (Zhao et al., 

2009), as examined in Ishizawa et al. (2019). 

 

9. Line 167: Is 5 days sufficient for the back trajectories? I think John Lin and Christoph Gerbig used 10-day 

back trajectories in their original studies of CO2 fluxes from North America, and many regional inverse 

modeling studies for North America use 10-day back trajectories (e.g., existing studies using CarbonTracker-

Lagrange footprints, including those from Sharon Gourdji and Yoichi Shiga). Is 5 days sufficient time for the 

modeled particles to reach the edge of the modeling domain? 

Particle travelling time and size of the domain of the interest are related.  Bigger space/domain need more time (for 

the air particles to travel over). As seen in Figure S4, the 5-day footprint covers the Canadian land, the domain of our 

interest and the particles after five days are mostly outside Canada. Furthermore, most synoptic-scale variations in the 

atmospheric mixing ratios at measurement sites are sufficiently explained by footprints within two to five days after 

particles are released (see Fig. R1a). Previous studies (e.g., Cooper et al., 2010; Gloor et al., 2001; Stohl et al., 2009) 

have shown that five days are typically sufficient to capture the surface influence on a measurement site from the 

surrounding region. 

We also tested how the back trajectory duration would affect the flux estimation by expanding the duration to 10 days. 

Note that the footprint becomes more and more uncertain with longer and longer back trajectories. It is still being 

determined whether adding the footprint after five days is beneficial.   The choice of the back trajectory duration 

slightly changed the modelled prior mixing ratio, comparable to ~10% of the uncertainty with the transport error from 

the different transport models used in this study (see Fig. R1b). The difference in the estimated fluxes between 5- and 

10-day back trajectories is not significant, less than 5 % for regional fluxes. Thus, we concluded that 5-day back 

trajectories are sufficient in the scope of our study. 
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Figure R1. (a) Example of the annual mean footprint contribution during 10-day back trajectory for East Trout Lake. The 

integrated footprint by day is normalized with respect to the total footprint for the entire period of 10 days. Footprint only 

over the Canada domain is included.  Day back 0 is when the particles released at 14 LT until the first 0 UTC, and the 

following Days back are defined for every 24 hours. (b) the mean differences in the prior modelled mixing ratios between 

5-day footprint and 10-day footprint with the standard deviation (blue), along with the mean transport uncertainties among 

three atmospheric models used in this study for respective sites (orange) for comparison. 

 We have added the following text for clarification at the end of Sect. 2.2.2 and included the above Fig. R1 as Fig. S15 

in the supplementary information. 

There are many factors governing the transport model simulated concentrations at the measurement sites used in this 

study, such as the spatial distribution of emissions and meteorological conditions, including winds and atmospheric 

stability.  Since we are focusing on the synoptic variability in our observations, these are the results of the regional 

emissions (typically within the synoptic spatial scale of ~100–1000 km). This region of interest is covered by the 

model footprint within the first three to five days. Another reason for limiting the footprints to five days is that footprint 

uncertainty grows the longer the hindcast or model dispersion (analogous to forecast uncertainty). Using 5-day 

footprints in the inversion model is similar to other studies (e.g., Cooper et al., 2010; Gloor et al., 2001; Stohl et al., 

2009). These studies have shown that five days are typically sufficient to capture the surface influence on a 

measurement site from the surrounding region. Figure S15a shows the typical footprint strength as a function of days 

of hindcast. Figure S15b illustrates the differences in simulated concentrations between 5-day and 10-day footprints 

for our measurement sites and how they compare (~10%) with the much larger differences resulting from using 

different transport models in this study. Therefore, we used 5-day footprints in our model and included the footprint 

contribution beyond five days implicitly as a part of the background mixing ratio extracted at the 5-day particle 

endpoint locations. Other inversion studies could optimize emissions far from the observation sites (with weak nearby 

emissions); it would be necessary to consider footprints from five days to ten or more days in such cases, even though 
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the footprint (or model transport) uncertainties could become large (possibly) and lead to correspondingly large 

uncertainties in the inversion results. 

 

10. Line 189: What do you mean by "stronger emissions"? Is that the same as "larger emissions"? 

Both are similar relative expressions. To make them specific, we have revised as below: 

Overall GCPwet shows stronger emission areas than the other estimates among the four prior summer wetland fluxes, 

especially along Hudson Bay and around the border between Northern Territories and Alberta in western Canada, 

resulting in larger approximately doubled annual emissions at subregional and national levels then the other estimates 

(Fig. 3c).   

 

11. Figure 5: Both the two and four-region inverse modeling setups seem relatively coarse. The ECCC network 

has 13 sites (i.e., Table 1). Personally, I think that using only two regions in a scaling factor inversion is 

really under-utilizing the ECCC network. By contrast, existing regional-scale atmospheric inverse modeling 

studies often estimate emissions at the model grid scale (e.g., see inverse modeling studies by Sharon Gourdji, 

Yoichi Shiga, Lei Hu, and Nina Randazzo). Furthermore, I'm worried that the relatively coarse regions used 

here might mean that the inverse model can't differentiate anthropogenic emissions in Alberta from wetland 

emissions in other parts of western Canada. As the authors point out, existing inventories tend to greatly 

underestimate emissions from oil and gas operations in Alberta, while some of the wetland models 

overestimate wetland methane emissions. The regions in the inverse model might be so coarse, that the 

resulting scaling factors won't differentiate these contrasting discrepancies between anthropogenic and 

wetland bottom-up emissions estimates in western Canada. 

The 2-subregion mask was introduced to examine the trend of posterior fluxes when there was no measurement in 

North before 2012.  It is because, without sufficient observation coverage, the 4-subregion inversion produces 

unrealistic fluxes, as shown in Fig. 6.  

As we mentioned in our response to the general comment, the grid inversion does not necessarily optimize the fluxes 

better with limited observations.  Without proper evaluation of the posterior fluxes from grid inversions, it would be 

hard to determine the advantage at this point.   

 

12. Line 267: "in the North" instead of "in North"? 
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We intend to use “In North” in the manuscript as “North” is the name of the region (similar to “in Canada” rather than 

“in the Canada”).  In the 4-subregion mask case of this study, we named Canadian Arctic region, “North”.  Similarly, 

the three other subregions are named West, East and South. 

 

13. Line 298: There are ways of constraining the fluxes to be non-negative. For example, you could use a data 

transformation or a bounded optimization algorithm (Matlab and Python, for example, have several 

functions that do bounded optimization. These algorithms include active set minimization algorithms and 

LBFGS-B, among others.). I think there are also other possibilities for why the fluxes are negative here, 

including errors/uncertainty in background methane levels. 

We appreciate the referee’s suggestion of using an optimisation algorithm.  As we explained in our response to the 

general comment, we conducted this study without such optimization algorithm. 

As commented by the referee, background levels could be a source of negative fluxes if they are higher than the mixing 

ratios at the measurement sites.  However, this is not the case for the negative posterior fluxes in our 4-subregion 

inversion.  As shown in Figs. 6 and S3, the negative fluxes are estimated for North when no observations available 

within the subregion of North. 

 

14. Line 300: This statement sounds like it belongs better in the methods section than the results. 

We moved the statement into the method section, Sect. 2.2.5, which has been revised as follows: 

2.2.5 Experimental setup 

Figure 5 shows the schematic diagram of the inversion experiments regarding the combinations of prior fluxes, 

transport models, subregion masks and observations. The ensemble of 24 experiments consists of the permutations of 

eight prior flux scenarios and three transport models, as summarized in Table S1.    

It is noted that the number of the maximum observation sites was 12 in this inversion, as Alert (ALT) was not used for 

the flux estimation. The marine boundary layer site, ALT at the northern end of the subregion North, appears not to 

see the subregional flux signals (mainly in the southern part of the subregion) above the background atmospheric CH4 

(Ishizawa et al., 2019). Therefore, ALT was not included in the inversion of this study, following the inversion study 

of Canadian Arctic CH4 (Ishizawa et al., 2019).  As the reference inversion, we performed these 24 experiments with 

the 4-subregion mask and all 12 site observations (abbreviated as Inv_4R12S). As a sensitivity test to examine the 

impact of on observational coverage, two additional inversions using the 2-subregion mask with the 12 sites 
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(Inv_2R12S) and two sites of ETL and FSD (Inv_2R2S) were conducted with the same ensemble setup of 24 

experiments. ETL and FSD have long measurement records extending back beyond the period of this study. Therefore, 

the inversion Inv_2R2S explored the feasibility of estimating CH4 fluxes by inversion for a longer time period.  

 

15. Line 321: You definitely wouldn't want a reader to misinterpret these statements in the manuscript and think 

the inverse model is faulty or untrustworthy (and that your results are therefore untrustworthy). Another 

possibility here is to look at the posterior uncertainties. Presumably, the posterior uncertainties are large in 

years when there are few observations. The posterior best estimate might be unrealistic, but the uncertainty 

bounds could very well encompass realistic values. Overall, I think the "Does it make sense?" litmus test is 

one way to evaluate the uncertainties in the posterior flux estimate, but the posterior uncertainties are 

another way to do that. And again, enforcing non-negativity within the inverse model (see above) would be 

another way to eliminate these unrealistic, negative flux estimates. 

The statements on ‘physically realistic solutions’ could be misinterpreted as the referee’s comment noted. We have 

revised to clarify the text on the reduction in the posterior uncertainties as follows: 

The subregion West (on the south side of the subregion North, see Fig. 4a) also shows more variability in the posterior 

fluxes before 2012, particularly in the 2008 and 2010 winters. The presence of the poorly constrained North before 

2012 (an extra degree of freedom in the inversion) appears to influence the statistical optimization of the inverse model 

as a whole, leading to more temporal variability and larger posterior uncertainties in the posterior fluxes in West. As 

noted from 2012 onward, there appear to be sufficient sites and observations to constrain North. Consequently, the 

posterior fluxes for West also show less variability and a reduction in the posterior uncertainties or more robustness 

after 2012. 

 

16. Line 330: What kind of variability are you referring to in this line? Also, see the comments above about how 

to add a non-negativity bound to the inverse model. Again, you wouldn't want a reader to think that the 

inverse model is untrustworthy. 

We have clarified that the ‘variability’ is ‘temporal variability’ and used the better description ‘large uncertainties’ for 

the posterior CH4 fluxes. The revised text is as below: 

In Sect. 3.1, the inversion results with four subregions and 12 observation sites (reference inversion, Inv_4R12S) show 

large temporal variability and even non-physical negative and uncertainties for the posterior CH4 fluxes for some 

subregions in the early period (2007–2011), compared to the later period. 
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17. Lines 330 - 340: I don't think that the use of fewer subregions is the solution here. Lots of people in the 

inverse modeling community have estimated CO2 and CH4 fluxes across North America and have estimated 

those fluxes at the model grid scale (i.e., see the list of authors in an earlier comment). Rather, I think that 

enforcing non-negativity in the inverse model is a much better path forward. In addition, the purpose of the 

prior covariance matrix is to regularize problems that are under-constrained by the data. For example, you 

can include off-diagonal elements in the prior covariance matrix, and these terms will push the inverse model 

to estimate scaling factors that a correlated from region-to-region (i.e., correlated spatially) or correlated 

in time. In summary, an advantage of using a Bayesian approach to inverse modeling is that it can 

accommodate problems that are under-constrained, and I recommend taking advantage of those aspects of 

the Bayesian approach. 

We agree that Bayesian inversion models employ many different assumptions to obtain flux estimates. Each approach 

has advantages and disadvantages, and it would be useful to have these different inversion models (including the 

model used in this study) to help understand the strengths and weaknesses of the different inversion models. As 

explained above, the inversion model in this study included different transport models to help account for transport 

biases and used the wealth of observations to provide more robust flux estimates for Canada.  The posterior fluxes 

from this study have uncertainty estimates that included errors from the three transport models, the eight sets of prior 

fluxes and different model setups. A comparison with other studies shows good general agreements, but also 

interesting new spatiotemporal features and relationships to climatological forcings. We hope this study has 

contributed to the science of inversion modelling and helped provide more insights into the CH4 cycle in Canada. In 

the revised manuscript, we have added the following explanations on the inversion model differences and their pros 

and cons at the end of Sect. 2.2.4 Domain and subregions.  

In our model testing, the statistical Bayesian inversion model worked well if the basic model assumptions are satisfied. 

The important assumptions are (1) no transport errors and (2) a large data set for robust statistics. We found that the 

main reason for the negative posterior fluxes in our model is transport errors (the inversion model yields the best 

statistical fit of the observations without accounting for transport biases).  

For atmospheric transport with random errors (unbiased), the model still works well if there are sufficient constraining 

data (‘observations’) to allow the statistical model to robustly estimate the scaling factors. Imposing positive flux 

constraints (usually for negative solutions resulting from a scarcity of constraining data (e.g., Michalak and Kitanidis, 

2003)) does not appear to be addressing the problem of transport biases.  Positive flux constraints, or imposing non-

negativity constraints on the scaling factors, could violate the statistical assumptions in our linear Bayesian inverse 

model, namely linearity and normality.  
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There are inversion studies doing grid scale inversions (using non-zero off-diagonal covariance constraints) to address 

the aggregation errors issue (e.g., Gourdji et al., 2012; Hu et al., 2019; Thompson et al., 2017). These grid scale 

inversions are limited by the lack of observations and systematic transport errors (Gourdji et al., 2012). Their 

discussions are typically on the aggregated fluxes to larger regions and temporally averaged estimated features.  This 

is consistent with our inversion model sensitivity analysis; we found that inversion flux errors from the transport model 

errors appear larger than aggregation errors in our case. For example, in the worst-case scenario, the difference of the 

inversion results calculated by different transport models could be greater than 100%.  

In this study, we tried to reduce the effects of transport model biases and insufficient observations for statistical 

Bayesian inversion analysis. We used multiple transport models to lessen the effects of individual transport model 

biases and to provide flux uncertainty estimates associated with the choice of transport model. This inversion model 

employed a limited number of sub-regions to allow the abundant observations to provide sufficient constraint to obtain 

flux estimates that appear robust and positive without the added model complications like positivity constraints and 

non-zero off-diagonal covariance constraints.  

Flux estimations by inversion models could be complex; the flux estimate uncertainties depend on the tracer bio-

geochemical characteristics, quantity and quality of the observations, model formulation, setup and assumptions. 

Having a wide range of models (including grid point inversion, non-negative constrained inversion, multi-transport 

with abundant observational constraint inversion used here, etc.) could be helpful to understand the strengths and 

weaknesses of inversion modelling. 

  

18. Lines 355-357: Presumably, one could answer this question by looking at the posterior uncertainties.  

East_2 in Inv_2R2S shows the larger posterior uncertainty (σ = 0.08 Tg year-1) than other two inversion cases (σ = 

0.06 Tg year-1).  As well as the posterior uncertainties, we point out that insufficient observational coverage would 

bias the trend. 

 

19. Line 378: Maybe "estimate" should be "estimates"? 

Corrected 

 

20. Line 393: What do you mean by "assimilated well"? Can you use a different phrase here to clarify the 

meaning? 
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We have changed from ‘assimilated well by the background mixing ratios’ to ‘simulated well by the background 

mixing ratios.’ 

 

21. Line 465: If not solely temperature, what other drivers do you think are key? 

The drivers of wetland CH4 seasonality are complex and remain as knowledge gaps in wetland CH4 models and flux 

measurement, though temperature has been widely found a strong driver to constrain wetland CH4 emission (Delwiche 

et al., 2021). Carbon substrates and inundation/water table would be also drivers and predictors of wetland CH4 

seasonality.  Based on flux measurements along with a biogeochemistry model, Chang et al. (2020) demonstrated that 

the seasonal CH4 emission is not a simple-single valued function of air temperature, but modulated hysterically by the 

availability of microbial substrates.   

We have added the following sentences:  

Temperature has been widely found a major driver to constrain the seasonal cycle of wetland CH4 emissions, but their 

relationship might not be linear.  Other factors, such as carbon substrates and seasonal inundation, also driver wetland 

CH4 seasonality (Delwiche et al., 2021). 

 

22. Line 489: I think this statement represents the challenge of using such large regions in the inverse model. 

There are some cities in the Eastern region. If one used smaller regions or did a grid-scale inversion, then it 

would be easier to zoom in on wetland regions like the Hudson Bay Lowlands or the wetlands near Chapais, 

Quebec. 

In the 4-subregion mask of this study, the biggest city in East is Winnipeg, the capital of the province of Manitoba, 

while the major cities in eastern Canada, such as, Toronto in Ontario and Montreal in Quebec, are within the subregion 

of South in this study.  As shown in Fig. 3d, the anthropogenic CH4 emissions in East are ~0.04 Tg year-1, mainly 

from the agriculture sector. Thus, we assumed the possible source of the winter CH4 emissions would be natural. As 

mentioned in our reply to the General comment, we do not expect that a grid-scale inversion could help determine the 

source regions, given the spatial coverage of the available observations. 

 

23. Line 491: What do you define as large here? 
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The winter fraction of CH4 emissions in our study is 22 % for East as presented in Sect. 3.5.2 while those from previous 

regional inversion studies are around 10 % or less. 

The manuscript has revised as follows:  

Also, our winter flux results are not consistent with the previous regional inversion results (e.g., Miller et al., 2014; 

Thompson et al., 2017), which do not show any large winter fraction (~10%) of CH4 emissions in the HBL, compared 

to our results for East (22 %, see Sect. 3.5.2) in the cold season. 

 

24. Sections 3.5.1 and 3.5.2 seem to focus more on flux totals than on the spatial distribution of fluxes (which is 

the title of Sect. 3.5). I would consider renaming Sect. 3.5 accordingly. 

We have renamed Sect. 3.5 from ‘Spatial distribution of the fluxes’ to ‘National and regional distribution of annual 

fluxes.’ 

 

25. Lines 646 - 662: These lines seem like they might fit better in Sect. 3.6 than in Sect. 3.5. 

We have moved these lines to Sect. 3.6 Winter natural CH4 emissions. And the previous “Sect. 3.6” is now the 

subsection, 3.6.1.  We hope this way follows better: 

3.6 Winter natural CH4 emissions 

Results for cold season natural CH4 fluxes are wide ranging among recent studies, as cold season natural CH4 fluxes 

are difficult to measure and quite variable in wetland model estimates. Treat et al (2018) reported measured cold (non-

growing) season fraction of wetland CH4, 16 % (95 % confidence interval CI, 11.0–23.0 %) between 40˚ N and 60˚ 

N, and 17 % (CI 16.0–23.3 %) for north of 60˚ N. These fractions tend to be higher than process-based models (4–17 

% within 40–60˚ N), while the upscaled flux estimates based on the flux measurement with machine learning technique 

(Peltola et al., 2019) showed cold season emission (November to March) ~20 % for north of 45˚ N. Pelletier et al. 

(2007) reported up to 13 % of the annual emission in the winter (November to March), in peatland in James Bay 

Lowland, along the Hudson Bay coastline in Canada. A recently published CH4 flux dataset from the flux measurement 

global network (FLUXNET-CH4) has a considerable contribution of cold months (October to March) to annual CH4 

flux, 18.1 ± 3.6 % and 15.3 ± 0.1 % in northern (> 60˚ N) and temperate (40°–60˚ N) regions, respectably (Delwiche 

et al., 2021). An inter-comparison of 16 wetland models from the Global Carbon Project (Ito et al., 2023) showed cold 

season CH4 fluxes (September to May) ranging from 11.6–40.1% in the Arctic (> 60˚ N), and 21.6–54 % north of 45˚ 

N. For comparison, our cold season (September to May) natural CH4 emissions are 38.5 (38–39) % in the Arctic (> 

60˚ N) and 51 (49–52) % north of 45˚ N. The natural CH4 emission in this study is not directly comparable to the other 
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wetland emissions as our natural CH4 emission is limited to the model domain of Canada and includes biomass 

burning, and soil sink. But our natural CH4 emission estimate appears to be within the range of results of other studies. 

As the range of possible winter wetland emission fraction is large in previous studies, evidence of winter 

wetland/natural CH4 emissions in our atmospheric CH4 measurements is further examined in the following section. 

3.6.1 Signals of winter natural CH4 emissions in observations 

 

26. Section 3.6: What do you think is the overall take-away message or main scientific result of this section? I 

think it could be helpful to emphasize the main takeaway messages here. The text at the end of the section 

states that the diurnal cycle is consistent with the inverse modeling results, but I'm not sure if there are other 

key take-aways in this section. I'm also not sure to what extent the results in this section really validate the 

inverse model; they're certainly not inconsistent with the inverse model, but I don't know that they specifically 

validate or provide evaluation of the inverse model. 

As we mentioned at the end of the first paragraph in this section, examining the diurnal cycle provides observational 

evidence of the existence of winter natural CH4 emissions. We believe this is a novel approach to detect the winter 

emissions using atmospheric measurements, although it does not provide quantitative verification to inverse model. It 

could be considered as supporting evidence that winter natural CH4 emissions are present. Before making more 

definite statements, we need to explore if such diurnal cycle CH4 signals could be used to quantify flux rates, possibly 

using Radon ratios such as Vogel et al. (2012). Winter flux measurements in boreal regions are still sparse because 

the fluxes are too weak to detect, and the field conditions often are too hush. Beyond a site-level flux measurement 

(though eddy covariance or chamber), the resulting evidence also indicates that the winter CH4 emissions occur on a 

large spatial scale.   

 

27. Conclusions: Several topic sentences in the conclusions sentences start out with relatively technical 

references to case "Inv_4R12S." Instead, I would try to focus on the high-level take-away messages and avoid 

very technical abbreviations in this section.  

We have replaced ‘Inv_4R12S’ from this section with ‘reference inversion.’  

 

References 

Cooper, O. R., Parrish, D. D., Stohl, A., Trainer, M., Nédélec, P., Thouret, V., Cammas, J. P., Oltmans, S. J., Johnson, 

B. J., Tarasick, D., Leblanc, T., McDermid, I. S., Jaffe, D., Gao, R., Stith, J., Ryerson, T., Aikin, K., Campos, T., 



16 
 

Weinheimer, A., and Avery, M. A.: Increasing springtime ozone mixing ratios in the free troposphere over western 

North America, Nature, 463, 344, https://doi.org/10.1038/nature08708 

Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E., McNicol, G., Feron, S., Ouyang, Z., Papale, D., 

Trotta, C., Canfora, E., Cheah, Y. W., Christianson, D., Alberto, M. C. R., Alekseychik, P., Aurela, M., Baldocchi, 

D., Bansal, S., Billesbach, D. P., Bohrer, G., Bracho, R., Buchmann, N., Campbell, D. I., Celis, G., Chen, J., Chen, 

W., Chu, H., Dalmagro, H. J., Dengel, S., Desai, A. R., Detto, M., Dolman, H., Eichelmann, E., Euskirchen, E., 

Famulari, D., Fuchs, K., Goeckede, M., Gogo, S., Gondwe, M. J., Goodrich, J. P., Gottschalk, P., Graham, S. L., 

Heimann, M., Helbig, M., Helfter, C., Hemes, K. S., Hirano, T., Hollinger, D., Hörtnagl, L., Iwata, H., Jacotot, A., 

Jurasinski, G., Kang, M., Kasak, K., King, J., Klatt, J., Koebsch, F., Krauss, K. W., Lai, D. Y. F., Lohila, A., 

Mammarella, I., Belelli Marchesini, L., Manca, G., Matthes, J. H., Maximov, T., Merbold, L., Mitra, B., Morin, T. 

H., Nemitz, E., Nilsson, M. B., Niu, S., Oechel, W. C., Oikawa, P. Y., Ono, K., Peichl, M., Peltola, O., Reba, M. 

L., Richardson, A. D., Riley, W., Runkle, B. R. K., Ryu, Y., Sachs, T., Sakabe, A., Sanchez, C. R., Schuur, E. A., 

Schäfer, K. V. R., Sonnentag, O., Sparks, J. P., Stuart-Haëntjens, E., Sturtevant, C., Sullivan, R. C., Szutu, D. J., 

Thom, J. E., Torn, M. S., Tuittila, E. S., Turner, J., Ueyama, M., Valach, A. C., Vargas, R., Varlagin, A., Vazquez-

Lule, A., Verfaillie, J. G., Vesala, T., Vourlitis, G. L., Ward, E. J., Wille, C., Wohlfahrt, G., Wong, G. X., Zhang, Z., 

Zona, D., Windham-Myers, L., Poulter, B., and Jackson, R. B.: FLUXNET-CH4: a global, multi-ecosystem dataset 

and analysis of methane seasonality from freshwater wetlands, Earth Syst. Sci. Data, 13, 3607-3689, 

https://doi.org/10.5194/essd-13-3607-2021, 2021 

Gerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A. E., Stephens, B. B., Bakwin, P. S., and Grainger, C. A.: 

Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of 

COBRA data using a receptor-oriented framework, J. Geophys. Res., 108, https://doi.org/10.1029/2003JD003770, 

2003. 

Gloor, M., Bakwin, P., Hurst, D., Lock, L., Draxler, R., and Tans, P.: What is the concentration footprint of a tall 

tower?, J. Geophys. Res., 106, 17831-17840, https://doi.org/10.1029/2001JD900021, 2001. 

Gourdji, S. M., Mueller, K. L., Yadav, V., Huntzinger, D. N., Andrews, A. E., Trudeau, M., Petron, G., Nehrkorn, T., 

Eluszkiewicz, J., Henderson, J., Wen, D., Lin, J., Fischer, M., Sweeney, C., and Michalak, A. M.: North American 

CO2 exchange: inter-comparison of modeled estimates with results from a fine-scale atmospheric inversion, 

Biogeosciences, 9, 457-475, https://doi.org/10.5194/bg-9-457-2012, 2012. 

Government of Alberta, Reducing methane emissions (2018), https://www.alberta.ca/climate-methane-emissions, last 

access: May 24, 2024. 

Government of Canada, Regulations Respecting Reduction in the Release of Methane and Certain Volatile Organic 

Compounds (Upstream Oil and Gas Sector) (SOR/2018-66), https://laws-lois.justice.gc.ca/eng/regulations/SOR-

2018-66/, last access: May 24, 2024. 

Government of Canada, Amending the Regulations Respecting Reduction in the Release of Methane and Certain 

Volatile Organic Compounds (Upstream Oil and Gas Sector) https://www.gazette.gc.ca/rp-pr/p1/2023/2023-12-

16/html/reg3-eng.html, last access: May 24, 2024. 

Government of Saskatchewan, Methane Action Plan, https://www.saskatchewan.ca/business/environmental-

https://www.alberta.ca/climate-methane-emissions
https://laws-lois.justice.gc.ca/eng/regulations/SOR-2018-66/
https://laws-lois.justice.gc.ca/eng/regulations/SOR-2018-66/
https://www.gazette.gc.ca/rp-pr/p1/2023/2023-12-16/html/reg3-eng.html
https://www.gazette.gc.ca/rp-pr/p1/2023/2023-12-16/html/reg3-eng.html
https://www.saskatchewan.ca/business/environmental-protection-and-sustainability/a-made-in-saskatchewan-climate-change-strategy/methane-action-plan


17 
 

protection-and-sustainability/a-made-in-saskatchewan-climate-change-strategy/methane-action-plan, last access: 

May 24, 2024. 

Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., Michalak, A. M., Dlugokencky, E., Tans, P. P., 

Shiga, Y. P., Mountain, M., Nehrkorn, T., Montzka, S. A., McKain, K., Kofler, J., Trudeau, M., Michel, S. E., 

Biraud, S. C., Fischer, M. L., Worthy, D. E. J., Vaughn, B. H., White, J. W. C., Yadav, V., Basu, S., and van der 

Velde, I. R.: Enhanced North American carbon uptake associated with El Niño, Science Advances, 5, eaaw0076, 

https://doi.org/10.1126/sciadv.aaw0076, 2019. 

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Grainger, C. A., Stephens, B. B., Bakwin, P. S., and 

Hollinger, D. Y.: Measuring fluxes of trace gases at regional scales by Lagrangian observations: Application to the 

CO2 Budget and Rectification Airborne (COBRA) study, J. Geophys. Res., 109, 

https://doi.org/10.1029/2004JD004754, 2004. 

Michalak, A. M. and Kitanidis, P. K.: A method for enforcing parameter nonnegativity in Bayesian inverse problems 

with an application to contaminant source identification, Water Resources Research, 39, 

https://doi.org/10.1029/2002WR001480, 2003. 

Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B. R., Lunder, C., Maione, M., Mühle, J., O'Doherty, 

S., Prinn, R. G., Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G., Vollmer, M. K., Weiss, R. F., and 

Yokouchi, Y.: An analytical inversion method for determining regional and global emissions of greenhouse gases: 

Sensitivity studies and application to halocarbons, Atmos. Chem. Phys., 9, 1597-1620, https://doi.org/10.5194/acp-

9-1597-2009, 2009. 

Thompson, R. L., Sasakawa, M., Machida, T., Aalto, T., Worthy, D., Lavric, J. V., Lund Myhre, C., and Stohl, A.: 

Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion, 

Atmos. Chem. Phys., 17, 3553-3572, https://doi.org/10.5194/acp-17-3553-2017, 2017. 

Vogel, F. R., Ishizawa, M., Chan, E., Chan, D., Hammer, S., Levin, I., and Worthy, D. E. J.: Regional non-CO2 

greenhouse gas fluxes inferred from atmospheric measurements in Ontario, Canada, Journal of Integrative 

Environmental Sciences, 9, 41-55, https://doi.org/10.1080/1943815X.2012.691884, 2012. 

Zhao, C., Andrews, A. E., Bianco, L., Eluszkiewicz, J., Hirsch, A., MacDonald, C., Nehrkorn, T., and Fischer, M. L.: 

Atmospheric inverse estimates of methane emissions from Central California, J. Geophys. Res., 114, D16302, 

https://doi.org/10.1029/2008JD011671, 2009. 

 

 

https://www.saskatchewan.ca/business/environmental-protection-and-sustainability/a-made-in-saskatchewan-climate-change-strategy/methane-action-plan

