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Abstract. Models of glacial isostatic adjustment (GIA) play a central role in the interpretation of various geologic and geodetic

data to understand and simulate past and future changes in ice sheets and sea level, and infer rheological properties of the deep

Earth. During the past few decades, a major advance has been the development of models that include 3D Earth structure, as

opposed to 1D, spherically symmetric (SS) structure. However, a major limitation in employing 3D GIA models is their high

computational expense. As such, we have developed a method using artificial neural networks (ANNs) and the Tensorflow5

library to predict the influence of 3D Earth models with the goal of more affordably exploring the parameter space of these

models: specifically the radial (1D) viscosity profile upon which the lateral variations are added.

Our goal is to test whether the use of an ANN to produce a fast surrogate model can accurately predict the difference in

GIA model outputs (i.e., relative sea level (RSL) and uplift rates) for the 3D case relative to the SS case. If so, the surrogate

model can be used with a computationally efficient SS (Earth) GIA model to generate output that replicates output from a 3D10

(Earth) GIA model. Evaluation of the surrogate model performance for deglacial RSL indicates that it is able to provide useful

estimates of this field throughout the parameter space when trained on only ≈ 15% (≈ 50) of the parameter vectors considered

(330 in total).

We applied the surrogate model in a model:data comparison exercise using RSL data distributed along the North American

coasts from the Canadian Arctic to the US Gulf coast. We find that the surrogate model is able to successfully reproduce15

the data:model misfit values such that the region of minimum misfit either generally overlaps the 3D GIA model results, or

is within two increments of the radial viscosity model parameter space (defined here as lithosphere thickness, upper mantle

viscosity, and lower mantle viscosity). The surrogate model can, therefore, be used to accurately explore this aspect of the 3D

Earth model parameter space. In summary, this work demonstrates the utility of machine learning in 3D Earth GIA modelling

and so future work to expand on this initial ”proof of concept” analysis is warranted.20

1 Introduction

Global models of glacial isostatic adjustment (GIA) have been in development since the 1970s and have several important

applications (e.g., Spada, 2017; Whitehouse, 2018). Broadly speaking, through comparison of model output to a variety of
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both geological and geodetic data sets, they can be used to improve our understanding of ice sheet and sea-level changes on

decadal to 100 kyr timescales, and place constraints on rheological properties of the Earth’s mantle. For example, geological25

reconstructions of relative sea level (RSL) provide key information on past changes in regional and global ice extent during

the Quaternary (e.g., Milne, 2015). Calibrated GIA models are commonly used to predict and remove the contribution of this

process to observations of contemporary RSL, land motion, and gravity changes. This is done in order to better isolate signals

associated with other processes such as contemporary ice mass change (Shepherd et al., 2012) or secular changes in regional

hydrology (e.g., Steffen et al., 2008; van der Wal et al., 2008; Wang et al., 2013).30

To date, most GIA modelling studies have applied Earth models with a spherically symmetric geometry and so capture

only variations in viscosity with depth. However, a variety of laboratory and geophysical investigations indicate strong lateral

variability in Earth viscosity structure at all depths in the mantle (Karato, 2008). In the past few decades, a major improvement

in the realism of GIA models has been the development of Earth models that can accommodate laterally variable viscosity

structure (e.g., Latychev et al., 2005; Paulson et al., 2005; Wu, 2005; Klemann et al., 2007; Wang et al., 2008) resulting in what35

are referred to as ‘3D’ Earth models. Since the development of these more realistic Earth models, a number of GIA studies

have shown that the influence of lateral structure is important with respect to the applications outlined above (e.g., Paulson

et al., 2007; Austermann et al., 2013; van der Wal et al., 2013, 2015; Kuchar et al., 2019). Therefore, it is important to continue

to apply 3D models and improve constraints on Earth viscosity structure.

A primary limitation of 3D (Earth) GIA models (hereafter simplified to “3D GIA models”) is their greater computational40

expense, which, in addition to the much larger parameter set associated with two additional spatial dimensions within the

Earth model, makes exploring the parameter space a major challenge. As a result, determining the optimal parameter set and

quantifying parameter uncertainty has not been done with any degree of rigour. The majority of studies that have applied 3D

GIA models to date have focused on considering a relatively small number of 3D Earth viscosity models (O(1−10)) to consider

the influence of the additional two dimensions on predicting surface observables (e.g., Whitehouse et al., 2006; van der Wal45

et al., 2015; Powell et al., 2021). In defining 3D mantle viscosity structure, most past studies have used global and/or regional

seismic velocity models to infer lateral variability in viscosity, and a spherically symmetric (SS) model of viscosity variation

on which to superimpose the lateral viscosity structure (e.g., Latychev et al., 2005; Wu et al., 2012). In most studies to date,

only a handful, O(1), of these key model inputs have been explored. In comparison, studies focusing on the application of

SS (i.e. 1D) Earth models often consider O(100) viscosity models and/or order O(1− 10) ice loading histories to explore the50

model parameter space and map out the parametric uncertainty (e.g., Steffen and Kaufmann, 2005; Love et al., 2016; Caron

et al., 2017). Recent studies using 3D Earth models have considered larger parameter sets (e.g., Bagge et al., 2021; Yousefi

et al., 2021; Li et al., 2022; Pan et al., 2022), however, they remain limited sample sets of the complete Earth model parameter

space. This incomplete exploration of the model parameter space is likely one of the reasons why the quality of data-model

fits based on 3D Earth models has yet to improve substantially upon those obtained using 1D Earth models (e.g., Steffen et al.,55

2006; Spada et al., 2006; van der Wal et al., 2013; Li et al., 2018; Yousefi et al., 2021). One route to addressing this problem,

in terms of identifying an optimal parameter set, is using adjoint methods (Crawford et al., 2018).
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The work presented here is aimed at improving our ability to explore the parameter space of 3D GIA models via the use of a

machine learning tool-chain to emulate the output from a 3D GIA model. Full emulation requires the generation of a predictive

probability distribution for full model output given model inputs. In this study, an ANN is used to predict a single estimate60

of model output for specified input, and so the term "surrogate model" is more appropriate than "emulator". However, we

often use the term emulator instead of surrogate model to improve clarity and readability. This approach has been employed

successfully in other disciplines where model computational expense has been a limiting factor in exploring the parameter

space (Tarasov et al., 2012; Sellevold and Vizcaino, 2021; Williams et al., 2023). A recent study (Lin et al., 2023) applied a

graph-based spherical convolutional neural network algorithm to the GIA problem. Their focus was on emulating RSL on a65

single 1D Earth model for a wide range of ice history models, and so very different to the aims of this study. Given the high

computational efficiency of the 1D GIA model, a relatively large training set of 1200 simulations was used in their analysis. In

general, good results were obtained indicating the potential utility of ANN methods in GIA applications. A primary challenge

for the 3D case considered here is the much reduced computational efficiency, limiting the number of simulations that can be

performed to generate a training set.70

We view this study as developing a “proof of concept” that future studies can build upon. In this regard, we have chosen

to focus this work on optimising one of the key inputs to a 3D GIA model. Specifically, for a given model of lateral structure

(lithosphere and seismic model) and ice loading, we seek to determine if it is possible to successfully emulate model output

for ≈ 300 different SS reference viscosity models based on a relatively small training set (O(10− 100)) simulations). Our

results indicate that sufficiently precise emulation can be achieved with a training set of ≈ 40− 60 simulations, resulting in75

a computational (wall) time saving of ≈ 85%. Given this success, we considered an application of the emulator based on

a typical GIA dataset - geological (proxy) reconstructions of RSL - to seek an optimal SS reference viscosity model for

our chosen models of lateral lithosphere thickness and sub-lithosphere viscosity variations. Our inference of the optimal SS

viscosity model parameters using the emulator is close to that inferred using output from the numerical 3D GIA model, thus

indicating the potential of the ANNs to more efficiently search the 3D Earth model parameter space.80

2 Experimental Design & Methods

Here we describe the individual components of the numerical models and overall experimental design of this investigation.

We introduce, in Sect. 2.1, the individual models used, and then the method by which model output is processed to produce

training data (Sect. 2.2). We then provide some details on the implementation and training of the artificial neural networks

(ANNs, Sect. 2.3). Finally, we outline the data used in the proxy-data:model comparison (Sect. 2.4).85

2.1 GIA/RSL Models

We use two separate GIA models to compute RSL and radial displacement. Both solve the sea level equation (Farrell and Clark,

1976; Mitrovica and Milne, 2003; Kendall et al., 2005) and model the solid Earth response to the loading and unloading of the

Earth’s surface through time. They each have equivalent feature-sets with respect to the inclusion of compressibility (Wu and
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Peltier, 1982), migrating shorelines (Milne and Mitrovica, 1998; Mitrovica and Milne, 2003), and rotational feedback (Milne90

and Mitrovica, 1998; Mitrovica et al., 2005). However, the computational methods are different: the model that can accomodate

3D Earth structure uses a numerical Finite Volume approach (Latychev et al., 2005), whereas the simpler and computationally

less expensive 1D GIA model relies on the computation of visco-elastic Love numbers (Peltier, 1974) for a specified radial

structure (density, elastic moduli, viscosity). Once the Love numbers have been computed (e.g., via a normal mode analysis,

Peltier, 1976; Mitrovica and Peltier, 1992), calculation of various GIA observables, such as RSL, is computationally efficient95

(Mitrovica and Peltier, 1991). Hereafter this model will be referred to as the normal mode SS model (abbreviated to NMSS

model). A model run of glacial cycle duration typically requires less than 0.5core-hours1 on contemporary computer hardware

(surface resolution being a key factor in determining the computational time). As a result of this computational efficiency,

large scale sampling the GIA model parameter space is feasible with recent studies presenting results for many thousands of

simulations exploring the parameter space of Earth model and ice-sheet reconstructions (e.g. Steffen and Kaufmann, 2005;100

Love et al., 2016; Caron et al., 2017). The more complex and computationally expensive model that we use here - the Seakon

model of Latychev et al. (2005) - does not have the limiting assumption of a spherically symmetric Earth structure. However,

this model requires ≈ 1.75 core-years for a typical glacial cycle experiment, which precludes its use for generating large

ensembles of model output. Contemporary investigations with the Seakon model are limited to ensembles of several dozen

(e.g., Pan et al., 2022) and more typically fewer than a dozen simulations.105

To define a 3D viscosity structure in the Seakon model, lateral viscosity variations are applied on top of a chosen spherically

symmetric (radial) viscosity model. Here we employ a commonly-used 3-layer parameterization of this spherically symmetric

viscosity structure, as in the NMSS model, composed of a high-viscosity (i.e., elastic) lithosphere above two regions with

uniform viscosity. These two regions are the upper mantle (base of lithosphere to ≈ 670km depth) and lower mantle (≈ 670km

to ≈ 2900 km depth). Sub-lithosphere lateral variations are applied via a set of relationships between shear-wave velocity110

anomalies and various depth-dependent parameters (Latychev et al., 2005, see Equations 27 through 29). Lateral lithosphere

variations can be introduced using constraints that are independent of the adopted global seismic model (see next section) and

are represented as a viscoelastic layer of varying thickness with a very high (1× 1037 Pa · s) viscosity such that the response is

essentially that of an elastic material on GIA timescales.

In order to increase the number of parameter vectors (i.e., model runs) which can be examined with the available com-115

putational resources, we use a reduced resolution configuration of the Seakon model. The reduced resolution configuration

has a horizontal surface resolution of ≈ 33 km and uses ≈ 6 million nodes vs. ≈ 15 km and ≈ 17 million nodes for the default

configuration. This change results in a reduction of core-time to ≈ 1
3 of the default configuration. Comparing model output

of RSL using these two grids at various times indicates that differences are generally largest at the last glacial maximum

(≈ 20,000 years ago; Fig. S1), reaching an amplitude of ≈ 5 m, and diminish for later times. Given the limited spatial resolu-120

tion of inputs to Seakon (e.g., ice and seismic models), we consider the lower resolution grid to be sufficiently accurate for the

1core-hours and core-years are equivalent to 1 hour (or year) of a CPU core at full utilization, here we generally use either Intel Xeon E5-2683 v4 Broadwell

processors clocked at 2.1GHz or AMD EPYC 7401P processors clocked at 2.0GHz.
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purpose of this analysis. As a result, with Seakon we were able to explore all 330 combinations of LT/UMV/LMV for which we

have calculated the required Love numbers for the NMSS model, representing ≈ 150 core-years of computational resources.

Despite the broad overlap in function of the Seakon and NMSS models, they have distinct roles in this investigation. We

seek to train an ANN to simulate the difference in model output between Earth models with 3D and SS structure. The Seakon125

numerical model is used (in 3D and SS configurations) to generate this model output. We used the Seakon code in SS config-

uration rather than the NMSS code to avoid introducing any error in the calculated 3D-1D signal due to differences between

output of the Seakon and NMSS codes (for the same 1D configuration). Once the ANN is successfully trained, generating

model output for a 3D Earth model is achieved by simply adding the ANN-derived 3D-1D signal to output from an efficient

NMSS model with the relevant SS structure. Thus, the Seakon model is used to generate the training and validation data for the130

ANN. Output from the NMSS model was used only to convert the differential (3D-1D) signal to the full 3D signal (for both

explicitly modelled (Seakon) and emulated (ANN) output) .

2.2 Generation of Model Training Inputs using the Seakon Numerical Model

The Seakon model is used in both SS and 3D Earth model configurations to produce the input datasets used to train the ANNs.

The SS configuration (i.e., parameters varying only with depth) is used to compute the differential (3D minus 1D) signal. The135

primary configurations of the Seakon model used in this investigation are as follows:

1. Spherically symmetric (i.e. varying only with depth and defined by 3 variables: LT, UMV, and LMV, as defined previ-

ously).

2. Spherically symmetric perturbed using S-wave velocities from the S40RTS model [S40RTS] (Ritsema et al., 2010, plots

of relative viscosity variations are shown in Fig. 1).140

3. Spherically symmetric perturbed using S-wave velocities from the S40RTS model with the addition of laterally variable

lithosphere thickness from the LR18 lithosphere model [S40RTS+LR18] (Ritsema et al., 2010; Afonso et al., 2019, plot

of lithosphere model LR18 is shown in Fig. 1).

4. Spherically symmetric perturbed using S-wave velocities from the Savani model with the addition of laterally variable

lithosphere thickness from the LR18 lithosphere model [Savani+LR18] (Auer et al., 2014; Afonso et al., 2019, plot of145

relative viscosity variations is shown in Fig. S2).

The (full 3D) S40RTS+LR18 configuration is used to explore the application of ANNs considered here and for the proxy-

data:model comparison. The Savani+LR18 configuration is used to examine the impact of an alternative laterally variable

viscosity model on the ANN training and misfit results. The semi-3D S40RTS configuration is used to examine the impact

of the inclusion of a laterally variable lithosphere model on the ANN results, via a comparison to the S40RTS+LR18 results.150

The SS configuration of Seakon is used throughout the investigation to determine the differential 3D-SS output on which the

ANNs are trained and tested (as detailed below). Within each of the SS configurations we explore the parameter space of

elastic lithosphere thickness (LT) as well as upper and lower mantle viscosities (UMV, LMV). The ranges of LT (71−120km),
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UMV (0.05− 5× 1021 Pa · s), and LMV(1− 90× 1021 Pa · s) values used in this study are in line with previous studies which

constrain these values (e.g., Lambeck et al., 2014; Roy and Peltier, 2017). The parameter space of LT, UMV, and LMV values is155

sampled using a Latin hypercube scheme with the goal of maximizing parameter space coverage within computational resource

limitations. As a result, from the combined total of 330 realizations for each Seakon configuration (e.g., S40RTS+LR18), up to

63 parameter vectors were drawn to train the ANNs while the remainder were used only for comparison against the emulator

output. The configurations from which training and validation data is drawn use the same ice loading history: ICE6G (Peltier

et al., 2015; Roy and Peltier, 2017). In total, considering both SS and 3D cases, the Seakon numerical model was run 1,320160

times for this analysis (i.e., 330 runs for each of the four configurations defined above).

Preliminary results (not shown here) indicated that emulation based on the rate of change (ROC), with respect to time, of

the 3D-SS difference resulted in smaller prediction misfits compared to emulating RSL or radial displacement (RAD) directly.

Therefore, these are the model datasets considered in the remainder of this analysis. Given that RSL is defined to be zero at

present day, we can readily recover the full timeseries of the field by integrating the ROC from the present.165

For each 3D-SS parameter vector we then sample the ROC of RSL (or RAD) at one degree regular spacing in both latitude

and longitude for each model time-step (from 36 ka to present, 59 time-steps in total). From each parameter vector we extract

the ROC of RAD & RSL from files constructed for model performance evaluation (or training without any filtering). The

values of ROC of RAD & RSL are then concatenated across all PVs, and then evaluated using the numpy histogram function

to generate probability density functions of ROC of RSL & RAD. This global (with respect to space, time, and Earth model170

parameters) distribution is then used to re-sample the GIA model output data points of each parameter vector for more effective

and efficient training of the ANNs. The re-sampling/filtering is implemented such that the most common values, i.e., those

3D-1D ROC values closest to zero, largely located in far-field regions, have their occurrence reduced by several orders of

magnitude in the training data. This filtering reduces the input training dataset from ≈ 4,600,000 to ≈ 500,000 data-points per

ensemble member (i.e., LT-UMV-LMV parameter vector for a given 3D-1D configuration). The net result of this processing175

is a reduction of network training time, computer memory requirements, and increased quality of fits in regions with larger

(3D-1D) ROC RSL or ROC RAD anomalies (i.e., near- and intermediate-field locations). Each parameter vector results in

unique input training (i.e., filtered) and comparison (i.e., unfiltered) dataset files. These files are then combined as required into

a single datafile for either training or comparison purposes.

2.3 Training of the ANNs180

The training and implementation of the ANNs is accomplished via the Tensorflow framework (v2.8.0, Abadi et al., 2015).

The choice of framework/library was motivated by the available support at the high performance computing center where the

network training was conducted. We anticipate that comparable results can be achieved with other frameworks. Using the

datasets described in Sect. 2.2, we train separate ANNs for each of the combinations of laterally variable earth structure (i.e.,

S40RTS, S40RTS+LR18, Savani+LR18) and ice sheet history (i.e., ICE6G). As a result, each combination of laterally variable185

earth structure and ice sheet history produces a separate set of ANN weights to be used with the emulator. The inputs to the

ANNs can be grouped into 4 aspects: radial viscosity model, location, ice loading, and SS input data. More specifically:(1) LT,
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Figure 1. Left-hand panels show spatial viscosity variations as log(ν3D/νSS) for two depths in the mantle, 400 km and 1021 km. A value of

zero indicates that the viscosity value at that location is equivalent to the background spherically symmetric Earth model. Right-hand panel

shows the lithosphere thickness distribution of the LR18 model. Note that these thickness values are scaled such that the global average

thickness is equivalent to the value specified in the SS configurations. The scaling depends on the target global value for the ‘reference’ 1D

viscosity profile. For most cases, the scaling is less than 1 and so the values shown are significantly reduced (by ≈ 10− 40%).
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(2) UMV, (3) LMV, (4) longitude, (5) latitude, (6) ice thickness values and timing for the current and four previous time steps,

(7) ROC of RSL or RAD prediction from the SS configuration of the Seakon model.

The prediction of the ANNs is the 3D-1D anomaly for the ROC of either RSL or RAD at the location and time which190

corresponds with the input to the ANN. Prior to training, the input dataset is split into the online training and validation sets,

with 75% of the input data used in training and the remaining 25% used for validation. As discussed, the training data is already

filtered at this stage to emphasize regions with greater amplitude signals. Within the context of model training the ‘validation

set’ is used only for monitoring the ANN training for evidence of over-fitting and contains data from all PVs included in the

input dataset. ANN training and model construction (i.e., specification of size and number of hidden layers) is done via the195

Keras Application Programming Interface. Training of an individual ANN usually requires no more than a dozen hours of wall

time using a single NVIDIA P100 Pascal Graphics Processing Unit (GPU). The training of a given ANN is iterated until an early

stopping condition, based upon the mean square error (MSE) of the ANN prediction against the training dataset, is activated.

This early stopping condition for RSL is set such that, if there is no improvement of the MSE by at least 0.01(mm/yr)−2 within

50 training epochs, the training stops and the set of weights which results in the lowest MSE is chosen. This approach is used200

to prevent, or at least minimize, over-fitting of the trained ANNs (Chollet, 2021). We note there was no evidence of over-fitting

in the training diagnostics. The choice of using the previous 4-time steps was motivated by preliminary testing and evaluating

trade-offs with respect to hardware limitations and quality of predictions. Generally, providing more previous timesteps to the

networks resulted in reduced misfits, but there were rapidly diminishing returns and technical issues (largely due to memory

and storage constraints on the hardware used for training) with adding significantly more past time-step data. Four previous205

timesteps were found to be a useful balance between model expense and useful predictions.

With the Keras Application Programming Interface we construct multi-layer perceptron feed-forward ANNs. The structure

of the ANN is composed of an input layer, 8 fully connected hidden layers of width 512, followed by 8 fully connected hidden

layers of width 256, followed by the output layer. Between the fully connected hidden layers are normalization layers which

shift and scale their inputs such that the resulting distribution has a mean of 0 and a standard deviation of 1. The addition of the210

normalization layers helped with convergence of the network as network depth (i.e., model layer count) increased. A variety

of ANN structures were evaluated; for example: layer counts from 2 to 20 layers and widths from 8-1024, in steps of 2n, were

varied using an initial test dataset. Some results from these initial explorations are summarized in Fig. S3 which shows ROC

RSL MSE for ANNs with network widths of 64 to 1024 nodes, and fully connected hidden layers (with normalization layers)

between 2 and 10. Optimal results were generally found for network widths of 512 and 1024, and depths of 8 or 10. The215

configuration outlined above provides a good balance between performance and training expense. The Python scripts used for

training and implementing the ANNs and for producing various GIA predictions are available as supplemental materials.

2.4 Model:Data Comparison - Source Data and Analysis Methods

For the RSL proxy-data:model comparison we use the RSL databases of Engelhart and Horton (2012), Love et al. (2016),

and Vacchi et al. (2018), which spans the eastern North American coastline from the Canadian Arctic to the US Gulf Coast.220
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Combined, these databases contain > 2500 sea level index and limiting points. The locations of these data points are shown in

Fig. S4.

In order to quantify the data-model RSL misfits we use the same metric as in Baril et al. (2023) for sea level index points

(SLIPs) and limiting data, reproduced here for reference.

δSLIP =
1

N

√√√√ N∑
n=1

(
RSLdata,n −RSLmodel,n

∆RSL,n

)2

+

(
tdata,n − tmodel,n

∆t,n

)2

(1)225

δlimit =
1

N

√√√√ N∑
n=1

(
RSLdata,n −RSLmodel,n

∆RSL,n

)2

(2)

In equation 1, the RSLmodel,n and tmodel,n values are the model RSL and time-value from the point of closest approach of the

model curve to the value of the SLIP. However, for limiting data, the misfit (equation 2) is calculated using the same time value

as the data point itself. In the case of limiting data, if the RSL curve for a given model falls above/below a marine/terrestrial230

data point within the range of dating uncertainty, then the misfit for that data point is set to zero (Baril et al., 2023). When

examining the total δ for a given RSL database, the following values are provided: δSLIP , δML, δTL, and δTotal. Where δSLIP

is the value from equation 1 for a given SLIP database, δML and δTL are the values from equation 2 for marine and terrestrial

limiting data respectively, and δTotal = δSLIP +(δML + δTL)/2. Contributions from limiting data are normalised by two since

these data only provide one-sided constraints on RSL.235

3 Results and Discussion

3.1 Network Training and Performance

In this section we determine how many parameter vectors (LT/UMV/LMV) are required in the training set to obtain useful

predictions from the emulator (we use ‘emulator’ here to refer to the combination of trained ANNs with output from the NMSS

model). In order to estimate this number we construct several Seakon (3D-1D) ensembles consisting of increasing quantities240

of parameter vectors in the training dataset. These ensembles were determined using the S40RTS model to construct lateral

viscosity variations in the mantle with lithosphere variations derived from the LR18 model. Each trained ANN incorporated the

same core set of 9 extreme ensemble members (i.e., members that include LT/UMV/LMV parameter values at the beginning or

end of the ranges defined in Sect. 2.2). Additional supplemental parameter vectors were added to this baseline set, with 9, 18,

36, and 54 members each. The lowest number of 9 supplemental parameter vectors was used to determine if we could accurately245

predict the 3D-SS difference as a function of LT/UMV/LMV with only the core parameter vector set and a single intermediate

parameter vector between each of these end-member cases (18 parameter vectors in total; 9 core plus 9 supplemental). From

there we doubled the supplemental set to 18 and subsequently 36. Finally, rather than doubling the number of supplemental

parameter vectors a third time, we defined an upper limit of 54 based on the rationale that requiring a larger training set would
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not be sufficiently resource-effective. Combining the core and supplemental sets resulted in 4 trained networks with N = 18,250

27, 45, and 63 members, respectively. To quantify the generalization of the ANNs (i.e., their accuracy with respect to parameter

vectors not in the training ensemble) as a function of training ensemble size, the mean square error (MSE) for each parameter

vector in the LT/UMV/LMV space is calculated. The MSE for a given parameter vector is averaged over all locations and

time-steps (i.e., the full dataset described in Sect. 2.2).

Plots of the MSE for the S40RTS+LR18 configuration through the LT/UMV/LMV parameter space for the ROC RSL are255

shown in Fig. 2 for the different training sub-ensembles (results for N = 18 are not shown). It is notable that the reduction in

the MSE in going from N = 27 to N = 45 is more marked compared to the change from N = 45 to N = 63. This indicates that

N = 45 is close to an optimal value in terms of performance (lowering the MSE) versus the size of training set. In general,

throughout the parameter space, the MSE decreases as the number of members in the training set increases (this is particularly

evident when considering the median and lowest MSE values). Furthermore, Fig. 2 shows that the thickness of the elastic260

lithosphere is generally a weak predictor of the 3D-SS ROC RSL. In general, regions in the parameter space that have at least

one member in the training ensemble, independent of the LT value, have lower MSE values compared to those with none.

This finding is also supported by the input layer weights, where LT is consistently the lowest weight input (and thus has the

lowest impact on predictions) when training ANNs. Figure 2 also shows that prediction accuracy for a given parameter vector

is generally larger when it is adjacent to another which is part of the training ensemble. As such, the distribution of training265

parameters is an important consideration when training the ANNs. These results indicate that the ANN has useful levels of

predicative ability when considering LT/UMV/LMV values outside the training dataset.

Comparing the results in Fig. 2 to those for the other fully 3D configuration, Savani+LR18 (Fig. S5), indicates that these

findings are valid across different velocity models. The MSE decreases as N increases, though the MSE does not appear to

decrease with N as quickly as for the S40RTS+LR18 configuration. The overall lateral viscosity structure of the Savani+LR18270

configuration is not significantly different from that of the S40RTS+LR18 configuration (select layers shown in Figs. S2 and

1). As such, it is not immediately clear why there is a difference in MSE for the same values of N for different 3D Earth

models. However, the general success of applying this method to two fully 3D Earth models indicates that this approach should

be generally applicable regardless of the adopted velocity model. However, this preliminary conclusion should be investigated

further in future work.275

Despite the MSE of the full spatio-temporal datasets being a useful metric for comparing between different ANN archi-

tectures and training ensembles, it is of limited utility in describing the effectiveness of a given ANN in reproducing the

geophysical output of interest. Therefore, plots showing the difference between emulated output versus modelled output (for

S40RTS+LR18) are provided for the RSL field at 10 ka (Figs. 3 and S6, for eastern North America and global domains respec-

tively) and the uplift rate at present day (Figs. 4 and S7, for eastern North America and global domains respectively). They280

show RSL and ROC RAD predictions for the parameter vector which has the median MSE from the validation (i.e., not used

as part of the ANN training) sub-ensemble for the N = 45 case.

Comparing the scale of emulator:model anomaly to the RSL field itself (Fig. 3) we see that the misfit is O(1 m) where

generally the RSL field itself is generally O(10− 100 m). The intermediate-field region (e.g., proximal and south of the zero-

10
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Figure 2. Plot shows the MSE (for all locations and time-steps) through parameter space (LT/UMV/LMV) for input training datasets with

N=27 (top row), 45 (middle row), and 63 (bottom row) for the S40RTS+LR18 ROC RSL ANN. Parameter vectors included in the training

dataset are indicated by grey circles. Columns give results for the three values of global-mean elastic lithosphere thickness: 71 km (left), 96

km (middle), 120 km (right). Note that results which are anomalous and were affected by technical issues for specific ensemble members are

rendered here in grey. 11



contour in Fig 3) is problematic, as the emulator:model anomaly does not decrease with the same spatial pattern as the RSL285

field itself (although it does broadly share the same spatial pattern), thus there is a region where the anomaly is comparable to

the RSL field itself. The spatial distribution of the emulator:model anomaly for RSL does not have a clear source, such as the

shear-wave velocity anomaly from S40RTS or lithosphere thickness (as shown in Fig. 1). However, it is important to note that

the sub-lithosphere (lateral) viscosity variations change with depth and so the patterns shown are only representative within

limited depth ranges. The magnitude of the pattern scales with that of RSL, and so the ice-loading history is one controlling290

factor.

To complement Fig. 3, we also provide plots of the predicted RSL time series for the emulated and model-predicted output

(and the difference) in Fig. 5. Examining the timeseries data in Fig. 5, we obtain similar findings to those of Fig. 2 in that

the emulator:model misfit decreases as the number of parameter vectors in the training dataset increases in most locations

(e.g., there is a decrease in performance when N is increased from 45 to 63 at the Hudson Bay locality). This finding is295

generally found across ice covered/near-field, intermediate-field, and far-field regions. The intermediate-field (e.g., Northern

South-Carolina) is the most difficult portion of the field to emulate. The results show that ≈ 45 training members are generally

sufficient to reproduce RSL using 3D Earth models for the ice covered/near field, intermediate, and far field regions shown

here. Examination of results using fewer training members (N = 18, not shown) also indicates that fewer training members

may be required to produce acceptable results for regions with greater density of training data (e.g., ice-covered regions).300

For the N = 18 case, misfits for Hudson’s Bay are of the same order misfit compared to the N = 45 case. We note that, site

depending, the difference in predicted RSL between the emulator and the Seakon results is generally small (i.e., of the same

scale as proxy-data uncertainties) during the Holocene, the time interval for which the majority of RSL data exist. Although the

aims and methods of this study are quite different to those in Lin et al. (2023), the RSL emulator errors obtained are broadly

similar (e.g., compare our results for Hudson Bay and Barbados to, respectively, those in Fig. 2 (d & e) in Lin et al., 2023).305

When examining the emulator:model differences (or anomalies) for contemporary uplift rates we find this method to be less

accurate in comparison to RSL. The anomalies are generally of the same order of magnitude as the total modelled uplift rates

for most regions (Figs. 4 and S7). However, the overall MSE results (e.g., as shown for ROC RSL in Fig. 2) are comparable

when examined over the whole spatio-temporal dataset and so performance comparable to that for RSL is obtained for earlier

time intervals (e.g., 10 ka; Fig. S8). The spatial distribution of the emulator:model anomaly for present day ROC of RAD more310

closely follows the overall distribution of the 3D Earth model’s uplift field compared to the RSL results. While not investigated

here, we propose the poorer results for this model output are a result of the input vector construction, specifically the way the

ice sheet history is encoded. The ice sheet history comprises over half of the input vector to the ANN and predictions of the

3D-SS uplift difference have no change in ice sheet history within the time range used to emulate ROC of RAD at present day

(previous 4 time steps; for ICE-6G these are 0.5, 1.0, 1.5, and 2.0 ka). That is, at present day, the ANN has no information to315

distinguish a near-field location from a far-field location when considering the input ice history data. Restricting the training

data input to the ANNs, or providing alternate ice history information (e.g., maximum ice thickness at that location within the

last 10 ka) may provide greater ANN accuracy. Given the relatively low accuracy of our results for contemporary uplift rates

we do not conduct data:model comparisons in Sect. 3.2.
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Figure 3. RSL anomaly: emulated RSL field minus explicit (3D-SS Seakon + NMSS) RSL field for the S40RTS+LR18 case, at 10 ka.

Contours denote the RSL field (from the explicit case) in 25m increments. The Earth model parameter vector used to generate these results

is that with the median MSE, calculated for all spatio-temporal data, for the N = 45 case. A global map of the same field is shown in Fig. S6
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Figure 4. Emulated RAD field minus explicit (3D-SS Seakon + NMSS) field for the S40RTS+LR18 case at present day. Contours denote

the total, modelled ROC RAD field (from the explicit case) in 2mm/yr increments; the red line denotes the 0mm/yr contour. The parameter

vector plotted is that with the median MSE, calculated for all spatio-temporal data, for the N = 45 ANN. A global map of the same field is

shown in Fig. S7, and an equivalent map but for 10 ka is shown in Fig. S8.
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Figure 5. RSL timeseries for near- (Hudson Bay), intermediate- (Northern S-Carolina), and far-field (Barbados) locations, for the N=27,

45 and 63 ANN training sets. RSL curves are computed using the parameter vector corresponding to the median MSE for each validation

ensemble. As the parameter vector for the mean MSE generally varies with N, the resulting RSL curves also change.
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Comparing the above results to those for the semi-3D Earth model case, i.e., S40RTS with a SS lithosphere, we find similar320

amplitudes of emulator:model misfit with respect to contemporary uplift rates. The emulator:model misfit for RSL is generally

smaller for the same number of training parameter vectors for this simpler Earth model - of particular note is that performance

within intermediate-field locations is improved (see Fig. S9). Without exploring additional 3D Earth models we cannot con-

clude if this feature is a result of considering a simpler Earth model which does not incorporate the spatially variable elastic

lithosphere, or a limitation of our methodology (e.g., network training or architecture). Despite this, of the configurations tested325

here, we find similar numbers of parameter vectors are required in the training dataset to obtain usable accuracy even for this

simpler 3D Earth model.

Overall, we are able to successfully reproduce the influence of 3D Earth structure using ANNs trained using 45, or more,

parameter vectors (out of a total of 330 for the LT/UMV/LMV values considered here) when considering past RSL and uplift

rates. However, model:emulator misfits are generally of the same order of magnitude of the uplift and RSL rate field when330

considering contemporary values. As such, the emulator developed here is of limited utility for comparisons to contemporary

uplift and RSL rates derived from geodetic data.

Two logical extensions to the methodology applied here became apparent over the course of this investigation. The first

extension would be to implement a probabilistic Bayesian artificial neural network (BANNs, e.g. as described in Jospin et al.,

2022). A BANN can provide estimates regarding the accuracy of a given prediction. Given that any error in the ROC of RSL or335

RAD propagates throughout the whole prediction (with respect to time), this information could be used to potentially reduce

emulator:model misfits (e.g., via a cut-off where the ANN is not employed for a given prediction if the prediction confidence

were too low). The second extension would be to train the ANNs on multiple ice sheet histories in order to generalize their

predictions across variations of this input parameter (Lin et al., 2023). Doing so requires no changes to the ANN or training

data construction, simply conducting and processing additional Seakon simulations with multiple ice sheet histories. A brief340

exploration, not shown here, using the ANNs trained on the ICE6G ice sheet history to emulate model output corresponding

with the ANU ice sheet reconstruction (Lambeck et al., 2014) resulted in large emulator:model RSL differences. This initial

test underscores the need to train on multiple ice histories to produce more accurate results. Clearly, this would represent a

challenge for the 3D case due to the computational inefficiency of the forward model.

3.2 Use of Emulator to Identify Optimal SS Viscosity Model345

The emulator (i.e., the ANNs in combination with the NMSS model) is used here to examine the effects of imposing 3D viscos-

ity variations, specifically those from the S40RTS+LR18 configuration, on reconstructions of RSL and associated inferences

of Earth structure. The ANNs were trained using 45 parameter vectors, as identified in Sect. 3.1, to provide a balance between

computational expense and accuracy. As part of the validation process for the emulator and to assess the scale of impacts re-

sulting from emulator:model differences, we calculate the proxy-data misfit values (Sect. 2.4) for the RSL database described350

in Sect. 2.4 for three different sources of model output: the NMSS model, the NMSS model combined with emulated 3D-SS

output, and the NMSS model combined with explicit 3D-SS Seakon output. The choice of combining NMSS model output

with the emulated 3D-SS output is an end-goal of the workflow, and we note that the SS Seakon output is, for the purposes of
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calculating the misfit, equivalent to that of the NMSS model. The results of these calculations, considering the total misfit (i.e.,

all RSL proxy data types), are shown in Fig. 6. Misfit values for SLIPS, limiting data, and all data are shown in Fig. S10 for the355

explicit (3D-SS+NMSS) output, with comparable misfit plots for the emulator output in Fig. S11 and the NMSS model output

in Fig. S12. These results indicate that the total misfit values are dominated by the SLIPs and marine limiting data for each of

three cases of model output.

The misfit results for the NMSS model runs are used as a baseline (or reference) for the two cases that include the influence

of lateral Earth structure (modelled via Seakon or emulated via the ANNs). Comparing the results in the bottom two rows of360

Fig. 6 to those in the top row, we find that the emulator largely captures the impact of 3D viscosity structure on the misfit values

but does not result in values that are indistinguishable with those determined from the explicit output. The emulated results are,

upon visual inspection, more similar to the explicit results than the NMSS results alone. To quantify the effectiveness of the

emulator across the entirety of the LT/UMV/LMV parameter space we use the MSE of the proxy-data:model misfit between

the emulator and the explicit data, and the emulator and the NMSS data. That is, the emulator:NMSS MSE for SLIP data is,365

MSEemulator:NMSS =
1

nLTnUMVnLMV

nLT∑
LT=1

nUMV∑
UMV=1

nLMV∑
LMV=1

(
δemulator

SLIP (LT,UMV,LMV)− δNMSS
SLIP (LT,UMV,LMV)

)2
(3)

where nLT,nUMV,nLMV are, respectively, the number of LT, UMV, and LMV values in the explored parameter space, and

δemulator
SLIP , δNMSS

SLIP are the SLIP misfit values as described in Sect. 2.4 for the emulator and NMSS data respectively. The MSE

provides a metric which allows for comparison of the calculated proxy-data:model misfits for the emulator, NMSS, and the

explicit results. In the ideal case of the misfits calculated using the emulator being identical to those from the explicit data the370

emulator:explicit MSE would be zero. MSE values for the SLIP data demonstrate that the emulator misfits are closer to those

of the explicit model (MSESLIP = 0.74× 10−3) than the NMSS model (MSESLIP = 7.11× 10−3) which can also be concluded

from Fig. 6.

Upon dividing the RSL dataset into the three regional subsets: the Canadian Arctic-Atlantic Coast (CAAC, Vacchi et al.,

2018), the US-East Coast (USEC, Engelhart and Horton, 2012), and the US Gulf Coast (USGC, Hijma et al., 2015; Love375

et al., 2016), we find similar results (Figs. S13, S14, and S15) to those for the total database. Overall, the proxy-data:model

misfits calculated using the output of the emulator are more like the explicit results than the NMSS results alone. This result

is obtained both visually and when considering the MSE values for the emulator:explicit and emulator:NMSS misfits. Since

the emulator has more difficulty in reproducing the influence of lateral Earth structure in the intermediate field, for N = 45,

compared to near- and far-field locations (Fig. 5), it is interesting to compare the results for the USEC database (intermediate380

field) to the other two. For both the near-field CAAC database and the relatively distant USGC database, the MSE of the

emulator:explicit misfit results are one to two orders of magnitude smaller than the emulator:NMSS misfit. In comparison, for

the intermediate-field USEC database, the MSE of the emulator:explicit misfit results are the same order of magnitude as the

emulator:NMSS misfit results.

The misfit data presented in Fig. 6 and Table 1 demonstrate that the emulator, as employed here, is successful at reproducing385

the region in the LT/UMV/LMV parameter space which produces the lowest proxy-data:model misfits, and reproducing the

relative values of proxy-data:model misfits throughout the parameter space. For the CAAC subset, the use of the emulator
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Figure 6. Proxy-data:model misfit using the RSL database (Sect. 2.4) for the NMSS model (top row), the emulator (EMU, middle row), and

the explicit 3D-SS RSL output from Seakon added onto the NMSS RSL output (EXP, bottom row). Misfit varies as a function of global mean

lithosphere thickness from left to right. Results are for the S40RTS+LR18 3D model configuration.
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results in a parameter vector with minimum misfit that is either the same or within 2 parameter value increments (with respect

to the evaluated LT/UMV/LMV values) of the explicitly derived minimum misfit parameters. This accuracy is also obtained

when considering the combined dataset. For all the databases examined, the parameter vector which produces the minimum390

misfit obtained by emulation is closer (in parameter space) to the explicit 3D-SS+NMSS case than the NMSS case. As such,

using the emulator we are able to identify the region of LT/UMV/LMV parameter space that optimizes the fit for a given

lateral structure model (S40RTS+LR18). For example, the sub-region defined by UMV (0.1− 0.3× 1021 Pa · s) and LMV

(1− 10× 1021 Pa · s) (Fig. 6). This smaller region of parameter space could then be explored using the explicit model to more

accurately determine the optimal parameter vectors.395

Previous work has typically used spatially confined, regional-scale analyses to mitigate the influence of lateral Earth struc-

ture when using the assumption of spherical symmetry in the GIA model (e.g., Love et al., 2016; Yousefi et al., 2018). The

expectation is that as spatial scales grow larger, those Earth models which incorporate 3D structure will outperform SS Earth

models. Examining the misfit results in Fig. 6 and Table 1, we do not find the 3D Earth model considered here consistently

outperforms SS Earth models on large spatial scales. As noted in the Introduction, this has been demonstrated in many past400

studies (e.g., Steffen et al., 2006; Spada et al., 2006; van der Wal et al., 2013; Li et al., 2018). For some cases in our results,

e.g. δSLIP for the US Gulf Coast, the 3D model produces a lower misfit in comparison to the SS model. However, that the 3D

model results in lower proxy-data:model misfits on regional scales is expected given we are effectively adding, at least, two

additional parameters to the model to find the minimum proxy-data:model misfit. Despite these findings, there are features in

Fig. 6 which can be used to guide future investigations, e.g., the distribution and number of minima throughout the parameter405

space is different between the 3D and SS Earth models. The region of minimum misfit for the 3D Earth model is fairly broad

but defines a single minimum in the explored parameter space, rather than two distinct but relatively localized minima deter-

mined using the SS Earth models. There is a shift in the preferred UMV: for example, the UMV for the minimum misfit Earth

model for the USEC δSLIP is 3× 1021 Pa · s for the SS Earth model compared to 0.3× 1021 Pa · s) for the 3D Earth model.

This shows that radial viscosity structure inferred using a SS model can be significantly biased (e.g., Lau et al., 2018; Li et al.,410

2022).

Overall, the SS Earth models still result in the lowest proxy-data:model misfits for the combined NA dataset. This suggests

that our inputs to the 3D GIA model are incorrect. Given that we have investigated (for this study) only a single realization

of lateral variability (to impose on a background SS Earth model) and a single ice sheet reconstruction, it is not possible to

determine which dominates (if any) in producing the higher than expected misfit results. Since ice sheet reconstructions (like415

ICE-6G) are developed assuming a SS GIA model, it is not surprising that the SS Earth models outperform or give similar

quality of fit to the 3D Earth models in ice covered areas (e.g., van der Wal et al., 2013; Li et al., 2020). This is also the reason

why the optimum LT/UMV/LMV parameter set inferred here is a good approximation to the radial viscosity model assumed

when constructing ICE-6G (i.e., VM5a).

An important aim of future work will be to develop ice sheet models that are consistent with inferred 3D Earth structure.420

Previous investigations (e.g., Gomez et al., 2018; van Calcar et al., 2023) demonstrate that coupling 3D Earth models to

a dynamical ice sheet model applied to Antarctica results in considerable local ice thickness changes while not significantly
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impacting ice sheet volume when compared to results for a SS Earth model. These more consistent 3D Earth-ice model pairings

would hopefully result in improved fits to GIA-related data sets in near-field regions (compared to the SS Earth-ice model fits).

In this regard, one potentially important extension of this work is to consider developing an ANN that can emulate results with425

different ice sheet histories. (Lin et al., 2023) have demonstrated that good results can be obtained with a 1D Earth model and

so there is potential to consider the case of a 3D Earth model. Again, a key challenge will be to obtain useful results in near-field

regions with a relatively small training set. If successful, such an emulator could be used in coupled GIA-ice sheet modelling

to include the effect of lateral variations in Earth structure. This would result in computation times that are equivalent to those

for coupled SS GIA-ice sheet models (i.e., ≈ 10000 times more efficient vs. the reduced resolution configuration used in this430

study).
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δSLIP δML δTL δTotal

CAAC

NMSS
Minimum Misfit 0.075 0.021 0.108 0.383

LT/UMV/LMV 96/0.30/2 46/0.80/5 120/0.80/90 71/0.50/2

EMU
Minimum Misfit 0.184 0.334 0.564 0.944

LT/UMV/LMV 71/0.20/1 71/0.20/2 96/0.30/90 71/0.20/1

EXP
Minimum Misfit 0.188 0.286 0.566 0.885

LT/UMV/LMV 71/0.20/2 71/0.30/2 120/0.80/90 71/0.20/1

US East Coast

NMSS
Minimum Misfit 0.07 0 0 0.154

LT/UMV/LMV 71/3.00/50 71/3.00/90

EMU
Minimum Misfit 0.064 0 0 0.125

LT/UMV/LMV 71/0.50/50 120/0.50/30

EXP
Minimum Misfit 0.068 0 0 0.130

LT/UMV/LMV 71/0.30/3 120/0.80/50

US Gulf Coast

NMSS
Minimum Misfit 0.164 0.188 1.688 1.613

LT/UMV/LMV 71/1.00/20 120/1.00/90 120/0.08/90 71/1.00/20

EMU
Minimum Misfit 0.149 0.179 1.959 1.619

LT/UMV/LMV 96/0.05/3 120/0.80/90 120/0.08/90 96/0.05/3

EXP
Minimum Misfit 0.156 0.164 1.830 1.631

LT/UMV/LMV 120/0.05/3 120/0.80/90 120/0.08/90 71/0.80/5

Combined NA

NMSS
Minimum Misfit 0.091 0.288 0.977 0.823

LT/UMV/LMV 96/0.30/2 46/0.50/2 71/0.10/90 96/0.30/2

EMU
Minimum Misfit 0.111 0.302 1.003 0.836

LT/UMV/LMV 71/0.20/5 71/0.30/3 71/0.10/90 71/0.20/1

EXP
Minimum Misfit 0.103 0.273 0.969 0.823

LT/UMV/LMV 71/0.20/2 71/0.30/3 71/0.10/90 71/0.20/2

Table 1. Misfits for the Canadian Arctic-Atlantic Coast (Vacchi et al., 2018), US East Coast (Engelhart and Horton, 2012), and US Gulf

Coast (Hijma et al., 2015; Love et al., 2016) RSL databases broken down into the contributing misfits for sea-level index points, marine &

terrestrial limiting, and combined total as defined in Sect. 2.4. The lowest misfit for each of the data-types (i.e. SLIP, ML, TL, and total) and

corresponding combination of SS lithospheric thickness(km), upper mantle viscosity(×1021 Pa · s), and lower mantle viscosity(×1021 Pa · s)

are given for each region. Values are given for output generated using the NMSS, the emulator (ANN derived 3D-SS + NMSS), and explicit

(Seakon 3D-SS + NMSS) cases. Note that LT/UMV/LMV values for misfits of zero in the limiting data columns for the USEC are not unique

and thus left blank.
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4 Conclusions

This study provides an initial “proof of concept” assessment of using ANNs to emulate the influence of lateral Earth structure

on GIA model output. We used the Tensorflow software library to produce ANNs, implement an emulator, and test the effec-

tiveness of the emulator using model output of past (deglacial) sea-level change and present-day vertical land motion from435

a 3D (Earth) GIA numerical model and a commonly used SS (Earth) GIA numerical model. Our goal is to test whether the

emulator can accurately predict the difference in these outputs (i.e., RSL and uplift rates) for the 3D case relative to the SS case.

We pursued this application for three realisations of (global) lateral Earth structure (S40RTS, S40RTS+LR18, Savani+LR18

Ritsema et al., 2010; Afonso et al., 2019; Auer et al., 2014) and a commonly used ice history model (ICE6G, Peltier et al.,

2015; Roy and Peltier, 2017).440

Our results indicate that the emulator:model differences, while not negligible, are of a scale such that useful predictions

of deglacial RSL changes can be made. Evaluation of the emulator performance for deglacial RSL indicates that it is able to

provide useful estimates of this field throughout the LT/UMV/LMV parameter space when trained on only ≈ 15% (45) of the

parameter vectors considered (330 in total). In contrast, results for present-day vertical land motion are poorer, with emulator

errors of similar order to the 3D minus SS model output. Better results for emulating vertical land motion were obtained for445

model time steps when ice was still present, suggesting that the performance of the emulator (for present-day rates) could be

improved by modifying inputs provided to the ANNs with respect to the input ice history information (e.g., maximum ice

thickness at that location within the last 10 ka, and/or a time history extending beyond the past 4 time steps). An important

extension of this work is to consider different ice sheet models to determine if useful results can also be achieved for variations

in this important GIA model parameter.450

Given the relatively accurate results obtained for RSL, we applied the emulator in a proxy-data:model comparison exer-

cise using RSL data distributed along North American coasts, from the Canadian Arctic to the US Gulf coast. The goals of

this data:model comparison are two-fold: to determine if the emulator can produce accurate misfit values through the entire

LT/UMV/LMV parameter space considered, and evaluate if the 3D Earth models can produce improved fits compared to the

SS Earth models (for the chosen ice sheet and lateral Earth structure models). We find that the emulator is able to successfully455

reproduce the data:model misfit values such that generally the region of minimum misfit either overlaps the 3D GIA model

results, or is within two increments in the parameter space. The emulator can, therefore, be used to more efficiently explore

this aspect of the 3D Earth model parameter space. Furthermore, the parameter values that give best fits for 3D and SS models

are quite different, supporting previous work that show inferences of radial viscosity structure can be significantly biased when

assuming SS structure. Thus, future work on the application of ANNs to further explore the parameter space of 3D Earth460

models and ice sheet histories is required.

Code and data availability. Software for training the artificial neural networks, model network weights, and the various utilities which

comprise the emulator/surrogate model are available in the supplemental materials via Zenodo (Love et al., 2023a) and are licensed under the

GNU Public Licence (GPL) v3. Example datasets, to use as templates and testing, are also included in the supplemental materials. Training
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data for the filtered datasets are available via Zenodo (Love et al., 2023b) and are licensed under the Creative Commons Attribution 4.0465

licence. Unfiltered training data is available only upon request due to the large file-sizes involved. Additional model output beyond the scope

of the above availability statement may be available upon request. Source code for the GIA models used in this study are available from their

corresponding developers.
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