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Numerical modeling of stresses and deformation in

Zagros-Iranian plateau region

Srishti Singh! and Radheshyam Yadav!

LCSIR-National Geophysical Research Institute, Hyderabad, India-500007

Key Points

* We have computed stresses and deformation of Zagros-Iran region with finite element modeling.

* Lithospheric stresses play an important role in the east of Iran.

* The joint models of lithosphere and mantle convection are able to explain various deformation

indicators in the study area.

Abstract

Zagros orogeny System resulted due to collision of the Arabian plate with the Eurasian plate. The
region has the ocean-continent subduction and continent-continent collision; and convergence veloc-
ity shows variation from east to west. Therefore, this region shows the complex tectonic stress and a
wide range of diffuse or localized deformation between both plates. The in-situ stress and GPS data
are very limited and sparsely distributed in this region, therefore, we performed a numerical simula-
tion of the stresses causing deformation in the Zagros-Iran region. The deviatoric stresses resulting
from the variations in lithospheric density and thickness; and those from shear tractions at the base
of the lithosphere due to mantle convection were computed using thin-sheet approximation. Stresses

associated with both sources can explain various surface observations of strain rates, Sguqy, and

plate velocities; thus,Surface-observations-of strainrates;Symarplate-veloeities-ete—are-explained
using-thejoint-models-of-lithosphere-and-mantle; suggesting a good coupling between lithosphere

and mantle in most parts of Zagros and Iran. As the magnitude of stresses due to shear tractions
from density-driven mantle convection is higher than those from lithospheric density and topogra-
phy variations in the Zagros-Iranian plateau region, mantle convection appears to be the dominant
driver of deformation in this area. However, the deformation in the east of Iran is caused primarily
by lithospheric stresses. The plate velocity of the Arabian plate is found to vary along the Zagros belt

from north-northeast in the southeast of Zagros to the northwest in the northwestern Zagros, similar
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northwesternZagres. The output of this study can be used in seismic hazards estimations.

Keywords- Stress field, Gravitational Potential Energy, Mantle convection, Zagros, collision

Plain Language Summary

We used numerical models to study the stresses causing deformation in the Zagros-Iran region. The
stresses are generated due to variations in the density and topography of the lithosphere, which were
computed through Gravitational potential energy (GPE) difference. Mantle convection produces shear
tractions that are also an important source of stresses causing deformation. Different models of crustal
structure and density of lithosphere give varying GPE, thus leading to different interpretations of the type
of deformation in the study area. On the other hand, all mantle convection models in our study predicted
consistent deviatoric stresses and were able to explain most observations of Sg;,.x, plate velocities, and
strain rates. Despite this, the lithosphere plays an important role in driving deformation, especially in
the east of Iran. Overall, the lithospheric stresses when combined with those from mantle convection

gave the best fit to the observed data.

1 Introduction

Zagros mountains are a part of the Alpine-Himalayan belts that originated due to the Arabian plate
colliding with southern boundary of the Eurasian plate. This collision resulted from thein closing of
the Neotethys Ocean and formed Zagros fold and thrust belt (Agard et al., 2005, 2011; Alavi, 1980;
Mouthereau et al., 2012). The Zagros mountains extend from the eastern part of the Anatolia for over
1500 km in the NW-SE direction till the Makran subduction zone, showing large-scale diffuse deforma-
tion. Despite the first-order characteristics of Though-there-has-been-an-inerease-in-the-influx-of-various
studies-trying-to-constrain the active deformation and present-day kinematics of Zagros orogen is rela-
tively well understood (Allen et al., 2011; Le Dortz et al., 2009; Reilinger et al., 2010; Vernant et al.,
2004; Walker, 2006), {-hefeafedebates—abetM#&ﬂeﬂ&pfeeesse%ﬂﬁhtﬁegietﬁg the timing of the colli-

sion is debated.

ranges from Cretaceous (Alavi, 1994; Mohajjel & Fergusson, 2000) to Miocene (Berberian & King,
1981) or Eocene (Allen & Armstrong, 2008; Jolivet & Faccenna, 2000). However, there has been an

increasing consensus on Late Eocene to Oligocene for the onset of collision (Jolivet & Faccenna, 2000;
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Agard et al., 2005, 2011; Vincent et al., 2005; Ballato et al., 2011; Mouthereau et al., 2012; Koshnaw
et al., 2019).

the-complex—stress-field-in-thisregion The Arabia-Eurasia collision zone is a tectonically active region,

where ongoing convergence is accommodated by distributed shortening across the Zagros Mountains

and the northern and eastern margins of the Iranian Plateau and the southern Caspian Sea. The rate
of convergence of Arabia relative to Eurasia also varies significantly, decreasing from 36 mm/yr in the
east to 16 mm/yr in the west (Figure 1). The diverse structures, tectonic history, and convergence ve-
locity variations in the Zagros-Iran plateau region lead to variable tectonic stresses and deformations,
thus making it the focus of various geophysical, geological, and geodesy studies (Engdahl et al., 2006;
Hatzfeld et al., 2010; Khorrami et al., 2019; Masson et al., 2006; Tunini et al., 2016, 2017). Based on
earthquake focal mechanisms, fault slip, and GPS velocities, the Zagros-Iran region has been catego-
rized as a highly seismic region; thus a better constraint on stresses and deformation in this region may
be helpful in disaster mitigation studies.

Generally, tectonic stress refers to the forces acting on the Earth’s crust that cause it to deform or un-
dergo changes and it’s classified by the first, second and third order on the spatial scale (Heidbach et al.,
2007; Zoback, 1992). The first-order stresses originate due to the plate boundaries force like ridge push,
slab pull and continental collisional; and second-order stresses by the rifting, isostasy and deglaciation.
Moreover, third-order stresses are caused by local sources like interaction faults systems, topography and
density heterogeneity. Therefore, to understand the origin of these stresses, in-situ stress measurements
are done using the focal mechanism inversion, wellbore breakouts, hydraulic fracturing and overcoring,
and compiled under the word stress map project. However, in-situ stress data are sparsely distributed and
limited, so numerical modeling plays an important role in understanding the kinematics and dynamics of
the Zagros-Iran region. Numerical modeling of tectonic stresses and deformation is generally conducted
in two approaches (1) using 2D and 3D geometrical structure, plate boundary forces like ridge push, slab
pull and continents collision forces and rheological properties like Young’s modulus, Poisson’s ratio, vis-
cosity, density etc. (Coblentz & Sandiford, 1994; Dyksterhuis & Miiller, 2008; Koptev & Ershov, 2010;
Richardson et al., 1976; Yadav & Tiwari, 2018), and, (2) considering Gravitational Potential energy and

shear tractions from mantle convection with thin sheet approximation (Bird, 1998; Flesch et al., 2001;



92

93

94

95

96

97

98

99

100

101

102

105

106

107

108

109

110

11

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Ghosh & Holt, 2012; Lithgow-Bertelloni & Guynn, 2004; Singh & Ghosh, 2020). Fhereforethe-werld

There are various studies that have tried to investigate present-day stresses and deformations of the
Zagros-Iranian plateau region using focal mechanism inversions, GPS data and numerical modeling.
The stresses were computed through the inversion of focal mechanisms in areas like the Zagros fold-
and-thrust belt (Nouri et al., 2023; Sarkarinejad et al., 2018; Yaghoubi et al., 2021), Zagros-Makran
transition zone (Ghorbani Rostam et al., 2018), western Zagros (Navabpour et al., 2008), NW Iran-
SE Turkey (Mokhoori et al., 2021), NE Lut Block, Eastern Iran (Rashidi et al., 2022; Raeesi et al.,
2017), and the south Caspian (Jackson et al., 2002). The GPS studies also provide constraints on
the present-day deformation in Zagros-Makran transition zone (Bayer et al., 2006), Makran subduc-
tion zone (Frohling & Szeliga, 2016), Iran (Khorrami et al., 2019; Masson et al., 2006, 2007; Ver-
nant et al., 2004; Walpersdorf et al., 2014), Nubia—Arabia—Eurasia plate system (Reilinger & Mc-

Sobouti & Arkani-Hamed (1996) studied the large scale tectonic processes of the region and repro-

duced observed faulting patterns by considering highly rigid central Iran and the South Caspian Sea
using a viscous thin-sheet approximation. On the other hand, Md & Ryuichi (2010) used finite ele-

ment modeling (FEM) to analyse the neotectonic stress field of Zagros and adjoining area modeled

the-maximum-horizontal-compressive-stress{(Symar)-ortentations and showed N-S/NNE-SSW oriented
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Samax In Lurestan and eastern Zagros Simple Folded Belt, whereas-they-were-alignedin NW-SE directions

around Main Recent fault (MRF) and in the northern High Zagros Faults (HZF). Sebouti-&-Atrkani-Hamed-(1996)

Sea-using-a-viscous-thin-sheet-approximation- Further, the kinematic model by Khodaverdian et al.

(2015) providedpreetded constraints on fault slip rates, plate velocities and seismicity of the Iranian
Plateau. Most of the deformation studies done in this region focus on different tectonic fragments
of the Arabia-Eurasia collision zone. Moreover, the previous studies do not include the role of shear
tractions associated with mantle convections in affecting the deformation and stresses in the Zagros-

Iran regions.

In this study, we investigate the stress and deformation in Zagros-Iranian Plateau region to constrain
the forces acting in this region with gravitational potential energy (GPE) and shear traction of mantle
tractions. We will use a thin viscous sheet model based on Flesch et al. (2001) to compute various de-
formation parameters such as deviatoric stresses, strain rates, most compressive principal stress (Sgmax),

and plate velocities within the Zagros-Iran region.

2 Tectonic and Geology

The evolutionrise of the Zagros mountain belt is a direct consequence of continental collision between
the Arabian and Eurasian plates. Zagros are located at the northeastern margin of the Arabian plate,
trending in the southwest direction (Figure 1). It is bounded by the Main Zagros thrust (MZT) in the
northeast, while it joins the Tauras mountains in southern Turkey in the northwest. In the southeast, N-S
trending Minab-Zandan fault zone separates Zagros from the Makran range. Outer Zagros are the young
folded mountains in the southwest parts of the orogeny (Falcon, 1974; Sattarzadeh et al., 2002). High
Zagros fault (HZF) separates highly deformed metamorphic rocks of inner Zagros from Simply folded
mountains of outer Zagros (Hatzfeld & Molnar, 2010; Hatzfeld et al., 2010). Inner Zagros are bounded
by MZT in the northeast and are dominated by thrust faulting, possibly due to compression during the
Late Cretaceous (Alavi, 1980). The northwestern Zagros isare separated from central Zagros by a north-
south trending strike-slip zone of deformation, known as Kazerun Fault System (KFS) (Authemayou
et al., 2005).

Zagros mountains were formed between ~35 and ~23 Ma due to the convergence of the Arabian
platform beneath the central Iranian crust (Agard et al., 2005; Ballato et al., 2011; Mouthereau et al.,
2012). The Arabian plate moves towards Eurasia with a plate velocity of 22-35 mm/yr (DeMets et al.,
1990; McClusky et al., 2000; Jackson et al., 2002; McQuarrie et al., 2003; Reilinger et al., 2006) in
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N-S to NNE direction. Zagros-mountain-belt-is-also-accompanted-by The convergence of two rigid

plates of Arabia and Eurasia leads to a zone of widespread deformation in the form of the high plateaus
of Iran. Iranian plateau extends from the Caspian Sea and the Kopeh Dagh range in the north to the
Zagros Mountains in the west. Iranian plateau is bounded by the Persian Gulf and Hormuz Strait in
the south and the political borders of the country on the eastern side. Several tectonic processes such
as intracontinental collisions, subduction along the Makran and the transition from Zagros fold-thrust

belt to the Makran subduction zone contribute to the complex tectonics of the Iranian plateau.Numereus

During the last few decades, various geophysical studiessurveys (receiver functions, deep seismic,

GPS and tomographic) stadies) have been carried out in the Zagros-Iran region to investigate the struc-
ture and deformation in this region. The southeastern Zagros accommodate the convergence between
Arabia and Eurasia by pure shortening occurring through high-angle (30° — 60°) reverse faults that are
perpendicular to the belt (Hessami et al., 2006; Irandoust et al., 2022; Walpersdorf et al., 2006). On
the other hand, oblique convergence in central and northern Zagros is partitioned into a strike-slip com-
ponent that is accommodated on MRF and shortening occurring across the belt (Jackson et al., 2002;
Talebian & Jackson, 2002). Zagros is separated from Makran subduction zone (MSZ) by Minab-Zendan-
Palami (MZP) fault (54° — 58°E), which is a right-lateral strike-slip fault (Bayer et al., 2006). East of
MZP shows significant shortening that is accommodated through the subduction in MSZ. Due to the
difference between convergence rates, a shearing occurs in eastern Iran which is accommodated by the
N-S trending faults bounding the Lut block. In northern Iran, fold and thrust belt of Alborz accommo-
dates a quarter of the Arabia-Eurasia convergence Irandoust et al. (2022). The oblique convergence in
eastern Alborz is also partitioned into shortening at the southern boundary and a left-lateral component
across the mountain belt (Irandoust et al., 2022; Khorrami et al., 2019; Tatar & Hatzfeld, 2009). Alborz
mountains extend into Talesh in the west which shows thrust faulting on nearly flat faults. Kopeh-Dagh
range in northeast accommodates the Arabia-Eurasia convergence through N-S shortening on major

thrust faults in the south.

3 Modeling

3.1 Equations

To model the present-day stresses causing deformation in the Zagros-Iranian plateau due to the Arabia-

Eurasia collision, we solve three-dimenstonal{3D) the force balance equations, considering the thin



189

191

192

193

194

197

198

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

sheet approximation.

!t pgi= (1)

Here o;;, xj, p, and g; indicate the ij'" component of the total stress tensor, j/ coordinate axis, density
and acceleration due to gravity respectively (England & Molnar, 1997; Ghosh et al., 2013b).

In the above equation, total stress, 0;; is substituted by deviatoric stress using the following relation:

1
Tij = Gij — 5 ukdij (2)

In the above equation, the Kronecker delta and mean stress are denoted by 6;; and %Gkk respectively. The
force balance equation (1) is integrated up to the base of lithospheric sheet (L), resulting in following
full horizontal force balance equations:

0T 0T  OTy 00

ox  ox + dy ox + (L) ©)

Oy 0Ty . 06w
ox ay o ay - ay +T)’Z(L) 4)

In equation (3) and (4), the over bars indicate integration over depth. Both equations (3 and 4) contain
the first term representing horizontal gradients of GPE per unit area tnon the right hand side. On the
other hand, the shear tractions at the lithosphere base (L) arising due to mantle convection are denoted
by T,;(L) and ty;(L) (Ghosh et al., 2009).

Both of the force balance equations (3 & 4) were solved using the finite element technique (Flesch
et al., 2001; Ghosh et al., 2009, 2013b; Singh & Ghosh, 2019, 2020) for a 100 km thick lithosphere of
varying strength (Figure S1a). The laterally varying viscosities for the lithosphere were assigned from
Singh & Ghosh (2020). After solving these equations, we obtained the horizontal deviatoric stresses,
SHmax, strain rates as well as plate velocities and compared them with observations.

The quantitative comparison between predicted and observed Sg 4 axes (Figure 3a) was performed
by computing the misfit given by sinf(1+ R) (Ghosh et al., 2013a; Singh & Ghosh, 2019, 2020), where
R represents the quantitative difference between stress regimes of observed and predicted Sgqx, While
0 denotes the angular difference between both. Hence, this misfit accounts for both the angular and
regime misfits with values lying between 0 and 3.

The correlation between predicted deviatoric stresses and GSRM strain rates (Figure 3b) (Flesch

et al., 2007; Ghosh et al., 2013b; Singh & Ghosh, 2019, 2020) is given by following equation:

~1< Z(src)AS/( Y (E2)AS+ Z(T2)AS>§1 (5)

areas areas areas



27 where E = | /&5, + €59 + 82, + €5 + €5, = \/ 265, + 2800800 + 2850 + 2800, T = | [Ty +Tgo + T T Tog + Ty

28 = \/ 2’cq2)¢ + 2T Tep + 21%9 + 2142)9, and €.T = 2€p9Tpo +£09Ton +E£00Too + 2£00Tep + 2£99Tpe- In the above
219 equation, the second invariants of the strain rate and stress tensors are denoted by E and 7. GSRM strain

220 rates, area and predicted deviatoric stresses are represented by €;;, AS, and T;; respectively. Fo-constrain

221
22 veloetties: We also get the relative plate velocities and strain rates as output from models. However, to
223 calculate the absolute plate velocities and strain rates, we require absolute viscosity values. We compute
224 the scaling factor for relative viscosities by placing the predicted velocities in a no-net-rotation (NNR)
»s frame, such that [(v X r)dS = 0 and minimizing the misfit between the predicted dynamic velocities and
26 those from Kreemer et al. (2014). Here v denotes the horizontal surface velocity at position r and S is

227 the area over the Earth’s surface (see Ghosh et al. (2013b) for details).

2 3.2 Crustal Models

229 In the right hand side of equations (3 & 4), the first term represents the vertically integrated vertical
20 stress. It is computed and integrated from the top of variable topography up to depth L (100 km)
21 (England & Molnar, 1997; Flesch et al., 2001; Ghosh et al., 2013b; Singh & Ghosh, 2019, 2020) using

22 the following relation:

- G.,=— /_];l {/_Zh p(z’)gdz’] dz = — /L (L—2)p(z)gdz (6)

—h

2« Where p(z), L and i denote density, the depth to the lithosphere base (100 km) and topographic elevation
2 respectively. z & 7 are variables of integration and g represents the acceleration due to gravity. We also
26 calculated the stresses for thicker lithosphere (L=150 km and L.=200 km) as studies have shown a much
27 thicker lithosphere in the region (Robert et al., 2017; Tunini et al., 2017) (Figure S2).

238 The right hand side of equation 6 is given by the negative of GPE per unit area. To calculate GPE
29 and the stresses associated with it, we used three global crustal models, CRUST2.0 (Bassin et al., 2000),
20 CRUSTI.0 (Laske et al., 2013), and LITHO1.0 (Pasyanos et al., 2014). The upper crust thickness lies
2+ Within 15-20 km in the Zagros-Iran region for CRUST2 model (Figure 2a). However, the thickness of the
22 upper crust in the Zagros-Iranian region is much higher for CRUST1 and LITHO1 (> 25 km) (Figures
23 2b & c). The Zagros-Iran region has a thicker middle crust (> 20 km) in the case of both CRUST2 and
24 LITHOI1 models (Figures 2d & f), while CRUST1 shows a much thinner middle crust (< 12 km) in this
25 region (Figure 2e). The lower crust in the Zagros-Iran region is found to be very thin (< 10 km) for all
26 three models (Figure 2g-1).

247 The density variations in the study area are minimal for CRUST2 model. CRUST?2 also shows
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the highest average density in all three layers (>2.7 g/cm®) (Figure 2j,m,p). CRUSTI also indicates
an average density of ~ 2.72 g/cm® in the Zagros-Iran region for the upper crust (Figure 2k). The
middle and lower crustal layers of CRUST1 show average densities of 2.80 g/cm? and ~2.85 g/cm?,
respectively (Figure 2n,q). LITHOI model shows the lowest average density in the study area for all
three layers (Figure 2l,0,r). The upper crust of LITHO models shows an average density of ~2.65
g/cm’. Central Iran block has relatively denser upper crust (~2.75 g/cm?), while the density decreases
to ~ 2.62-2.64 g/cm> near the Zagros region. Similar patterns of density variations are observed in the
middle and lower crust of LITHO1 model ((Figure 20,r). Such differences in thickness and density data

lead to varying GPE values, and hence subsequently, different stresses.

3.3 Mantle Convection

We ran mantle convection models using HC (Hager & O’Connell, 1981). HC is a semi-analytical mantle
convection code that uses density anomalies derived from seismic tomography models and radial vis-
cosity as inputs. Here, we considered four global mantle convection models, S40RTS (Ritsema et al.,
2011), SAW642AN (Mégnin & Romanowicz, 2000), 3D2018_S40RTS and S2.9_S362 to infer the man-
tle density anomalies. 3D2018_S40RTS is a merged model of SV wave upper mantle tomography model,
3D2018_Sv given by Debayle et al. (2016), and S40RTS. S2.9 is a global tomography model of the up-
per mantle with higher resolution which is given by Kustowski et al. (2008b). We merged this model
with the global shear wave velocity model, S362ANI (Kustowski et al., 2008a) to obtain the merged
tomography model of S2.9 S362. We used two different radial viscosity structures, namely GHW13
which is the best viscosity model from Ghosh et al. (2013b), and SHO8 given by Steinberger & Holme
(2008). GHW 13 is a four layered viscosity structure, with a highly viscous lithosphere (~ 10> Pa-s).
The viscosity drops to ~ 10%° Pa-s in the asthenosphere, which again increases to ~ 102! Pa-s in upper
mantle and ~ 107 Pa-s in the lower mantle (Figure S1b). On the other hand, the viscosity in SHO8
model increases gradually with depth and it has a slightly weaker lithosphere as compared to GHW13.
It has the highest viscosity value of 10?3 Pa-s around 2000-2300 km depth, and significantly lower vis-
cosity for D* layer (Figure S1b). GHW 13 viscosity model performed slightly better than SHOS in fitting
the observed parameter, thus we have shown results from the same throughout this paper. However, we
have also included the the predicted results and their fit to the observables in the supplementary section
(Table S1).
convection-models:
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3.4 Data

To have better constraints on eur this study’s models, we also estimated Sz ;4 (most compressive hor-
izontal principal axes) orientations as well as plate velocities. Various deformation indicators such as
SHmax orientations from the World Stress Map (WSM) (Heidbach et al., 2016), strain rates and plate
velocities from Global Strain Rate Model (Kreemer et al., 2014) were used to perform a quantitative
comparison with eur the predicted results of this study (Figure 3).

WSM data is a global database of the crustal stress field obtained from various sources such as focal
mechanisms; geophysical logs of borehole breakouts and drilled induced fractures; engineering methods
such as hydraulic fractures and overcoring; and geological indicators that are obtained from fault slip
analysis and volcanic alignments. These data have been assigned quality ranks from A to E based on
the accuracy range. A-type data suggests that the standard deviations of Sg,,, orientations are within
+15° range, +20° for B-type, +25° for C-type and +40° for D-type. However, E-type indicates the
data records are either incomplete or from non-reliable sources or the accuracy is > +£40°. Our This
study uses A-C quality stress data records (Figure 3a). Observed Sg;,qx axes are aligned in NNE-SSW
directions in Zagros with dominant thrust faulting. NW and Central Iran show some strike-slip mode of
deformation with NE-SW compressional directions.

The strain rates and plate velocities are taken from GSRM v2.1 model (Kreemer et al., 2014) (Figure
3b). GSRM v2.1 provides a global data set of strain rates and plate motions that are determined using
~ 22,500 geodetic plate velocities. Higher strain rates are observed along the simply folded mountains
(~ 40— 100 x 1077 /yr). Most of Iran shows strain rates i between 4 — 10 x 10~ /yr. The plate motions
used in our study for comparing with predicted velocities are given in a no-net-rotation (NNR) frame
interpolated on a 1° x 1° grid. The velocity vectors show an eastward motion in the study area, which

becomes nearly E-W in Afghan Block (Figure 3b).

4 Results

4.1 Stress and deformation due to GPE

Three crustal models (CRUST1.0, CRUST2.0 and LITHO1.0) were used to compute GPE within the
study region. The second invariant of stress computed using GPE lies within ~10-12 MPa along the
Zagros for CRUST2 and CRUST1 models (Figure 4a,c). LITHO1 model predicts larger stress magni-
tudes along Zagros (Figure 4e). NE-SW compressional stresses are observed along the frontal faults of
Zagros (MFF) (Figure 1a,c). The central part of Zagros thrust faults (MZT) shows the strike-slip mode
of faulting for nearly all three models (Figures 4 & 4b,d & f). The strike-slip regime further extends

10
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into Sanandaj-Sirjan Zone (SSZ) while lies north of MZT for CRUST2 and LITHOI model (Figure
4b,f), while it transitions to thrust type of deformation in the north of MZT for CRUST1 (Figure 4d).
The Urmia-Dokhtar Magmatic Arc (UDMA) and central Iran also show the strike-slip mode of fault-
ing for CRUST2 and LITHOI. The north of MRF shows tension for CRUST2 model, while CRUST1
predicts this area to be predominantly strike-slip. On the other hand, the entire region shows significant
compression for LITHO1 model.

We compared predicted Sgqx from our three GPE only models to observed Sgqx orientations and
type obtained from WSM (Heidbach et al., 2016) by computing Regime misfit (Figure 5, left panel).
The average misfit is lowest for LITHO1 model with a value of 0.59 (Figure 5g), while CRUST2 model
shows the highest average misfit of 0.77 (Figure 5a). High misfits (2 — 3) are observed North of MRF
and Tehran for CRUST2, while lowest (< 1) in case of LITHOI, suggesting that the dominant mode
of faulting in this area is possibly thrust as opposed to normal deformation predicted by CRUST2. In
central Iran, Sg;,q misfit is low (< 1) when the dominant mode of deformation is strike-slip as predicted
LITHO1 model.

On calculating the correlation between the predicted deviatoric stresses and GSRM strain rates, the
LITHOI model shows the highest average correlation (0.92) (Figure 5, middle panel). The correlation
is found to be extremely poor (~ —1) for CRUST2 model in the north of MRF (Figure 5b). Such
poor correlation suggests that the predicted stresses differ entirely from those causing deformation. For
example, anti-correlation in north of MRF suggests that the dominant mode of deformation in this area
might be thrust rather than normal faulting. Again, the correlation coefficient is less than 0.2 in the
central Iranian Block for CRUST2 and CRUST1 models (Figure 5b,e), while LITHO1 model shows a
better correlation suggesting the strike-slip type of deformation to be more prominent in central Iran
(Figure 5h).

We predicted the plate velocities for all three models in the NNR frame and compared them with
observed plate velocities obtained from Kreemer et al. (2014) (Figure 5 right panel). CRUST?2 gives
the least RMS error (7.32 mm/yr) and the lowest angular misfit (5.5°) (Figure 5c¢). LITHO1 model
shows high misfits (> 20°) between observed and predicted velocities in the east of the central Iran (i.e.
Afghan Block)(Figure 51). Both CRUST2 and LITHO1 models predict the plate velocities very close to
observed ones in the Zagros mountains, as shown by nearly zero angular misfits along Zagros (Figures
5c & 1). CRUST1 performs average in predicting the plate velocities in the study area (Figure 5f).

Interestingly, the use of thicker lithosphere to calculate GPE leads to the introduction of more com-
pressional stresses in the region (Figure S2a-f). The average misfit between predicted and observed
SHmax 1s found to be lowest for the 200 km thick lithosphere (Table S2). Similarly, the correlation be-

tween strain rate tensor and predicted stresses,; and rms error between observed and predicted NNR
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velocities show significant improvement for thicker lithosphere. However, the improvement in fit is bet-
ter for CRUST?2 as opposed to the other two models, CRUST1 and LITHO1, where the misfit between
observed and predicted velocities show an increase. Thus, we can say that while considering lithospheric
contributions only, the thicker lithosphere does a better job of explaining the observed deformation in-

dicators (Table S2).

4.2 Stress and deformation due to Mantle Convection

The deviatoric stresses predicted using all four mantle convection models are found to be mostly com-
pressional along MFF (Figure 6). All models, except for SAW642AN, predict the strike-slip mode of
faulting in NW parts of Zagros with nearly E-W oriented extensional axes and N-S compressional axes
(Figures 6a,e & g). On the other hand, SAW642AN shows predominant compression within this area
(Figure 6e). S40RTS, 3D2018_Sv, and S2.9_S362 show strike-slip deformation in NW parts of SSZ,
UDMA and NW Iran. Central Iran is predicted to have mostly compressional stresses by all models
except for S40RTS. Thrust type of deformation is predicted in Afghan Block by all models with some
intermittent strike-slip deformation. SINGH_SAW model predicts the whole Afghan Block in the strike-
slip regime (Figure 6g-h). S40RTS and S2.9_S362 predict higher stress magnitude in NW parts of the
Zagros Orogeny system and Central Iran compared to other models.

The misfit between observed and predicted Sgqx 1s found to be much lower for mantle convection
models (0.54-0.57) (Figure 7 left panel), than those of GPE only models (Figure 5 left panel), evidently
showing the importance of mantle flow. The lowest average misfit is observed for SAW642AN (0.54)
(Figure 7d). Though the misfit increases in the east, Lut block, and near MSZ. The correlation of
predicted deviatoric stresses with GSRM strain rates improves over GPE only models (Figure 7 middle
panel), with SAW642AN yielding the highest correlation coefficient (0.91) (Figure 7e). Correlation
drops below 0.4 parts of central Iran. S40RTS performs predicts the plate velocities closest to the
observed one, out of all models, with the least RMS error ( 6.20 mm/yr) between predicted and observed
plate velocities (Figure 7c). On the other hand, SAW642AN and 3D2018_S40RTS models show high
misfits (rms error ~ 10mm/yr), as they are unable to match observed plate velocities in Zagros-Iran
plateau, both in orientations and magnitude (Figures 7f & 1).

As discussed above, mantle convection models perform better in predicting deviatoric stresses in the
study area which is evident by high correlation between predicted stresses and observed strain rates; and
low misfits between observed and predicted Sg,,.c. However, the error in predicting plate velocities is
higher for mantle convection models than 1 GPE only models. GPE-only-models-perform-slightly-better
inpredicting-the-orientation-and-magnitude-of-veloeity-veetors—Thus; As there are still significant misfits

in fitting the observables, we added the deviatoric stresses predicted from GPE differences and Mantle
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convection models to constrain the total stress field in the Zagros-Iranian plateau that-may-account-for
bothforees.

We also ran S40RTS model with LAB (Lithosphere-Asthenosphere boundary) at 150 and 200 km
(Figure S2g-h). Similar to GPE models, the fit to observed data shows an improvement when LAB is at

200 km, though the stress patterns do not change significantly (Table S2).

4.3 Stress and deformation by GPE and Mantle convection

Adding mantle contributions to GPE only models led to significant changes in total deviatoric stresses
for all models (Figure 8,9,10). There is a significant increase in total stress magnitude of the entire study
area; except for north of MRF and SE of central Iran, which show slightly lower stresses (< 16 MPa)
for combined models of CRUST2 and mantle convection (Figure 8). These models show predominant
compression in most of Zagros, SSZ, UDMA, NW and central Iran, except for the strike-slip type of
deformation in NW parts. The joint models of CRUST1 and mantle convection predict higher stresses
(> 25 MPa) in NW Iran and at MFF (Figure 9). Interestingly, the stresses drop below 20 MPa towards
the north of HZF, MREF till the south Capsian. The combined models of CRUST1 and mantle convection
show compressional stresses are dominant in the study area, with occasional strike-slip faulting in the
north-west (Figure 9 right panel). The stresses predicted by combined models of LITHOI and mantle
convection models are higher in magnitude than other models in the study area (> 25 MPa) (Figure 10).
S40RTS+litho and S2.9_S362+litho models show high stresses in Zagros (>50 MPa)(Figure 10a,g).

The combined models show a lower misfit between observed and predicted Sg,q, (Figure 11), espe-
cially when compared to GPE only models (Figure 5 left panel). SAW642AN+litho showed the lowest
average misfit of 0.47 (Figure 11f). Interestingly, SAW642ANcr2 and 3D2018_S40RTScr2 show low
misfits in the Zagros-Iranian plateau region, despite not having the lowest average misfit (Figures 11d
& g). The higher misfits in NW Iran and SE of the central Iran block observed for GPE only models
get reduced significantly due to the addition of mantle derived stresses, referring to the importance of
mantle convection in these areas.

As we look at the correlation between predicted stress tensors and GSRM strain rate tensors, the over-
all correlation is better for combined models (Figure 12), especially for combined models of LITHOI
and mantle convection (Figure 12 right panel). A high average correlation coefficient of 0.94 is ob-
served for SAW642AN+litho, 3D2018_S40RTS+litho as well as S2.9_S362+LITHO1 (Figures 12f, 1 &
1). Despite an overall improvement in correlation between observed strain tensors and predicted devia-
toric stresses, the correlation is found to be much poor in areas such as NW parts of Zagros and east of
central Iranian block, for combined models of mantle convection and GPE only models of CRUST2 &

CRUST] (Figure 12 left and middle panels). In NW Zagros, mantle only models are found to perform
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much better, as they show better correlation (Figure 7 middle panel), thus suggesting mantle derived
stresses are needed to be much higher than those from GPE to explain the observed deformation in these
areas.

Again the combined models of GPE and mantle tractions give lower rms errors, when predicted
plate velocities are compared to the observed ones. S40RTScr2 shows the least rms error (3.28 mm/yr)
and the least average angular misfit (3.0°) between predicted and observed plate velocities (Figure 13a).
Relatively the combined models of S40RTS/S2.9_S362 and GPE perform much better than other models
in predicting the orientation and magnitudes of plate velocities. Significant misfits are observed for
SAW642ANcrl and 3D2018_S40RTScrl models. The joint models of S40RTS and GPE for thicker
lithosphere do not offer any significant changes in stresses and their fit to observed data (Table S2)
(Ghosh et al., 2009; Jay et al., 2018; Hirschberg et al., 2018). Thus, considering the lithosphere base at

100 km appears to be a satisfactory approach.

5 Discussion

The Zagros-Iranian plateau region is formed due to the convergence of Arabian plate towards the Eura-
sian plate. Zagros mountain belt demarcates the southwestern boundary of the deformation zone,
whereas, it is bounded by the Makran subduction zone in the southeast and by Afghan Block in the
east. Kopet-Dagh and Arborz act as this region’s northeastern and northern boundaries (Irandoust et al.,
2022). We modeled the stresses and deformation parameters in the study area by solving the force bal-
ance equation using the finite element method for a global grid of 1° x 1° resolutions, considering two
primary sources of stresses; GPE and mantle tractions. GPE was calculated using the thickness and den-
sity variation from the different global models like CRUST1.0, CRUST2.0 and LITHO1.0. The shear
tractions were computed from density derived mantle convection model.

The magnitude of stresses due to GPE variations was below 15 MPa in the Iranian plateau for
CRUST?2 and CRUST1 models (Figures 4a & c). However, LITHOI model predicted higher stresses
(> 30 MPa) with predominant compression in parts of the Zagros-Iran region and Afghan block. Most of
the convergence of Arabian and Eurasian plates has been accommodated through shortening across Za-
gros (Irandoust et al., 2022; Khodaverdian et al., 2015). Walpersdorf et al. (2006); Hessami et al. (2006)
suggested nearly pure N-S shortening of 8 + 2mm/yr in southeastern Zagros. The convergence occurs
perpendicular to the simply folded mountains and is restricted to the shore of Persian Gulf. Earthquake
focal mechanisms also show reverse faulting within this area (Berberian, 1995; Hatzfeld et al., 2010;
Hatzfeld & Molnar, 2010; Irandoust et al., 2022). In our study, LITHO1 model predicted thrust mode

of faulting within Zagros, which is consistent with these results. In NW Zagros, Hatzfeld et al. (2010);
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Hatzfeld & Molnar (2010); Jackson & McKenzie (1984); Khorrami et al. (2019); Talebian & Jackson
(2002) and various others have suggested partitioning of deformation. The oblique shortening is par-
titioned into strike-slip faulting that is accommodated by MRF, while shortening occurs perpendicular
to the the mountain belt (Hatzfeld et al., 2010; Hatzfeld & Molnar, 2010; Jackson & McKenzie, 1984;
Khorrami et al., 2019; Talebian & Jackson, 2002). On considering lithospheric models only, we pre-
dicted the normal mode of faulting to be dominant in this area for CRUST2. On the other hand, CRUST1
model predicted strike-slip components in the northern segment of MRF, while LITHO1 showed thrust
type of deformation in this area. Interestingly, the misfits of predicted parameters with various observa-
tions of Sgmax, Strain rates and plate velocities were found to be lowest for LITHO1 model, thus arguing
for thrust type of deformation in this area. SSZ in north of MZT consists of various thrust systems
(Alavi, 1994). CRUST] predicted thrust mode of faulting in this region, while CRUST2 and LITHOI
models showed intermittent strike-slip type of faulting. Alborz as well as Kopeh Dagh in the north
has also been subjected to reverse faulting (Allen et al., 2003; Hatzfeld & Molnar, 2010; Hollingsworth
et al., 2010; Irandoust et al., 2022; Khodaverdian et al., 2015), which has also been shown by CRUST1
and LITHOI models. Models predicting thrust in Talesh mountains show low misfits to observation
suggesting thrusting of the mountain range over the basin with slip vectors directed towards the South
Caspian Sea (Irandoust et al., 2022). The N-S convergence in Kopeh-Dagh range iswas predicted by
LITHOI model considering the contribution from lithospheric density and topographic variations only.
The shearing between Central Iran and Afghan Block caused due to varying rates of shortening across
the Zagros, Alborz and Caucasus, is accommodated by strike-slip faults near Lut block boundaries
(Khorrami et al., 2019; Vernant et al., 2004; Walpersdorf et al., 2014). Again, LITHOI model predicted
similar strike-slip deformation in these areas; however, CRUST2 and CRUST!1 failed to do so.

The stresses predicted using basal tractions were mostly compressional in southeastern Zagros owing
to the convergence of Arabia-Eurasia (Figure 6). However, all models, except SAW642AN predicted
strike-slip type of deformation in the northwestern Zagros (MRF), which concurs with the results from
various studies (Hatzfeld et al., 2010; Hatzfeld & Molnar, 2010; Jackson & McKenzie, 1984; Khorrami
et al., 2019; Talebian & Jackson, 2002). The mantle derived stress parameters showed a better fit to
observables than those from GPE variations (Figures 7 left and middle panel), though the correlation
dropped below 0.5 in Central Iran. Here, mantle convection models foundpredieted compressional type
of deformation, while Baniadam et al. (2019); Khorrami et al. (2019) suggested that strike-slip faulting
along the fault system bounding Lut Block. The velocity misfits were very high for all models except
S40RTS (Figure 7 right panel). Although we used four tomography models to compute the mantle-
derived stresses, the stress regimes for all models are found to be similar, with varying magnitudes. Such

results suggest that nearly all four seismic tomography models are relatively consistent in predicting the
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stresses in this region.

Adding the GPE derived stresses to those from the mantle to obtain the total lithospheric stress field
showed a notable improvement in constraining the observed deformation parameters. The final stress
regimes also varied significantly depending on particular combinations of GPE and mantle convection
models. All joint models of CRUST2 and mantle tractions showed lower magnitudes of stresses (< 15
MPa) in the north of MRF, Tehran and southern Lut block. The stresses showed an obvious increase
in these areas for other models. Significantly higher stresses (> 30 MPa) were also observed near the
collisional front (MFF) for all models. On comparing with observations, combined models of CRUST2
and mantle tractions showed significant improvement in fit, except in areas north of MRF and Tehran.
CRUST1 model when added with mantle contribution, predicted thrust faulting along the faults bound-
ing Lut Block, leading to poor correlation (< 0.5). On the other hand, combined LITHO!1 and mantle
convection models gave a much better fit in this area, as they predicted strike-slip faulting. The use of
different mantle convection models is much less sensitive in the Iran-Zagros region, as most models can
match various surface observables reasonably well.

On running various models and comparing the stresses in Zagros-Iran, we try to explain the relative
roles of GPE and mantle tractions in causing observed deformation. The contributions from both sources
vary significantly among different models. However, these variations arise mainly from GPE only mod-
els, which may be due to uncertainties in crustal models of this area. Another interesting observation
from this study is that the role of GPE in the study region may not be that significant, as mantle derived
stresses were able to explain many of the deformation indicators. To get a quantitative constraint on the

best model, we computed a total error as given below:

Total error = Sgmax error + 1 — Cyirain + Vims (7)

SHmax error in the above equation is calculated as mentioned in section 3.4, while Cgqi, 1s the
correlation computed using equation 6. V,,, is the rms error between predicted and observed velocities.
The total errors calculated using equation 7 have been tabulated in Table 1. S40RTScr2 is found to have
the lowest error.

We also calculated plate velocities with respect to the Eurasian plate (Figure 14) and compared them
with observed GPS velocities relative to Eurasia. The GPS velocities were obtained from various studies
conducted in the-stady this area (ArRajehi et al., 2010; Bayer et al., 2006; Frohling & Szeliga, 2016;
Khorrami et al., 2019; Masson et al., 2006, 2007; Raeesi et al., 2017; Reilinger & McClusky, 2011;
Vernant et al., 2004). GPS measurements show a northward convergence rate of ~ 22mm/yr for Arabia
relative to Eurasia (Reilinger et al., 2006; Vernant et al., 2004), however, it varies significantly along

the Zagros. The southeastern Zagros show the highest convergence rates of ~ 25 mm/yr oriented in
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Table 1: Summary of quantitative comparison of predicted results of various models with observed data.

Model SHmax misfit  Strain rate correlation RMS error (mm/yr) Angular misfit Total error
CRUST2 0.77 0.69 7.32 5.5 3.07
CRUST1 0.64 0.87 7.44 8 2.78
LITHOI1 0.59 0.92 8.51 9 2.81
S40RTS 0.57 0.88 6.2 4.6 2.51
SAWG642AN 0.54 091 11.35 13 3.06
3D2018_S40RTS 0.56 0.88 9.44 9.7 2.92
S2.9.S362 0.57 0.88 8.29 9 2.81
S40RTScr2 0.48 0.92 3.28 3 1.75
SAW642ANcr2 0.49 0.92 4.77 5.5 2.13
3D2018_S40RTScr2 0.49 0.91 4.06 4.5 1.98
S2.9_S362cr2 0.48 0.92 4.24 5.1 2.00
S40RTScrl 0.51 0.92 4.29 5.5 2.05
SAW642ANcrl 0.5 0.92 7.39 9.6 2.58
3D2018_S40RTScrl 0.51 091 6.35 8.2 2.45
S2.9_S362crl 0.51 0.92 4.78 6.6 2.15
S40RTS+lithol 0.49 0.93 4.52 6.1 2.07
SAW642AN+lithol 0.47 0.94 6.42 7.4 2.39
3D2018_S40RTS+lithol 0.48 0.94 5.62 7.2 2.27
S2.9_S362+lithol 0.48 0.94 5.8 8.3 2.30

north-northeast directions. GPS vectors are oriented northward in Central Zagros, which transitions
north-northwest in NW parts of Zagros with the lowest convergence rates of ~ 18 mm/yr (Hatzfeld &
Molnar, 2010; Hatzfeld et al., 2010; Khorrami et al., 2019). Vernant et al. (2004) suggested that MSZ
accommodates most of the shortening (19.5 +2 mm/yr) in the east of 58°E, while fold and thrust belts of
Zagros, Alborz and Caucasus collectively accommodate the shortening in west of 58°E. GPS velocities
in the east of Iran (Afghan Block) are very small in magnitude. To the west, velocities increase showing
westward rotation of Antolia (Khorrami et al., 2019; Reilinger et al., 2006). The northern part of Iran
shows that GPS vectors are aligned towards the northeast. We found that the combined model of S40RTS
and CRUST?2 can approximately match the GPS velocities (Figure 14a). Predicted plate velocities with
respect to the fixed Eurasian plate show a northward movement of 2-3 cm/yr in southeastern Zagros.
The plate moves in NNE direction east of central Zagros (53° E). On the other hand, west of 53° E
shows a movement in NNW direction, becoming much more prominent in the north. However, the
convergence rates in the east of Iran i.e. Lut Block as well as Afghan Block, is predicted to be much
higher (~ 1 — 2c¢m/yr) than those suggested by various observations. Plate velocities predicted by joint
models, S40RTScrl and S40RTS+LITHOI1 show nearly N-S contraction of of very high magnitudes
(4-5 cm/yr) throughout the region (Figure S3), which suggests much higher rates of deformation than
those suggested by above-mentioned studies.

We also used shear wave splitting measurements to further study the deformation in the Zagros-Iran
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region by comparing them with Sy, (Figure 14b). The fast polarization directions (FPDs) are the in-
dicators of seismic anisotropy. We consider two primary causes of seismic anisotropy; induced by stress
and due to structure of the region (Yang et al., 2018). If the FPDs are parallel to Sg,,., orientations, it
suggests that anisotropy is associated with stress. On the other hand, latter kind of anisotropy is related
with the alignment of fault, fast axes of minerals that may cause polarization, and sedimentary bedding
planes. The FPDs in our study were obtained from Sadeghi-Bagherabadi et al. (2018); Kaviani et al.
(2009, 2021). The FPDs are subparallel to Sg,4, orientations in NW Zagros, Arabian plate, northern
Iran and MSZ. Such a correlation between both indicates that anisotropy in this region may be stress
induced. Additionally, the correlation of Sg,., orientations and FPDs argues for a good coupling be-
tween lithosphere and mantle in those areas. In contrast, Sadeghi-Bagherabadi et al. (2018) showed

FPDs parallel to the strike of the fault (sub-parallel to Sg,. directions of CRUST?2), In-NW-—Zagres;

suggesting seis-
mic anisotropy mainly reflects the deformation in the lithospheric mantle. Again, FPDs are subparallel
to the strike of range in northeastern Iran, eastern Kopeh Dagh and central Alborz indicating structure-
induced anisotropy caused by strong shearing along the strike-slip faults (Gao et al., 2022; Kaviani et al.,
2021).

To explore the relative roles of lithospheric and mantle derived stresses, we compared the deviatoric
stresses from CRUST2 to those from S40RTS. We performed a correlation between both stresses by
using equation 5 and found a high correlation (> 0.5) near MSZ and central Zagros (Figure 14c). The
correlation degrades north of the simply folded mountains and NW Iran. The stresses are anti-correlated
in northwestern parts of higher Zagros, north of MRF and Tehran, as CRUST2 predicted NNE-SSW
tension (Figure 4b) as opposed to the strike-slip faulting predicted by S40RTS (Figure 6b). Lut Block
also shows a slight anticorrelation between stresses (~ —0.5), as the stresses predicted by CRUST2
are very low. The log of the ratio of second invariants of deviatoric stresses from GPE variations (77)
to that of mantle tractions (73) is plotted in Figure 14d. Positive values of logarithmic ratio suggests
the dominance of GPE derived stresses over mantle ones, as observed in the south of the collisional
boundary (MFF). The ratio is negative in most parts of the Iranian plateau and Zagros, indicating that
the magnitude of mantle derived stresses isare higher than that ofthesefrem GPE, especially in higher
Zagros and central Iran (Figure 14d).

The deformation in the Zagros-Iran plateau region has been found to exhibit various similarities to
another similar complex collision zone, i.e. the Himalaya-Tibetan plateau region as both continental
collisions went through many of the same processes. The high topography in both collisions reflects
ongoing crustal deformation through crustal thickening and shortening. However, there are differences

in convergence rates, total amounts of convergence and various stages of development of the Zagros-Iran
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and Himalaya-Tibet regions (Hatzfeld & Molnar, 2010). Singh & Ghosh (2020) studied the deformation
in the Himalaya-Tibet region by joint modeling of lithosphere and mantle. They showed that GPE
plays a crucial role in the ongoing deformation of the India-Eurasia collision zone, as it is leads to the
observed E-W extension in Tibetan plateau. In contrast, we found that GPE has a much lesser role in the
Zagros-Iran plateau region (Figure 14d), and no normal mode of faulting is observed in this area. In the
Zagros-Iran plateau region, mantle convection appears to be the primary driver of deformation in most
parts as discussed above. Despite these differences, numerical models argue for a good coupling between
the lithosphere and mantle in both collision zones, which is also supported by seismic anisotropy studies

in both regions (Kaviani et al., 2021; Singh et al., 2016; Sol et al., 2007).

6 Conclusion

The Zagros-Iranian plateau region has large deformations along and across the collision zones. There-
fore, we conducted numerical simulation studies for stress and deformations. The stresses predicted
in this region were primarily compressional, with magnitudes lower than 30 MPa. The southeastern
boundary of Zagros was found to be under high stress which is also reflected by higher convergence
rates. Mantle convection models wereare able to constrain most observations in the Iranian plateau.
However, the misfits with observations wereare much larger in the east of Iran, when only mantle con-
tributions wereare considered. The combined models of lithosphereie and mantle-derived stresses can
explaingive-a-betterfit-te surface observables in most of the area, suggesting a good lithosphere-mantle
coupling, except for east of Iran.

considering-mantle-derived-stresses: The shearing in those areas wasis predicted by lithospheric models,

though variation in lithospheric and density structure given by these models lead to varying degree of

misfits. Hence, there is a need for better constraint on lithospheric structure in this area.

The mantle derived stresses were found to be much higher than lithospheric stresses, thus the over-
all stress regimes predicted by combined models were more biased towards the compressional type of
stresses. This caused our combined models to predict thrust mode of faulting in most cases, especially
when lithospheric derived stresses were computed from CRUST1 and LITHO1 models. CRUST2 model
predicted more extensional stress in the Iranian plateau, which in turn balanced the effect of compres-
sional stresses predicted by mantle convection models; hence leading to prominence of strike-slip mode
of faulting in the northwestern parts of study region. The rate of convergence of Arabia relative to a

fixed Eurasia was found to vary along the Zagros orogeny in a similar way to GPS measurements.
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Open Research Section

We used three models, namely CRUST1.0, CRUST2.0, and LITHO1.0, for obtaining the data of crustal
and lithospheric structure, which are required as inputs in finite element models. We downloaded these
three models and the seismic tomography models used in mantle convection codes from the Incorporated
Research Institutions for Seismology (IRIS) Earth Model Collaboration repository (http://ds.iris.
edu/ds/products/emc-earthmodels/). The strain rate model, GSRMv2.1 was obtained from http:
//geodesy.unr.edu/GSRM/. World Stress Map Website (https://www.world-stress-map.org/)
provides the Sg,,q. orientations and type of faulting, which were used to perform a quantitative com-
parison with predicted results. GPS velocities relative to Eurasia were taken from ArRajehi et al.
(2010); Bayer et al. (2006); Frohling & Szeliga (2016); Khorrami et al. (2019); Masson et al. (2006,
2007); Raeesi et al. (2017); Reilinger & McClusky (2011); Vernant et al. (2004). We also used seismic
anisotropy data from Sadeghi-Bagherabadi et al. (2018); Kaviani et al. (2009, 2021).
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Figure 1: Tectonic overview of Central Eurasia. Abbreviations: CF: Chaman Fault; MSZ: Makran Subduction
Zone; MZT: Main Zagros Thrust; HZF: High Zagros Fault; MFF: Mountain Front Fault; SSZ: Sanandaj Sirjan
Zone; UDMA: Urumieh-Dokhtar Arc; MRF: Main Recent Fault.
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Figure 2: Thickness and density variations of different layers in all three crustal and lithospheric models:
CRUST2(Left panel), CRUST1(Middle Panel) and LITHO1(Right panel)
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Figure 3: (a) Most compressive horizontal principal axes (Sguq.x) from WSM (Heidbach et al., 2016). Red
indicates normal fault regime, blue indicates thrust regime, whereas green denotes strike-slip regime, (b) Observed
plate velocities in a no-net-rotation frame of reference from Kreemer et al. (2014) plotted on top of second invariant

of strain rate tensors obtained from Kreemer et al. (2014) plotted on 1° x 1° grid.

“Alborz

NV Arat

10-9%yr

T T T T T
4 10 20 30 40 100 200 300 400 500 600

Central ‘“

Iranian

.. . \Blocks

CSE S

NN NN
NN N Y 7

N
N
NN =
Sy N e
/7 NN/
RS T
2 as ’

60° 65
L WA N N NI R NI
IV N N N N NN
~J7 NN N N NN
LT N N NN
7 S~~~ =
LT P A — —_——
Vv 7 £ 7~ - s L
P I A
A - - I
a4

- s 7
> - /1
s 4N
L1

-7

N | T
. NN
el A

—_————- — = -

Ve e e e e~ NN N =
/

/

-

/=~ N~ N N NN

NNSSN s -

oS- 5

PP =—
/NN N = ==

177
’, 7
-

=
just
S

NN

Figure 4: (Left Panel) Deviatoric stresses predicted from GPE variations, plotted on top of their second invariants.
The compressional stresses are denoted by solid black arrows, while white arrows show tensional stresses. Sgmax
axes predicted from GPE variations are plotted in right panel. Red denotes tensional regime, blue is for thrust and

green for strike-slip regime.

e m NN~ — - —

- —— -~

d DA

C

NN N\ -~ A

NAAN YN Y

7 =A< NSNS L O

NN N N =~ A~
N A
N -/~ =

</~ =

> -~ VS~~~
N SN
N=—= A NN N T
— e e e A \N= 4

e T

NSNS~~~

40’

35°

30°

25°

40°

35°

30°

25°

40°

35°

30°

25°



0.0 0.1 02 0.3 04 05 0.6 07 0.8 09 1.0 20 3.0 10 -08 -06 -04 -02 00 02 04 06 08 10

Figure 5: (Left Panel) Total misfit between observed and predicted Sgu,c from GPE variations. Correlation
coefficients between strain rate tensors obtained from Kreemer et al. (2014) and deviatoric stresses predicted
using GPE variations are shown in middle panel, with average regional correlation coefficients given on bottom
right of each figure. (Right panel) Observed velocities (black) and predicted plate velocities(white) from GPE
variations in NNR frame, plotted on the top of angular misfit between both.
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(Left Panel) Deviatoric stresses predicted using mantle tractions derived from various tomography

Figure 6

The white arrows

stresses. Spmaqx predicted from mantle tractions

are shown in right panel. Red denotes tensional regime, blue is for thrust and green is for strike-slip regime.

models for GHW13 viscosity structure, plotted on second invariant of deviatoric stresses.

denote tensional stresses, and black arrows indicate compressional
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Figure 7: Parameters predicted from mantle tractions and their comparisons with observables. (Left panel) Total
misfit between Sy, obtained from WSM (Heidbach et al., 2016) and those predicted using mantle tractions
derived from various tomography models using GHW13 viscosity structure. Correlation coefficients between
strain rate tensors obtained from Kreemer et al. (2014) and deviatoric stresses predicted using basal tractions are
shown in middle panel, with average regional correlation coefficients given on bottom right of each figure. (Right
pannel) Observed velocities (black) and plate velocities predicted using mantle tractions (white) in NNR frame
plotted on the top of angular deviation between both.
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Figure 11: Total misfit between observed Sy, from WSM (Heidbach et al., 2016) and Sgyq, predicted using
combined effects of GPE computed from different crustal models and mantle tractions derived from various to-
mography models.
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Figure 12: Correlation coefficients between strain rate tensors from Kreemer et al. (2014) and deviatoric stress
tensors predicted using combined effects of GPE computed from different crustal models and mantle tractions
derived from various tomography models. Average correlation coefficient is given in right lower corner of the
figure.
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Figure S1: (Left) Plot of lithospheric viscosity in the study region that is used in finite element models. Right
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Figure S2: (a-f)Deviatoric stresses predicted using GPE models for lithosphere base at 150 km (left) and 200
km (right). (g-h) Mantle derived stresses from S40RTS tomography model for GHW 13 viscosity structures, when
LAB is at 150 km (left) and 200 km (right). The background plot shows the second invariant of deviatoric stresses.
The white arrows denote tensional stresses, and black arrows indicate compressional stresses.
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Table S1: Summary of quantitative comparison of predicted results of various models with observed data for
SHO8 viscosity model (Steinberger & Holme, 2008).

Model SHmax misfit Strain rate correlation RMS error (mm/yr) Angular misfit Total error
S40RTS+SHO08 0.58 0.9 5.68 6 242
SAW642AN+SHO08 0.58 0.88 17.41 22 3.56
3D2018_S40RTS+SHO08 0.58 0.88 8.68 9.2 2.86
S2.9 S363+SH08 0.54 0.89 10.38 14 2.99
S40RTS+SHO08cr2 0.52 0.91 3.81 33 1.95
SAW642 AN+SHO08cr2 0.56 0.89 5.38 5.1 2.35
3D2018_S40RTS+SHO08cr2 0.54 0.89 4.15 33 2.07
S2.9 S362+SHO8cr2 0.52 0.92 5.14 5.8 2.24
S40RTS+SHO8cr1 0.54 0.92 4.8 6.1 2.19
SAW642AN+SHO8cr1 0.54 0.91 8.61 10.7 2.78
3D2018_S40RTS+SHO08cr1 0.56 0.91 6.3 7.9 2.49
S2.9 S362+SHO8cr1 0.55 0.91 5.82 7.6 2.40
S40RTS+SHO08+litho 0.52 0.94 5.79 7.4 2.34
SAW642 AN+SHO08+litho 0.51 0.94 8.05 8.7 2.66
3D2018_S40RTS+SHO08+litho 0.53 0.94 6.61 8.2 2.48
S2.9_S362+SHO8+litho 0.53 0.94 7.61 10.1 2.62

Table S2: Quantitative comparison of fit to the observed data for varying LAB depths.

SHmax €ITOr Strain Rates Correlation Velocity rms error
Model/LAB Depth =667 55 m 1200 km | 100 km | 150 km | 200 km | 100 km | 150 km | 200 km
CRUST2 077 | 064 |06 069 |083 |087 |732 |58 |569
CRUSTI 064 |061 |06 087 |09 0.9 744 | 859 928
LITHOI 059 |056 |056 |092 |093 |093 |[851 |903 |945
S40RTS 057 |056 |054 |08 |08 |09 6.2 59 6.06
S40RTScr2 048 | 048 049 |092 |092 093 |328 |524 |38
S40RTScrl 051 052 |053 |092 |092 092 [429 |96 9.8
S40RTS+ithol 049 |05 051 | 093 |093 |094 452 [9.03 |945




