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Overall evaluation: 

The manuscript proposed a land surface image assimilation system capable of optimizing the 

spatial structure of the background field, and the ERA5-Land soil moisture reanalysis data was used as 

ideal observation to validate the assimilation system. The results of ideal experiments showed that the 

proposed image assimilation system exhibits a remarkable ability to adjust the spatial structure of soil 5 

moisture in a land surface model, considerably improving the prediction skill. This is an interesting 

study. However, the manuscript is not written well and lacks in-depth analysis. For example, in the 

section "Discussion and conclusions", it would be useful to add more information comparing the 

proposed assimilation system with existing assimilation systems. 

Response:  10 

Thanks to your valuable comments and suggestions. Following your suggestions, we have made 

more deep analysis and revised the manuscript carefully from the beginning to the end.  

(1) The conclusion and discussion part has been further refined, encompassing a recapitulation of 

significant findings for the study, and an emphasis on the limitations and future prospects of image 

assimilation methods, as well as the inclusion of comparative analysis with existing studies. The 15 

revised version of the conclusion in Line 662-705 is presented below: 

The exchange of heat and water vapor between the land surface and the atmosphere plays a crucial 

role in influencing weather and climate change. The impact of soil moisture on atmospheric changes is 

frequently manifested through the persistent influence of large-scale soil moisture anomalies. The 

construction of an assimilation system with image assimilation capability is aimed at enhancing the 20 

spatial structure accuracy of soil moisture anomalies in the initial field of land surface models. The 

system is primarily based on the three-dimensional variational data assimilation framework, employing 

the curvelet transformation method with multi-scale transformation capability and anisotropic basis 

function as the observation operator. By incorporating image structural similarity as a weak constraint 

in the cost function, the spatial structure of soil moisture in the initial condition is effectively adjusted 25 

to align with the structural characteristics of observed soil moisture image, thereby enhancing the 

accuracy of soil moisture simulation. 
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The performance of the image assimilation system is systematically validated by conducting ideal 

experiments, with the ERA5-Land reanalysis data as ideal observations, and the CLDAS reanalysis 

product is incorporated for independent verification. The findings demonstrate that the assimilation of 30 

surface soil moisture observation images effectively and reasonably enhances the spatial structure of 

soil moisture analysis field. The spatial correlation coefficient between the analysis and ERA-Land 

reanalysis data increases significantly from 0.39 to 0.67, while the root-mean-square error decreases 

notably from 0.16 m³/m³ to 0.12 m³/m³. With the improvement of surface soil moisture, the spatial 

pattern of subsurface soil moisture is further optimized under the reasonable constraints of model 35 

dynamics and thermal processes. There is an increase (from 0.35 to 0.57) in the spatial correlation 

coefficient between the soil moisture at a depth of 7–28 cm and the ERA-Land data. The root mean 

square error decreases from 0.15 m³/m³ to 0.13 m³/m³. 

The verification results based on independent data CLDAS consistently demonstrate a higher 

spatial correlation coefficient between CoLM surface (0–5 cm) soil moisture in the assimilation 40 

experiment and the CTL experiment, with a maximum correlation coefficient of 0.79 throughout both 

assimilation and prediction stages. The average spatial correlation coefficient for surface soil moisture 

increases from 0.67 to 0.71 after image assimilation. While for subsurface (5–10 cm) soil moisture, it 

steadily rises from 0.67 to 0.73 on average. These quantitative evaluation outcomes fully validate the 

practical applicability of the new image assimilation method. 45 

The image assimilation system developed by this study could effectively optimize the spatial 

structure of soil variables in the background by incorporating constraint conditions of the observed 

spatial structures. The method demonstrates excellent applicability to various soil variables, effectively 

mitigating the negative impact of strong spatial heterogeneity of soil on data assimilation. The key 

challenge in image assimilation lies in obtaining accurate spatial structure observation of soil variables. 50 

The data of ground automatic stations with high spatial-temporal resolution established in China, along 

with satellite observation data that can overcome natural constraints and achieve large-scale uniform 

observation in various terrains, are capable of providing observational images depicting the spatial 

structure of land surface variables for image assimilation. The effective assimilation of the spatial 

structural characteristics of those high-density meteorological observation data, is the primary focus of 55 

our subsequent research. However, how to establish the direct spatial structure relationship between 
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satellite-observed brightness temperature data and soil variables, and how to repair these non-uniform 

data into uniformly distributed data, these are the key technical problems that need to be solved in the 

future. 

Additionally, it should be noted that the image assimilation method and the prevailing single-point 60 

land assimilation method in current practice are not mutually exclusive. The single-point land 

assimilation method is more suitable for assimilating sparse observation data in key areas. However, if 

the image assimilation method is used to optimize the fine structure of soil moisture in specific areas, 

the threshold σ mentioned above needs to be further increased, but this approach is susceptible to 

introducing additional observational errors. Therefore, by integrating the capacity of the image 65 

assimilation method in adjusting the large-scale spatial structure of soil variables and the capability of 

single-point land assimilation method in finely optimizing soil variables in crucial regions, and by 

leveraging the advantages offered by diverse types of meteorological observation data, we can attain 

more refined initial conditions for land models, which constitutes the primary objective of our 

subsequent research. 70 

(2) In addition, the following experiments and analysis for choosing the threshold of 0.5 for the 

curvelet denoising have been incorporated to enhance the depth of analysis in the manuscript.  

The image assimilation system determines the spatial structural characteristics of assimilation 

according to the threshold values, and different threshold values could result in certain variations in the 

spatial structure of assimilation. Naturally, a higher threshold can capture more spatial structural 75 

features of the observed variables, but the presence of observation errors imposes limitations on its 

continuous increase. More discussions have been added to the revised manuscript in Line 366-404 to 

prove that a threshold of 0.5 can not only capture the spatial structure information of observation data, 

but also mitigate the impact of observational errors. The specific content comprises the following three 

aspects: 80 

A. The definition of the threshold σ has been further elaborated in order to provide a clearer 

rationale for its selection. This detailed description has been incorporated into line 370-371 of the 

revised manuscript. The specific wording is as follows: 

The threshold σ means the modulus of the decomposition coefficient falls within the first 100*σ% 
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percentile. For instance, a value of 0.5 indicates that the mode retaining the top 50% of decomposition 85 

coefficient. 

B. By employing the spatial correlation method, we demonstrate that a threshold of 0.5 adequately 

captures the primary spatial information derived from soil moisture observations, the following 

discussions have been added to Line 366-404 of the revised manuscript: 

The image assimilation system finds the spatial structural characteristics of assimilation according 90 

to the threshold values, and different thresholds could result in certain variations in assimilated spatial 

structure. In order to clarify the spatial structure differences corresponding to different thresholds, the 

spatial correlation method (Daley, 1991) is employed in this study to elucidate the distinctive 

characteristics of spatial structure corresponding to varying thresholds.  

The hourly soil moisture data from ERA5-Land from May 1 to 30, 2016 is selected for analysis. 95 

The threshold σ means the modulus of the decomposition coefficient falls within the first 100*σ% 

percentile. For instance, a value of 0.5 indicates that the mode retaining the top 50% of decomposition 

coefficient. The original image can be reconstructed by selecting different threshold ranges, namely 

(0,0.01], (0.01,0.03], (0.03,0.05], (0.05,0.1], (0.1,0.2], (0.2,0.3], (0.3,0.4], (0.4,0.5], (0.5,0.6], (0.6,0.7], 

(0.7,0.8], (0.8,0.9] and (0.9,1.0]. The correlation coefficient between each grid point and its 100 

neighboring grid points can be obtained based on the reconstructed time series of each grid point. The 

spatial structural characteristics of different scales in the reconstructed images could be quantitatively 

expressed by the average correlation coefficients corresponding to different grid point distances. 

The mean correlation coefficient corresponding to grid point distance is illustrated in Figure 4. As 

can be seen, the variation characteristics of the inter-grid correlation coefficient of the original soil 105 

moisture represented by the black line with respect to the grid distance. The average correlation 

coefficient can exceed 0.5 within a radius of 200 km, while maintaining above 0.4 within a radius of 

300 km. The distance corresponding to high correlation coefficients represents the characteristics of 

consistent changes in soil moisture within a similar range, that is, soil moisture has the characteristics 

of spatial structure at the corresponding scale. 110 

When the threshold value is 0.01, the average correlation curve exhibits a similar change in 

correlation coefficient of the original variable, thereby indicating that the curvelet coefficient 

corresponding to this threshold value effectively reproduces the large-scale spatial structure. The 
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spatial structure scale represented by the corresponding curvelet transformation reconstruction results 

decrease as the threshold value increases, leading to a rapid decrease in the correlation coefficient with 115 

increasing distance. The curvelet reconstruction results with different threshold intervals represent the 

structural characteristics of different horizontal scales, while the cumulative threshold can well 

represent the spatial structural characteristics of soil moisture variables represented by the selected 

threshold in the assimilation. The average correlation coefficient of the cumulative threshold is 

depicted in Figure 4b. As can be seen, the top 10% of curvelet coefficients can effectively replicate the 120 

spatial correlation characteristics of soil moisture variables. The results also indicate that the variations 

in threshold values have minimal impact on the assimilated spatial structure when the threshold value 

exceeds 0.1. 

 

Figure 4: Variation curves of the average correlation coefficient between grid points with the distance 125 

in the reconstructed ERA5-Land hourly soil moisture image of the study area from May 1 to 30, 2016, 

which is reconstructed based on the curvelet coefficients of (a) different threshold intervals and (b) 

cumulative thresholds. 

C．According to the stochastic characteristics of observation errors, we conducted an analysis on 

the probability distribution properties of the reconstructed residuals and found that a threshold value of 130 

0.5 effectively mitigates the impact of observation errors. 
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Naturally, a higher threshold can effectively capture more spatial structural features of the 

observed variables, but the presence of observation errors imposes limitations on its continuous 

increase. The observational error is typically characterized by stochastic fluctuations. When the 

discrepancy between the reconstructed results and the original variables exhibits random variation 135 

characteristics, it can be inferred that the observation information eliminated by the threshold method 

primarily consists of observation errors.  

To better clarify the statistical characteristics of the reconstruction errors under different 

thresholds, Figure 5 shows the probability density distribution curves of the reconstruction errors for 

100 reconstructed fields at different thresholds. For the error at the threshold of 0.5, the skewness 140 

coefficient of the probability density distribution curve is 0.00 and the kurtosis coefficient is 0.38, 

indicating the curve is close to the standard normal distribution curve (the skewness and kurtosis 

coefficients are all 0). With the gradual increase of threshold value, although the reconstruction error 

decreases, the residual error is mainly concentrated in the range of smaller values, and the curve shows 

a "sharp peak" distribution. Considering that the observation errors are mostly random errors, it is 145 

reasonable to believe that the reconstruction errors at the threshold of 0.5 are mainly observation errors, 

which also implies this threshold is good for the purpose of denoising the observation images. 

 

Figure 5 Probability density distributions of 100 reconstructed errors under different thresholds. The 

magenta dashed line represents standard normal distribution. The red, blue, black, green and orange 150 

solid lines represent threshold values of 0.4, 0.5, 0.6, 0.7 and 0.8, respectively. 

The revised manuscript now includes the newly added Figure 4, which has been incorporated into 

the section on observational error analysis along with its corresponding discussion. 

And the relevant reference has been added to the revised manuscript:  
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Daley, R.: Atmospheric Data Analysis, Cambridge University Press, Cambridge, 1991. 155 

(3) We have added a specialized section in the revised manuscript to facilitate a comparative analysis of 

the disparity in the effectiveness between the prevailing single point assimilation method and image 

assimilation method. 

3.4 The influence of image assimilation constraints 

Two sets of ideal experiments are designed to validate the impact of image assimilation and 160 

evaluate its superiority over traditional single column assimilation in adjusting the spatial distribution 

structure of soil moisture. The ideal observational data for assimilation is the ERA5-Land reanalysis 

soil moisture. The first set corresponds to the conventional assimilation experiment, where 𝐽(") = 𝐽$ +

𝐽%, as described by Equation (5). Another set is image assimilation experiment, where 𝐽% = 0 in 

Equation (5), indicating that 𝐽(") = 𝐽$ + 𝐽&. 165 

The process of data assimilation entails leveraging the discrepancy between observed data and 

background field, in conjunction with a priori knowledge of observation error and background error, to 

derive an analysis field that closely approximates the true value. The primary challenge in single 

column assimilation lies in acquiring precise prior information regarding observation error. The spatial 

distribution of observation error for a specific single column assimilation experiment is illustrated in 170 

Fig. 6. In consideration of the necessity for an ideal experiment, it is assumed that the observation error 

outside the China region is negligible, while a significant error is presumed within the China region, so 

as to emphasize the impact of observation error on assimilation results. 

 

Figure 6: Spatial distribution of observation errors. 175 
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The spatial distributions of soil moisture for the ideal observation data and different experiments 

at 0000 UTC on May 1, 2016 are given in Figure 7. The spatial distribution of surface soil moisture in 

ERA5-Land is illustrated in Fig. 7a. The northern Siberian region of the selected area exhibits a 

relatively high soil moisture content overall, with a ring-shaped distinct wet zone in the northwest. The 180 

central region stretching from Xinjiang to western Mongolia is a significant arid area. However, the soil 

moisture in the Tianshan Mountains is wet. The soil moisture of the Qinghai-Tibet Plateau region 

gradually decreases from west to east. The soil moisture in southern Qinghai, Hunan and Jiangxi is 

characterized by high level of saturation, while Gansu, Ningxia and Hebei experience relatively arid 

soil conditions. Figure 7b is the distribution of soil moisture in the control experiment (background 185 

field). It is evident that there are significant disparities in the spatial distribution of soil moisture when 

compared with the reanalysis data. In the control experiment, a dry region extends from west to east in 

the northern area of Lake Baikal, while eastern Kazakhstan and central Inner Mongolia also exhibit arid 

conditions. 

Figure 7c shows the results of the single point assimilation experiment. The observation error 190 

outside the China region is relatively minimal, indicating a strong correspondence between the analysis 

field and the observation data, and the overall distribution also exhibits a high degree of conformity 

with the observation. The analysis field in China region, however, closely resembles the background 

field. Nevertheless, there is a significant disparity between the observed soil moisture and that of the 

background field, indicating a lack of adjustment based on observed information. 195 

Figure 7d is the assimilation results of the image assimilation ideal experiment. It is evident that 

image assimilation effectively adjusts the distribution pattern of soil moisture. The above-mentioned 

characteristics of moist soil moisture in the northwest region of the observation field, the arid region of 

Xinjiang and Mongolia, and the humid region of the Tianshan Mountains are all well reflected in the 

analysis field. 200 



9 
 

 

Figure 7: Spatial distributions of surface soil moisture for (a) ERA5-Land, (b) CTL experiment, (c) 

analysis field of conventional assimilation experiment, and (d) analysis field of image assimilation 

experiment at 00:00 UTC on May 1, 2016. 

The analysis results mentioned above have been added into the revised manuscript. Please refer to 205 

Line 236 for detailed information. 

 

(4) We attempted to explain the underlying physical mechanisms how the surface soil moisture 

assimilation improves deep soil moisture, which are elucidated through a vertical-time profile of soil 

moisture. The following additional figures and associated descriptions have been added to lines 210 

155-158 of the revised manuscript: 

Soil moisture and its vertical transport is governed by infiltration, runoff, gradient diffusion, 

gravity, and root extraction by canopy transpiration. Only the vertical transport of soil water is 

considered in the CoLM model. The water in the soil will percolate through the soil pores due to the 

combined effects of gravity and capillary forces. According to the principle of mass conservation, the 215 

vertical movement of soil water can be mathematically described by the Richards equation. 

𝜕𝜃
𝜕𝑡 = −

𝜕𝑞
𝜕𝑧 − 𝐸 − 𝑅'( 

And the relevant description has been added to the revised manuscript in Line 524-531: 
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Vertical motion of soil water is integrated over the layer thickness, in which the time rate of 

variation in water mass must equal to the net flow across the bounding interface, and plus the rate of 220 

internal source or sink. The terms of water flow across the layer interfaces are linearly expanded by 

using first-order Taylor expansion. Therefore, when the surface data were assimilated, the net flow 

across the bounding interface to deeper layers become more reasonable corresponding to surface 

variation. 

Of course, when it comes to the process of permafrost and snow processes, such as soil freezing 225 

and thawing in the Tibetan Plateau region, the variations of soil moisture are much more complex, and 

the mechanism of data assimilation on permafrost needs to be studied more thoroughly in the future. 

In addition, the subsequent soil moisture time-depth profiles of real experiments are utilized to 

elucidate the process by which surface soil moisture assimilation impacts deep soil moisture. The 

following figure and related discussions are added to Line 532-573 of the revised manuscript: 230 

In order to further elucidate the vertical impact of data assimilation, the vertical propagation 

characteristics of surface assimilation influence are also examined based on actual experiment results. 

The vertical-temporal profiles of soil moisture on different underlying surface types selected in the 

Tibetan Plateau and plain areas are given in Fig. 12, so as to elucidate the physical processes how the 

surface soil moisture assimilation influences soil moisture at a depth of 7–28 cm. The spatial locations 235 

of selected single points are depicted in Fig. 12a. In order to emphasize the soil moisture variation 

difference between plateau areas and plain areas, bare soil points are situated in the eastern and western 

regions of the plateau (represented by blue and black five-pointed stars), while corn and needleleaf 

evergreen boreal tree (represented by red and orange five-pointed stars) are positioned within the plain 

area. Figs. 12b–12c illustrate the difference of soil-moisture analysis field between DA experiment and 240 

CTL experiment, as well as the temporal characteristics of soil moisture analysis field at different 

depths of selected points in plateau areas. The vertical ordinate denotes the position of node depth for 

each soil layer in the CoLM model. The most notable difference in the vertical variation of soil 

moisture among the two points on the plateau is primarily attributed to the differences in both 

magnitude and depth of this vertical change. In the western plateau region, soil moisture at bare soil 245 

points is generally low, usually below 0.2 m3/m3 (Fig. 12b). Additionally, the surface undergoes 

significant temporal variations that may be related to the prevalence of small-scale convective weather 
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systems in this plateau area. The vertical variation of bare soil moisture in the plateau region primarily 

occurs above 50 cm, while the soil moisture exhibits a consistent pattern below 50 cm. The vertical 

variation of soil moisture is correlated with the intensity of soil moisture anomaly. As depicted in Figs. 250 

12b and 12c, the vertical impact of minor perturbations in bare soil moisture within the plateau region 

is negligible, primarily occurring above a depth of 3 cm. The similarity between the two bare soil 

points lies in the fact that significant changes in soil moisture can rapidly impact the top 10 cm of soil, 

resulting in similar characteristics observed in the soil moisture above this depth. However, abnormal 

soil moisture exhibits a noticeable time lag effect below 10 cm. The characteristics of assimilation 255 

influence exhibit similarities to the features observed in vertical changes of soil moisture. Assimilation 

significantly enhances surface soil moisture around July 10th, and the increasement in soil moisture 

analysis within the plateau region can also rapidly impact the 10 cm depth of soil, with a maximum 

positive analysis increment reaching 0.16 m3/m3. The impact of assimilation can affect soil moisture at 

a depth of approximately 10 cm within one day, while it takes approximately 15 days for this analysis 260 

to affect the 50 cm depth. However, the impact of the analysis increment can be sustained for over a 

month at the depths ranging from 20 cm to 50 cm. 

Figures 12d and 12e are similar to Figs. 12b and 12c, but they are selected from the plain areas. It 

is evident that the vertical variation characteristics of soil moisture differ significantly among different 

vegetation types. The analysis increment for corn is relatively minimal. Image assimilation leads to a 265 

substantial increase in surface soil moisture around July 10th. The maximum positive analysis 

increment can reach up to 0.12 m3/m3, with a vertical change level reaching approximately 30 cm. The 

effect is gradually transmitted to a depth of approximately 2 meters over time, with a duration of about 

one month. In the case of needleleaf evergreen boreal tree, the analysis increment is relatively small, 

and surface soil moisture gradually increases from around July, with its influence extending to a depth 270 

of approximately 100 cm. Seen from the above analysis, it is evident that the assimilation of surface 

soil moisture gradually impacts the deeper layers of the model as integration progresses, with a lasting 

effect of approximately 1 month. This phenomenon also serves as the primary factor contributing to the 

simulation improvement of soil moisture at a depth of 7–28 cm. 
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 275 

Figure 12: (a) The location of designated grid. The soil-moisture temporal variation of the difference 

between the DA experiment and CTL experiment (represented by shadow) and the soil moisture 

profiles (indicated by contours) under different land types: (b) bare soil (black five-pointed star), (c) 

bare soil (blue five-pointed star), (d) corn (red five-pointed star), and (e) needleleaf evergreen boreal 

tree (orange dots). 280 

 

And the point-by-point response is listed below according to your specific comments. 

Minor comments: 

Line 18: Please use the official name: ERA5-Land. 

Response: 285 

Thank you for your valuable suggestion. We have revised the word “ERA5_Land” to 

“ERA5-Land” throughout the manuscript 

Line 113: "five snow layers" -> "a maximum of five snow layers". 
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Response： 

Thank you for your valuable suggestion. We have revised the words "five snow layers" in Line 290 

154 to "a maximum of five snow layers". 

Line 125: Please add reference to the atmospheric forcing data. 

Response:  

Thank you for your valuable suggestion. We have added the reference and relevant information 

about the forcing data in Line 170-176 as follows. 295 

The forcing dataset was derived through combining observation-based analyses of monthly 

precipitation and surface air temperature with intramonthly variations from the National Centers for 

Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis. To 

correct the spurious long-term changes and biases in the NCEP-NCAR reanalysis precipitation, surface 

air temperature, and solar radiation fields, Qian et al. (2006) combined the intramonthly variations from 300 

the NCEP-NCAR 6 hourly reanalysis with monthly time series derived from station records of 

temperature and precipitation. It is shown that the CLM3 reproduces many aspects of the long-term 

mean, annual cycle, interannual and decadal variations when it was forced by this dataset. 

The reference which has been added to the revised paper is as follows : 

Qian, T., Dai, A., Trenberth, K. E., and Oleson, K. W.: Simulation of global land surface conditions 305 
from 1948 to 2004. Part I: Forcing data and evaluations, J. Hydrometeorol., 7, 953– 975, 
doi:10.1175/JHM540.1., 2006. 

Line 209: Please provide the source of the raw soil moisture image plotted in Figure 1a. 

Response: 

Thank you for your valuable suggestion. Figure 1a shows the spatial distribution of soil moisture 310 

simulated by the CoLM land surface model on May 1, 2016. The aforementioned note has been 

incorporated into the revised manuscript at Line 260. 

Line 266: "The depths of the top three soil layers …" => "The node depths of the top three soil 
layers …" 
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Response: 315 

Thank you for your valuable suggestion. We have revised "The depths of the top three soil 

layers …" to "The node depths of the top three soil layers …". 

Line 369: It is not appropriate to refer to soil at the depth of 7-28cm as deep soil. 

Response： 

Thank you for your valuable suggestion. We have revised “deep soil” to “The soil moisture 320 

content at a depth of 7–28 cm.” 

Line 445: This is not the reason to develop a new assimilation scheme for land surface model. 

Response: 

Thank you for your valuable suggestion, and we have revised the sentence to make the reason 

more clearer.  325 

The original sentences have been changed as follows. 

The exchange of heat and water vapor between the land surface and the atmosphere plays a crucial 

role in influencing weather and climate change. The impact of soil moisture on atmospheric changes is 

frequently manifested through the persistent influence of large-scale soil moisture anomalies. The 

construction of an assimilation system with image assimilation capability is aimed at enhancing the 330 

spatial structure accuracy of soil moisture anomalies in the initial field of land surface models. 

 

Line 466: Please rephrase this sentence. 

Response:  

Thank you for your valuable suggestion. The sentence has been revised as follows. 335 

 The image assimilation system developed by this study could effectively optimize the spatial 

structure of soil variables in the background by incorporating constraint conditions of the observed 

spatial structures. The method demonstrates excellent applicability to various soil variables, effectively 
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mitigating the negative impact of strong spatial heterogeneity of soil on data assimilation. The key 

challenge in image assimilation lies in obtaining accurate spatial structure observation of soil variables. 340 

The data of ground automatic stations with high spatial-temporal resolution established in China, along 

with satellite observation data that can overcome natural constraints and achieve large-scale uniform 

observation in various terrains, are capable of providing observational images depicting the spatial 

structure of land surface variables for image assimilation. The effective assimilation of the spatial 

structural characteristics of those high-density meteorological observation data, is the primary focus of 345 

our subsequent research. However, how to establish the direct spatial structure relationship between 

satellite-observed brightness temperature data and soil variables, and how to repair these non-uniform 

data into uniformly distributed data, these are the key technical problems that need to be solved in the 

future. 

Additionally, it should be noted that the image assimilation method and the prevailing single-point 350 

land assimilation method in current practice are not mutually exclusive. The single-point land 

assimilation method is more suitable for assimilating sparse observation data in key areas. However, if 

the image assimilation method is used to optimize the fine structure of soil moisture in specific areas, 

the threshold σ mentioned above needs to be further increased, but this approach is susceptible to 

introducing additional observational errors. Therefore, by integrating the capacity of the image 355 

assimilation method in adjusting the large-scale spatial structure of soil variables and the capability of 

single-point land assimilation method in finely optimizing soil variables in crucial regions, and by 

leveraging the advantages offered by diverse types of meteorological observation data, we can attain 

more refined initial conditions for land models, which constitutes the primary objective of our 

subsequent research. 360 

 

 

 


