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Abstract. Brown carbon (BrC) is an absorbing organic aerosol, primarily emitted through biomass burning, that exhibits 

light absorption unique from both black carbon (BC) and other organic aerosols (OA). Despite many field and laboratory 

studies seeking to constrain BrC properties, the radiative forcing of BrC is still highly uncertain. To better understand it’s 

climate impact, we introduced BrC to the One-Moment Aerosol (OMA) module of the GISS ModelE Earth system model 15 

(ESM). We assessed ModelE sensitivity to primary BrC processed through a novel chemical aging scheme, as well as 

secondary BrC formed from biogenic volatile organic compounds (BVOCs). Initial results show BrC typically contributes a 

top of the atmosphere (TOA) radiative effect of 0.04 W m-2. Sensitivity tests indicate that explicitly simulating BrC 

(separating it from other OA), including secondary BrC, and simulating chemical bleaching of BrC all contribute 

distinguishable radiative effects and should be accounted for in BrC schemes. This addition of prognostic BrC to ModelE 20 

allows for greater physical and chemical complexity in OA representation with no apparent trade-off in model performance 

as evaluation of ModelE aerosol optical depth, with and without the BrC scheme, against AERONET and MODIS retrieval 

data reveals similar skill in both cases. Thus, BrC should be explicitly simulated to allow for more physically based chemical 

composition, which is crucial for more detailed OA study like comparisons to in-situ measurement campaigns. We include a 

summary of best practices for BrC representation within ModelE at the end of this paper. 25 

1 Introduction 

Carbonaceous aerosols are important, short-lived climate forcers. Black carbon (BC), a strongly absorbing carbonaceous 

aerosol produced from fuel and biomass burning (BB), contributes a significant positive radiative forcing (RF) to the 

atmosphere (Hansen et al., 1997; Jacobson, 2001; Ramanathan and Carmichael, 2008; Bond et al., 2013). The Sixth 

Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (Calvin et al., 2023) estimates a BC effective 30 

RF of 0.11 W m-2 (Szopa et al., 2021). BB also emits organic aerosols (OA) (Ito and Penner, 2005), another type of 
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carbonaceous aerosol, which cool the atmosphere at an estimated RF of -0.21 W m-2 (Szopa et al., 2021). Beyond BB, 

secondary production is a key source of OA: isoprene and other biogenic or anthropogenic volatile organic compounds 

(VOCs) partition and react in the atmosphere to form secondary organic aerosols (SOA; Shrivastava et al., 2017; Mahilang et 

al., 2021).  35 

As warming temperatures and changes in precipitation drive increases in wildfire frequency and intensity (Flannigan et 

al., 2009; Keywood et al., 2013), and emission controls and cleaner technologies lead to a further reduction of other aerosol 

sources (Bauer et al., 2022), carbonaceous aerosols including OA could possibly become more prominent. Observations at 

Whiteface Mountain, downwind of the U.S. West coast BB region, have already shown an increase in OA found in cloud 

water over the last ten years, suggesting a growing influence of wildfire smoke (Lawrence et al., 2023). SOA from biogenic 40 

VOCs (BVOCs) are also expected to grow in importance; SOA burden could possibly be greater than that of sulfate aerosols 

by 2100 (Tsigaridis and Kanakidou, 2007). Despite their growing importance, OA still pose a large gap in aerosol modeling: 

the IPCC Sixth Assessment Report estimated an OA RF uncertainty of 0.23 W m-2, about the same magnitude as the cooling 

effect itself (Szopa et al., 2021). Improving the physical and chemical parameterization of OA in climate models can allow 

for better calculation of OA forcing. To make such an improvement, light absorption of brown carbon aerosols must be 45 

accounted for. 

Brown carbon (BrC) refers to the subset of OA that absorb light (Andreae and Gelencsér, 2006). Since the chemical 

composition, and therefore absorptivity, of these aerosols vary greatly, BrC can be best thought of as a classification of 

aerosols, rather than a specific compound or compounds class. Typically, BrC contains absorbing organic chromophores 

such as nitroaromatics, polyaromatic hydrocarbons (PAHs), or lignin-derived compounds (Samburova et al., 2016; Lin et al., 50 

2018; Fleming et al., 2020). It is emitted by smoldering fires and other incomplete combustion (McMeeking et al., 2009; 

Chakrabarty et al., 2010). Though its main source is BB, secondary BrC can form through gaseous and aqueous reactions as 

SOA (Lee et al., 2014). 

BrC has a spectrally-dependent absorption in the UV-to-visible wavelength range, strongly absorbing in the UV/near-UV 

but much less in the rest of the visible spectrum, hence its color and name (Andreae and Gelencsér, 2006; Laskin et al., 55 

2015). It is this absorption pattern that distinguishes BrC from BC, which is co-emitted by fires (Lack et al., 2012; Saleh et 

al., 2014; Pokhrel et al., 2016), as BC is a stronger absorber across all visible wavelengths and into the near-IR (Bond and 

Bergstrom, 2006). There are recent laboratory and field studies that have observed “dark BrC”, suggesting a distinct class of 

refractory, highly absorbing BrC (Hoffer et al., 2017; Saleh et al., 2018; Corbin et al., 2019; Chakrabarty et al., 2023), also 

co-emitted with BC, that can be best described as resembling tar balls (Pósfai et al., 2004; Alexander et al., 2008). Because 60 

there is limited observation and characterization of these aerosols, we have no way of knowing how to include their 

emissions as a portion of organics in ModelE. Additionally, initial work by Chakrabarty et al. (2023) suggests its single-

scattering albedo (SSA) and absorption Ångström exponent (AAE) are indistinguishable from that of BC. Given we have no 

knowledge of how to treat these aerosols, beyond the same as BC, we did not explicitly represent this subset of BrC. 



3 
 

Like most aerosols, BrC undergoes processing, or aging, in the atmosphere. Heterogenous oxidation by hydroxyl (OH) 65 

and nitrate (NO3) radicals can lead to functionalization of BrC compounds (Cheng et al., 2020; G. Schnitzler et al., 2020), 

while aqueous oxidation can form oligomeric BrC (Hems et al., 2020). These processes cause an increase in absorption, 

known as browning. Further oxidation by OH, photolysis, or ozonolysis result in fragmentation of BrC compounds and 

subsequent decreases in absorption, known as bleaching (Hems et al., 2021). Laboratory studies have shown that primary 

BrC undergoes browning followed by bleaching, while secondary BrC only bleaches (Zhao et al., 2015). Other properties of 70 

BrC can also change with chemical aging. Volatility typically decreases with functionalization (browning) and increases 

with fragmentation (bleaching). As a direct result of this chemical processing, molecular weight typically increases with 

browning and decreases with bleaching (Di Lorenzo and Young, 2016; Di Lorenzo et al., 2017).  

Most literature on BrC properties, such as composition, absorption, size, and atmospheric processing, has come from 

laboratory studies of BrC proxies or lab burns (Saleh et al., 2014; Di Lorenzo and Young, 2016; Liu et al., 2016; Tang et al., 75 

2016; Lin et al., 2018; Al Nimer et al., 2019; Shetty et al., 2019; Wong et al., 2019; Li et al., 2020a). In-situ BrC absorption, 

mass, and size distribution have been measured during flight campaigns like DC3 and SEAC4RS (Zhang et al., 2017), ATom 

(Zeng et al., 2020), WE-CAN (Zeng et al., 2021), and FIREX-AQ (Washenfelder et al., 2022; Zeng et al., 2022), in or 

downwind of fires. There have also been several studies that have retrieved BrC aerosol properties from observations outside 

of laboratories and flight campaigns. These studies utilized retrieval data from AERONET (Arola et al., 2011, 2015; 80 

Schuster et al., 2016) or IMPROVE (Chow et al., 2018) ground-based networks, as well as satellite retrievals (Li et al., 

2020b, 2022), relying on the differences in optical properties, or optical properties and size, between BrC and other 

absorbing aerosols, like BC and dust. 

There have been several studies that have modelled BrC in chemical transport models, all of which either use GEOS-

Chem (Park et al., 2010; Wang et al., 2014; Saleh et al., 2015; Jo et al., 2016; Wang et al., 2018; Tuccella et al., 2020; Carter 85 

et al., 2021; Zhu et al., 2021) or IMPACT (Feng et al., 2013; Lin et al., 2014). Only three studies have shown 

implementations of BrC in Earth system/climate models (Brown et al., 2018; Zhang et al., 2020; Drugé et al., 2022). Both 

Brown et al. (2018) and Zhang et al. (2020) simulated BrC using the Community Atmosphere Model within the Community 

Earth System Model (CESM), while Drugé et al. (2022) used the Centre National de Recherches Météorologiques (CNRM) 

climate model. Zhang and Drugé separately simulated BrC from other OAs. Zhang treated a prescribed portion of OA as 90 

brown, and Drugé assumed BB OA is brown and fossil fuel OA is non-absorbing. In contrast, Brown considered BrC and 

OA as all one species. All three studies included a bleaching parameterization for BrC, though none included a browning 

parameterization.  

In this study, we present the first implementation of BrC aerosols in the GISS ModelE Earth system model (Kelley et al., 

2020; Bauer et al., 2020). We introduced BrC into the One-Moment Aerosol (OMA) module of ModelE by defining four key 95 

properties or processes: BB emissions of primary BrC, formation of secondary BrC, optical properties of BrC tracers, and 

chemical aging of primary BrC. This constitutes an improvement in simulating OA absorption in ModelE, as BrC was 

previously not explicitly represented, and all OA were assumed to be slightly absorbing (Koch, 2001), consistent with other 
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treatments of OA (Chin et al., 2002; Kinne, 2019). The chemical aging scheme developed in this study (see Sect. 2.2.4) is the 

first to simulate aging through oxidant-driven mass-transfer between tracers of different optical properties, rather than the 100 

typical approach of parameterizing optical properties as a function of time in the atmosphere, allowing for the formation of 

more complex, realistic OA mixtures. This is also the first study to account for browning, in addition to bleaching, in a 

chemical aging scheme. We estimated the radiative effect of BrC aerosols and performed sensitivity tests to determine the 

extent each defined BrC parameter changes this. Instead of a direct evaluation of BrC, which requires comparison to flight 

campaign and retrieval data, extensive work that will be presented in a future study, we evaluated general model 105 

performance with BrC aerosols. To do this, we compared simulated total aerosol optical depth and absorbing aerosol optical 

depth to ground-based data from the Aerosol Robotic Network (AERONET) and satellite data from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) instruments. 

2 Model description and experiments 

2.1 The GISS ModelE Earth System Model 110 

This study used version 2.1 of the GISS ModelE Earth system model, ModelE2.1. The horizontal and vertical resolution of 

the atmosphere in ModelE2.1 is 2º in latitude by 2.5º in longitude with 40 vertical layers from the surface to 0.1 hPa. ModelE 

includes multiple aerosol schemes (Bauer et al., 2020). We used the One-Moment Aerosol (OMA) module, because it 

includes more detailed OA chemistry. OMA is fully interactive within ModelE in terms of emissions, chemistry, transport, 

removal, and climate. Aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI) are calculated within the 115 

radiation and cloud schemes, where the size-dependent scattering properties of clouds and aerosols are computed from Mie 

scattering. To account for aerosol swelling with water vapor, dry aerosol size, relative humidity, aerosol hygroscopicity and 

the refractive index of water are used, with Köhler theory as a base for calculation, to obtain wet aerosol radius and complex 

refractive index. Apart from swelling with water, there is no internal mixing in OMA radiative calculations–all aerosols are 

considered externally mixed. Wet aerosol size, as well as real and imaginary refractive index are then used to find 120 

corresponding aerosol scattering, asymmetry, and light extinction values in pre-calculated Mie look-up tables. These optical 

properties, computed for six wavelength bands in the shortwave (SW) and 33 in the longwave (LW), are used to calculate 

ARI (Bauer et al., 2010). With regards to ACI, OMA only includes the first indirect effect (Bauer et al., 2020). 

OMA is a mass-based scheme in which aerosols are assumed to have prescribed and constant size distributions. Aerosol 

components represented are sulfate, nitrate, ammonium, dust, sea salt, and carbonaceous aerosols. Carbonaceous aerosols 125 

include BC and OA, which are each separated into aerosols from non-BB anthropogenic and BB sources. OMA also 

simulates the formation of biogenic SOA, discussed further in Sect. 2.2.2. Within the original ModelE radiation, 

anthropogenic and BB OA, as well as SOA, are considered to have the same optical properties, with all organics treated as 

slightly absorbing in the UV-visible wavelength band using an imaginary refractive index (kOA) of 0.00567. Sea salt, 
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dimethyl sulfide (leading to methanesulfonic acid), isoprene (leading to SOA), and dust emission fluxes are calculated 130 

interactively, while all remaining anthropogenic and BB fluxes are prescribed by the Community Emissions Data System 

(CEDS; Hoesly et al., 2018). 

This study made use of both climatological and nudged, transient simulations. Climatological simulations were used to 

assess model sensitivity to BrC representation (see Sect. 2.3.1) and utilized CEDS emissions for aerosols from BB, as used 

in CMIP6 (Hoesly et al., 2018). CEDS BB emissions are identical to the Global Fire Emissions Database version 4 (GFED; 135 

van der Werf et al., 2017; McDuffie et al., 2020) for the year 1997-2014. Nudged, transient simulations were used to 

compare model output to AERONET and MODIS retrieval data (see Sect 2.3.2) and utilized the Global Fire Assimilation 

System version 1.2 (GFAS1.2) for BB aerosol emissions (Kaiser et al., 2012). GFAS1.2 was used, rather than other fire 

emissions inventories, as it allows for implementation of plume injection height in each grid cell, rather than the ModelE 

default of all BB emissions injected uniformly in the boundary layer, and also has daily emissions, instead of the monthly in 140 

CEDS (Freitas et al., 2007; Sofiev et al., 2012). It should be noted that, on average, globally, GFED4 OA emissions have 

been shown to be lower than GFAS1.2. Regionally, GFAS1.2 showed higher emissions in the Temperate North American 

(TENA), Southern Hemisphere South America (SHSA), Boreal Asia (BOAS), Southeast Asia (SEAS) and Equatorial Asia 

(EQAS) BB regions (Pan et al., 2020). This resulted in higher OA emissions in our transient simulations compared to our 

climatological simulations (approximately 25.9 Tg yr-1 vs 24.6 Tg yr-1, on average). Transient simulations were nudged 145 

towards 3-hourly winds prescribed by Modern-Era Retrospective Analysis for Research and Applications, version 2 

(MERRA-2; Gelaro et al., 2017). 

2.2 Brown carbon scheme 

To simulate BrC, we defined emissions, formation of secondary BrC, its optical properties and its chemical aging in the 

atmosphere. In this scheme, we consider total OA to consist of non-absorbing OA and BrC; any organic absorption is 150 

attributed to BrC. The following sections discuss our methodology for estimating parameters in each of these scheme 

components. Since BrC is a broad classification of aerosols, there is a large degree of variability in observed properties. As a 

result, the parameters we present here, though based on laboratory and field studies of BrC, are inherently uncertain. 

2.2.1 Emissions 

BrC was introduced as a new set of aerosol tracers into the OMA module of ModelE2.1. Primary BrC aerosols are emitted 155 

by attributing a proportion of BB emissions from OA to BrC. This is equivalent to assuming a certain proportion of BB OA 

are absorbing, rather than non-absorbing and completely scattering. This study used prescribed BB emissions from the 

CEDS fire emission inventory for sensitivity tests and GFAS1.2 for evaluation against AERONET and MODIS retrieval 

data. CEDS was employed in sensitivity tests for consistency with CMIP6, while GFAS was used for better accuracy of OA 

spatiotemporal variability (due to injection height and daily data, as previously mentioned) and therefore a better comparison 160 

with retrieval data. Though the current ModelE implementations of both emission inventories do not differentiate BB fuel 
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types, the mass ratio of absorbing to non-absorbing, or BrC-to-OA, emissions will vary globally with different vegetation 

biomes. For instance, Jo et al. (2016) estimated that croplands have the highest BrC-to-OA mass ratio, between 0.4 and 

0.946 depending on assumed aerosol AAE, woody savannahs and shrublands have the lowest, between 0.046 and 0.123, 

with forests falling somewhere in the middle (0.093-0.135 boreal, 0.088-0.211 temperate, and 0.128-0.312 tropical). To find 165 

a representative global value, we looked to emission ratios used by other BrC modeling studies in addition to estimating a 

ratio from CEDS emissions used in ModelE. Literature values of global average BrC-to-OA mass ratios vary between 0.15-

0.92, with an approximate average of 0.35 (Feng et al., 2013; Wang et al., 2014; Jo et al., 2016; Zhang et al., 2020).  

To determine our own value of BrC-to-OA mass ratio, BrC emissions (EBrC) were parameterized as a function of the 

global mean BC-to-OA BB emissions ratio from the CEDS inventory, following equation 1 (Saleh et al., 2014) and equation 170 

2 (Zhang et al., 2020): 

kBrC,550 nm= 0.016 log10 !
EBC
EOA
" + 0.03925,        (1) 

EBrC =
4π • !kBrC,550 nm" • EOA

ρ • 550 nm • MAEBrC(550 nm)
	,         (2) 

where EOA and EBC are OA and BC emissions in kgC, kBrC, 550 nm is the imaginary refractive index (RI) of BrC at 550 nm, r is 

the aerosol density in g m-3, and MAE is the mass absorption efficiency of BrC in m2 g-1–we use a value of 1 m2 g-1 175 

(McMeeking, 2008; Jo et al., 2016; Zhang et al., 2020). Since all organic absorption in our scheme is attributed to BrC, we 

use kBrC in place of the kOA specified by Saleh et al. (2014) for equation 1. It’s also important to note that emissions inputs for 

organic aerosols are in units of mass of carbon, while ModelE output, and most of this discussion, uses total organic aerosol 

mass. To convert between these, ModelE uses an organic carbon (OC) to OA ratio of 1:1.4 (Tsigaridis et al., 2014). Equation 

1 expresses BrC imaginary RI as a function of EBC to EOA ratio because fires with higher modified combustion efficiency 180 

(MCE), and therefore greater BC emissions, have been shown to produce more absorbing OA (Saleh et al., 2014; Liu et al., 

2020). As all organic absorption is from BrC, equation 2 uses the imaginary RI from equation 1, which indicates the extent 

of OA absorption, and a BrC MAE value to determine how much BrC emissions would be needed to account for this 

absorption. Using this, we calculated area-weighted global mean BrC emissions of 3.98e-13 kgC m-2 s-1. Given total OA 

emissions of 1.09e-12 kgC m-2 s-1, we got an average BrC-to-OA emitted mass ratio of 0.366. Since this is close to the 185 

average mass ratio used in other BrC modeling studies, we chose 0.35 as the proportion of BB OA emissions attributed to 

BrC, making up approximately 10% of total OA mass (0.11 Tg burden) in ModelE. This value served as a starting point 

from which we conducted model sensitivity tests, as described in Sect. 2.3.1. We also applied the parameterization described 

in equations 1 and 2 globally (see Fig. A1), looking at BrC-to-OA emissions ratio in each grid cell rather than the global 

average, and found that 0.15-0.55 (15-55% BB organic emissions are brown) captures the entire range of estimated ratios 190 

and should be explored in these sensitivity tests.    
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2.2.2 Secondary, biogenic brown carbon 

The formation of SOA from biogenic VOCs (BVOCs) was already represented in ModelE prior to this work. Briefly, 

BVOCs such as isoprene and terpenes are oxidized by hydroxyl and nitrate radicals, and ozone. A two-product model is 

utilized to account for VOC and reactive nitrate (NOx) conditions in SOA formation. This results in two aerosol species 195 

from each biogenic precursor–isoprene and a-pinene (representing terpenes). The yield within a model grid cell of the two 

products changes with NOx-to-VOC ratio (Tsigaridis and Kanakidou, 2007). 

To account for secondary BrC, the model radiation scheme was modified to consider the four biogenic SOA products 

separately from other OA. This ensured a distinct, non-zero imaginary RI could be assigned to each tracer, allowing them to 

be absorbing. The actual values of these RIs will be discussed in Sect. 2.2.3. With this configuration, brown SOA makes up 200 

approximately 50% of total OA mass (0.57 Tg burden). SOA formed from anthropogenic, aromatic precursors have also 

been shown to be absorbing in the atmosphere (Liu et al., 2016). Aromatic SOA are not yet represented in ModelE, since 

they are small contributors to the global OA budget (Tsigaridis and Kanakidou, 2003). Despite their smaller burden, 

aromatic SOA are typically more absorbing than biogenic SOA (Liu et al., 2016), creating a potential low bias in secondary 

BrC absorption. 205 

2.2.3 Brown carbon optical properties 

Imaginary RI in the visible wavelength band was the key property used to distinguish BrC from other OA in ModelE 

radiative transfer calculations. Imaginary RI determines to what extent our BrC tracers are absorbing. Given the primary 

purpose of this study is to improve representation of aerosol absorption, the real RI of BrC, which drives aerosol scattering, 

was kept the same as that of OA (nOA) in all ModelE radiation bands. Additionally, since BrC demonstrates limited 210 

absorption past 800 nm (Laskin et al., 2015), only the imaginary RI for BrC in the UV-visible (UV-VIS) radiation band 

(300-770 nm) was modified; the optical properties of BrC in all other radiation bands are the same as OA. The use of wide 

radiation bands, rather than distinct wavelengths, in radiation calculations poses a limitation for BrC representation: in the 

current implementation, ModelE is not able to capture the spectral dependence of BrC absorption in UV-VIS wavelengths, 

so a direct comparison of AOD and AAOD values from the literature at UV/near-UV wavelengths, where BrC absorption is 215 

maximized, is not possible without assuming an AAE. Instead, ModelE simulates one, spectrally weighted average value in 

the UV-VIS band, indicative of l=550 nm. In terms of radiative flux and forcing, using a spectrally weighted average for 

BrC RI and calculating mean forcing across the wider UV-VIS band is approximately equivalent to defining BrC optical 

properties in narrower wavelength bins, within the band, and summing bin forcing contributions. This is because, while BrC 

absorption increases into the UV, solar irradiance is much lower at shorter wavelengths, so resolving BrC radiative flux in 220 

the UV has limited impact on that of the total band. Thus, the use of one spectrally weighted RI should not pose a limitation 

for estimating the net BrC radiative effect. 
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Just as differing biomes produce different BrC-to-OA emission ratios, the imaginary RI of primary BrC varies with 

combustion conditions and fuel type (Fleming et al., 2020). In ModelE, however, only one imaginary RI can be defined for 

each wavelength band of a tracer for AOD and forcing calculations. We used two parameterizations to estimate a range of 225 

representative imaginary RI for BB BrC. The first parameterization consisted of two steps. First, it used the Kramers-Kronig 

(KK) relations for a damped harmonic (Moosmüller et al., 2011) to compute spectra of real RI (n) and imaginary RI (k) for 

absorbing matter at each wavelength in the UV-VIS between 350 and 770 nm. These relations are given by 

𝑛 = 1 + 𝑎 ν0
2-ν2

#ν0
2-ν2$

2
+(γ ν)2

 ,          (3) 

 230 

𝑘 = 𝑎  γ ν

#ν0
2-ν2$

2
+(γ ν)2

 ,           (4) 

where 𝑎 is a constant, g is a line width parameter, n is the frequency of incident light (c/l), and n0 (c/l0) is the resonance 

frequency of the oscillator. Sumlin et al. (2018) show that these relations can reproduce measurements for the imaginary RI 

of BrC peat smoke (kBrC). Figure 1 provides such a fit for measurements of smoke emitted from smoldering combustion of 

Alaskan peatland (sample AK 4-8” 5% MC from their study, 𝑎=4.554e29 s-2, g=2.605e13 s-1, l0=308 nm). Also shown in 235 

Fig. 1 is the solar spectral irradiance of the UV-VIS band, for reference. Taking the solar spectrum weighted average of these 

kBrC values gave an imaginary RI value of approximately 0.003 for the UV-VIS band.  

Sumlin et al. (2018) also show that the KK relations alone underestimate the real RI, nBrC, of BrC peat smoke. This 

problem can be solved by volume-mixing the KK results for the RI of smoldering peat smoke with the RI (nHM) of a non-

absorbing host matter (HM)–the second step in this parameterization. Choosing nHM = 1.50 with a volume-mixing ratio of 240 

fHM = 89% for our HM led to a good fit with nBrC spectra and maintained the fit of kBrC spectra in the UV-VIS part of the 

spectrum. Furthermore, taking the solar spectrum weighted average of these nBrC spectra, which ranged from nBrC, 350 nm=1.84 

to nBrC, 700 nm=1.49, led to a UV-VIS averaged nBrC ≈ 1.53, equal to the ModelE default nOA This supports our assumption 

stated above that the real RI of BrC is kept the same as that of OA in all radiation bands of ModelE. 
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 245 
Figure 1. Imaginary refractive indices (RI) across 300 to 770 nm range for the Kramers-Kronig (KK) parameterization (blue) and BC-to-

OA ratio parameterization (orange) used to estimate primary BrC UV-VIS band imaginary RI. Note, data for the first parameterization is 

only provided from 350 to 700 nm. KK parameters used here are 𝒂=4.554e29 s-2, g=2.605e13 s-1, l0=308 nm, and a BrC to non-absorbing 

host volume mixing ratio of 11%. These are applied to sample AK 4-8” 5% MC from Sumlin et al. (2018), shown as points along the blue 

line with data uncertainty displayed in error bars. The solar spectral irradiance of the UV-VIS band is also shown here (grey) for reference. 250 
The derived imaginary RI of secondary BrC is not displayed here as the MAE data used was not continuous across this wavelength range 

and resulting RI values are much lower than that of primary BrC (<0.002).  

The second parameterization is the same used to determine BrC emissions, where imaginary RI is a function of the BC-

to-OA emissions, in kgC, ratio from the CEDS inventory (equation 1). We calculated a spectral absorption exponent 

(Lyapustin et al., 2021; Go et al., 2022), expressed below as w, according to equation 5 (Saleh et al., 2015):  255 

w	= 0.21
	EBC
EOA

+0.7
 ,            (5) 

Our estimate of w, which defines the spectral dependence of BrC absorption, was 1.15. This is close to the average value in 

Saleh et al. (2014) of 1.6, and lower than other reported values of 3.9 (Kirchstetter et al., 2004) and 5.4-5.7 (Mok et al., 
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2016). Lower spectral dependence, using this parameterization, is correlated with higher BC-to-OA ratios and, therefore, 

higher imaginary RI (Saleh et al., 2014). This w value was then used to determine RI across all UV-VIS wavelengths 260 

(equation 6; Saleh et al., 2015): 

kBrC(λ)	= kBrC, 550 nm• !550
λ
"

w
 ,          (6) 

The resulting imaginary RI can also be seen in Fig. 1. A solar spectrum weighted average of values from this calculation, 

following equation 5, gave an imaginary RI of approximately 0.03. Imaginary RI of both 0.003 and 0.03 are consistent with 

the range of values used by other BrC modeling studies, with kBrC=0.003 representing weakly absorbing BrC at the bottom of 265 

the range, and kBrC=0.03 representing strongly absorbing BrC at the top of the range, as expected with a low w value (Feng et 

al., 2013; Lin et al., 2014). A moderately absorbing case was also defined at the midpoint of this range, with kBrC=0.0165.  

For biogenic SOA, we used values of MAE for isoprene and a-pinene SOA measured under both high and low NOx 

conditions from Liu et al. (2016) to calculate the imaginary RI. The two SOA tracers for each BVOC in ModelE do not 

directly correlate with high and low NOx. Rather, each tracer has a specified mass yield given NOx conditions at the time 270 

and location of formation. We converted these tracer mass yields to molar yields, then solved a system of equations to 

determine the MAE of each tracer: for either isoprene or a-pinene, the MAE of a low or high NOx SOA (from Liu et al., 

2016) was set to equal the sum of the two tracers’ low or high NOx molar yields multiplied by the respective tracer MAEs 

(solved for). The resulting MAE values were converted to imaginary RI according to equation 7 (Zhang et al., 2020): 

kSOA(λ)= MAESOA(λ)	• ρ	• λ
4π

 ,          (7) 275 

Solar spectrum weighted averages across all UV-VIS wavelengths were taken, and the resulting imaginary RIs can be seen 

in Fig. 2, along with RIs for primary BrC and other aerosol tracers, and are listed in Table A1, for reference. Other BrC 

properties defined in ModelE are listed in Table 1. 
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Figure 2. UV-VIS band averaged, complex refractive index of ModelE aerosol tracers. All BrC tracers have the same real refractive index 280 
as OA. 

Aerosol property BrC value 

Density 1.5 g/cm3 

Radius 0.2 µm 
Solubility (fraction of aerosol 
that dissolves) 0.8 

Hygroscopicity (k factor) 0.15 

Table 1. BrC physical properties used in ModelE. Each property is the same as other OA originally in ModelE (Koch, 2001). These values 

are consistent with estimates of BrC properties from previous laboratory studies and BrC reviews (Zhang et al., 2013; Lin et al., 2014; 

Laskin et al., 2015; Froyd et al., 2019). 

These physical properties were kept constant to maintain consistency with ModelE default OA representation and ensure 285 

no change in total organic mass burden with the introduction of the BrC scheme. The solubility of BrC, for example, is left at 

0.8, which is higher than some literature estimates (Laskin et al., 2015) but within reported ranges (Zhang et al., 2013), 

because a lower value would result in an increase in BrC, and therefore total OA, burden. An increase in organic mass, 

compared to the model default, would result in an increase in scattering and a substantial cooling effect, negating the purpose 

of the BrC scheme, which is to account for OA absorption and the subsequent warming effect. Thus, we changed only 290 

organic optical properties to represent BrC–total organic mass burden was not changed. 
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2.2.4 Chemical aging scheme 

Since the objective of this work is to capture OA absorption, we focused only on changing BrC optical properties with aging. 

As such, all properties in Table 1 are kept constant. To simulate the atmospheric processing of BrC, we created an oxidant-

initiated chemical aging scheme that does not require tracking the change in RI, and therefore absorption, over time. Instead, 295 

two aged BrC tracers were introduced in ModelE, in addition to the emitted one; one with higher absorption and one with 

lower absorption in relation to emitted BrC. The “browner” BrC is assumed to have 150% of emitted BrC absorption 

efficiency, while the less absorbing BrC is assumed to have 20%. The threshold value of 20% relative absorption was based 

on laboratory studies of oxidized BrC proxies (Fleming et al., 2020; Hems et al., 2021) and is close to the threshold value 

used in other modeling studies (Wang et al., 2018). 150% relative absorption is used as it’s near the middle of the range of 300 

reported photo enhancement in laboratory studies (Zhong and Jang, 2014; Hems et al., 2021). Iterative Mie calculations were 

used to determine what imaginary RI, varied from that of emitted BrC, produce the relative absorption efficiencies (150% 

and 20%) of each aged tracer. This was done for all three primary BrC cases described earlier–weakly, moderately, and 

strongly absorbing.  

BrC browning is represented as the transfer of emitted (primary) BrC mass to the more absorbing BrC tracer. This is 305 

followed by bleaching, with mass transfer from the more absorbing to the least absorbing BrC. Mass transfer between tracers 

occurs at a rate determined by a second order rate constant for each reaction of BrC with hydroxyl and nitrate radicals, and 

ozone (see Table A2). We used first order rate constants defined by Hems et al.’s (2021) kinetic model of BrC processing 

and their assumed concentrations of oxidants to calculate these second order rate constants. This chemical aging scheme is 

illustrated in Fig. 3. 310 
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Figure 3. Chemical aging scheme of primary BrC in GISS ModelE. The large arrow represents emission of BrC mass from BB while 

smaller arrows represent mass transfer between BrC types. 

The typical chemical lifetime of ModelE simulated emitted and “browner” BrC in this scheme are 9.36 hours and 6.79 

minutes, respectively, meaning the entire aging process occurs, on average, over about 10 hours. This is consistent in 315 

magnitude with atmospheric lifetimes predicted by laboratory studies, with browning occurring over several hours and rapid 

bleaching on the order of an hour or less (Zhao et al., 2015; Hems et al., 2021). Because hydroxyl radicals are only 

prominent during the day, and nitrate radicals during the night, the separate consideration of each of these oxidants allows 

for an oxidant-based diurnal simulation of BrC aging. Considering only the reactions occurring at night (nitrate browning 

and ozone bleaching), based on first order rates from Hems et al. (2021), we’d expect emitted BrC to have a chemical 320 

lifetime of about 40 hours, and “browner” BrC a lifetime of about 18 minutes, compared to 14.6 hours and 17 minutes, 

respectively, for just daytime reactions. This greatly extends the length of the total aging process, which is consistent with 

literature that has suggested a slow build-up of more absorbing BrC overnight (Li et al., 2020a). 

The total radiative effect of all three BrC tracers, considered together, represent the effect of BrC that has been emitted 

and then aged heterogeneously in the atmosphere. The design of this aging scheme is unique in global BrC modeling; no 325 

other studies have simulated browning, and all but one of those with bleaching parameterized BrC absorption to decay with 

time (Zhang et al., 2020), or time and hydroxyl concentration (Brown et al., 2018; Wang et al., 2018; Tuccella et al., 2020; 
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Carter et al., 2021), rather than simulating different types of BrC tracers. Drugé et al. (2022) is the only other BrC modeling 

study to simulate aging through the transfer of aerosols between bins with different optical properties, though they used a set 

lifetime, while we used local oxidant concentrations to determine rate of transfer (aging). 330 

Our aging scheme is missing two key processes. Firstly, it only represents heterogenous aging. While there is laboratory 

evidence that BrC also undergoes in-cloud processing (Hems et al., 2021), this has not yet been introduced in ModelE. The 

addition of in-cloud, also referred to as multi-phase, processing would likely accelerate the overall rate of BrC aging: 

according to Hems’ kinetic model, including aqueous reactions would shorten browning lifetime to approximately 3 hours 

and have limited effect on bleaching lifetime. Secondly, biogenic brown SOA do not currently undergo aging, though studies 335 

suggest bleaching of absorbing SOA occurs in the atmosphere at similar rates as primary BrC (Zhao et al., 2015; Liu et al., 

2016). Our current BrC aging scheme is incompatible with ModelE’s biogenic SOA parameterization: BrC is aged by 

moving mass from one tracer to another, but this violates the two-product model that produces SOA (Tsigaridis and 

Kanakidou, 2007). A different approach to chemical aging, one in which the semi-volatile nature of the aerosol is 

considered, must be developed to account for secondary BrC bleaching. Without this, we may be overestimating SOA 340 

contribution to BrC absorption: laboratory studies suggest aging reduces SOA absorption by at least 50% (Liu et al., 2016). 

As such, we plan to include SOA aging in future work. 

2.3 Model assessment 

This BrC scheme was assessed in two ways. First, an investigation of the radiative effect of BrC and its uncertain parameters 

used in ModelE, defined in the previous section, was performed through sensitivity tests. Next, ModelE simulated total 345 

aerosol properties, with BrC representation included, were evaluated through comparison to AERONET and MODIS 

retrieval data. This latter evaluation serves to contextualize ModelE BrC-included simulations and broadly assess the 

model’s ability to capture aerosol properties. The purpose of sensitivity tests of parameters and assessment of model 

performance for total aerosol properties was to understand the overall impact of BrC on ModelE ARI. With this 

understanding, ModelE with the BrC scheme can be used for more detailed, future studies of BB aerosols. 350 

2.3.1 ModelE BrC sensitivity tests 

We conducted sensitivity tests to quantify the radiative effect of BrC representation in ModelE as a function of a range of the 

uncertain parameters described in Sect. 2.2. The following BrC processes and parameters were investigated: BB emission 

fraction, inclusion of brown biogenic SOA, primary BrC optical properties and chemical aging of primary BrC. We varied 

these, changing just one property at a time, from what we consider the base case for representation: 35% of BB OA 355 

emissions are brown, biogenic SOA defined as brown, primary BrC with moderate absorption, and inclusion of both 

browning and bleaching processes. We also ran two simulations where BrC was not explicitly represented, one in which all 

organics are considered non-absorbing (our control case), and one in which all organics are somewhat brown with a non-zero 

imaginary RI, as is the default case for organics in ModelE. The details of each simulation are included in Table 2. 
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Simulation BrC 
Brown 
biogenic 
SOA 

kOA 
Primary 
BrC case 

kemitted 

BrC  

k150% abs 

BrC  
k20% abs 

BrC 

% OA BB 
emissions 
are brown   

Aging 
processes 

1 (control) No 
No 

0.0 
 

2 (default) Implicit 0.00567 
3 

Explicit 
 

0.0 
 

Moderate 0.0165 0.0293 0.00266 

35% Browning 
and 

bleaching 

4 

Yes 
 

Weak 0.003 0.00463 5.75e-4 

5 (base) Moderate 0.0165 0.0293 0.00266 

6 Strong 0.03 0.0653 0.00415 

7 

Moderate 
 

0.0165 
 

0.0293 
 

0.00266 
 

15% 

8 55% 
9 

35% 

None 

10 Bleaching 

11 Browning 

Table 2. BrC representation parameters for each sensitivity test simulation, where k is the imaginary RI of an aerosol in the ModelE UV-360 
VIS radiation band (300-770 nm). Simulations 1-2 are the two cases in which BrC is not explicitly represented, with 1 being the control 

case where no organics are brown and 2 being the current model default, where all organics are slightly brown. Simulation 5 is the base 

case for BrC representation, using parameters established in Sect. 2.2. Simulations 3 and 5 are identical except for their treatment of 

secondary BrC: either excluded (simulation 3) or included (simulation 5). Simulations 4 and 6 test the effect of changing primary BrC 

optical properties (compared to simulation 5). Simulations 7 and 8 (compared to simulation 5) test the effect of changing OA BB emission 365 
percentage considered brown. Simulations 9-11 (compared to simulation 5) test the effect of BrC chemical aging processes. 

The purpose of this testing, in addition to estimating BrC’s radiative effect, was to understand the relative importance of 

each of the BrC processes included in the model, and how sensitive model results are against a plausible range in each one of 

them. We should note that while the relative absorptions of aged BrC tracers are also uncertain parameters, we did not vary 

these in sensitivity tests, focusing first on the impact of simply including or excluding aging processes. 370 

All tests were run using climatological simulations representative of a decadal mean centered around the year 2000, using 

three years for spin-up and fifteen years for analysis. Results are reported as global averages over the 15-year analysis 

period, with standard deviation serving as a metric of the internal variability of the model. We calculated the direct radiative 

effect of BrC as the difference between a simulation and the control, top-of-atmosphere (TOA) radiative forcing (RF). 

ModelE RF is the difference between including a tracer in model radiation calculations and not, via double calls to model 375 

radiation, at every time step. This was done for each simulation i (see Table 2) other than the control, following equation 8:  

𝑅𝐸#$%,' = 𝑅𝐹()*,*+,,' − 𝑅𝐹()*,*+,,-.$/,         (8) 
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where RE is the direct radiative effect. This definition of radiative effect should be distinguished from effective radiative 

forcing, also commonly reported in modeling studies, which is the present-day radiative effect of a tracer compared to its 

pre-industrial effect, allowing the atmosphere to adjust to perturbations from that tracer (Hansen et al., 2005).  380 

We expect BrC aerosols to mainly impact ARI; ACI are likely only impacted marginally through the effect absorbing 

aerosols have on atmospheric stability and clouds, referred to as semi-direct effects. The interaction of aerosols on clouds via 

cloud condensation nuclei (CCN) changes are simulated in the model, but since BrC maintains the same solubility and 

hygroscopicity as other organics, and since we did not add organic mass to ModelE, we do not expect BrC representation to 

change CCN and have an impact on ACI discernible from simulation noise. Additionally, only the UV-VIS radiation band 385 

(300-770 nm) direct effect was considered, as BrC refractive indices mainly differ from other organics in this band, and we 

wouldn’t expect a radiative effect beyond it. 

2.3.2 Evaluation against global aerosol retrieval data 

We evaluated the model’s ability to capture total aerosol extinction and absorption when employing the new BrC scheme 

through comparison to retrievals of total aerosol optical depth (AOD) and absorbing aerosol optical depth (AAOD). This 390 

comparison was performed globally and regionally, in BB regions during peak fire months. We chose to focus on BB as it is 

a key source of BrC (Chakrabarty et al., 2010; McMeeking et al., 2009) and initial model results showed OA, including BrC, 

are concentrated in BB regions (see Fig. 4). 

 
Figure 4. Annual average of total OA (left) and BrC aerosol (right) column burden under base case BrC representation, as described in 395 
Sect. 2.2. Both maps demonstrate organic and BrC aerosols are concentrated in BB regions of the Amazon, central/southern hemisphere 

Africa, and southeast and equatorial Asia. As BrC aerosols consist of biogenic SOA, in addition to BB emissions, high concentrations are 

also apparent in regions with high emissions of BVOCs. Similarly, industrial organic emissions contribute to total organic aerosol 

concentrations outside of BB regions. This map represents an annual average of a climatological simulation, which is a decadal mean 
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centered around year 2000, so seasonal variations and emissions from BB regions that may have been prominent in certain years, like the 400 
western United States and Australia, are not visible. 

To further determine the effect of BrC in ModelE, beyond Sect. 2.3.1, this comparison was performed against a control 

simulation in addition to a simulation of the base case of BrC representation, where BrC parameters used were taken from 

simulations 1 and 5 in Table 2, respectively. The goal was to determine if BrC representation changes model performance 

against retrieval data. Unlike sensitivity tests which make use of climatological simulations, this comparison was done with 405 

nudged, transient simulations using MERRA2 meteorology, to allow a better match to the actual observed period, and 

GFAS1.2 BB emissions, as stated in Sect. 2.1. 

The Aerosol Robotic Network, or AERONET, consists of several hundred sun- and sky-scanning radiometers. Direct sun 

measurements and sky radiances are taken at typical wavelengths of 0.44, 0.675, 0.87, and 1.02 µm. AOD is a direct 

measurement product, while almucantar scans allow for size distribution and absorption retrieval products. We made use of 410 

Version 3, Level 2 (L2) inversion product data, which require, in addition to cloud screening, pairs of measurements with the 

same scattering angles to agree within 20%, at least 14 of these angular pairs to survive, and AOD at 0.44 µm (440 nm) to be 

greater than 0.4 for an AAOD retrieval to be considered. AAOD and AAE are linked to retrieved size-distributions and 

refractive indices through Mie theory or T-matrix theory and reported as column-integrated values (Sinyuk et al., 2020). The 

AOD measurements we used are coincident, meaning they were taken simultaneously with an almucantar scan. 415 

We compared monthly averages of AERONET L2 AOD and AAOD over a ten-year period, 2007-2016, to ModelE 

simulated clear-sky, UV-VIS band optical depth. Since a solar-spectrum weighted average of wavelengths in the UV-VIS 

band is approximately 550 nm, we used the AE and AAE provided in L2 data to calculate the AERONET optical depth 

values at 550 nm (Schuster et al., 2006). Monthly mean averages of AAOD were computed considering only months at a site 

with at least 10 days of daily averaged AOD440 nm > 0.4. Since retrieved AAOD values are highly uncertain with low AOD 420 

conditions, this aims to avoid considering months with too few, reliable AAOD measurements (Dubovik et al., 2000). In 

addition to AERONET retrieval data, we compared ModelE simulated AOD to column AOD at 550 nm from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite, over the same ten-year period of 2007-

2016. The benefit of using MODIS data, in addition to AERONET, is that it takes measurements over 36 spectral channels, 

allowing for better cloud screening and high accuracy over land and oceans (Levy and Hsu, 2015). We used Collection 6 425 

Dark Target and Deep Blue combined product from the Terra satellite, with a resolution of 1º by 1º, for this analysis. The 

Dark Target AOD product covers global oceans and dark surfaces of continents, such as vegetated areas, while the Deep 

Blue product includes retrievals over additional, brighter, land types (Levy et al., 2013).  

We focused on optical depth at 550 nm, rather than a shorter wavelength, because the purpose of this evaluation was to 

assess general model ability to capture total aerosol optical properties; essentially seeing if the BrC scheme improves or 430 

impairs overall model performance. For this reason, we worked within the current confines of ModelE radiation, which 

produces output in broad wavelength bands, as mentioned in sections 2.1 and 2.2.3, indicative of 550 nm in the UV-VIS 



18 
 

band. Analysis at a shorter wavelength would require assuming an Ångström exponent for ModelE BrC optical depth, 

introducing further uncertainty to the parameter space. We will do such analysis in a future study, where BrC absorption will 

be evaluated extensively.  435 

When narrowing analysis to peak BB regions and months, we looked at BrC emissions hotspots, Southern Hemisphere 

South America (SHSA), Southern Hemisphere Africa (SHAF), Southeast Asia (SEAS), and Equatorial Asia (EQAS) (Laskin 

et al., 2015), regions prone to BB and increasingly relevant in recent years, Temperate North America (TENA), Boreal North 

America (BONA), and Australia (AUST), as well as Boreal Asia (BOAS) to complement analysis of BONA (Fig. 5). 

 440 
Figure 5. Map showing the eight BB regions used in this study, following regionalization defined in Pan et al. (2020). 

The peak fire months for these regions are, broadly, boreal spring for BOAS and SEAS, boreal summer for TENA and 

BONA, and austral spring for SHSA, SHAF, EQAS, and AUST (Pan et al., 2020). The exact months considered to be peak 

fire periods for each region of analysis, as well as fire types that dominate in each region, can be found in Table A3. We did 

not consider the Northern Hemisphere Africa region in this focused analysis as any AOD comparisons would be strongly 445 

affected by dust, making the interpretation of BB-only results difficult.  

3 Results and discussion 

3.1 Changes in aerosol absorption and optical depth with BrC parameterization 

We used global averages of aerosol single-scattering albedo (SSA) from the model sensitivity tests to assess the effect of 

BrC representation on aerosol absorption in ModelE; lower SSA indicates more absorbing aerosols. There is almost no 450 

change–a decrease of 0.001–in the global average total aerosol SSA with the introduction of BrC aerosols, which is expected 

since global absorption is dominated by BC and dust. Additionally, there is limited observable change in the spatial 
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distribution of total SSA, and therein the spatial distribution of total AOD and total AAOD, across all sensitivity tests (see 

Fig. 6). 

 455 
Figure 6. (Top) Total aerosol SSA, in the UV-VIS band, in ModelE climatology simulation for base case of BrC representation (Sim. 5 in 

Table 2). Global distribution of SSA in the control case, with no BrC simulated and all organics treated as non-absorbing (Sim. 1 in Table 

2), is not pictured as it appears identical to that of the base case. (Bottom) Difference in total SSA between base and control case 

simulations. Only data at 95% confidence level or higher, with differences attributable to changes in OA treatment rather than random 

noise, are shown–remaining data is greyed out. Though there is no apparent change in spatial distribution of total SSA, there are small 460 
changes in SSA magnitude in regions where BrC and OA aerosols are highly concentrated (see Fig. 4). 

While BrC has a limited effect on total aerosol absorptivity, it does influence total OA absorption. In general, total OA 

SSA decreases with more absorbing organics, due to either greater amount or more absorbing BrC simulated. This can be 

seen in Fig. 7: compared to the control case where no BrC is represented and all OA is considered non-absorbing, SSA 

decreases when either a) secondary BrC is included; b) primary BrC changes from weakly to strongly absorbing; c) BrC-to-465 

OA BB emissions ratio increases; or d) primary BrC aging is excluded. 
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Figure 7. Global, annual average of total OA SSA, in the UV-VIS band, across sensitivity test simulations. The dashed bars show the base 

case simulation (this is shown twice for ease of comparison to other simulations). The effect of each varied property can be seen by 

comparing the simulated SSA to those of the control case and the base case. Error bars show the standard deviation of OA SSA and can be 470 
interpreted as the variability in each 15-year-long simulation. (Grey) Two simulations–control and default–where BrC is not explicitly 

represented. (Red) Properties and processes consistent with the base case except secondary BrC is not included. (Orange) Consistent with 

base case except for primary BrC RI which varies between weakly, moderately, and strongly absorbing cases. (Green) BrC-to-OA 

emissions ratio is varied, increasing from 15% to 55%. (Yellow) Primary BrC chemical scheme is varied, with no aging, only bleaching, 

and only browning simulated. 475 

For the latter case, considering only bleaching leads to the highest SSA of all aging sensitivities, because there is no 

“browner” BrC simulated. Additionally, since bleaching is a much faster process than browning, excluding browning allows 

primary BrC to move to the bleached state quicker: the chemical lifetime of primary BrC is reduced from 9.36 hours to just 

10.3 minutes. On the diurnal timescale, this is like BrC just bleaching in the daytime, rather than building-up and browning 

over several hours during the night. 480 

The model’s default case shows that assuming all OA is brown, where we do not separately represent BrC and apply one 

non-zero imaginary RI to all OA, results in the largest decrease in OA SSA. This default case, as well as the simulations with 

only browning as the chemical aging process, is not atmospherically realistic; only a fraction, not all, of OA have been 

observed to absorb light, and that absorbing portion has been observed, both in lab and field studies, to bleach (Cubison et 

al., 2011; Laskin et al., 2015; Junghenn Noyes et al., 2020, 2022; Hems et al., 2021). We include these cases in our analysis, 485 

in addition to all other sensitivity test simulations, to bound BrC uncertainty. 

Figure 8 shows BrC optical depth follows the same patterns as total OA SSA: inclusion of secondary BrC, moving from 

weakly to strongly absorbing cases, increasing BrC-to-OA emissions ratio, and removing bleaching increase BrC AAOD. 

BrC AOD only changes when more OA mass is considered brown.    
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 490 
Figure 8. (Top) Total BrC UV-VIS AOD across each sensitivity test. (Bottom) Total BrC UV-VIS AAOD. Error bars show the standard 

deviations (variability of each simulation across repeated years of simulation), different colored bars indicate a different BrC property 

varied, and dashed bars indicate the base case of BrC representation (shown twice for ease of comparison to other simulations), consistent 

with Fig. 7. ModelE default case is not displayed here as it does not explicitly simulate BrC, therefore no BrC optical depth could be 

calculated. 495 

3.2 Evaluation of ModelE optical depth against retrieval data 

Figure 9 shows the comparison of ModelE simulated aerosol optical properties, with and without the BrC scheme, against 

AERONET retrieval data. As described in Sect. 2.3.2, these are nudged, transient simulations with interannual variability, 

rather than climatological, and used GFAS1.2 BB emissions, rather than CEDS. This scatterplot comparison, as well as the 

linear regression analysis accompanying each plot, was done in the log10 space, rather than the linear space, as AOD is 500 

known to be approximately log-normally distributed and any statistical analysis should reflect that (O’Neill et al., 2000; 

Sayer and Knobelspiesse, 2019). 
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Figure 9. Simulated ModelE optical depth at 550 nm (spectrally weighted average of the UV-VIS band) plotted in the log10 space against 

retrieved AERONET optical depth. Each point corresponds to the optical depth of one month, averaged across the 2007-2016 period, at an 505 
AERONET site and in the corresponding grid cell in ModelE. ModelE control case optical depth values are shown as ‘x’s, while base case 

values are shown as ‘o’s. The slope and r2 of the linear regression are displayed on the top-right corner of each plot, and regression lines 

are included for all AOD plots. All AOD included are coincident. (Top left) AOD values at all available AERONET sites. (Bottom left) 

AOD in BB regions during months considered peak for BB, with each color representing a different region. (Top center) AOD at all 

available AERONET sites after AOD440 nm < 0.4 were removed. This is included to show corresponding AOD at the sites available for 510 
AAOD analysis (Bottom center) AOD in BB regions and months with AOD440 nm < 0.4 removed. Note TENA, BONA, BOAS, EQAS and 

AUST regions have been eliminated because of the AOD440 nm threshold. (Top right) AAOD values at all available AERONET sites after 

months with less than 10 days of AOD440 nm > 0.4 were removed. (Bottom right) AAOD, with the same filter applied as the top right plot, 

in BB regions and months. As in the bottom center plot, five BB regions have been eliminated 

Across all six plots, there appears to be limited difference between the ModelE control case and base case simulated optical 515 

depth, shown as x’s and o’s respectively. Linear regression analysis for both AOD and AAOD (their log10 values), on both 

the global and BB region scales, show minimal to no change in regression slope and r2 value when BrC is explicitly 
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simulated. This suggests similar model skill against AERONET, with or without BrC representation. Further, this supports 

results discussed in Sect. 3.1: total AOD and AAOD were found to have no apparent change across all sensitivity tests, 

including the control case. The lack of a change in total AOD with the addition of BrC is not surprising, as no new aerosol 520 

mass was introduced in the model. Additionally, OA and BrC have the same real RI, therefore scattering remains largely the 

same. Limited change in total AAOD is also expected as total AAOD is usually dominated by either BC or dust aerosols, as 

mentioned in section 3.1 and demonstrated in Fig. 10. 

 
Figure 10. Average over the 2007-2016 period of ModelE light-absorbing dust (left), BC (middle), and BrC (right) contribution to total 525 
UV-VIS AAOD in control (top) and base (middle) simulations, with each BB region of interest, identified in Sect. 2.3.2, outlined in black.  

(Bottom) Difference in dust and BC contributions between base and control cases. Relative contribution of BrC in BB regions appears to 

come from a greater reduction in that of BC, rather than dust. 

Of the BB regions that we’ve focused our analysis on, AAOD is dominated by BC in most (SHSA, SHAF, TENA, 

BONA, BOAS, and EQAS), while dust dominates in AUST, and both BC and dust dominate in SEAS. BrC seems to account 530 

for the majority of AAOD only over the Antarctic, where brown SOA in the remote free troposphere may be contributing 

more than dust or BC to the near-zero aerosol absorption occurring (Hu et al., 2013; Sand et al., 2017). It bears reminding 

that this comparison used retrieved AAOD at 550 nm, as that is the indicative wavelength of the ModelE UV-VIS 

wavelength band (see start of Sect. 2.2.3). If we were able to resolve total AAOD within ModelE at shorter wavelengths, for 

instance 365 nm, we would likely see BrC have a much larger relative contribution to total AAOD. This would particularly 535 

be the case over the BB regions currently dominated by spectrally flat BC absorption. Therefore, it is possible that model 
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performance between control and base case simulations would differ if we looked at UV/near-UV wavelengths, something 

we’re currently unable to do within the ModelE radiation scheme.  

Returning to Fig. 9, the left column demonstrates that, on both a global scale and within BB regions and months, ModelE 

tends to overestimate AOD relative to AERONET measurement, with greater overestimates at lower AOD values. The 540 

center column of Fig. 9 shows the same AOD data as the left column with the data coverage filter for AAOD applied: all 

AOD values at 440 nm below 0.4 were removed. With this filter, data from TENA, BONA, BOAS, EQAS and AUST are 

lost, along with the strong linear relationship between retrieved and simulated data. Despite this, we can still see the ModelE 

overestimation of AOD, as most data points fall above the one-to-one line. Finally, looking at the right column of Fig. 9, the 

AERONET and ModelE AAOD comparison shows a large spread of AAOD values with no apparent linear relationship. 545 

Though the model appears to underestimate AAOD in the SHAF region, as well as some sites in SHSA and SEAS, the 

limited sites with data make it difficult to draw any meaningful conclusions. Further, this data scatter is mostly caused by 

dust and BC, rather than BrC, which shows minimal variability in AAOD (see Fig. 8).  

Figure 11 shows the global distributions of the ModelE bias in AOD and AAOD, relative to AERONET, for the months 

of March and August. 550 
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Figure 11. Map of model optical depth bias, where each point corresponds to the difference in ModelE base case and AERONET optical 

depth, at 550 nm, at an AERONET site, averaged oved the 2007-2016 period, for the months of March (top row) and August (bottom 

row). March and August are displayed as, together, they overlap with the BB season of almost all regions of interest. 

This confirms the findings of Fig. 9: AOD bias maps show a global pattern of overestimation. While there is a limited 555 

number of sites in the AAOD bias maps, there does appear to be negative bias at some sites in the SHAF, SHSA, and SEAS 

BB regions. Again, due to the sparse data, no definitive conclusions can be drawn from this. 

Evaluation of ModelE optical depth against MODIS retrieval data supports the conclusions from that of AERONET. 

Firstly, there is no apparent difference between ModelE control case and base case simulated AOD when compared to 

MODIS, confirming that model skill is unchanged with BrC representation (see Fig. A2). ModelE also tends to overestimate 560 

AOD relative to MODIS, consistent with AERONET results. A comparison to MODIS data gives a clearer understanding of 

this model bias, as we get a global picture with better spatial coverage, shown in Fig. 12. 
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Figure 12. (Top) MODIS AOD at 550 nm averaged over the 2007-2016 period. (Middle) Average ModelE base case AOD, re-gridded 

through bilinear interpolation to match the 1º-by-1º resolution of MODIS data. Grid cells corresponding to those that do not have MODIS 565 
data are removed (shown in grey). (Bottom) Model AOD bias, calculated as the difference between ModelE base case and MODIS. Left 

column shows results for the month of March, while the right column shows results for the month of August, consistent with Fig. 11. BB 

regions of interest are outlined in black. 

In the bottom row, we can see a positive model bias over regions heavily influenced by sea salt aerosols, like the Southern 

Ocean, as well as over Northern Africa, which is influenced primarily by dust. Such bias in dust and sea salt aerosols was not 570 

observed in previous CMIP6 model evaluation with MODIS comparison (Bauer et al., 2020), but the ModelE radiation 

scheme has since been updated with a change in optical calculation, including a more accurate treatment of aerosol hydration 

using Köhler theory. The ModelE natural emissions haven’t yet been retuned following this change. This suggests that the 

model AOD overestimation is different from previous results due to a change in model parameterization, not the BrC scheme 

presented here. 575 
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A strong positive bias can be seen over SEAS in March, which falls in the BB season of the region. Similarly, a slightly 

weaker, though still prominent, positive bias can be seen over part of SHSA in August. Since this occurs during the BB 

season of each respective region, it may indicate an overestimation of BB emissions. EQAS appears to be the only BB region 

in which ModelE underestimates AOD: this can be seen as a slight negative bias over the region in Fig. 12 and is further 

supported by Fig. A2. Since this bias appears stronger in August, during the peak of EQAS BB activity, this may be due to 580 

an underestimation of emissions from peat burning, which dominates BB in the region (van der Werf et al., 2017). To 

summarize, this analysis has afforded interesting insight into ModelE AOD biases, suggesting that the observed differences 

between retrieved and simulated optical depth is largely a result of changes in model implementation rather than BrC 

representation. We do not expect these biases to overpower BrC-driven changes in total AOD, because the BrC contribution 

to total AOD is small–approximately 5% of average total AOD in the base case–and, as previously stated, there was no 585 

distinguishable change in total AOD across all sensitivity test simulations, including the control case. 

3.3 BrC radiative effect 

In the base case simulation, ModelE total OA radiative forcing (RF) is -0.42 ± 0.01 W m-2. This can be compared against the 

organic RF of the control and default cases of -0.46 ± 0.01 W m-2 and -0.32 ± 0.01 W m-2, respectively. Variabilities 

presented here are calculated as the standard deviation across repeated years of each simulated case. The introduction of 590 

absorption does not shift organic aerosols from negative to positive RF, since BrC is a weak absorber when integrated across 

a wide wavelength range. Instead, representation of BrC or the attribution of absorption to all organics result in a reduction 

of the total organic cooling effect. The direct radiative effect of BrC in the base case simulation, calculated according to 

equation 8, is 0.04 ± 0.01 W m-2. For reference, Table 3 shows the TOA, instantaneous direct RF of other ModelE simulated 

accumulation mode aerosols. 595 

Species Shortwave RF (W m-2) Longwave RF (W m-2) Net RF (W m-2) 

OA (control) -0.49 0.03 -0.46 

OA (default) -0.35 0.03 -0.32 

Sulfate -1.25 0.06 -1.19 

Nitrate -0.09 0.0 -0.09 

BC 0.25 0.0 0.25 

Table 3. Global annual average instantaneous TOA direct RF of ModelE aerosol species. Net RF was calculated as the sum of shortwave 

and longwave forcings. 

BC aerosols have a large, positive RF (all from the shortwave). This can be compared to BrC, which contributes a relatively 

small radiative effect. Figure 13 shows the global, spatial distribution of this BrC effect, which is consistent with maps of 

total organic and BrC aerosols (see Fig. 4). 600 
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Figure 13. Annual average of BrC radiative effect in W m-2, calculated according to equation 8. 

3.3.1 Comparison of BrC radiative effect with previous studies 

Our estimate of BrC radiative effect can be compared to similar BrC modeling studies. A wide range of radiative effects are 

reported across previous studies because of the variability in the treatment of BrC/OA absorption. Further, different studies 605 

use different metrics to quantify BrC’s impact on Earth’s radiative budget, with some reporting radiative effect as we have 

calculated, and others reporting instantaneous or effective RF. It’s important to keep these variable treatments and climate 

metrics in mind as they pose a limitation to direct comparison between modeling studies. To compare our scheme with 

literature values that report organic mass in TgC, we converted ModelE mass and emission output, in Tg OA, using the 

previously mentioned OC to OA ratio of 1.4. 610 

As stated previously, there are three studies that have implemented BrC in an Earth system model. Two of these studies, 

using CESM (Brown et al., 2018) and CNRM (Drugé et al., 2022), calculated BrC effective radiative forcing of ARI 

(ERFARI). Brown et al. (2018) calculated an ERFARI of 0.13 W m-2 without BrC bleaching and 0.06 W m-2 with bleaching, 

while Drugé et al. (2022) reported 0.029 W m-2 with bleaching. The lower ERF reported by Drugé et al. (2022) may be a 

result of the different treatment of BrC-to-OA fraction: Brown et al. (2018) treated all BrC and OA as the same, while Drugé 615 

et al. (2022) defined BB OA as BrC and fossil fuel OA as non-absorbing. Both studies used the same parameterization for 

imaginary RI (see equation 1), with a global average k550 nm around 0.02. Though we can’t directly compare these studies to 

ours, as they calculated ERF, our estimated BrC effect of 0.04 W m-2 is similar in magnitude, with small differences likely 

attributable to differing BrC treatments. Brown et al. (2018) had a slightly larger global average BrC burden of 1.56 mg m-2, 

compared to ours of 1.35 mg m-2, a larger imaginary RI compared to ours of 0.0165, and a subsequently larger BrC effect. 620 

While Drugé et al. (2022) similarly used an imaginary RI larger than ours, they did not consider SOA to be brown and 
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reported lower BrC emissions of approximately 1.73 Tg yr-1 compared to ours of 8.6 Tg yr-1 (or 6.14 TgC yr-1, given the 

ModelE OC to OA ratio of 1.4), resulting in a lower estimate of BrC effect. 

Zhang et al. (2020) is the third study to use an ESM, CESM in particular, and presented the most similar approach to 

ours: primary BrC was considered a fraction of OA, SOA was considered brown, and a photobleaching parameterization was 625 

used. They also used the same approach to calculate BrC direct radiative effect, allowing for a direct comparison to ours. 

Their treatment of BrC differed in that they used a BrC-to-OA emission factor of 23%, rather than 35%, considered aromatic 

SOA brown, rather than biogenic SOA, and used a higher imaginary refractive index of kBrC, 550 nm= 0.045, rather than our 

moderately absorbing case of kBrC, 550 nm= 0.0165. With this treatment, Zhang et al. (2020) calculated a BrC radiative effect of 

0.1 W m-2, which is larger than our base case estimate of 0.04 W m-2. This is likely due to the higher imaginary refractive 630 

index applied to both primary and secondary BrC: they reported similar BrC emissions of 6.7 TgC yr-1, and while our 

production of brown SOA is much larger than theirs (16.1 vs. 4.1 TgC yr-1), all ModelE SOA have imaginary RI less than 

0.002, much lower than their singular RI used. 

Other studies have estimated BrC instantaneous radiative effect using chemical transport models (CTMs)–either GEOS-

Chem or IMPACT. Though these studies all differ in their treatment of BrC, they can be grouped according to whether they 635 

consider all OA brown or treat BrC as a fraction of OA. Studies that do not differentiate between BrC and other BB OA 

report TOA BrC radiative effect between 0.048-0.57 W m-2 (Lin et al., 2014; Saleh et al., 2015; Wang et al., 2018), while 

studies that treat BrC as a fraction of OA report between 0.04-0.29 W m-2 (Park et al., 2010; Feng et al., 2013; Wang et al., 

2014; Jo et al., 2016; Tuccella et al., 2020; Carter et al., 2021). Our calculated radiative effect is at the lower end of this 

reported values range.  640 

3.3.2 ModelE sensitivity to BrC parameterization 

In all sensitivity cases, BrC representation produces a reduction in organic cooling, or an effective warming. The actual 

magnitude of this effect, however, varies across simulations. Figure 14 shows the direct radiative effect and variability, 

expressed as standard deviation, of each BrC simulation. 
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 645 
Figure 14. Global, annual average radiative effect of each BrC simulation, calculated according to equation 8. Error bars show the 

standard deviations, which can be interpreted as the variability of each simulation across repeated years of simulation. Different colored 

bars indicate a different BrC property varied, and dashed bars indicate the base case of BrC representation (this is shown twice for ease of 

comparison to other simulations), consistent with Figs. 7 and 8. 

Comparing the no secondary BrC case to the base case, we can see that attributing absorption to organic SOA has a clear 650 

warming effect, since the magnitude nearly triples. Excluding chemical aging processes or only including browning also 

have a strong warming effect, compared to the base case. Changing the optical properties of primary BrC, either to the 

weakly absorbing or strongly absorbing case, varying the BB BrC-to-OA emissions ratio, and including only bleaching 

rather than both browning and bleaching do not produce distinctly different radiative effects from the base case. Finally, the 

default case where all OA are slightly brown shows substantial warming relative to the base case where only some organics 655 

are considered brown. Referring to Figure 8, which shows BrC AOD and AAOD across the same simulations, we see that 

while AAOD is much smaller in magnitude, it is clearly the larger driver in changing simulation radiative effect. There is 
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also larger internal variability in BrC radiative effect, compared to BrC optical depth, which we attribute to variability in 

simulated meteorology. 

The sensitivity analysis presented in Fig. 14 shows that separating BrC from other organics through explicit 660 

representation, including secondary BrC, and simulating a chemical bleaching process all have a distinguishable effect on 

ModelE BrC warming. Thus, each of these properties should be accounted for in BrC representation, and they should be the 

primary target for future BrC lab and field research to better constrain them. Since the base case BrC chemistry, browning 

followed by bleaching, is indistinguishable from the only bleaching case, simulating browning appears unnecessary on the 

scale of global annual averages, if the only interest is BrC radiative effect. Such limited sensitivity to browning makes sense: 665 

BrC can only have a radiative effect when there is insolation, and browner BrC is short-lived during daytime, so bleaching is 

the dominant process with regards to radiative effect. This further suggests refining the relative absorption value of browned 

BrC, now 150%, may not be necessary for this scope of study. Additionally, variation in primary BrC refractive index and 

BrC-to-OA emissions ratio do not show distinguishable effects, suggesting it is not critical to define precise values for these 

properties. 670 

Since BrC effect has a strong spatial inhomogeneity (see Fig. 13), the analysis demonstrated in Fig. 14 was repeated 

within the BB regions and seasons discussed in Sect. 2.3.2. For examples of this analysis in the SHSA and AUST regions, 

see Figs. A3-4. Within BB regions, the BrC radiative effect across all test cases is larger, appearing to scale linearly from the 

global, annual effect. This makes sense, given BrC aerosols are more highly concentrated near BB sources and low 

elsewhere (see Fig. 4). Further, since there is no regional difference in defined BrC physical or optical properties, an effect 675 

proportional to the global average would be expected, with minimal differences resulting from regional SOA and oxidant 

concentrations (affecting concentration of secondary BrC and rate of primary BrC aging). It should be noted that narrowing 

the spatial and temporal scales of analysis also results in larger internal variability. As such, sensitivity tests are not 

distinguishable from one another, and no additional conclusions can be drawn from this regional analysis. 

3.4 Study limitations  680 

There are processes influencing BrC in the atmosphere that were not included in the work presented here, posing limitations 

to our estimate of BrC radiative effect. Firstly, chemical aging of secondary BrC was not simulated, despite laboratory 

studies showing secondary BrC undergoes bleaching. As mentioned in Sect. 2.2.4, our current BrC aging scheme does not 

account for the semi-volatile nature of SOA, and therefore cannot be used to bleach secondary BrC. This may cause the SOA 

contribution to BrC warming to be overestimated, as SOA absorption should decrease by at least 50% during the day, so we 685 

plan to include this in future work. Aqueous phase aging of BrC, which has faster rates of browning and similar rates of 

bleaching compared to heterogenous aging (Zhao et al., 2015; Hems et al., 2021), was also not included. Faster browning, 

with limited change in bleaching, may increase BrC-induced warming. On the global, annual scale of analysis presented 

here, however, it may not have a discernible effect, just as browning, which resulted in a build-up of more-absorbing BrC 

overnight, showed no distinguishable effect in sensitivity tests. 690 
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Another limitation of this scheme is that water-soluble and water-insoluble fractions of BrC were not differentiated or 

characterized with different optical properties and aging. This was done to be consistent with pre-existing OA representation 

in ModelE, as BB OA and biogenic SOA are not differentiated by solubility or hygroscopicity (Koch, 2001), and as 

mentioned in section 2.2.3, changes to prescribed BrC solubility affect total organic burden and skew estimates BrC radiative 

effect. Studies have shown, however, that water-insoluble BrC can be more absorbing than water-soluble BrC (Chen and 695 

Bond, 2010; Liu et al., 2013; Laskin et al., 2015; Satish et al., 2020). It is possible that chemical aging also differs between 

these two BrC types, for instance darker water-insoluble BrC being more resistant to bleaching, since reactions may proceed 

faster in aqueous phase (Hems et al., 2021). Accounting for these differences in BrC solubility types could change model 

sensitivity to refractive index and aging. Further study on aging in water-soluble and water-insoluble conditions could clarify 

the potential impact of not differentiating BrC by solubility within ModelE.  700 

While missing aging processes may cause an overestimation of the BrC radiative effect, there are some sources of BrC 

that weren’t introduced into ModelE, resulting in a possible underestimation of BrC absorption and, therein, radiative effect. 

SOA originating from aromatic precursors have been shown to absorb light (Liu et al., 2016). ModelE, however, doesn’t yet 

have aromatic gases explicitly represented, and therefore doesn’t have the ability to simulate aromatic SOA. Additionally, as 

mentioned in the introduction to this study, recent work has identified a darker, more refractory, less soluble subset of BrC 705 

closely resembling tar balls (Saleh et al., 2018). These aerosols have been shown to absorb not just in the UV-VIS 

wavelength range, but also in the near-IR (Hoffer et al., 2017; Corbin et al., 2019; Chakrabarty et al., 2023). Since our 

representation of BrC only accounts for absorption in the 300 to 770 nm range, this tar ball subset of BrC could constitute an 

important source of organic warming in longer wavelengths. Further attention should be given to the sources and optical 

properties of this subset, to allow for incorporation into climate modeling. 710 

4 Conclusions 

Carbonaceous aerosols like OA are expected to grow in importance as climate forcers, as wildfire frequency and intensity 

increase with climate change, yet OA forcing still contributes a large uncertainty (± 0.23 W/m2) to Earth system models 

(Flannigan et al., 2009; Keywood et al., 2013; Tsigaridis and Kanakidou, 2018; Szopa et al., 2021). To improve the physical 

and chemical correctness of OA, and allow for better calculation of OA forcing, light absorption of BrC aerosols must be 715 

accounted for in climate models. We presented the first implementation of BrC in the GISS ModelE ESM. BrC was 

introduced to ModelE through the definition of four properties or processes: BB BrC-to-OA emissions ratio, attribution of 

absorption to biogenic SOA, imaginary RI of primary and secondary BrC, and a unique chemical aging scheme for primary 

BrC. We conducted sensitivity tests in which these properties were varied to, firstly, estimate the average radiative effect of 

BrC and, secondly, understand how that effect may change across a reasonable range of uncertain parameters. Finally, 720 

ModelE performance with BrC aerosols was evaluated by comparing simulated total AOD and AAOD to retrieval data from 

AERONET and MODIS.  
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Both sensitivity tests and evaluation against retrieval data showed BrC has no discernible effect on total AOD and 

AAOD. There was no observable change in total AOD, AAOD, or therein SSA, between the control simulation with no BrC 

and all sensitivity test simulations. Further, comparison to retrieved optical depth showed similar model skill with and 725 

without BrC. Biases in ModelE AOD, namely an overestimation compared to retrieval AOD, were identified in this study, 

but these were attributed to changes in model implementation, not the BrC scheme presented here. While BrC did not change 

model performance in terms of optical depth, it did reduce the total cooling effect of OA, contributing a net TOA radiative 

effect of 0.04 ± 0.01 W m-2, based on the global annual average of our base case simulation. Therefore, the physical and 

chemical complexity introduced by BrC may not be necessary to improve ModelE AOD or AAOD performance, but it 730 

should be included to increase the accuracy of OA radiative forcing estimates. 

With regards to BrC parameters that were represented in this study, sensitivity tests showed that separating BrC from 

other organics, including secondary BrC, and simulating chemical bleaching all had distinguishable radiative effects and, as 

these properties are consistent with laboratory studies, should be accounted for. Because bleaching has been identified as a 

key process, the effect of varying the threshold absorption of primary BrC should be investigated in future work. Variation in 735 

primary BrC imaginary RI and BrC-to-OA emission ratio, as well as simulation of chemical browning, did not show 

distinguishable effects. This indicated that in the scope of global, annual average radiative effect, it is not critical to precisely 

define values for these properties and browning can be ignored. On smaller spatial and temporal scales, however, these may 

be of greater importance. Since model evaluation with total AOD and AAOD provided no insight into BrC properties, our 

next step is to further constrain this parameter space.  740 

There have been in-situ measurements of BrC absorption, in or downwind of fires, measured during flight campaigns 

(Zhang et al., 2017; Zeng et al., 2020, 2021; Washenfelder et al., 2022; Zeng et al., 2022) as well as retrievals of BrC 

properties, mass and optical depth, from the AERONET and IMPROVE ground-based networks (Arola et al., 2011, 2015; 

Schuster et al., 2016; Chow et al., 2018) and satellite data (Li et al., 2020b, 2022). These can be used to directly evaluate 

ModelE BrC representation. In a future study, which is already underway, we will present model evaluation against such in-745 

situ measurements of BrC absorption in addition to a retrieval of BrC AOD and AAOD from AERONET (Schuster et al., 

2016). We perform these comparisons either at 550 nm, when provided by the data, or at more BrC relevant wavelengths by 

applying AAE suggested by campaign PIs to ModelE output. By comparing these BrC specific data to that of ModelE, we 

hope to constrain the BrC parameter space defined here, specifically evaluate performance of BrC absorption, and further 

improve OA representation. 750 

5. Best practices for complexity of BrC representation in ModelE 

Based on the findings and conclusions of this study, we present best practices for representing BrC in ModelE. With the aim 

of balancing accuracy with computational cost, we specifically discuss the degree of complexity needed. This summary is a 

product of model sensitivity tests (see section 3.3.2); when the BrC radiative effect of test simulations is distinguishable, we 



34 
 

choose parameters based in literature analysis, which were identified and derived in Section 2.2. Our best practices for the 755 

ModelE scheme are inherently dependent on the research objective of simulating BrC aerosols.  

If the objective is to capture total AOD and AAOD at 550 nm, the irradiance weighted average wavelength in the solar 

spectrum, no explicit BrC representation is needed. However, the same cannot be said for capturing total optical depth at 

shorter, UV/near-UV wavelengths, where BrC absorption is maximized and likely contributes more to total AAOD. If the 

research objective is to estimate global, annual average TOA BrC radiative effect, BrC should be explicitly represented, 760 

biogenic SOA should be treated as brown (though much less absorbing than primary BrC), and a BrC bleaching process 

should be simulated. In this case, the BrC-to-OA emissions ratio and the imaginary refractive index of primary BrC at 550 

nm do not need to be strictly defined. We can instead apply a reasonable range for these parameters: 15-55% for BrC-to-OA 

BB emissions proportion and 0.003-0.03 for kBrC, 550 nm, derived in Sects. 2.2.1 and 2.2.3, respectively. Regarding regional 

studies of BrC radiative effect: though our regional sensitivity analysis yielded no additional conclusions, parameterizations 765 

for kBrC, 550 nm and BrC-to-OA emissions ratio can be tailored to specific BB regions given prior knowledge of regional BC 

and OA emissions. This would allow for a region-specific, likely narrower, range of parameters to be utilized. Finally, if the 

research objective is to capture the diurnal variability of OA absorption, a browning process should be included in addition 

to the processes and parameters for the global radiative effect case. Both browning and bleaching processes should be linked 

to and driven by hydroxyl and nitrate oxidant, as well as ozone, concentrations, to allow for the build-up of more absorbing 770 

BrC at night via nitrate oxidation and more rapid aging during the day.  

Code and data availability. The GISS ModelE code is publicly available at https://simplex.giss.nasa.gov/snapshots/; the 

most recent public version is E2.1.2. The Fortran code used for the simulations described in this study, along with model 

output and Alaskan peat sample input and fitted data (see discussion on “first parameterization” in Sect. 2.2.3), is available 

here: https://doi.org/10.5281/zenodo.8342620. Model code can be found in the file titled “modelE_code_092723.tar.gz”, 775 

model output is in the file titled “ModelESimAndEmisData.tar.gz”, and Alaskan peat data is in the excel file titled “KK 

Parameterization-AK Peat.xlsx”. Model simulation data are averaged over specified time periods and included as netCDF 

files; individual file names start with the period averaged over and end with the simulation type (“SensitivitySim{#}” or 

“transient_{ctrl/base}case”). The CEDS emissions file used for equation 1 (see Sect. 2.2.1), titled 

“CMIP6_CEDS_BBURNemis_forEq1.nc” is also included with this simulation data. MERRA-2 reanalysis data are available 780 

at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. AERONET data are available at https://aeronet.gsfc.nasa.gov/. Lastly, 

MODIS data are available at https://modis.gsfc.nasa.gov/.   
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Appendix A: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BrC Tracer Real refractive index (n) Imaginary refractive index (k) 

Weakly absorbing BrC: emitted 1.53  0.003  

Moderately absorbing BrC: emitted 1.53 0.0165 

Strongly absorbing BrC: emitted 1.53 0.03 

Isoprene SOA 1 1.53 2.28e-3 

Isoprene SOA 2 1.53 2.26e-3 

a-pinene SOA 1 1.53 9.01e-4 

a-pinene SOA 2 1.53 4.91e-4 

Table A1. UV-VIS band averaged, complex refractive index of ModelE BrC tracers. For details of the calculation of these values, see 

Section 2.2.3.   
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Aging process Oxidant Second order rate constant 

Browning 
OH 1.9e-11 cm3 molecule-1 s-1 

NO3 1.7e-13 cm3 molecule-1 s-1 

Bleaching 
OH 4.4e-11 cm3 molecule-1 s-1 

O3 9.15e-16 cm3 molecule-1 s-1 

Table A2. ModelE prescribed second order rate constant for each BrC aging reaction driven by atmospheric oxidants. Constants are 

derived from a kinetic model provided by Hems et al. (2021).  
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Biomass burning region Months considered peak 
biomass burning period Dominant fire sources 

Southern Hemisphere South America (SHSA) August, September, October Tropical deforestation/degradation; 
savanna/grassland/shrubland fires 

Southern Hemisphere Africa (SHAF) July, August, September Savanna/grassland/shrubland fires 

Temperate North America (TENA) June, July, August 
Temperate forest fires; 
savanna/grassland/shrubland fires; 
agricultural waste burning 

Boreal North America (BONA) June, July, August Boreal forest fires 

Southeast Asia (SEAS) March, April, May 
Savanna/grassland/shrubland fires; 
tropical deforestation/degradation; 
agricultural waste burning 

Boreal Asia (BOAS) March, April, May Boreal forest fires; agricultural waste 
burning 

Equatorial Asia (EQAS) July, August, September Peat fires; tropical 
deforestation/degradation 

Australia (AUST) September, October, November Savanna/grassland/shrubland fires; 
temperate forest fires 

Table A3. Months considered peak fire period for each biomass burning region in model evaluation against AERONET and MODIS data. 

Months are based on periods of peak emission as discussed in Pan et al. (2020), while dominant fire sources are taken from van der Werf 

et al. (2017) and listed in decreasing order of fire carbon emissions magnitude. 
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Figure A1. BrC-to-OA emissions ratio, calculated according to equations 1 and 2 using BC and OA emissions from the CEDS BB 

inventory (year 2000 climatological monthly emissions averaged over the entire year). White space shows where BC or OA emissions are 

zero.  
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Figure A2. Simulated ModelE optical depth at 550 nm plotted in the log10 space against retrieved MODIS optical depth. Each point 

corresponds to the optical depth in one month, averaged across the 2007-2016 period, in each grid cell (ModelE has been re-gridded to 

match MODIS’ 1º by 1º resolution). ModelE control case optical depth values are shown as ‘x’s, while base case values are shown as ‘o’s. 

The slope and r2 of the linear regression are displayed on the top-right corner of each plot, and regression lines are included within each 

plot. (Top) Global AOD values. (Bottom) AOD in BB regions during months considered peak for BB, with each color representing a 

different region.  
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Figure A3. Radiative effect of each BrC simulation, averaged within the Southern Hemisphere South America (SHSA) BB region across 

months of peak fire activity–August, September, and October (ASO; see Table A2). Consistent with Fig. 14, BrC effect is calculated 

according to equation 8. Error bars show the standard deviations (variability of each simulation across repeated years of simulation), 

different colored bars indicate a different BrC property varied, and dashed bars indicate the base case of BrC representation (shown twice 

for ease of comparison to other simulations), consistent with Figs. 7, 8, and 14. 
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Figure A4. Radiative effect of each BrC simulation, averaged within the Australia (AUST) BB region across months of peak fire activity–

September, October, and November (SON; see Table A2). BrC effect is calculated according to Equation 8, and displayed error bars, bar 

color, and dashed bars are consistent with Figs. 7, 8, 14, and A3. 
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