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 Summary: 

Most current land surface assimilation systems are basically single point assimilation. Single point 

assimilation can easily break the coherent large-scale spatial structures of soil moisture anomaly, which 

are usually the important land surface factors to influence short-term climate variations over the land. 

The manuscript entitled “Development and preliminary validation of a land surface image assimilation 5 

system based on the common land model” propose an image assimilation method by using the curvelet 

transform to denoise the observational data with only the primary structural information to be assimilated. 

Preliminary results showed that this assimilation method can adjust the structures of model soil moisture 

based on the observed spatial structure characteristics, increasing the spatial similarity of soil moisture 

between the model and the observation. This image assimilation method shows potential for improving 10 

the forecast of short-term climate variability related to soil moisture anomalies. However, benefit of the 

image assimilation is not well evaluated. That is, the paper should show more results regarding the 

advantages of the image assimilation over traditional single point assimilation. The paper is generally 

well built up. However, still this manuscript needs to be improved greatly, especially regarding the issues 

mentioned above. Efforts should be made to improve the readability. I think this paper can be considered 15 

for publication after some issues/questions are resolved/explained. 

Response:  

Thanks to your valuable comments and suggestions. Following your suggestions, we have revised 

the manuscript carefully from the beginning to the end. The point-by-point response is listed below 

according to your specific comments. 20 

 
Major issues: 

1. There are many other image denoising techniques, why use curvelet for land surface images? Curvelets 

are anisotropic, they have a high directional sensitivity and are very efficient in representing vortex edges. 

Therefore, the curvelet transform is suitable for geophysical fluids. But what is the argument for choosing 25 

it for land surface? 

Response: 

As the reviewer highlighted, the basis function of curvelet analysis exhibits anisotropic 

characteristics, thereby demonstrating its exceptional capability in accurately reproducing the rapidly-
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evolving properties of earth fluids. Although the soil moisture does not exhibit rapid temporal variations, 30 

there are many small-scale spatial structures of soil moisture due to the high spatial heterogeneity of soil. 

Therefore, the curvelet analysis method is selected as a more effective approach to capture the intricate 

local variations of soil moisture.  

Indeed, a variety of mathematical image analysis techniques are available. For instance, the Fourier 

decomposition method and wavelet analysis method are commonly employed in meteorological research. 35 

However, the Fourier analysis method primarily focuses on the average feature of the sequence at 

different frequencies, and lacks the ability to accurately describe the regional variations. The Wavelet 

analysis could provide more detailed variation information in the time-frequency domain, but its basis 

functions with isotropic characteristic limit the ability to accurately represent the characteristics of small-

scale spatial variations. 40 

 On the other hand, the curvelet analysis method has been selected to fulfill the requirements of 

variational data assimilation. The curvelet transform is an observation operator in an image assimilation 

system. During the process of minimizing the cost function in variational data assimilation, the adjoint 

function of the observation operator becomes necessary. The adjoint function of curvelet analysis is just 

its inverse transformation, which proves to be a highly advantageous property for minimizing the cost 45 

function in a variational data assimilation system. 

2. The argument for choosing the threshold of 0.5 for the curvelet denoising is not convincing enough. 

Probably different thresholds will lead to different assimilation results. If it is true. How should 

understand this? 

Response:  50 

Thanks for your valuable suggestions. Just as the reviewer pointed out, the image assimilation 

system determines the spatial structural characteristics of assimilation according to the threshold values, 

and different threshold values could result in certain variations in the spatial structure of assimilation.  

Naturally, a higher threshold can capture more spatial structural features of the observed variables, 

but the presence of observation errors imposes limitations on its continuous increase. More discussions 55 

have been added to the revised manuscript in Line 366-404 to prove that a threshold of 0.5 can not only 

capture the spatial structure information of observation data, but also mitigate the impact of observational 

errors. The specific content comprises the following three aspects: 
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(1) The definition of the threshold σ has been further elaborated in order to provide a clearer 

rationale for its selection. This detailed description has been incorporated into line 370-371 of the revised 60 

manuscript. The specific wording is as follows:  

The threshold σ means the modulus of the decomposition coefficient falls within the first 100*σ% 

percentile. For instance, a value of 0.5 indicates that the mode retaining the top 50% of decomposition 

coefficient. 

(2) By employing the spatial correlation method, we demonstrate that a threshold of 0.5 adequately 65 

captures the primary spatial information derived from soil moisture observations, the following 

discussions have been added to Line 366-404 of the revised manuscript: 

The image assimilation system finds the spatial structural characteristics of assimilation according 

to the threshold values, and different thresholds could result in certain variations in assimilated spatial 

structure. In order to clarify the spatial structure differences corresponding to different thresholds, the 70 

spatial correlation method (Daley, 1991) is employed in this study to elucidate the distinctive 

characteristics of spatial structure corresponding to varying thresholds.  

The hourly soil moisture data from ERA5-Land from May 1 to 30, 2016 is selected for analysis. 

The threshold σ means the modulus of the decomposition coefficient falls within the first 100*σ% 

percentile. For instance, a value of 0.5 indicates that the mode retaining the top 50% of decomposition 75 

coefficient. The original image can be reconstructed by selecting different threshold ranges, namely 

(0,0.01], (0.01,0.03], (0.03,0.05], (0.05,0.1], (0.1,0.2], (0.2,0.3], (0.3,0.4], (0.4,0.5], (0.5,0.6], (0.6,0.7], 

(0.7,0.8], (0.8,0.9] and (0.9,1.0]. The correlation coefficient between each grid point and its neighboring 

grid points can be obtained based on the reconstructed time series of each grid point. The spatial structural 

characteristics of different scales in the reconstructed images could be quantitatively expressed by the 80 

average correlation coefficients corresponding to different grid point distances. 

The mean correlation coefficient corresponding to grid point distance is illustrated in Figure 4. As 

can be seen, the variation characteristics of the inter-grid correlation coefficient of the original soil 

moisture represented by the black line with respect to the grid distance. The average correlation 

coefficient can exceed 0.5 within a radius of 200 km, while maintaining above 0.4 within a radius of 300 85 

km. The distance corresponding to high correlation coefficients represents the characteristics of 
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consistent changes in soil moisture within a similar range, that is, soil moisture has the characteristics of 

spatial structure at the corresponding scale. 

When the threshold value is 0.01, the average correlation curve exhibits a similar change in 

correlation coefficient of the original variable, thereby indicating that the curvelet coefficient 90 

corresponding to this threshold value effectively reproduces the large-scale spatial structure. The spatial 

structure scale represented by the corresponding curvelet transformation reconstruction results decrease 

as the threshold value increases, leading to a rapid decrease in the correlation coefficient with increasing 

distance. The curvelet reconstruction results with different threshold intervals represent the structural 

characteristics of different horizontal scales, while the cumulative threshold can well represent the spatial 95 

structural characteristics of soil moisture variables represented by the selected threshold in the 

assimilation. The average correlation coefficient of the cumulative threshold is depicted in Figure 4b. As 

can be seen, the top 10% of curvelet coefficients can effectively replicate the spatial correlation 

characteristics of soil moisture variables. The results also indicate that the variations in threshold values 

have minimal impact on the assimilated spatial structure when the threshold value exceeds 0.1. 100 

 

Figure 4: Variation curves of the average correlation coefficient between grid points with the distance in 

the reconstructed ERA5-Land hourly soil moisture image of the study area from May 1 to 30, 2016, 

which is reconstructed based on the curvelet coefficients of (a) different threshold intervals and (b) 

cumulative thresholds. 105 
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(3) According to the stochastic characteristics of observation errors, we conducted an analysis on 

the probability distribution properties of the reconstructed residuals and found that a threshold value of 

0.5 effectively mitigates the impact of observation errors.  

Naturally, a higher threshold can effectively capture more spatial structural features of the observed 

variables, but the presence of observation errors imposes limitations on its continuous increase. The 110 

observational error is typically characterized by stochastic fluctuations. When the discrepancy between 

the reconstructed results and the original variables exhibits random variation characteristics, it can be 

inferred that the observation information eliminated by the threshold method primarily consists of 

observation errors.  

To better clarify the statistical characteristics of the reconstruction errors under different thresholds, 115 

Figure 5 shows the probability density distribution curves of the reconstruction errors for 100 

reconstructed fields at different thresholds. For the error at the threshold of 0.5, the skewness coefficient 

of the probability density distribution curve is 0.00 and the kurtosis coefficient is 0.38, indicating the 

curve is close to the standard normal distribution curve (the skewness and kurtosis coefficients are all 0). 

With the gradual increase of threshold value, although the reconstruction error decreases, the residual 120 

error is mainly concentrated in the range of smaller values, and the curve shows a "sharp peak" 

distribution. Considering that the observation errors are mostly random errors, it is reasonable to believe 

that the reconstruction errors at the threshold of 0.5 are mainly observation errors, which also implies 

this threshold is good for the purpose of denoising the observation images. 

 125 

Figure 5: Probability density distributions of 100 reconstructed errors under different thresholds. The 

magenta dashed line represents standard normal distribution. The red, blue, black, green and orange solid 
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lines represent threshold values of 0.4, 0.5, 0.6, 0.7 and 0.8, respectively. 

The revised manuscript now includes the newly added Figure 4, which has been incorporated into 

the section on observational error analysis along with its corresponding discussion. 130 

And the relevant reference has been added to the revised manuscript:  

Daley, R.: Atmospheric Data Analysis, Cambridge University Press, Cambridge, 1991. 

3. Don’t understand why there is no error covariance matrixes involved in the term J_1 in Equation (5). 

Response: 

As the reviewer emphasized, the data assimilation typically involves the covariance of observation 135 

error and background error. But in this study, the image term in the cost function serves only as a weak 

constraint to adjust the spatial structure of the analysis field within the image assimilation system, thereby 

the error covariance is not necessary. Additionally, as explained in response to question 2, we have 

elucidated in detail that the significance of setting a threshold value for effectively filtering out erroneous 

information from the observed image.  140 

 

Minor comments: 

1. No information of the used atmospheric forcing data. 

Response:  

The information of used atmospheric forcing data is given in Line 166: 145 

Atmospheric forcing conditions provide constraints on land-surface models. The quality of 

atmospheric forcing data greatly affects the ability of land surface models to realistically simulate land 

surface conditions. The atmospheric forcing dataset used to drive the CoLM in this study includes the 

downward short-wave solar radiation at surface, downward long-wave radiation, near-surface air 

temperature, specific humidity, precipitation rate, surface atmospheric pressure, U-component wind 150 

speed, and V-component wind speed. It has a temporal resolution of three hours (at 0000 UTC, 0300 

UTC, 0600 UTC, etc.) and the spatial resolution is T62 (about 1.875°) (Qian et al., 2006). The forcing 

dataset was derived through combining observation-based analyses of monthly precipitation and surface 

air temperature with intramonthly variations from the National Centers for Environmental Prediction-

National Center for Atmospheric Research (NCEP-NCAR) reanalysis. To correct the spurious long-term 155 
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changes and biases in the NCEP-NCAR reanalysis precipitation, surface air temperature, and solar 

radiation fields, Qian et al. (2006) combined the intramonthly variations from the NCEP-NCAR 6 hourly 

reanalysis with monthly time series derived from station records of temperature and precipitation. It is 

shown that the CLM3 reproduces many aspects of the long-term mean, annual cycle, interannual and 

decadal variations when it was forced by this dataset. 160 

We have added the relevant reference to the revised manuscript： 

Qian, T., Dai, A., Trenberth, K. E., and Oleson, K. W.: Simulation of global land surface conditions 

from 1948 to 2004. Part I: Forcing data and evaluations, J. Hydrometeorol., 7, 953– 975, 

doi:10.1175/JHM540.1., 2006. 

2. Figure 9: the correlations generally decline until the middle of July and then increase, how to 165 

understand this? 

Response:  

The occurrence of this phenomenon is attributed to the amount of precipitation in the driving data. 

To elucidate this matter, we superimpose the temporal variation of precipitation in the forced data within 

the study period (indicated by gray shading) on Figure 10 of the original manuscript in Line 398. 170 

The following discussions have been added to Line 593-600 of the revised manuscript: 

It is important to note that the SCC exhibits a clear temporal variation, which does not necessarily 

imply a time-varying assimilation effect. This can be attributed to the dominant influence of precipitation 

on the changes in the SCC. Hence, Figure 13 also includes the hourly total precipitation (represented by 

grey bars) in the model domain. The changes in precipitation exhibit a strong correlation with the SCC. 175 

From May 16 to June 15, there is minimal precipitation, corresponding to sustained high SCCs of soil 

moisture (red line) after assimilation. Subsequently, as precipitation increases, the SCC gradually 

diminishes. From August 15 to September 1, the SCC exhibits an inverse variation with decreasing 

precipitation. 

 180 
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Figure 13: Hourly variations of the spatial correlation coefficient of the surface (red and blue solid lines) 

and subsurface (black and gray solid lines) soil moisture between the observations and the experiments 

with (black and red solid lines) and without (black and gray solid lines) image assimilation, and the 

precipitation in the forced data was indicated by gray shading. After the vertical dashed line, it is the 185 

prediction period.  

 

3. line 62-67: the sentences are ambiguous and hard to follow, please clarify to be concise and accurate. 

Response:  

Thanks for your valuable suggestions. We have revised these sentences to make them clear and 190 

concise.  

The sentence “However, in reality, the observation quality varies sharply across regions, and the 

strong spatial heterogeneity of soil variables also tends to cause large spatial variations in the accuracy 

of surface variables simulated by the land surface model (Li, 2013; Li et al., 2020b). This leads to the 

regional differences in the accuracy of the estimations of observation error and background error in the 195 

single-column assimilation, and ultimately causes discontinuities in the spatial structure of the anomalies 

in the analyzed soil moisture fields.” has been revised as follows. 

Due to the non-uniform spatial distribution of precipitation, as well as the heterogeneous spatial 

distribution of soil properties, land cover types and topographic elevations, there are significant variations 

in the spatial distribution of soil moisture (Tian et al., 2021). The estimation of soil moisture by the land 200 

surface model is adversely impacted by the uncertainties in atmospheric forcing, model dynamics and 

parameterization, leading to significant spatial variations in the accuracy of simulated surface variables 
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(Li, 2013; Li et al., 2020b). Furthermore, there are regional differences in the accuracy of the estimation 

of the observation error and the background error resulting from the single column assimilation, which 

ultimately contribute to the discontinuity of the abnormal spatial structure in the analyzed soil moisture 205 

field. 

And the new reference has been added to the revised manuscript: 

Tian, S., Renzullo, L. J., Pipunic, R. C., Lerat, J., Sharples, W., Donnelly, C.: Satellite soil moisture 

data assimilation for improved operational continental water balance prediction, Hydrol. Earth Syst. Sci., 

25(8): 4567-4584, https://doi.org/10.5194/hess-25-4567-2021, 2021. 210 

 

4. Section 3.1: It is indicated in line 230 that resolution of the soil moisture reanalysis data is 31 km, 

while line 235 states “increased to 9 km”. 

Response: 

Thanks for your valuable suggestion. The description of line 230 of the original manuscript has now 215 

been revised to “9 km”. In line 235, “increased to 9 km” means the resolution of ERA5-land is increased 

from 31 km (original resolution of ERA5) to 9 km. 

5. line 252: To demonstrate the benefit of the image assimilation and evaluate its advantages over 

traditional single point assimilation, if set J_O=0 in equation (5), authors should do one more set of 

experiments performing single point assimilation. Another option is to first do J(x) = J_B + J_O as 220 

conventional assimilation, and then do J(x) = J_B + J_O + J_I to see the benefit of the image assimilation. 

Response: 

Thanks to your valuable suggestion. According to your opinions, we have added a specialized 

section in the revised manuscript to facilitate a comparative analysis of the disparity in the effectiveness 

between the prevailing single point assimilation method and image assimilation method. The following 225 

analysis results have been added into the revised manuscript. Please refer to Line 419-458 for detailed 

information. 

 

3.4 The influence of image assimilation constraints 

Two sets of ideal experiments are designed to validate the impact of image assimilation and evaluate 230 

its superiority over traditional single column assimilation in adjusting the spatial distribution structure of 
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soil moisture. The ideal observational data for assimilation is the ERA5-Land reanalysis soil moisture. 

The first set corresponds to the conventional assimilation experiment, where 𝐽(") = 𝐽$ + 𝐽%, as described 

by Equation (5). Another set is image assimilation experiment, where 𝐽% = 0 in Equation (5), indicating 

that 𝐽(") = 𝐽$ + 𝐽&. 235 

The process of data assimilation entails leveraging the discrepancy between observed data and 

background field, in conjunction with a priori knowledge of observation error and background error, to 

derive an analysis field that closely approximates the true value. The primary challenge in single column 

assimilation lies in acquiring precise prior information regarding observation error. The spatial 

distribution of observation error for a specific single column assimilation experiment is illustrated in Fig. 240 

6. In consideration of the necessity for an ideal experiment, it is assumed that the observation error 

outside the China region is negligible, while a significant error is presumed within the China region, so 

as to emphasize the impact of observation error on assimilation results. 

 

Figure 6: Spatial distribution of observation errors. 245 

The spatial distributions of soil moisture for the ideal observation data and different experiments at 

0000 UTC on May 1, 2016 are given in Figure 7. The spatial distribution of surface soil moisture in 

ERA5-Land is illustrated in Fig. 7a. The northern Siberian region of the selected area exhibits a relatively 

high soil moisture content overall, with a ring-shaped distinct wet zone in the northwest. The central 

region stretching from Xinjiang to western Mongolia is a significant arid area. However, the soil moisture 250 

in the Tianshan Mountains is wet. The soil moisture of the Qinghai-Tibet Plateau region gradually 

decreases from west to east. The soil moisture in southern Qinghai, Hunan and Jiangxi is characterized 

by high level of saturation, while Gansu, Ningxia and Hebei experience relatively arid soil conditions. 

Figure 7b is the distribution of soil moisture in the control experiment (background field). It is evident 

that there are significant disparities in the spatial distribution of soil moisture when compared with the 255 
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reanalysis data. In the control experiment, a dry region extends from west to east in the northern area of 

Lake Baikal, while eastern Kazakhstan and central Inner Mongolia also exhibit arid conditions. 

Figure 7c shows the results of the single point assimilation experiment. The observation error 

outside the China region is relatively minimal, indicating a strong correspondence between the analysis 

field and the observation data, and the overall distribution also exhibits a high degree of conformity with 260 

the observation. The analysis field in China region, however, closely resembles the background field. 

Nevertheless, there is a significant disparity between the observed soil moisture and that of the 

background field, indicating a lack of adjustment based on observed information. 

Figure 7d is the assimilation results of the image assimilation ideal experiment. It is evident that 

image assimilation effectively adjusts the distribution pattern of soil moisture. The above-mentioned 265 

characteristics of moist soil moisture in the northwest region of the observation field, the arid region of 

Xinjiang and Mongolia, and the humid region of the Tianshan Mountains are all well reflected in the 

analysis field. 

 

Figure 7: Spatial distributions of surface soil moisture for (a) ERA5-Land, (b) CTL experiment, (c) 270 

analysis field of conventional assimilation experiment, and (d) analysis field of image assimilation 

experiment at 00:00 UTC on May 1, 2016. 


