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Abstract. In the last decade, various satellite missions have been monitoring the status of cryoshopere
::
the

:::::::::::
Cryoshopere

:
and

its evolutionover time. Beside sea-ice concentration data, available since the 80s, sea-ice thickness retrievals are now ready to

be used in
:::::
global

:
operational prediction and

:::::
global

:
reanalysis systems. Nevertheless, a straightforward ingestion of multiple

::::
while

:::::::::
univariate

:::::::::
algorithms

:::
are

:::::::::
commonly

:::::
used

::
to

::::::::
constrain sea-ice characteristics in a multivariate framework is prevented

by the highly non-gaussian distribution of such
::::
area

::
or

:::::::
volume,

::::::::::
multivariate

::::::::::
approaches

:::
are

:::
yet

::
to

::
be

:::::::::
employed

:::
due

::
to

::::::
highly5

:::::::::::
non-Gaussian

::::::::::
distribution

::
of

::::::
sea-ice

:
variables together with the low accuracy of thickness observations. This study describes

an extension of OceanVar,
::::::
extends

:
a 3Dvar system

:
,
:::::
called

:::::::::
OceanVar

:::
and

:
routinely employed in the production of global/re-

gional operational/reanalysis products, designed to include
::
to

::::::
process sea-ice variables. Those variables are treated through

:::
The

::::::::::::
tangent/adjoint

:::::::
versions

::
of

:
an anamorphosis operatorthat transforms

:
,
:::
are

::::
used

::
to

::::::::
transform

::::::
locally

:::
the

:
sea-ice anomalies into

gaussian control variables , the
:::::::
Gaussian

::::::
control

::::::::
variables

:::
and

:::::
back,

:::::::::
minimising

::
in
:::
the

:::::
latter

:::::
space.

::::
The benefit brought by such10

transformation is described. Several sensitivity experiments are carried out using a suite of diverse datasets. The
:::
sole

:
assimila-

tion of the sole Cryosat-2
::::::::
CryoSat-2

:
provides a good spatial representation of thickness distribution but still overestimates the

total volume that requires the inclusion of SMOS data to be properly constrained
::::::::
converge

::::::
towards

:::
the

::::::::::
observation

::::::::
estimates.

The intermittent availability of thickness data along the year, leads to potential discontinuities in the integrated quantities that

:::
can

::::
lead

::
to

::::::::
potential

:::::
jumps

::
in

:::
the

::::::::
evolution

:::
of

:::
the

::::::
volume

::::
and requires a dedicated tuning. The use of

::
the

:
merged L4 prod-15

uct CS2SMOS produces similar
:::::
shows

:::
the

::::
best

:
skill score when validated against independent mooring data, compared to

the ingestion of L3 CryoSat-2 and L3 SMOS data . The
:::::::::::
measurements

::::::
during

:::
the

:::::::
melting

::::::
season

:::::
when

:::::::
satellite

::::
data

:::
are

:::
not

::::::::
available.

::::
This new sea-ice module is meant to simplify the

::
he future coupling with ocean variables.

1 Introduction

The recent availability of sea-ice thickness retrievals have been offering
::::::
offered

:
a unique opportunity to significantly im-20

prove the reconstruction of the past state at high latitudes as well as its prediction. Thickness extimates were firstly
::::::::
estimates

::::
were

::::
first derived from the ERS-1/ERS-2 radar altimetry echoes between 1993 and 2001 in a pioneering reconstruction of

Arctic sea-ice thickness distribution up to 81.5◦N (Laxon et al., 2003). In 2003 a dedicated satellite mission ICESat was

launched to monitor the thinning of Arctic ice (Forsberg and Skourup, 2005). More recent missions consider the Soil Moisture

and Ocean Salinity (SMOS) mission in 2009 (Kaleschke et al., 2010; Tian-Kunze et al., 2014), the polar-orbiting CryoSat-25

2 in 2010 (Wingham et al., 2006) and the ICESat-2 mission in 2018 (Kwok et al., 2019; Petty et al., 2022). Most of these
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datasets are yet to be harnessed by present reanalysis systems as pointed out by recent reanalysis inter-comparison studies

that show large discrepancies in several sea-ice features despite a rather general agreement in the extension
:::::
sea-ice

::::::
extent

(Chevallier et al., 2017; Uotila et al., 2019; Iovino et al., 2022). Thickness data could be also employed to ameliorate short

and long-term prediction: the memory of a realistic thickness distribution within the initial conditions has been shown to30

persist well beyond the seasonal timescale (Day et al., 2014; Blanchard-Wrigglesworth et al., 2017). Despite that, the in-

termittent occurrence of such data during the year, the large errors associated to them (Zygmuntowska et al., 2014) and

the highly non-gaussian
:::::::::::
non-Gaussian distributions of sea-ice related uncertainties, made the multivariate assimilation of

sea-ice data still an active research field. In fact, while the
:::::::::
Nowadays,

:::
the

:::::
sole assimilation of the sole concentration is

well established (Posey et al., 2015; Lemieux et al., 2016; Zuo et al., 2019), preliminary studies about the positive impact of35

thickness assimilation ,
:::::
sea-ice

::::::::::::
concentration

::
in

:
a
::::::::
univariate

:::::::
fashion,

::
is

:
a
:::::::::::::
well-established

::::::::
approach

:::::::::::::::::::::::::::::::::::::::::::::::
(Posey et al., 2015; Lemieux et al., 2016; Zuo et al., 2019)

:
.
::::::::::
Preliminary

::::::
studies

::
on

:::
the

::::::::
addition

::
of

:
a
:::::::
second

::::::::
univariate

::::::::::
assimilation

:::::::
scheme

:::
for

::::::::
thickness

:
have come out only recently .

Yang et al. (2014); Mu et al. (2018b) exploited the Localized Singular Evolutive Interpolated Kalman filter to ingest thickness

data over one freezing season.
:
at

::::::
global

::::
level.

:::::::::::::::::::::::::::::::::::::::::::
Blockley and Peterson (2018); Mignac et al. (2022)

::::::
showed

:::
the

::::::
benefit

::
of

:::::
using

::
of

:::::::::
CryoSat-2

:::
and

::::
later

:::::::::::::::
CryoSat-2/SMOS

::::
data

:::
to

::::::
correct

:::
the

::::::
Arctic

::::::::
thickness

::::::::::
distribution,

:::::::::
exploiting

::
a

:::::::::
variational

::::::::
approach40

:::::
within

:::
the

:::::::
FOAM

::::::
system.

:::::
They

::::
also

:::::
point

:::
out

:::
the

:::::
need

::
of

::
a

:::::
better

:::::::::
estimation

::
of

::::
SIT

::::::::::
observation

::::::
errors.

::
At

::::::::
regional

:::::
scale,

::::::::::
multivariate

:::::::::
approaches

::::
were

:::::::::
developed,

:
Xie et al. (2016, 2018) confirm the benefits within the

::
of

:::
the

::::::::::
assimilation

::
of

:::::::::
CryoSat-2

:::
and

::::::
SMOS

::
in

:::
the TOPAZ regional forecast system based on the Ensemble Kalman filter. At global level, SMOS and Cryosat-2

data were assimilated using a variational approach although still within an univariate framework (Blockley and Peterson, 2018; Mignac et al., 2022)

.45

:::
The

:::::
main

::::::::
correction

::::::
comes

:::::
from

:::
the

:::
use

::
of

:::::::::
CryoSat-2

::::
data,

:::
the

:::::::::::
assimilation

::
of

::::::
SMOS

:::::::
reduced

:::
the

:::::
error

::
in

:::
the

::::::
thin-ice

:::
of

::::
about

:::
11

:::
and

::::
22%

::
in

::::::
March

:::
and

::
in

:::::::::
November

::::::::::
respectively,

::::::
without

::::::::::
degradation

::
in

:::
the

:::::
other

::::::::
variables.

::::::::::::::::::::::::::::::
Yang et al. (2014); Mu et al. (2018b)

:::::
tested

:::
the

::::::::
Localized

:::::::
Singular

:::::::::
Evolutive

::::::::::
Interpolated

:::::::
Kalman

::::
filter

::
to

:::::::
integrate

::::::::
thickness

::::
data

::::
and

::::::
showed

:::
an

::::::
overall

::::
error

::::
that

:
is
:::::::
similar

::
to

:::
the

::::::::
PIOMAS

::::::
system

::::::::::::::::::::::::
(Zhang and Rothrock, 2003)

::::
when

:::::::::
compared

::
to

::::::::::
independent

::::::
in-situ

:::::::::::::::::::
measurements.Finally,

::::::::::::::::
Cheng et al. (2023)

:::
has

:::::::
recently

:::::::
showed

::
in

::
a

:::::::::
standalone

::::::::::
Lagrangian

::::::
sea-ice

::::::
model,

:::::::::
neXtSIM,

:::::::::
interfaced

::
to

::
a

:::::::::::
deterministic50

:::::
EnKF

::::::
scheme

:::
in

:
a
::::::::::
multivariate

:::::::
manner

::::
that

::::::::::::
improvements

::
in

::::
SIT

::::::::
estimates

:::::::
indicate

:::
the

::::::::::
importance

::
of

::::::::::
assimilating

:::::::
weekly

:::::::::
CS2SMOS

:::
SIT

:::::
while

::::
the

:::::::::::
improvements

:::
of

:::
SIC

::::
and

:::
ice

:::::
extent

:::
are

::::::::
moderate

:::
but

::::::
benefit

:::::
from

::::
daily

:::::::::
correction

:::::
from

::::::::
OSI-SAF

::::
SIC. In this study, we extend an operational 3DVar data assimilation (DA) scheme, OceanVar, employed in the routinely pro-

duction of global and regional ocean reanalysis and forecasts (Storto et al., 2019a; Escudier et al., 2021; Lima et al., 2021;

Ciliberti et al., 2022), to ingest
::::
treat sea-ice concentration (SIC) and thickness (SIT) data. The novelty in this approach re-55

lies on the inclusion of
::::::::::::
tangent/adjoint

:::::::
version

::
of an anamorphosis operator in the control vector transformation to deal with

the breaking of the Gaussianity
::::::::
Gaussian assumption of sea-ice variables (Brankart et al., 2012; Simon and Bertino, 2009;

Béal et al., 2010). The operator transforms the probability density functions of SIC/SIT anomalies into gaussian
:::::::
towards

:::::::::::
Gaussian-like ones performing the minimization in the gaussian

::
this

:
space. It is originally based on the tool made available by

the SANGOMA project (http://www.data-assimilation.net/) further adapted for the bivariate assimilation of SIC/SIT within the60
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OceanVar framework. While being able to maintain the correct cross-correlation between the two parameters, such operator is

also able to preserve the strong spatial anisotropy of sea-ice variables close to the edge.

Several sensitivity experiments were carried out with the new scheme assimilating different thickness products: SMOS,

CryoSat-2 and optimally-interpolated product CS2SMOS (Ricker et al., 2017), jointly with SIC data. Strategies to avoid dis-

continuities at the onset of the accretion period when the SIT data starts to be available are discussed.65

The paper is organized as follows: Section 2 provides a description of the observation-based datasets used in this study and

the ocean/sea-ice models employed. In Section 3 we detail the new module of OceanVar that deals with sea-ice variables. The

comparison among different DA set up and observations are discussed in Section 4 by means of a suite of ad-hoc metrics

together with the independent validation of thickness field against mooring
:::
and

:::::::
airborne

:
data. The relative influence of the

observation networks is also assessed. Conclusions and remarks are drawn in Section 5.70

2 Data and Models

Several
:
In

::::
the

::::
past

::::
few

:::::::
decades,

:::::::
several

:
satellite-derived datasets of Arctic sea ice thickness have been disseminated in

the last decades mainly limited to the freezing season (October-April in the Arctic) due to the difficulty in discerning sig-

nals from open water and meltponds during the melting season. Radar altimeters installed on the polar-orbiting CryoSat-

2 (Hendricks and Ricker, 2020)
::::::::::::::::::::::::::::::::::::::::
(Laxon et al., 2013; Hendricks and Ricker, 2020) provide thick sea-ice data, typically thicker75

than 0.5m (Zygmuntowska et al., 2014), by relying on the knowledge of the snow depth (Warren et al., 1999) and on the

assumption of hydrostatic equilibrium (Ricker et al., 2014; Tilling et al., 2016). Measurements of thin sea ice, roughly up to

0.5m, are instead extracted from passive microwave radiometer (Huntemann et al., 2014), within the European Space Agency

(ESA) Soil Moisture and Ocean Salinity (SMOS) mission, analysing the satellite brightness temperature in the L-Band mi-

crowave frequency (Kaleschke et al., 2010). The complementarity characteristics of these two products fostered the generation80

of a weekly optimally interpolated merged product called CS2SMOS http://data.meereisportal.de (Grosfeld et al., 2016; Ricker

et al., 2017) that is released together with a mapping error accounting for merging and interpolation processes. As shown by

Xie et al. (2018) such error can be used as a first guess to construct a better observation error following Desroziers’ method

(Desroziers et al., 2005). In the contest
::::::
context

:
of observation-derived datasets, is worth to mention the recent availability

of a year-round product that guesses
::::
year

:::::
round

:::::::
product

:::
that

:::::::::
extimates summer-time thickness using deep learning methods85

(Landy et al., 2022) that however will be not considered in the present analysis. Jointly with SIT data, daily concentration mea-

surements, computed from SSMIS (2006-2015) instruments with atmospheric corrections from ERA-Interim (Lavergne et al.,

2019) and reprocessed by Ocean and Sea Ice Satellite Application Facility (OSISAF, 2021)
::::::::
(OSISAF,

:::::
2021), are assimilated.

The ocean/sea-ice configuration follows the global set-up employed in the C-GLORS reanalysis production (Storto and

Masina, 2016). The ocean model is NEMO v3.6 (Madec, 2016) coupled with the Louvain-la-Neuve sea-ice model LIM version90

2 (Fichefet and Maqueda, 1997), a three-layer (two layers of sea ice and one of snow) thermodynamic-dynamic model which

here employs the elasto-visco-plastic rheology (Bouillon et al., 2009) and one thickness category. The coupling of sea-ice DA

module with
::
use

:::
of a multi-category modelwill be considered in the next CGLORS system .

::::::::::::
multi-category

::::::
sea-ice

::::::
model

::
is
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:::::::
foreseen

::
in

:::
the

::::
next

::::::
future,

:::::::::
providing

:
a
:::::

more
::::::::

complex
::::::::::::
representation

::
of

:::
the

:::::::
sea-ice

:::::::::
interaction

::::
with

:::
the

:::::
other

:::::::::::
components

::
of

:::
the

:::::
earth

:::::::
system.

::::
The

:::
Ice

:::::::::
Thickness

:::::::::::
Distribution,

::::
ITD,

:::::::::::::::::::::
(Thorndike et al., 1975)

:::::::
accounts

:::
for

:::
the

::::::::
sub-grid

:::::::::::
(unresolved)95

::::::
physics

::
in

::
a
::::::::
statistical

::::::
sense:

::::::::::::::
internal/external

::::::::::::::::::::::
thermodynamic/mechanic

::::::::
processes

::::
can

::::::
change

:::
the

:::::
total

::::::::
thickness

::
as
:::::

well

::
as

::
its

:::::::::::
distribution,

:::
the

::::
latter

::::::
being

::::
only

:::::::
partially

:::::::::::
parametrized

:::
by

:::::::
simpler

::::::::::::
mono-category

:::::::
sea-ice

::::::
model.

:::
On

:::
the

:::::
other

:::::
hand,

::
the

::::::::
practical

:::::::::::
discretization

:::
of

::::
such

:::::::::
categories

::
as

::::
well

::
as

::::
their

:::::::
number

::::::
should

:::
be

:::::::
properly

:::::
tuned

::
to

:::::::
contain

:::
the

::::::::::::
computational

:::
cost

::::
and

:::
still

:::::::
provide

:::::::
benefits

::::
with

:::::::
respect

:::
the

:::::::::::::
mono-category

:::::::
models.

::
In

:::::::::::::::::
(Uotila et al., 2017)

::
the

:::::::
Authors

::::::::
compare

:
a
:::

set
:::

of

:::::::::
simulations

:::::::::
performed

::::
with

::::::
multi-

::::
and

::::::::::::
mono-category

:::::::
sea-ice

:::::::
models:

:::::
LIM3

:::
and

::::::
LIM2

::::::::::
respectively.

:::::
They

:::::::
showed

::::
that

:::
the100

::::::
decline

::
of

::::::
Arctic

::::::
sea-ice

:::::
extent

::
in
::::

the
:::
last

::::::
decade

::
as

::::
well

:::
as

::::::::
Antarctic

:::::::
seasonal

:::::::::
variability

:::
are

:::::
better

::::::::::
reproduced

::::
with

::::::
LIM3.

::::::::
However,

:::
the

::::::
impact

:::
on

:::
the

:::::
ocean

:::::
sector

::
is
:::::::

usually
::::
very

::::::
small.

::::::::
Moreover,

::::
the

:::::::::::
discretization

:::
has

::
a
:::::::::
significant

::::::
impact

:::
on

:::
the

::::
mean

:::::
state

::::::::::::::::::::
(Massonnet et al., 2019)

:::
and

::
it

:::
can

:::
be

:::::::
inferred

:::
that

:::
the

:::::::
optimal

:::::::::::
configuration

::
is
::::::::
different

:::
for

:::::
Arctic

::::
and

::::::::
Antarctic

::::::
sea-ice.

::
In

::::
this

:::::::
context

:::
the

:::::::
coupling

:::::
with

:
a
:::::::

sea-ice
:::
DA

::::::
system

:::::
could

:::::
help

::
in

::::::::
reducing

:::
the

:::::::::
differences

::::::::
between

::::::::::
multi/mono

:::::::
category

:::::::
models.

::
A

:::::
tuned

::::::::::::
multi-category

::::::
model

:::
can

::::
ease

:::
the

:::::
effort

::
of

::::
DA

:::
and

:::::::
provide

:
a
:::::::::
consistent

:::::::
realistic

:::::::::::
representation

:::
of105

::::
such

:::::::
variables

:::
not

:::::::
directly

::::::::
corrected

:::
by

::
the

::::
DA.

:
The present configuration uses a tripolar grid with nominal horizontal resolu-

tion of 1/4◦, i.e. 25 km at the equator increasing toward the poles with 75 vertical levels and partial steps at the bottom (Barnier

et al., 2006). The sea-ice and ocean model are forced by hourly ERA5 atmospheric reanalysis (Hersbach et al., 2020) with

horizontal resolution of 0.25◦ using 10-m wind, 2-m temperature and humidity, short and long radiative fluxes, precipitation

and snow. The coupling frequency among
:::::::
between the sea-ice and ocean model is one hour.110

3 Data assimilation scheme

Variational schemes can be described in a purely statistical sense, following a Bayesian formulation, where the model variability

is interpreted as a stochastic error that follows a spatial- and time-varying probability density function (pdf) as in Carrassi et al.

(2018). The best ocean state is defined as the mode of the a-posteriori pdf of the ocean state conditioned to the presence

of observations. Under the hypothesis of normal distribution, this translates in seeking the minimum of the following cost115

function,

J(δx) =
1

2
δxTB−1δx+

1

2
(Hδx−d)TR−1(Hδx−d) (1)

where the first addend comes from the pdf of the anomalies with respect to the initial background state, while the second refers

to the pdf of the observations conditioned to the model analysis
:::::::::
background. Eq. (1) is the standard incremental formulation of

the cost function found in the OceanVar scheme (Dobricic and Pinardi, 2008) where δx= x−xb is the difference between x120

::
δx

:::::
labels

:::
the

:::::::::
increments

::::
that

::::::::::
corresponds

::
to

:::
the

::::::::
difference

:::::::
between

:
the final analysis state and xb ::

xa::::
and the initial ocean state ,

::
xb::

in
:::
the

::::::::
minimum

::
of

:::
the

::::
cost

:::::::
function.

:
B andR are the background- and observation-error covariance matrices respectively, d

is the vector of misfits calculated using the non-linear observation operator, H is the tangent-linear version of the observation

operator. The inclusion of sea-ice variables implies the augmentation of the ocean state vector, initially composed by x∼
(T,S,SLA) with the addition of sea-ice concentration and thickness x∼ (T,S,SLA,SIC,SIT ). Being the minimisation125
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problem unconstrained, a pre-conditioning is applied by a control vector transformation
::::::
Control

::::::
Vector

:::::::::::::
Transformation

:::
or

::::
CVT

:
(V ) that moves the minimization in a control space v defined as δx= V v and B = V V T. Such B matrix is at the

basis of any filtering process, it spreads information in areas where no or sparse data are present and smooths information in

observation-dense regions. In literature different methodologies are used to shape sea-ice background error covariances B,

from multivariate ensemble-based methods (Xie et al., 2016) to univariate approaches based on historical simulations (Zuo130

et al., 2019) or to short hindcast runs (Fiedler et al., 2021; Mignac et al., 2022). Following the construction of B for ocean

variables in OceanVar (Dobricic and Pinardi, 2008; Storto et al., 2010), such control vector transformation V is composed by

a sequence of linear operators coming from both physical balances and statistical methods to add complexity in the covariance

matrixB:

V = VgICE→ICEVηVhVV (T :S:gSIC:gSIT) (2)135

where Vη is the dynamic height balance converting increments of temperature and salinity into increments of sea level through

local hydrostatic balance (Storto et al., 2010), Vh models the horizontal correlations through the application of a recursive filter,

VV is the vertical covariance operator made by empirical orthogonal functions (EOFs) and VgICE→ICE is the linearised anamor-

phosis operator that transforms the gaussian
::::::::
Gaussian sea-ice variables (gSIC/gSIT) into physical ones(SIC/SIT). Thanks to

the anamorphosis operator, sea-ice ,
:::::
gICE

:::::
refers

::
to

::::
both

:::
the

::::::::
operators

:::::::
applied

::::::::::::
independently

::
to

:::::
gSIC

:::
and

:::::
gSIT.

::::::
Sea-ice

:
vari-140

ables are not directly covaried with the other variables, the break of Gaussianity in fact can generate unrealistic corrections in a

multivariate framework due to the poor linear relationship driven by a simple covariance matrix (Bertino et al., 2003; Brankart

et al., 2012). A similar approach has been previously employed in literature to deal with strongly non-Gaussian variables (Si-

mon and Bertino, 2009; Béal et al., 2010) and is presented here for dealing with SIC and SIT fields. The VgICE→ICE,V
T

ICE→gICE

operators are the tangent and adjoint version of an anamorphosis operator developed and made freely available through the145

SANGOMA project that constructs such transformation empirically by mapping the different quantiles of the initial and final

distributions (Brankart et al., 2012).

Neglecting the ocean variables, the CVT transformation reduces to:

δx= (δSIC, δSIT) = VgICE→ICEVhV(gSIC:gSIT)v (3)

Firstly the gSIC/gSIT are cross-correlated through V(gSIC:gSIT), then increments are spread horizontally through the recursive150

filter operator Vh. The final fields are transformed into physical variables through VgICE→ICE.

3.1 Background error covariance matrix

The benefits brought by the anamorphosis transformation have been already discussed in literature: linear correlations in the

transformed space can be seen as a non parametric correlation in the original space, being more adequate to treat nonlinear

dependencies and more robust to the presence of outliers in the observations (Chilès and Delfiner, 1999; Corder and Foreman,155

2009; Brankart et al., 2012). The operator VgICE→ICE in Eq. (3) is spatially and monthly varying, computed at each model grid

point by employing monthly fields of a historical 31-year-long
::
31

::::::::
year-long NEMO-LIM2 simulation. The number of sampling
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::::
Such

:::::::
operator

:::::::
requires

:::
the

::::::::::::
anamorphosis

::::::::::::
transformation

::
to

::
be

::::::
locally

::::::::::
continuous,

::
in

:::
the

::::
case

:::
the

::::::::
numerical

:::::::::
derivative

::::
does

:::
not

::::
exist

:::
the

::::::::::::
corresponding

::::::::
increment

::
is
::::
zero

::::
and

:::
no

::::::::
correction

::
is
:::::::::
generated.

:::
To

:::::
avoid

:::
the

:::::::
presence

:::
of

:::::::::::
discontinuous

::::::::::
probability

:::::::
densities,

::::
that

::::::
reflect

::
an

::::::::::::::
underestimation

::
of

:::
the

::::::
model

:::::
error,

::
we

::::::
enrich

:::
the

::::::
sample

::::
size

:
for each point (x,y) is enriched with160

values from neighbouring points (x− 1 : x+1,y− 1 : y+1)to construct a more robust transformation, therefore each initial

distribution is shaped by 31 ∗ 9 = 279 samplings and then mapped to a normal distribution using a quantile mapping with 21

quantiles (Brankart et al., 2012). An example of the application of Gaussian anamorphosis on the SIT field is shown in Figures

1.a-d that display the initial and final map for two years 1999 and 2014. Similar procedures apply to SIC field (not shown).

Gaussian variables can be interpreted as a "measure" of the anomalous content of the original variable given its pdf. Such165

anomaly is then normalised to a common scale, amplifying/reducing the variability in each point according to the imposed

normal distribution. Panels a) and c) show the SIT and gSIT spatial distributions for March 1999, respectively. The strong

positive gSIT anomaly in the Siberian sector for March 1999 reflects the excess of sea-ice compared to the climatological

March distribution. An opposite behaviour is seen in March 2014 (Figures 1.b,d) where gSIT values are more homogeneous

and slightly negative, meaning that original spatial distribution is close to the climatological one, despite being uniformly lower170

in magnitude.

a) b)

c) d)

e) f)

g) h)

Figure 1. Panel
::::
Panels

:
a and b show the SIT spatial distribution for March 1999 and 2014 respectively, taken from the historical 31-year long

::
31

:::::::
year-long

:
simulation used to construct the anamorphosis transformation. Panel

:::::
Panels c and d correspond to the SIT in gaussian space for

the same dates. Panel
::::
Panels

:
e and f are the cross-correllation between SIC and SIT in physical and gaussian space respectively for March in

each grid point. Panel
:::::
Panels g and f

:
h show the same as e,f for September

6



The cross-correlation (between SIC and SIT) is only slightly modified by this transformation as it can be inferred from

Figures 1.e-h that compare the two fields prior and after the transformation for March and September. The
:::
the spatial structure

is correctly reproduced
:::::
similar

:::
in

::
the

::::
two

:::::
cases,

:
while the magnitude

::::::
slightly differs especially in perimetrical areas where ice

is seldom present and the statistics less reliable. Two dynamically different regions emerge from these maps: i) a first zone175

with a high positive cross-correlation where an increase in concentration automatically generates a corresponding increase in

thickness and viceversa; ii) a second zone where these two variables tend to disentangle and correlation drastically drops to

zero. This last behaviour is typical of areas where the concentration is already close to 1 and the variation in thickness does not

affect directly the concentration.

While the cross-correlation is similar, the impact of the spatial diffusion operator Vh can change the spatial structure of the180

final correction whether it is applied in the gaussian or in the physical space
:::
The

:::
use

::
of

::::
local

::::::::
Gaussian

:::::
space

::
in

::::
each

:::::
point

::
of

:::
the

:::
grid

:::::
turns

::
to

::
be

::::::
crucial

:::
for

:
a
::::::
correct

::::::::::
application

::
of

:::
the

::::::::
horizontal

:::::::::
correlation

::::::::
operator

::::::::
especially

:::::
close

::
to

::::::
sea-ice

::::
edge. Figure 2

shows the sea-ice increments in a test case, says the third week of February 2015, generated with and without the application

of VgICE→ICE with a large fixed correlation length of 150km and three iterations of a first order recursive filter. Green solid

line corresponds to the mean sea-ice edge in that week, SIC and SIT are jointly assimilated close to the sea-ice edge. In the185

physical space an isotropic spread of information towards the ice-free areas is seen (Figures 2.c,d). The use of VICE→gICE

leads to final increments that follow the ice-edge thus
:::::::::
VgICE→ICE :::::::::

"re-center"
:::
the

:::::::::
increments

:::
(in

:::
the

::::::::
Gaussian

:::::
space)

::::::
within

:::
the

::::
range

:::
of

:::::::
physical

::::::
values, reducing the wrong isotropic diffusion (Figures 2.a,b) , i.e. increments are physically consistent with

:::
and

::::::::
following

:
the variability of the specific regionbeing "weighted" by local transformation VgICE→ICE. This operator seems

to be crucial in the assimilation of sparse data and long horizontal correlation lengths. On the other hand, the diffusion in190

physical space can provide good results in data-dense regions where the correlation length can be safely reduced to a small

value. In the following we set a fixed value of 50 km that it has been shown to provide satisfactory results in a variational

scheme (Mignac et al., 2022). The benefits brought by spatially and seasonally varying correlation lengths will be possibly

:::
may

:::
be investigated in future.

::
It

::
is

:::::
worth

::
to

::::
note

:::
that

:::
the

::::
use

::
of

::::::::::::
tangent/adjoint

:::::::::::::
approximations

::
of

:::
the

::::::::::::
anamorphosis

:::::
leads

:::
the

::::::::::
assimilation

::
of

:::::::
extreme

::::::
events,

::
to
:::

be
::::::::::
suboptimal

:::
(i.e.

:::::::::::
observations

::::
that

:::
are

:::
far

::::
from

:::
the

::::::::::
background

:::::::
value).

:::::::::::::
Tangent/adjoint195

::::::::::::
approximations

:::
of

:::
any

:::::::
operator

::::
are

::::
valid

::
in

:::
the

:::::::::
proximity

::
of

:::
the

::::::::::
background

:::::
value

::::
and

::::::
become

::::
less

::::
and

:::
less

:::::::
accurate

:::
in

:::
the

:::
case

:::
of

::::
large

::::::::::
corrections

:::
and

::::::
highly

:::::::::
non-linear

:::::::
operator.

::::
This

::
is
:::::::
anyway

::
a

::::::::
limitation

:::
that

::
is
:::::::
implicit

::
in

::::
any

:::::::::::::::
three-dimensional

:::::::::
variational

:::::::
scheme.

:::::::::
Moreover,

:::
the

:::::::::::
anamorphosis

::::::
should

:::::
span

::
all

:::
the

::::::::
possible

:::::::
physical

::::::
values

::
in

::::
each

::::
grid

:::::
point.

:::
In

:::
the

::::
case

::
the

:::::::::::
background

::
is

:::
out

::
of

::::
the

:::::
range

::
of

::::::
values

::::
used

::::
for

:::
the

::::::::::::
anamorphosis,

::::
then

::
it
::
is
::::
not

:::::::
possible

::
to

::::::::
calculate

:::
the

:::::::::
derivative

:::
and

:::
the

::::::::::::
corresponding

:::::::::
increments

:::
are

:::::
zero.

::::
This

::::::
means

:::
that

:::::::
extreme

::::::
events

::
in

:::
the

::::::::::
background

::::
(not

::::::
present

::
in

:::
the

:::
31

::::
years

:::
of200

:::::::::
simulation)

:::
do

:::
not

::::::
receive

::::::::::
corrections.

:::
In

::::::::::::::::::::::
(Simon and Bertino, 2012)

:::
they

:::::::
include

::
an

::::::::::
exponential

::::
tail

::
to

:::
the

::::::::::::
anamorphosis

::
in

::::
order

::
to

::::
treat

::::::
values

:::
out

::
of

:::::::
bounds.

::
A

::::::
further

::::::::
approach

:::::
could

::
be

:::
the

:::
use

:::
of

:
a
::::::
hybrid

::
B

:::::
where

:::
the

::::::::
ensemble

::::
part

::::
goes

::
to

::::::
update

::
the

::::::::::::
anamorphosis

::::
with

:::
the

::::::::
inclusion

::
of

::::
new

:::::
model

::::::
values

::
as

::::
well

::
as

::::::
adding

:::
the

::::::::::::::::
"error-of-the-day".
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Figure 2. Examples of increments obtained from the joint assimilation of SIC and SIT data in different set up and close to sea-ice edge. First

and second panels corresponds to SIT and SIC increments achieved by applying the anamorphosis transformation in a test case. Third and

fourth panels refer to the same increments but without the transformation for the same date.

3.2 Observation error

The observation error (OE) includes different sets of uncertainties: instrumental errors, inaccuracies of the observation op-205

erators, unresolved dynamics, etc. (Oke and Sakov, 2008). Under the assumption of error independency the structure of R

simplifies into a diagonal matrix that seems however sub-optimal in the case of dense datasets. A way to determine the pres-

ence of non-zero off-diagnonal terms follows the implementation of Desroziers’ relations (Desroziers et al., 2005) that combine

model departures and assimilation residuals to diagnose the "correctness" of OE in observation space. Specifically the relation

E[doa(d
o
g)
T ] =R (4)210

links each element of the R matrix to a-posteriori statistical diagnostics, where doa being the residuals (analysis minus ob-

servations) while dog refers to the initial misfits (background minus observations). Desroziers’ relations are generally used to

optimised the first guess OE (Xie et al., 2018) but can be also employed to add time-dependent effects both in B and R

matrices (Storto and Masina, 2016; Escudier et al., 2021). It is worth to note that they must be used with caution because of

the presence of sampling errors and biases that can spoil the diagnostics (Ménard, 2016). Figure 3 shows these off-diagonal215

terms as function of the distance between observations and evaluated through the Equation (4). The green line refers to the

L3 CryoSat-2 data (experiment L3CR2 in table 1, see next section), while the red line labels L4 CS2SMOS data (experiment

L4DE). Statistics are averaged over a four-year-long reanalysis timeseries, after the application of the thinning procedure, and

restricted to 5000 observations per week (being the assimilation weekly). A minimum threshold of 0.1 m in thickness is im-

posed to avoid ice-free areas. The red line (CS2SMOS data) shows an error correlation that reduces slowly with the distance,220

while a sudden drop is present for L3 CryoSat-2 data, demonstrating a much less interdependency among close errors. Several

studies are recently focused on different methods to include the error correlation in DA schemes (Storto et al., 2019b; Ruggiero

et al., 2016). At present, many operational systems further increase the Desroziers’ OE to partially alleviate the absence of such

off-diagonal terms in R (Benkiran et al., 2021). However such solution requires some extra care for satellite data that are not

continuous over time as shown in the next section.225

8



Figure 3. Correlation between different OE as function of the observation distance with a bin of 20km. Green line corresponds to L3CR2 ex-

periment that assimilates only L3 Cryosat-2 data while red line shows the same for L4DE
::::::
L4DE1 experiment (assimilation of L4 CS2SMOS

data).

4 Results

Different data assimilation strategies are hereby discussed and compared. Table 1 summarises the main characteristics of each

experiment, while the DA set up differ, the model configuration remains identical. Ocean and sea-ice initial conditions refer to

the 1st January 2011 from CGLORS
::::::::
C-GLORS

:
reanalysis (Storto and Masina, 2016).

Table 1. List of the four-year-long experiments performed with different data assimilation set up and observation ingested
:::::::
employed.

Exp Name SIC data SIT data
subsampling Desroziers’ OE

range (multiplication factor )

CTRL None None None None

L4DE1 OSISAF L4 CS2SMOS None 1

L4DE30 OSISAF L4 CS2SMOS None 30

L4SUB OSISAF L4 CS2SMOS SIT ∼100km 1

L3CR2 OSISAF L3 CryoSat-2 None 2

L3CR2&SM OSISAF L3 CryoSat-2 & SMOS None 2;2

SICDE1 OSISAF None None 1

SICDE02 OSISAF None None 0.2

4.1 Concentration data and sea-ice extent230

The seamless presence of SIC data over the years, covering the full meteorological era, does not strictly require any ad-hoc

optimisation to avoid discontinuities in the total sea-ice area. Figure 4 shows the evolution of the sea-ice area along the four-year

9



run for different set up and compared to OSISAF data. The free run, namely CTRL, has an overall Root-Mean-Square-Error

(RMSE) of about 1.1x106km2 and 2.0x106km2 for the Arctic and Antarctic regions respectively. The ingestion
:::
use of SIC

data decreases such error down to about 0.40x106km2 and 1.3x106km2, improving also the representation of trends during the235

growing and melting seasons. The two experiments SICDE1 and SICDE02 (OE is reduced to 1/5th) shows similar skill scores.

To compare the position of the sea-ice edge in the different experiments, the Integrated Ice Edge Error metric (IIEE) is

generally used (Goessling et al., 2016). The IIEE sums up all grid cell areas where models and observations are in disagreement

on the presence or absence of sea-ice, with a concentration threshold of 15% (Blockley and Peterson, 2018). The ingestion

::::::::::
assimilation of SIC data considerably decreases the sea-ice edge error compared to free run, with IIEE of about 1x106 km2 and240

1.7x 106 km2 for Arctic and Antarctic regions respectively, while CTRL being around 1.6 and 2.6 x106 km2 (Figure 5). More

than the 65% of the CTRL IIEE comes from an excess of sea-ice in ice-free areas (not shown). A noticeable improvement

is seen in August 2012 with CTRL peaking at 3.5 x106 km2 (with an overestimation of 2.5 x106 km2) that is reduced to

1.4 x106 km2 (overestimation of 0.8x106 km2) in the DA experiments. No significant differences are seen between SICDE1

and SICDE02 for concentration-related quantities. The frequency of the assimilation (weekly) does not seem able to remove245

concentration in regions where the model advects ice or where freezing conditions are met. A joint correction of ice and ocean

variables in a multivariate approach can probably improve the skill by changing the sea surface temperature and salinity field

as well.

Figure 4. First and second rows show the timeseries of sea-ice area for different experiments (Table 1) compared to data from OSISAF in

Arctic and Antarctic regions respectively. The corresponding seasonal variability is shown in the Panels
:::::
panels on the right.

Considering the impact of SIC assimilation on SIT field, the smaller OE in SICDE02 experiment leads to a larger correction

in the thickness field thus spoiling the spatial distribution (see Section 4.2).250
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Figure 5. First and second row show the timeseries of IIEE for different experiments (Table 1) calculated against OSISAF data in Arctic and

Antarctic regions respectively. The corresponding seasonal variability is shown in the Panels on the right.

4.2 Thickness observations and total sea-ice volume

The spatial SIT RMSE is calculated against the L4 CS2SMOS data, aggregating statistics from February all years (Figure 6).

The BIAS maps are shown in Figure 7 with the convention: observation minus model. The CTRL experiment (Panel 6.a) shows

a RMSE of 0.8 m in the Beaufourt
:::::::
Beaufort gyre and in the proximity of the Greenland coastline. Looking at the corresponding

BIAS, it tends to overestimates the thickness distribution in the whole Arctic basin except for the Atlantic sector (Panel 7.a).255

The assimilation of SIC data (SICDE1) improves the skill-score over the Atlantic sector although no systematic impact is

seen in pack-ice regions (Panel 6.b). Reducing the SIC OE (SICDE02 experiment) leads to a degradation of the thickness

RMSE and BIAS especially in the Siberian sector (Panel 6-7.c). The ingestion
::::::::
integration

:
of SIT data largely improves the

overall error. Cryosat-2 data (L3CR2, Panel 6.d) ameliorates the distribution in the central Arctic area (only observations

higher than 0.5 m are assimilated from Cryosat-2) while no significative
:::::::::
significant corrections are seen approaching the260

sea-ice edge that remains similar to SICDE1 experiment. The inclusion of L3 SMOS data (L3CR2&SM, Panel 6.e) shows a

widespread reduction of RMSE everywhere except for the east Greenland coastline where a large positive bias of roughly 1

meter is still present. L4DE1, L4DE30, L4DESUB experiments (Panels 6-7.f,g,h), assimilate the same L4 CS2SMOS product

but with different set up: 1) implementing the standard Desroziers’ OE, 2) increasing the Desroziers’ OE by 30 times, 3)

subsampling CS2SMOS data to remove most of the off-diagonal correlations. While the L4DE1 provides the best skill score,265

the
:::::
shows

:
a
:::::
rather

:::::
small

::::
and

:::::::
spatially

:::::::
uniform

::::::
RMSE

:::
and

:::::
BIAS

::::::
across

:::
the

::::
basin

::::::
except

:::
for

:::
the

:::::::::
Greenland

:::::::
coastline

::::::
where

:::
the

:::::
RMSE

::::::
peaks

::
up

::
to

:::::
0.9m

::
at

:::
the

::::::::
interface

:::::::
between

::::
open

:::
sea

::::
and

::::::
sea-ice

:::::
edge.

:::
The

:
other two experiments show similar spatial

:::::::::
(L4DESUB

::::
and

::::::::
L4DE30)

::::
have

::::::
similar

::::
skill

:::::::
between

::::::::::
themselves,

::::
with

::::::
larger RMSE and BIAS .

:::::::
compared

:::
to

::::::
L4DE1

:::::
close

::
to

::::::::::::::::
Canadian/Greenland

:::::::::
coastlines

:::
and

::
in
:::

the
::::::::

Beaufort
:::::
Gyre.

::
A

::::::
similar

::::::::::
comparison

::
of

:::
the

:::::::::
November

::::::
RMSE

::::::
among

:::::::::::
experiments

:::::
extend

:::
the

:::::::
validity

::
of

:::
the

::::::
present

:::::::::
discussion

::
to

:::
the

::::::::
beginning

:::
of

:::
the

:::::::
freezing

:::::
period

::::
(not

::::::
shown,

:::
see

:::::::::::
Supplement).

:
270
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The timeseries of the total Arctic sea-ice volume for the different experiments are shown in Figure 8. Panel 8.a gathers mainly

experiments assimilating the same dataset L4 CS2SMOS. Green crosses label values from L4 CS2SMOS weekly maps. The

CTRL (blue solid line) tends to overestimate the volume of sea ice during the whole period reaching a maximum difference of

∼ 0.5 ∗ 1013km
::
m3

:
in March 2012 although reproducing fairy

:::::
fairly well the seasonal variability. At the onset of the freezing

period, when SIT data become available in October, the sudden ingestion
:::::::::
availability

:
of large dense dataset generates a jump in275

the volume that spoils the seasonality by changing the volume minimum that usually occurs in September (L4DE1 experiment).

L4DESUB produces a minor shock without changing the OE but subsampling roughly every 100km to reduce the impact of

off-diagonal correlation inR. The March peak is also better represented in L4DESUB rather than in L4DE30, where instead a

multiplicative factor of 30 is applied to OE. Such multiplicative factor could be reduced to have a worse but acceptable jump in

October and a better peak in March, in order to match the skill-score of L4DESUB. Experiment L4DE provides the best initial280

conditions for forecasting purpose however at the cost of losing the consistency with past timeseries. The use of subsampling

scheme is able to preserve the seasonality and can be instead considered for Reanalysis purpose.

Panel 8.b highlights the effect of assimilating different datasets. The SICDE1 experiment positioned the minimum of volume

in September but has little impact on the rest of the timeseries, correcting the thickness field only close to sea-ice edge. The

ingestion
::::::::::
assimilation of Cryosat-2 data (L3CR2 experiment) reduces the volume overestimation that is however still present285

especially in March. Adding the assimilation of thin ice (L3CR2&SM experiment), the total volume is much better represented

together with its seasonality.

4.3 Observation influence

A measure of the relative influence of different observation types into the model dynamic and thermodynamics, follows the

evaluation of the Degrees of Freedom for Signal (DFS) established in Cardinali et al. (2004). DFS is defined as the trace of the290

derivative of the analysis with respect to the observations in the observation space. DFS measures the sensitivity of the model

to the observation variation and is able to leverage different types of observations, quantifying the relative impact of each single

dataset:

DFS = Tr
{
δ(Hxa)

δy

}
= Tr{HK}= (ỹ−y)R−1H(x̃a−xa) (5)

where K is the Kalman gain, H is the observation operator that projects the analysis in the observation space while ỹ, x̃a295

denotes the perturbed observations and the corresponding analysis. In practice, DFS can be computed with a randomisation

technique (Chapnik et al., 2006) and it is commonly applied to a 3dvar framework by averaging over the number of observations

DFS (Montmerle et al., 2007; Storto and Thomas Tveter, 2009; Storto et al., 2010). In Xie et al. (2016, 2018), DFS is used to

compare the influence of different observation datasets by defining a relative DFS (RDFS) or Impact Factor (IF):

IFj =
DFSj∑
oDFSo

(6)300

with o running over different instruments or datasets. In practice, IFj quantifies the importance of j-th dataset compared to

the others. Perturbations were generated from a gaussian
::::::::
Gaussian distribution with zero mean and imposing the observation

12



Figure 6. Spatial thickness RMSE for different experiments (Table 1) calculated aggregating the February statistics for all the years

error as standard deviation. Figure 9 shows the spatial IF in L4DE1 and L3CR2&SM experiments, calculated over the period

November 2012-February 2013. SIC data generally show little influence on the central Arctic area where sea-ice is fully packed

with concentration close to 1. As we move towards the sea ice edge, the impact reverses and SIC influence rapidly saturates305

at 1 (L4DE1 eperiment). This sharp jump
::::::::::
discontinuity

:
is likely to come from an overestimation of the SIT error compared

to the SIC one. In the L3CR2&SM experiment (Figure 9.b), we can discriminate the influence of the two independent SIT

datasets. Cryosat-2 data largely impact the Eurasian basin where the thickness is usual
::::::
usually higher than 0.5m. Most the

Siberian coast is instead driven by the SMOS data as well as west Greenland rift basin. Moving toward the sea-ice edge a
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Figure 7. Spatial thickness BIAS (observation minus model) for different experiments (Table 1) calculated aggregating the February statistics

for all the years

competitive behaviour is shown between SMOS and SIC data: the two datasets almost equally contribute to the modify the310

model thermodynamics.

4.4 Validation against BGEP mooring data

An independent validation can be carried out thanks to the Beaufort Gyre Exploration Project (BGEP, www.whoi.edu/beaufortgyre)

from the Woods Hole Oceanographic Institution. BGEP provides high-frequency data of sea-ice drafts from moored sonars (Kr-
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Figure 8. Panel a shows the timeseries of the total sea-ice volume in the Arctic for several experiments with different DA set up against

observation estimates from L4 CS2SMOS data. Same thing for Panel b where the impact of the assimilation of different SIT datasets is

highlighted.

L4DE1 L3CR2&SM
b)a)

Figure 9. Spatial IF for L4DE1 (Panel a) and L3CR2&SM (Panel b) experiments. Panel a shows the relative influence/strength of CS2SMOS

data and OSISAF one. Panel b considers the same for L3 Cryosat-2, L3 SMOS and OSISAF data

ishfield et al., 2014) in three different positions of the Beaufort Gyre that slightly change year by year: mooring A located ap-315

proximately at∼ [75◦N;154◦E], mooring B at∼[78◦N;150◦E] and mooring D at∼ [74◦N;139◦E]. Sea-ice draft measurements

are transformed into thickness estimates using a simple multiplicative factor of 1.1 as in Mu et al. (2018a) being representative

of the ratio between the mean seawater and sea ice density (Nguyen et al., 2011). A more sophisticated approach considers
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a balanced equation that implies the knowledge of the snow depth that is usually extracted from an ensemble of simulations

(Xie et al., 2018; Alexandrov et al., 2010), thus being influenced by the specific set-up of the ice model itself. In the following,320

we prefer to use the first approach being totally model independent. Figures 10-11 show the timeseries of sea-ice thickness for

different experiments compared to the mooring measurements and estimates from L4 CS2SMOS. CS2SMOS maps represent

generally well the trends during the freezing season, although some discrepancies can be found at the end of 2012 where it

overestimates the thickness at position A and B by 0.7m.

During the melting season, the CTRL experiment predicts on average 1.5 m of ice at the three positions, always overes-325

timating the observations. The assimilation of SIC (experiment SICDE1) is able to reduce such overestimation at the po-

sition A during the summer months, while less impact is seen at mooring B and D. The assimilation of CS2SMOS maps

(L4DE1,L4DESUB) yields the model thickness to be much closer to mooring measurements: in winter the BIAS almost disap-

pears, while during summer the RMSE is reduced below 0.5 m in all the three positions. L4DE1 experiment closely follows the

evolution of CS2SMOS data thus generating a strong discontinuity at the beginning of the fall season of 2011 that is instead not330

present in the experiment L4DESUB. The indestion
:::::::::
assimilation

:
of SIT data in winter (experiments L4DE1 and L4DESUB)

provides much better initial conditions for SIT prediction in spring compared to experiments without SIT assimilation. SIT

extimates
::::::::
estimates at the onset of the next fall season is also better predicted in the Beaufort Gyre. Figure 11 groups exper-

iments that uses different thickness datasets. Cryosat-2 data (L3CR2 experiment) reduce the BIAS over the whole timeseries

:::::::::
time-series compared to CTRL run. The addition of SMOS data (L3CR2&SM experiment) bring SIT values closer to the obser-335

vations and similar to L4DE1 skill score (assimilation of CS2SMOS maps). L3CR2&SM seems to correct the overestimation

of 0.7 m present in L4DE1 during winter 2012-2013 at position D, although jumps
:::::::::::
discontinuties

:
can be spotted in some cases

when thin SIT data (SMOS) become available.

4.5
::::::::

Validation
:::::::
against

:::::::::
Operation

:::::::::
IceBridge

::::
data

:
A
:::::::

second
::::::::::
independent

::::::
dataset

:::
is

:::::::
available

:::
for

::::
the

::::
same

:::::::
period,

::::::::
gathering

::::
data

:::::
from

::::::
several

:::::::::
campaigns

:::
of

:::::::
airborne

:::::::
surveys340

::
on

:::::
polar

:::
ice

::::::
thanks

::
to
::::

the
::::::
NASA

:::::::::
Operation

::::::::
IceBridge

:::::::
project

:::::::::::::::::::::::::::::::::::::::::
(https://www.nasa.gov/mission_pages/icebridge/).

::::::::
Different

:::::::::
instruments

:::::
were

:::::::
installed

:::
on

:::::
board

::
of

:::
the

::::::::
aircrafts

::::
from

:::::
Snow

::::::
Radars

:::
to

:::::::
Airborne

:::::::::::
Topographic

::::::::
Mappers,

:::::::::
providing

::::::
sea-ice

::::::::
freeboard,

:::::
snow

:::::
depth,

::::
and

::::::
sea-ice

::::::::
thickness

::::::::::::
measurements

::::::::::::::::
(Kurtz et al., 2013).

:::::::::::
Specifically,

::
in

:::
the

::::::
present

::::::::
exercise,

:::
we

::::
used

::
the

:::::::::
IceBridge

::
L4

::::
Sea

::
Ice

:::::::::
Freeboard,

:::::
Snow

::::::
Depth,

:::
and

:::::::::
Thickness

::::::::
(IDCSI4),

:::::::
Version

::
1,

:::::::::::::::::::::
http://nsidc.org/data/idcsi4

::::::::::::::::
(Kurtz et al., 2015)

:::::::
between

:::::::::
2011-2013

::::
since

:::
no

:::
data

:::
are

::::::::
available

:::
for

::::
2014.

:::::
Such

::::::
dataset

:::::
covers

::::::
several

::::
days

::
in
::::::
March

:::
and

:::::
April

:::::
when

::::::
satellite

::::
SIT345

:::::::
retrievals

:::
are

:::
no

::::::
longer

:::::::
available

::::
and

::
no

::::
SIT

::::::::::
assimilation

::
is

:::::::::
performed.

:::::::
Results

:::
are

::::::::::
summarised

::
in

::::::
Figures

::::::
12-13

:
,
:::::::::
containing

::
the

::::
SIT

::::::
spatial

::::::
RMSE

:::
and

:::::
BIAS

:::
for

:::::::
different

::::::::::
experiments

::::
and

::::::
binned

::
in

:::::
2◦x2◦

::::::
boxes.

:::
The

::::::::::
conclusions

::::::::
discussed

::
in

:::
the

::::::
BGEP

::::::
section

:::
are

:::::::::
confirmed

:::
and

::::::::
extended

::
to
::

a
:::::::
broader

::::::
region.

::::
The

:::::::::
differences

:::
in

:::
the

::::
skill

::::::
scores

::::::
among

:::
the

::::::::::
experiments

:::::::
largely

::::::
depend

::
on

:::
the

::::::
diverse

::::::
initial

::::::::
conditions

::
in
::::::::::
mid-March.

::::::
Winter

:::::::::::
assimilation

::
of

:::
SIT

::::
data

::::::
(panels

::::
d-h)

::::::::
produces

:
a
:::::::
smaller

::::::
RMSE

::
in

::::::::::
March-April

:::::::
statistics

:::::::::
compared

::
to

:::::::
SIC-only

::::::
(panel

::::
b-c)

:::
and

:::::
CTRL

::::::::::
experiment

:::::
(panel

:::
a).

::
A

:::::
spatial

::::::
dipole

:::::::
structure

:::
for

:::::
BIAS350

::::::::::
(observation

:::::
minus

::::::
model)

::
is

::::::::
generally

::::
seen

::
in

::
all

:::
the

::::::::::
experiments

::::
with

:::
an

::::::::::::
overestimation

::
of

::::::::
thickness

::
in

:::
the

:::::::
Beaufort

::::
Gyre

::::
and

::
an

:::::::::::::
underestimation

:::
in

:::
the

:::::::
Atlantic

:::::
sector.

::::
The

:::::::
L4DE1

:::::::::
experiment

:::::::::::
(assimilation

::
of
::::::::::

CS2SMOS
::::
with

::::::::::
Desroziers’

:::::
error)

::::::
shows
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Figure 10. Timeseries of thickness values from several experiments (Table 1) with different DA set up at three positions in the Beaufort

Gyre (mooring A, B and D, see text). Solid lines label different experiments, pink dots refer to daily data measured by the Beaufort Gyre

Exploration Project while green crosses are estimates from L4 CS2SMOS maps.

::
the

::::::
lowest

::::::
RMSE

:::
and

:::::::
reduces

:::
the

:::::::
regional

:::::
BIAS

::::::
almost

::::::::::
everywhere.

::::::::
SICDE02

:::::::::::
(assimilation

::
of

::::
SIC

::::
with

:::::::
reduced

::::::::::
observation

:::::
error)

:::::
shows

:::
the

:::::
worst

::::
skill

::
in

::::
term

::
of

:::::::
regional

::::::
RMSE

:::
and

:::::
BIAS.

::::::::
However

::::::::::::::
negative/positive

:::::::
BIASES

:::::
seem

::
to

::::::::::
compensate

::::
each

::::
other

:::::::::
producing

:::
the

:::::
lowest

::::::
global

:::::
BIAS

::::::::
(spatially

::::::::
averaged).

::::
This

:::::::::::
demonstrates

::::
that

::::
such

:::::::
indicator

::
is
:::
not

::::::
always

::::::::::::
representative355

::
of

:::
the

:::::
actual

::::
skill

::
of

:::
the

::::::
model.

:::::::::::
Subsampling

:::
the

::::
data

::::::::
(L4SUB,

:::::
panel

::
h)

::
or

:::::::::
increasing

:::
the

::::::::::
observation

:::::
errors

:::::::::
(L4DE30,

:::::
panel

::
g)

:::
still

:::::::
provide

:::::::
positive

:::::::
feedback

::
in

:::::
April.

:
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Figure 11. Timeseries of thickness values from several experiments (Table 1) with diverse
::::::
different

::
set

::
of

:
observations ingested

::::::::
assimilated

at three positions in the Beaufort Gyre (mooring A, B and D, see text). Solid lines label different experiments, pink dots refer to daily data

measured by the Beaufort Gyre Exploration Project while green crosses are estimates from L4 CS2SMOS maps.

5 Conclusions

Despite the availability of different types of sea-ice observations in the last decade, their joint assimilation in a multivariate

framework is still an active research field. The reasons can be sought in the peculiar aspects of sea-ice variables that prevent a360

smooth ingestion in global analysis/reanalysis systems already in place. Sea-ice variables generally follow a bounded distribu-

tion that can peak over one of the two boundary values. Thickness measurements show limited accuracy (Zygmuntowska et al.,

2014) with CryoSat-2 data providing high signal-to-noise ratio only for thick sea-ice, while SMOS data for thin one. Recently,
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Figure 12.
:::::
Spatial

::::::::
thickness

::::::
RMSE

:::
for

:::::::
different

:::::::::
experiments

::::::
(Table

::
1)

::::::::
calculated

::::::
against

::::::::
Operation

::::::::
IceBridge

::::
SIT

::::::::::::
measurements,

::::::::
aggregating

:::
the

::::::::::
March-April

::::::
statistics

:::
for

::
all

:::
the

::::
years

:::
and

:::::
binned

::::
with

:::::
2◦x2◦

:::::
boxes

Ricker et al. (2017) showed that such datasets are complementary and can be merged yielding to an optimally-interpolated

spatially-reconstructed thickness distribution CS2SMOS. However the straightforward ingestion
::::::::
assimiltion

:
of such maps can365

produce discontinuities in the sea-ice volume at the onset of the accretion period whether the observation errors are not properly

tuned, thus spoiling the seasonal variability.

In this study we extend a 3DVar scheme, called OceanVar, employed in the routinely
::::::
routine

:
production of CMCC global/re-

gional analysis/reanalysis, to cope with
::::::
benefit

::::
from

:
sea-ice concentration and thickness. Those variables are treated through an

anamorphosis operator that is included in the control vector transformation composing theB matrix. Such operator transforms370

the probability density functions of sea-ice anomalies into Gaussian ones theoretically without loss of information (Bertino

et al., 2003; Brankart et al., 2012), being more adeguate to treat non linear dependencies (Corder and Foreman, 2009). We

showed that such transformation is also able to preserve the strong anisotropy of sea-ice fields close to sea-ice edge, thus

helping future coupling with ocean variables.
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Figure 13.
:::::
Spatial

::::::::
thickness

::::
BIAS

::::::::::
(observation

:::::
minus

::::::
model)

::
for

:::::::
different

:::::::::
experiments

::::::
(Table

::
1)

::::::::
calculated

:::::
against

::::::::
Operation

::::::::
IceBridge

:::
SIT

:::::::::::
measurements,

:::::::::
aggregating

::
the

::::::::::
March-April

:::::::
statistics

::
for

::
all

:::
the

::::
years

:::
and

::::::
binned

:::
with

:::::
2◦x2◦

:::::
boxes

A set of global ocean/sea-ice experiments are performed for a period of four years with different DA setup and assimilating375

different observation datasets. The sole assimilation of SIC data provides a positive but small improvement in the representation

of thickness field that can be potentially degraded in the case that the error assigned to SIC data is too small. The model

thickness field starts matching the observed one only when Cryosat-2 data are ingested
::::::::
employed while the addition of SMOS

data further reduces the volume overestimation by constraining the thin sea-ice especially close to the edge. The intermittent

availability of SIT data along the year, together with the lack of off-diagonal elements in theRmatrix, can generate jumps in the380

total volume that can spoil the seasonal variability and requires extra tuning. Through the analysis of Degrees of Freedom for

Signal (Cardinali et al., 2004), the relative influence of different types of observations is also studied showing the competitive

behaviour of SMOS and OSISAF data for thin ice.

An independent validation is
::::
Two

::::::::::
independent

:::::::::
validations

:::
are carried out against mooring data in the Beaufort gyre (Beaufort

Gyre Exploration Project)
:::
and

::::::
sea-ice

:::::::::
thickness

::::::::::::
measurements

::::
from

::::::
NASA

::::::::
Operation

:::::::::
IceBridge

::::::
project. The assimilation of385

merged product CS2SMOS and the joint assimilation of L3 Cryosat-2 and SMOS data provide similar skill scores. These
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two configurations outperform the other set up during the melting period, where no satellite thickness data are available,

demonstrating that the benefits of realistic initial conditions in the Beaufort gyre can last up to 6-month at least.
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METSAT Ocean and Sea Ice Satellite Application Facility, Global sea ice concentration climate data record 1979-2015 (v2.0, 2017),390
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(https://www2.whoi.edu/site/beaufortgyre/) in collaboration with researchers from Fisheries and Oceans Canada at the Institute of Ocean
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Ardilouze, C., Bitz, C. M., Vernieres, G., Wallcraft, A., and Wang, M.: Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty

at pan-Arctic and regional scales, Climate Dynamics, 49, 1399–1410, https://doi.org/10.1007/s00382-016-3388-9, 2017.

Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness,425

The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, publisher: Copernicus GmbH, 2018.

Bouillon, S., Morales Maqueda, M. Á., Legat, V., and Fichefet, T.: An elastic–viscous–plastic sea ice model formulated on Arakawa B and

C grids, Ocean Modelling, 27, 174–184, https://doi.org/10.1016/j.ocemod.2009.01.004, 2009.

Brankart, J.-M., Testut, C.-E., Béal, D., Doron, M., Fontana, C., Meinvielle, M., Brasseur, P., and Verron, J.: Towards an improved

description of ocean uncertainties: effect of local anamorphic transformations on spatial correlations, Ocean Science, 8, 121–142,430

https://doi.org/10.5194/os-8-121-2012, publisher: Copernicus GmbH, 2012.

Cardinali, C., Pezzulli, S., and Andersson, E.: Influence-matrix diagnostic of a data assimilation system, Quarterly Journal of the Royal Mete-

orological Society, 130, 2767–2786, https://doi.org/10.1256/qj.03.205, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1256/qj.03.205,

2004.

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in the geosciences: An overview of435

methods, issues, and perspectives, WIREs Climate Change, 9, e535, https://doi.org/10.1002/wcc.535, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcc.535, 2018.

Chapnik, B., Desroziers, G., Rabier, F., and Talagrand, O.: Diagnosis and tuning of observational error in a quasi-operational data as-

similation setting, Quarterly Journal of the Royal Meteorological Society, 132, 543–565, https://doi.org/10.1256/qj.04.102, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1256/qj.04.102, 2006.440

22

https://doi.org/10.5194/tc-4-373-2010
https://doi.org/10.1007/s10236-006-0082-1
https://doi.org/10.5194/os-6-247-2010
https://www.frontiersin.org/article/10.3389/fmars.2021.691955
https://doi.org/10.1111/j.1751-5823.2003.tb00194.x
https://doi.org/10.1007/s00382-016-3388-9
https://doi.org/10.5194/tc-12-3419-2018
https://doi.org/10.1016/j.ocemod.2009.01.004
https://doi.org/10.5194/os-8-121-2012
https://doi.org/10.1256/qj.03.205
https://doi.org/10.1002/wcc.535
https://doi.org/10.1256/qj.04.102
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