

1	Differential vulnerability of mineral-associated and particulate soil organic
2	carbon to nitrogen addition in a subtropical forest
3	
4	Jingqi Chen ^{a,b} , Qiufang Zhang ^{a,b,c*} , Hui Dai ^{a,b} , Jiguang Feng ^c , Quanxin Zeng ^{a,b} ,
5	Xueqi Sun ^{a,b} , Yuanzhen Peng ^{a,b} , Wenwei Chen ^d , Biao Zhu ^c , Yuehmin Chen ^{a,b*}
6	
7	^a School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China;
8	^b Fujian Provinical Key Laboratory for Subtropical Resources and Environment,
9	Fujian Normal University, Fuzhou 350007, China;
10	^c Institute of Ecology, College of Urban and Environmental Sciences, and Laboratory
11	for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871,
12	China;
13	^d Daiyun Mountain National Nature Reserve Administration Bureau, Quanzhou 362500,
14	Fujian, China
15	
16	* Corresponding Author: Qiufang Zhang and Yuehmin Chen
17	E-mail: qiufangzh@fjnu.edu.cn (Qiufang Zhang); ymchen@fjnu.edu.cn (Yuehmin
18	Chen)
19	Tel: +86-591-83483731; Fax: +86-591-83465397
20	

21 Abstract

22 Nitrogen (N) deposition rates of terrestrial ecosystems have gradually declined but are 23 still high in some areas, and previous studies have reported that N addition elicits 24 diverse impacts on soil organic carbon (SOC) pools. SOC can be divided into different 25 functional fractions, namely particulate organic carbon (POC) and mineral-associated 26 organic carbon (MAOC). The responses of these fractions to N addition should be 27 elucidated to better understand the changes in SOC pools. We investigated the effects 28 of N addition treatments $(+0, +40, \text{ and } +80 \text{ kg N ha}^{-1} \text{ yr}^{-1})$ in a subtropical *Castanopsis* 29 fabri forest to simulate N deposition. The surface (0-10 cm) SOC content in different 30 fractions, aboveground litter biomass, fine root (diameter < 2 mm) biomass, soil 31 exchangeable cation content, and soil enzyme activity under different N addition 32 treatments were measured. The results showed that 1) N addition exerted a positive 33 effect on POC content but did not significantly affect MAOC content. 2) POC content 34 was negatively correlated with pH and soil enzyme activity and positively correlated 35 with aboveground litter biomass, suggesting that POC accumulation was influenced by 36 aboveground litter input and microbial decomposition. 3) Root biomass was unaffected 37 significantly by the addition of N, which could be responsible for the limited response of MAOC to N addition. Furthermore, a close negative relationship was observed 38 39 between exchangeable Al³⁺ and Ca²⁺ or K⁺ contents, indicating the presence of a trade-40 off between negative effects of exchangeable cations on SOC bridging and their 41 positive effects on SOC adsorption, thus resulting in an insignificant reaction of MAOC 42 to N addition. Overall, N addition reduces the persistence and increases the nutrient 43 density of SOC, and MAOC with more protection is less vulnerable to N addition than 44 POC with less protection. By incorporating these nuances into ecosystem models, it is 45 possible to more accurately predict SOC dynamics in response to global change. 46

47

48 Keywords: carbon persistence; exchangeable cations; nitrogen addition; soil organic49 carbon fractions

50 1 Introduction

51 As the biggest carbon (C) sink in terrestrial ecosystems, the soil organic carbon 52 (SOC) pool is essential to the C cycle-climate feedback (Bradford et al., 2016). C and 53 nitrogen (N) cycles are considered tightly linked (Greaver et al., 2016; Cheng et al., 54 2019). Increased atmospheric N deposition resulting from excessive agricultural, 55 industrial, and urban development has adversely affected SOC quality and ecological 56 diversity in recent decades. This phenomenon has garnered notable attention from the 57 scientific community concerning its impact on SOC pool (Clark and Tilman, 2008). 58 Although the N deposition rate has gradually stabilized, it is higher in southeast China 59 than in other regions within the country (Yu et al., 2019). Several researches have 60 examined the effects of N addition on SOC and have reported that SOC pool may rise, 61 fall, or remain unchanged with N addition (Li et al., 2022; Wang et al., 2023; Wu et al.,

62 2023); overall, there is no unified conclusion on the effect of adding N on SOC.

63 Changes in plant C supply, SOC decomposition, microbial turnover, and 64 interactions between SOC and soil minerals all may affect the response of SOC to N 65 addition (Ye et al., 2018; Chen et al., 2021). Complex SOC composition may be the 66 reason for the varied responses of SOC to N addition (Six et al., 2002; Lugato et al., 67 2021). Recently, the theory that the chemical complexity of SOC primarily governs its 68 persistence has been criticized for lacking thermodynamic evidence and for neglecting 69 microbial accessibility to substrate components (Schmidt et al., 2011). On the contrary, 70 the mineral-aggregate protective mechanism is considered as an acceptable explanation 71 for SOC persistence. Based on particle size widely used in SOC fractionation, SOC can 72 be divided into particulate organic carbon (POC, >53 µm) and mineral-associated 73 organic carbon (MAOC, <53 µm) (Lavallee et al., 2020). Dividing SOC into different 74 functional fractions may better elucidate SOC dynamics under N addition (Chen et al., 75 2020; Lavallee et al., 2020). The majority of POC consists of plant components that are 76 readily decomposable (i.e., carbohydrates and aliphatic compounds), and it has a faster 77 turnover rate (Witzgall et al., 2021). MAOC, is primarily made up of low-molecular-

78 weight compounds (i.e., root exudates) and is shielded from breakdown by the chemical 79 bonds between SOC and minerals, as well as microaggregates; thus, MAOC has a 80 slower turnover rate (Poeplau et al., 2018) and is relatively stable (Lavallee et al., 2020). 81 Acidification is a common reaction of soil to N addition because of the 1) release 82 of H⁺ during nitrification, 2) release of H⁺ after plant uptake of NH₄⁺-N, and 3) leaching 83 of exchangeable cations (Tian and Niu, 2015). The different functional fractions of SOC 84 are susceptible to soil acidification. For instance, Rocci et al. (2021) elucidated that N 85 addition resulted in increased POC and MAOC levels, and attributed the accumulation 86 of POC to soil acidification-induced reduction in microbial biomass and SOC 87 decomposition rate (Riggs and Hobbie, 2016). Moreover, N addition can enhance plant 88 productivity (Feng et al., 2023), which may promote POC accumulation. According to 89 Angst et al. (2021), about 60% of MAOC comes from plants, and plant-derived 90 compounds are directly adsorbed onto soil minerals or aggregates (Craig et al., 2022), 91 which promotes MAOC formation. Conversely, studies have shown adverse effects of 92 N addition on POC and MAOC levels (Ye et al., 2018; Zhang et al., 2019; Chen et al., 93 2020). Guo et al. (2010) proposed that N addition reduced the production of microbial 94 necromass and did not support the stable soil aggregate formation. Therefore, in the 95 absence of physical barrier protection, POC is more easily decomposed by 96 microorganisms (Lehmann and Kleber, 2015), resulting in a reduction in POC content. 97 The size of MAOC pool is determined by the equilibrium between adsorption and 98 desorption rates of charged components (Wu et al., 2023). The fast leaching of cations 99 (e.g., Ca^{2+}) brought on by N addition changed the adsorption rate of C compounds on 100 mineral surface, which was not conducive for the formation of MAOC, thus affecting the persistence of SOC (Ye et al., 2018). Therefore, the mechanism of how POC and 101 102 MAOC react to N addition has not yet been determined.

103 We carried out a N addition experiment in a subtropical *Castanopsis fabri* forest
104 to investigate the effects of N addition on POC and MAOC as well as their underlying
105 mechanisms. The SOC fractions and various parameters, including aboveground litter

106	biomass, fine root biomass, soil enzyme activities, soil physicochemical properties, and
107	exchangeable cations were examined. Based on previous findings, we proposed two
108	hypotheses: 1) N addition promotes plant biomass and enhances C input, which may
109	promote POC accumulation; 2) N addition causes the loss of exchangeable cations (e.g.,
110	$\mathrm{Ca}^{2+}\!\!$) through leaching, affecting the bridge between SOC and polyvalent cations,
111	which may decrease MAOC content.
112	
113	2 Materials and methods
114	2.1 Study site
115	Daiyun Mountain National Nature Reserve in southern China's has been selected
116	as an experimental area (25.64°–25.73° N, 118.09°–118.34° E, 1800 m a.s.l.), which
117	has a typical subtropical oceanic monsoon climate. The reserve's average annual
118	temperature and rainfall are roughly 17.6 $^{\circ}\mathrm{C}$ and 1700–2000 mm, respectively, and
119	precipitation mainly occurs during March-September. The dominant tree species are
120	Castanopsis fabri. The understory vegetation includes Micheliamaudiae, Lindera
121	aggregate, Schima superba, and Ilex pubescens. The soil type is Ultisol according to
122	US Department of Agriculture soil order, with 45% sand, 33% silt, and 22% clay.

123

124 2.2 Experimental design

125 Based on the rate of atmospheric N deposition in the area reported earlier, we selected the following three treatments: control (CT, +0 kg N ha⁻¹ yr⁻¹), low-N addition 126 (LN, +40 kg N ha⁻¹ yr⁻¹), and high-N addition (HN, +80 kg N ha⁻¹ yr⁻¹). Each treatment 127 128 has four plots or replicates, with each plot measuring $10 \text{ m} \times 10 \text{ m}$ and having a 10-m 129 buffer zone between them. Beginning in early May 2020, urea (CO(NH₂)₂) was 130 consistently sprayed over the low-N addition and high-N addition plots using a 131 backpack sprayer after being dissolved in deionized water. On the control plots, the 132 same volume of deionized water was sprayed. We did not observe any marked 133 differences between basic physicochemical properties of the soils of different plots

134 before N addition. In December 2021, we used the five-point sampling method to 135 sample soil from each plot. The surface litter was removed, and the topsoil (0-10 cm)136 was collected from each plot. Each plot's samples were thoroughly combined, placed 137 in a low-temperature insulated box, and taken right away to the lab for further 138 processing. In the lab, the soil was sieved through a 2-mm screen after being freed of fine gravel, trash, and plant roots using tweezers. The sieved soil was partially stored 139 140 in a 4 °C refrigerator. Within one week, soil enzyme activity, microbial biomass, 141 mineral N were evaluated. The other soil was air-dried and the SOC fractions and soil 142 pH were examined. To quantify the soil physicochemical characteristics and 143 exchangeable cations (Table S1), a piece of the air-dried soil was filtered through a 144 mesh of 0.149 mm.

145

146 2.3 Soil physicochemical characteristics

Soil pH was measured using a glass electrode (soil: water; 1: 2.5) (Starter 300,
USA). After inorganic C was eliminated from the soil samples using 0.5 mol L⁻¹ HCl,
SOC and total N (TN) contents were measured using a CN analyzer (Elementar Vario
EL III, Germany). According to Vance et al. (1987), the chloroform fumigationextraction method was used to measure the amount of microbial biomass carbon (MBC).
Using a continuous flow on auto-analyzer (SKALAR San++, Netherlands), soil mineral
N was extracted in a 2 mol L⁻¹ KCl solution and quantified.

154

155 2.4 SOC fractions

SOC fractions were investigated using the physical fractionation (wet sieving) method described by Marriott and Wander (2006). Specifically, we weighed 20.0 g of dried soil samples into plastic bottles, and added 100 mL of sodium hexametaphosphate solution (5 g L⁻¹) to each sample. The mixture was first shaken for 18 h. Subsequently, the dispersion was transferred to a 53-µm sieve of a reciprocating shaker (AS200 control, Germany) with an amplitude of 3 cm, and the samples were subjected to 100

162	vibrations. A continuous flow of deionized water was used to flush the sieve to disperse
163	the SOC within aggregates. Meanwhile, a clean beaker was used to collect the sample
164	passing through the 53- μ m sieve. Soil samples collected on the sieve and in the beaker
165	were dried at 60 °C until their weight remained stable. The SOC content in each fraction
166	was evaluated using an elemental analyzer (Elementar Vario EL III, Germany). The
167	following equations were used to obtain the POC $(g kg^{-1})$ and MAOC $(g kg^{-1})$ contents:

168 Mass recovery (%) =
$$\frac{Mass_{POC} + Mass_{MAOC}}{Mass_{Bulk soi}} \times 100$$
 [1]

169
$$POC (g kg^{-1}) = \frac{(Mass_{POC} \times OC_{MAOC})}{Mass_{Bulk soi} \times Mass recovery/100}$$
[2]

170
$$MAOC (g kg^{-1}) = \frac{(Mass_{MAOC} \times OC_{MAOC})}{Mass_{Bulk soi} \times Mass recovery/100}$$
[3]

171 where $Mass_{Bulk}$ is the soil mass used for sieving (g), $Mass_{POC}$ and $Mass_{MAOC}$ are the 172 masses of the POC and MAOC fractions obtained after sieving (g), and OC_{POC} and 173 OC_{MAOC} are the C contents of POC and MAOC (g C kg⁻¹ fraction), respectively.

174

175 2.5 Exchangeable cations and soil enzyme activities

Soil exchangeable cations (K⁺, Na⁺, Ca²⁺, Mg²⁺, and Al³⁺) were extracted using 176 177 0.1 mol L⁻¹ BaCl₂, and their contents were measured using inductively coupled plasma 178 emission spectrometry (ICP-OES; USA). Activities of soil enzymes, including β-179 glucosidase (BG) and cellulolytic enzyme cellobiohydrolase (CBH), were measured 180 using the method reported by Saiya-Cork et al. (2002). We added 1.0 g of soil sample 181 and 125 mL of 50 mmol L⁻¹ acetate buffer solution to a triangular flask. The mixture 182 was homogenized for 5 min using a magnetic stirrer, and the supernatant was collected 183 as the test solution. In a 96-well microplate, the test solutions were applied to different 184 substrates (4-methylumbelliferyl-D-glucopyranoside and 4-methylumbelliferyl-D-185 cellobioside) to measure BG and CBH activity, respectively. A multi-purpose 186 microplate reader (SpectraMax M5, USA) equipped with 365 nm excitation and 450 187 nm emission filters was used to measure fluorescence.

188

189 2.6 Aboveground litter biomass and fine root biomass

- 190 In each plot, three litter traps $(1 \text{ m} \times 1 \text{ m})$ were installed approximately 1 m above the ground surface. Around the 20th of each month, litter was collected from the 191 192 Castanopsis fabri forest. Litter from the same plot (with three traps) was collected and 193 mixed in the laboratory. The collected litter was dried and weighed to determine the biomass. This process was continuously performed for one year. In December 2021, a 194 195 five-point sampling technique was used to collect fresh soil cores from each plot at a 196 depth of 0-10 cm, using a 3.5 cm-diameter soil auger. The diameter < 2 mm fine roots 197 in the soil cores were carefully selected and thoroughly washed, then dried at a constant 198 temperature of 60 °C, and finally weighed.
- 199

200 2.7 Statistical analyses

201 R 4.2.3 (R Core Team, 2023) and SPSS 27.0 (IBM, USA) were used to conduct 202 statistical analyses. One-way analysis of variance was examined to test the effects of N 203 addition on SOC fractions, soil physicochemical characteristics, exchangeable cations, 204 soil enzyme activities, aboveground litter biomass, and fine root biomass. The least 205 significant difference method was employed to compare treatment differences at a 206 significance level of P < 0.05. Principal component analysis was examined using the 207 "factoextra" package in R 4.2.3 to explore the influence of soil factors (exchangeable 208 cations contents), plant factors (aboveground litter biomass and fine root biomass), and 209 soil microbial factors (enzyme activities) on SOC fractions. Graphs were created using 210 Origin 9.1 software (OriginLab, USA).

211

212 3 Results

213 3.1 Responses of SOC fractions to short-term N addition

The POC content of soil samples was significantly affected by short-term N addition in a content-dependent manner (P < 0.01), but N addition did not exert any significant effect on the MAOC content (P > 0.05; Fig. 1a and 1b). Moreover, the

217	MAOC: POC ratio was significantly affected by N addition ($P < 0.01$), declining with
218	N addition (Fig. 1c).
219	
220	3.2 Responses of soil exchangeable cations and enzyme activities to short-term N
221	addition
222	N addition had a significant impact on exchangeable cation content, except for $\mathrm{Na}^{\mathrm{+}}$
223	content. Specifically, the Al^{3+} content of the low-N addition and high-N addition groups
224	was significantly higher than that of control group, whereas the $K^{\scriptscriptstyle +},Ca^{2\scriptscriptstyle +},$ and $Mg^{2\scriptscriptstyle +}$
225	contents were significantly lower than those of the control group ($P < 0.01$; Fig. 2).
226	With rising N-addition levels, soil enzyme activities (BG and CBH) reduced ($P < 0.01$;
227	Fig. 3).
228	
229	3.3 Responses of aboveground litter biomass and fine root biomass to short-term
230	N addition
231	N addition significantly affected the above ground litter biomass ($P < 0.01$). In
232	comparison to that in the control plots, the aboveground litter biomass in the low-N
233	addition and high-N addition plots was significantly risen by 17% and 28%,
234	respectively. In contrast, the fine root biomass was unaffected by the addition of N (P
235	= 0.33; Fig. 4).
236	
237	3.4 Analysis of key factors influencing SOC fractions changes
238	Principal component analysis revealed a significant positive correlation between
239	POC and above ground litter biomass ($R^2 = 0.48$), and significant negative correlations
240	between POC and soil exchangeable cations (Mg $^{2+},Ca^{2+},K^{+}),pH,$ and soil enzyme
241	activities (BG, CBH) ($R^2_{POC-Mg} = 0.73$, $R^2_{POC-Ca} = 0.52$, $R^2_{POC-K} = 0.57$, $R^2_{POC-pH} = 0.82$,
242	$R^{2}_{POC-BG} = 0.88, R^{2}_{POC-CBH} = 0.91$). Moreover, we found that a close negative connection
243	between Al^{3+} and Ca^{2+} or K^+ ($R^2_{Al-Ca} = 0.57$, $R^2_{Al-K} = 0.55$; Fig. 5).

244

245 4 Discussion

246 4.1 Positive response of POC to short-term N addition

247 Our results demonstrated that short-term low and high N additions increased POC content (P < 0.01; Fig. 1a). This is in line with previous findings (Riggs et al., 2015; 248 249 Chen et al., 2018; Chen et al., 2020) and confirms our first hypothesis. The positive 250 response of POC to N addition can be attributed to the following reasons (Fig. 6). First, 251 POC is predominantly formed by plant-based compounds (Cotrufo and Lavallee, 2022), 252 so the rise in POC content following the addition of N could be due to the increase in 253 the inputs of plant residues to soils. In our study, N addition enhanced aboveground 254 litter biomass considerably, but not fine root biomass. This result in combination with 255 the significant correlation between POC and above ground litter biomass ($R^2 = 0.48$, Fig. 256 5) suggested that N-induced increase in POC was mainly derived from plant 257 aboveground rather than belowground roots. Some previous studies suggested that POC 258 pool is mainly affected by plant belowground roots (Zhang et al., 2019; Sokol et al., 259 2019; Sun et al., 2023). However, this phenomenon may be not appliable to our study, 260 as N addition can enhance soil nutrient resources and decrease the proportion of 261 biomass allocation to belowground and thus the amount of belowground C inputs (Feng 262 et al., 2023). Second, the increase in POC may be also associated with the lower soil 263 enzyme activities under N additions, as soil enzymes are important drivers of SOC 264 decomposition (Liang et al., 2017). We found the significant decrease in soil enzyme 265 activity in the low-N addition and high-N addition plots (P < 0.01; Fig. 3), and a 266 significant negative relationship between soil enzyme activity and POC (R^{2}_{POC-BG} = 0.88, $R^{2}_{POC-CBH} = 0.91$; Fig. 4). This may be due to the leaching of soil exchangeable 267 268 cations, which decrease soil pH, thereby inhibiting soil microbial biomass and soil 269 enzyme activities (Averill and Waring, 2018), and reducing the decomposition and loss 270 of POC. Overall, the increases in POC content under N addition can be not only related 271 to N-induced increase in plant-derived C inputs but also related to N-induced decrease 272 in microbial decomposition activities.

273

274 4.2 Non-significant response of MAOC to short-term N addition

N addition had a neutral effect on the MAOC content (P = 0.27; Fig. 1b), such 275 result is contrary to our second hypothesis and previous studies (Lu et al., 2021; Rocci 276 277 et al., 2021). Chen et al. (2021) showed that microbial turnover to produce microbial necromass is thought to be a major driver of MAOC, and the undetectable change in 278 279 MAOC content might be regulated by maintaining an equilibrium between microbial 280 necromass input and microbial decomposition output. Here, we attributed the non-281 response of MAOC to N addition to the following reasons. First, previous studies have 282 shown that compared to aboveground litter, belowground roots make a greater 283 contribution to the persistence of SOC, as they can interact with soil minerals, 284 microorganisms, and aggregates right away after death (Wu et al., 2018; Whalen et al., 285 2021). However, fine root biomass was not influenced by N short-term addition, which 286 may be a reason for the lack of a marked response of MAOC to N addition in this study. 287 Second, the effect of N-induced soil acidification on adsorption and desorption of exchangeable cations, such as Ca²⁺, Mg²⁺, Fe³⁺, and Al³⁺, is also likely to be important 288 289 factors regulating MAOC changes (Sun et al., 2023; Tang et al., 2023). However, we 290 identified that few studies have reported the relationship between SOC pools and 291 exchangeable cations following N addition (Yu et al., 2017; Chen et al., 2020; Sun et 292 al., 2023). Specifically, Yu et al. (2017) demonstrated that fertilization promoted the 293 enrichment of aluminium and iron ions on the surface of soil particles, leading to 294 enhanced soil aggregation. This increased soil aggregation reduced the rate of soil 295 mineralization, potentially increasing MAOC storage and preservation (Waychunas et al., 2005). In contrast, Chen et al. (2020) have indicated that N addition had no 296 discernible effect on soil Al³⁺ content but decreased soil Ca²⁺ content (Chen et al., 2020; 297 Sun et al., 2023). The reduction in Ca²⁺ content could potentially lead to decreased 298 299 mineral sorption from microbial necromass and products, resulting in the depletion of MAOC content. In this study, a significant rise in soil Al³⁺ content and a simultaneous 300

decline in Mg²⁺, Ca²⁺, and K⁺ contents were observed following the addition of N (P <301 302 0.01; Fig. 2). Principal component analysis revealed a strong negative correlation between A1³⁺ and Ca²⁺ (or K⁺) ($R^{2}_{Al-Ca} = 0.57$, $R^{2}_{Al-K} = 0.55$; Fig. 5). In light of these 303 304 results, we suggest a new framework that the negative effects of leaching of 305 exchangeable cations on SOC bridging and the positive effects of exchangeable cation 306 dissolution on SOC adsorption may offset each other, leading to an insignificant 307 response of MAOC to the addition of N in this subtropical forest. Moreover, we 308 observed a decrease in MBC content under N addition (Table S1). Long-term changes 309 in microbial biomass may markedly affect MAOC by altering the adsorption of soil 310 minerals on microbial necromass or litters (Feng et al., 2022).

311

312 4.3 Effects of short-term N addition on SOC persistence

313 MAOC with a long turnover rate is critical for maintaining the persistence of SOC 314 (Kristensen et al., 2022). Although POC constitutes a smaller proportion of soil, its 315 faster turnover rate is essential for maintaining or improving soil fertility (Benbi et al., 316 2011). Compared with MAOC, POC has a lower density, contains more chemically 317 complicated compounds on average, and has a higher C: N ratio (Cotrufo and Lavallee, 318 2022). Here, the MAOC: POC ratio was significantly decreased with the addition of N 319 (P < 0.01; Fig. 1c), indicating that N addition reduces the persistence and increases the 320 nutrient density of SOC (Sokol et al., 2022). Similar findings have been published by 321 Tang et al. (2023). There was a strong positive relationship between POC and SOC by principal component analysis ($R^2 = 0.89$; Fig 5), suggesting that the change in SOC with 322 the addition of N was driven by a change in POC rather than MAOC. However, Lugato 323 324 et al. (2021) reported that POC in forest soils is susceptible to depletion under global 325 change. They recommended the implementation of coniferous forest management 326 strategies that are aimed at increasing plant inputs into the soil to counteract POC losses. 327 Overall, it is likely that the accumulation in POC under N addition will offset the loss 328 of POC with global change. A positive relationship between SOC loss and SOC

329	persistence was shown in Liang et al. (2023), suggesting that efforts should be directed
330	towards improving SOC persistence. Thus, we propose enhancing SOC persistence by
331	regulating soil exchangeable cations to facilitate mineral sorption of microbial
332	necromass and its products.

333

334 5 Conclusion

In this study, we elucidated that MAOC was less vulnerable to short-term N 335 336 addition than POC in a subtropical forest. The reason for the accumulation of POC 337 caused by N addition could be the combination of increased plant litter input and 338 decreased microbial decomposition. By contrast, short-term N addition did not exhibit 339 marked effect on MAOC. Such results could be related to cancellation of effects by the 340 lack of marked changes in fine root biomass and the adsorption and desorption of 341 organic molecules on the mineral surface. The marked decrease in MAOC: POC ratio 342 under N addition indicated that SOC persistence and nutrient density decreased. Overall, 343 our study links the responses of POC and MAOC to the plant-microbial-soil response, 344 providing insights into the mechanisms of SOC dynamics under ongoing N deposition 345 in subtropical forest ecosystems.

346

347

348 Data availability statement

349 The data that supports the findings of this study are available in the supplementary350 material of this article.

351

352

353 Authors' contributions

Qiufang Zhang, Yuehmin Chen and Jingqi Chen conceived and designed the study; Hui
Dai, Quanxin Zeng, Xueqi Sun, and Wenwei Chen collected the samples; Jingqi Chen
and Yuanzhen Peng analyzed the samples/data and wrote the manuscript with help from
Qiufang Zhang; Qiufang Zhang, Jiguang Feng, Biao Zhu, and Yuehmin Chen revised

358	the manuscript; all authors approved the final manuscript.
359	
360	
361	Competing interests
362	The authors declare that they have no conflict of interest.
363	
364	
365	Acknowledgements
366	This work was supported by the National Natural Science Foundation of China
367	(32101330 and 31988102) and the Opening Foundation of Laboratory for Earth Surface
368	Processes, Ministry of Education.
369	
370	
371	References
372	Angst, G., Mueller, K. E., Nierop, K. G. J., and Simpson, M. J.: Plant or microbial-
373	derived? A review on the molecular composition of stabilized soil organic matter,
374	Soil Biol. Biochem., 156, 108-189, https://doi.org/10.1016/j.soilbio.2021.108189,
375	2021.
376	Averill, C., and Waring, B.: Nitrogen limitation of decomposition and decay: How can
377	it occur, Global Change Biol., 24, 1417–1427, https://doi.org/10.1111/gcb.13980,
378	2018.
379	Benbi, D. K., Brar, K., Toor, A. S., Singh, P., and Singh, H.: Soil carbon pools under
380	poplar-based agroforestry, rice-wheat, and maize-wheat cropping systems in semi-
381	arid India, Nutr. Cycl. Agroecosys., 92, 107-118, https://doi.org/10.1007/s10705-
382	011-9475-8, 2011.
383	Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., and Crowther,
384	T. W.: Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim.
385	Change, 6, 751-758, https://doi.org/10.1038/nclimate3071, 2016.
386	Chen, H., Li, D., Feng, W., Niu, S., Plante, A., Luo, Y., and Wang, K.: Different

387	responses of soil organic carbon fractions to additions of nitrogen, Eur. J. Soil Sci.,
388	69, 1098–1104, https://doi.org/10.1111/ejss.12716, 2018.
389	Chen, J. G., Wen, X., Zheng, C. Y., and Zhu, B.: Nitrogen addition has contrasting
390	effects on particulate and mineral-associated soil organic carbon in a subtropical
391	forest, Soil Biol. Biochem., 142, 107708,
392	https://doi.org/10.1016/j.soilbio.2020.107708, 2020.
393	Chen, Y., Liu, X., Hou, Y. H., Zhou, S. R., and Zhu, B.: Particulate organic carbon is
394	more vulnerable to nitrogen addition than mineral-associated organic carbon in
395	soil of an alpine meadow, Plant Soil, 458, 93-103, https://doi.org/10.1007/s11104-
396	<u>019-04279-4,</u> 2021.
397	Cheng, S. J., Hess, P. G., Wieder, W. R., Thomas, R. Q., Nadelhoffer, K. J., Vira, J.,
398	Lombardozzi, D. L., Gundersen, P., Fernandez, I. J., Schleppi, P., Gruselle, M.,
399	Moldan, F., and Goodale, C.L.: Decadal fates and impacts of nitrogen additions on
400	temperate forest carbon storage: a data-model comparison, Biogeosciences, 16,
401	2771-2793, https://doi.org/10.5194/bg-16-2771-2019, 2019.
402	Clark, C. M., and Tilman, D.: Loss of plant species after chronic low-level nitrogen
403	deposition to prairie grasslands, Nature, 451, 712-715,
404	https://doi.org/10.1038/nature06503, 2008.
405	Cotrufo, M. F., and Lavallee, J. M.: Chapter One - Soil organic matter formation,
406	persistence, and functioning: A synthesis of current understanding to inform its
407	conservation and regeneration, Adv. Agron., 172, 1-66,
408	https://doi.org/10.1016/bs.agron.2021.11.002, 2022.
409	Craig, M. E., Geyer, K. M., Beidler, K. V., Brzostek, E. R., Frey, S. D., Stuart, G. A.,
410	Liang, C., and Phillips, R. P.: Fast-decaying plant litter enhances soil carbon in
411	temperate forests but not through microbial physiological traits, Nat. Commun.,
412	13, 1229, https://doi.org/10.1038/s41467-022-28715-9, 2022.
413	Feng, H. L., Guo, J. H., Peng, C. H., Kneeshaw, D., Roberge, G., Pan, C., Ma, X. H.,
414	Zhou, D., and Wang, W. F.: Nitrogen addition promotes terrestrial plants to allocate

- 415 more biomass to aboveground organs: A global meta-analysis, Global Change
- 416 Biol., 29, 3970–3989. https://doi.org/10.1111/gcb.16731, 2023.
- 417 Feng, J. G., He, K. Y., Zhang, Q. F., Han, M. G., and Zhu, B.: Changes in plant inputs
- 418 alter soil carbon and microbial communities in forest ecosystems, Global Change
- 419 Biol., 28, 3426–3440, https://doi.org/10.1111/gcb.16107, 2022.
- 420 Greaver, T. L., Clark, C. M., Compton, J. E., Vallano, D., Talhelm, A. F., Weaver, C. P.,
- 421 Band, L. E., Baron, J. S., Davidson, E. A., Tague, C. L., Felker-Quinn, E., Lynch,
- 422 J. A., Herrick, J. D., Liu, L., Goodale, C. L., Novak, K. J., and Haeuber, R. A.: Key
- 423 ecological responses to nitrogen are altered by climate change, Nat. Clim. Change,
- 424 6, 836–843, https://doi.org/10.1038/nclimate3088, 2016.
- 425 Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P.,
- 426 Goulding, K. W. T., Vitousek, P. M., and Zhang, F. S.: Significant acidification in
- 427 major Chinese croplands, Science, 327, 1008–1010,
 428 https://doi.org/10.1126/science.1182570, 2010.
- 429 Kristensen, J. A., Svenning, J., Georgiou, K., and Malhi, Y.: Can large herbivores
 430 enhance ecosystem carbon persistence, Trends Ecol. Evol., 37, 117–128,
 431 https://doi.org/10.1016/j.tree.2021.09.006, 2022.
- Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil organic matter
 into particulate and mineral-Associated forms to address global change in the 21st
 century, Global Change Biol., 26, 261–273, https://doi.org/10.1111/gcb.14859,
 2020.
- Lehmann, J., and Kleber, M.: The contentious nature of soil organic matter, Nature, 528,
 60–68, https://doi.org/10.1038/nature16069, 2015.
- 438 Li, O., Cui, K. K., Lv, J. H., Zhang, J. B., Peng, C. H., Li, Y. F., Gu, Z. K., and Song, 439 X. Z.: Biochar amendments increase soil organic carbon storage and decrease 440 global warming potentials of soil CH4 and N2O under N addition in a subtropical 441 Moso 9. 100054. bamboo plantation, For. Ecosyst., 442 https://doi.org/10.1016/j.fecs.2022.100054, 2022.

443	Liang, C., Schimel, J. P., and Jastrow, J. D.: The importance of anabolism in microbial
444	control over soil carbon storage, Nat. Microbiol., 2, 1-6,
445	https://doi.org/10.1038/nmicrobiol.2017.105, 2017.
446	Liang, G., Stark, J., and Waring, B. G.: Mineral reactivity determines root effects on
447	soil organic carbon, Nat. Commun., 14, 4962, https://doi.org/10.1038/s41467-023-
448	40768-у, 2023.
449	Lu, X. K., Vitousek, P. M., Mao, Q. G., Gilliam, F. S., Luo, Y. Q., Turner, B. L., Zhou,
450	G. Y., and Mo, J. M.: Nitrogen deposition accelerates soil carbon sequestration in
451	tropical forests, PNAS., 118, 16, https://doi:10.1073/pnas.2020790118, 2021.
452	Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P., and Cotrufo, M. F.: Different
453	climate sensitivity of particulate and mineral-associated soil organic matter, Nat.
454	Geosci., 14, 295–300, https://doi.org/10.1038/s41561-021-00744-x, 2021.
455	Marriott, E. E., and Wander, M. M.: Total and labile soil organic matter in organic and
456	conventional farming systems, Soil Sci. Soc. Am. J., 70, 950-286.
457	https://doi.org/10.2136/sssaj2005.0241, 2006.
458	Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M. F., Derrien,
459	D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M., Gunina, A., Haddix,
460	M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M., Soong, J., and Trigalet, S.:
461	Isolating organic carbon fractions with varying turnover rates in temperate
462	agricultural soils-A comprehensive method comparison, Soil Biol. Biochem., 125,
463	10-26, https://doi.org/10.1016/j.soilbio.2018.06.025, 2018.
464	Riggs, C. E., and Hobbie, S. E.: Mechanisms driving the soil organic matter
465	decomposition response to nitrogen enrichment in grassland soils, Soil Biol.
466	Biochem., 99, 54-65, https://doi.org/10.1016/j.soilbio.2016.04.023, 2016.
467	Riggs, C. E., Hobbie, S. E., Bach, E. M., Hofmockel, K. S., and Kazanski, C. E.:
468	Nitrogen addition changes grassland soil organic matter decomposition,
469	Biogeochemistry, 125, 203-219, https://doi.org/10.1007/s10533-015-0123-2,
470	2015.

471	Rocci, K. S., Lavallee, J. M., Stewart, C. E., and Cotrufo, M. F.: Soil organic carbon
472	response to global environmental change depends on its distribution between
473	mineral-associated and particulate organic matter: A meta-analysis, Sci. Total
474	Environ., 793, 148569, https://doi.org/10.1016/j.scitotenv.2021.148569, 2021.
475	Saiya-Cork, K. R., Sinsabaugh, R. L., and Zak, D. R.: The effects of long term nitrogen
476	deposition on extracellular enzyme activity in an Acer saccharum forest soil, Soil
477	Biol. Biochem., 34, 1309–1315, https://doi.org/10.1016/S0038-0717(02)00074-3,
478	2002.
479	Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.
480	A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P.,
481	Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic matter as
482	an ecosystem property, Nature, 478, 49-56, https://doi.org/10.1038/nature10386,
483	2011.
484	Six, J., Conant, R. T., Paul, E. A., and Paustian, K.: Stabilization mechanisms of soil
485	organic matter: implications for C-saturation of soils, Plant Soil, 241, 155-176,
486	https://doi.org/10.1023/A:1016125726789, 2002.
487	Sokol, N. W., Kuebbing, S. E., Karlsen-Ayala, E., and Bradford, M. A.: Evidence for
488	the primacy of living root inputs, not root or shoot litter, in forming soil organic
489	carbon, New Phytol., 221, 233-246, https://doi.org/10.1111/nph.15361, 2019.
490	Sokol, N. W., Whalen, E. D., Jilling, A., Kallenbach, C., Pett-Ridge, J., and Georgiou,
491	K.: Global distribution, formation, and fate of mineral-associated soil organic
492	matter under a changing climate: A trait-based perspective, Funct. Ecol., 36, 1411-
493	1429, https://doi.org/10.1111/1365-2435.14040, 2022.
494	Sun, T., Mao, X. L., Han, K. F., Wang X. J., Cheng, Q., Liu, X., Zhou, J. J., Ma, Q. X.,
495	Ni, Z. H., and Wu, L. H.: Nitrogen addition increased soil particulate organic
496	carbon via plant carbon input whereas reduced mineral-associated organic carbon
497	through attenuating mineral protection in agroecosystem, Sci. Total Environ., 899,
498	165705, https://doi.org/10.1016/j.scitotenv.2023.165705, 2023.

499	Tang, B., Rocci, K. S., Lehmann, A., and Rillig, M. C.: Nitrogen increases soil organic
500	carbon accrual and alters its functionality, Global Change Biol., 29, 1971-1983,
501	https://doi.org/10.1111/gcb.16588, 2023.
502	Tian, D. S., and Niu, S. L.: A global analysis of soil acidification caused by nitrogen
503	addition, Environ. Res. Lett., 10, 024019, https://doi.org/10.1088/1748-
504	9326/10/2/024019, 2015.
505	Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: An extraction method for soil
506	microbial biomass-C, Soil Biol. Biochem., 19, 703-707,
507	https://doi.org/10.1016/0038-0717(87)90052-6, 1987.
508	Wang, M. H., Li, F. C., Dong, L. L., Wang, X., Han, L. B., and Olesen, J. E.: Effects of
509	exogenous organic/inorganic nitrogen addition on carbon pool distribution and
510	transformation in grassland soil, Sci. Total Environ., 858, 159919,
511	https://doi.org/10.1016/j.scitotenv.2022.159919, 2023.
512	Waychunas, G. A., Kim, C. S., and Banfield, J. F.: Nanoparticulate iron oxide minerals
513	in soils and sediments: unique properties and contaminant scavenging mechanisms,
514	J. Nanopart. Res., 7, 409-433, https://doi.org/10.1007/s11051-005-6931-x, 2005.
515	Whalen, E. D., Lounsbury, N., Geyer, K., Anthony, M., Morrison, E., van Diepen, L. T.
516	A., Le Moine, J., Nadelhoffer, K., vanden Enden, L., Simpson, M. J., and Frey, S.
517	D.: Root control of fungal communities and soil carbon stocks in a temperate forest,
518	Soil Biol. Biochem., 161, 108390, https://doi.org/10.1016/j.soilbio.2021.108390,
519	2021.
520	Witzgall, K., Vidal, A., Schubert, D. I., Höschen, C., Schweizer, S. A., Buegger, F.,
521	Pouteau, V., Chenu, C., and Mueller, C. W.: Particulate organic matter as a
522	functional soil component for persistent soil organic carbon, Nat. Commun., 12,
523	4115, https://doi.org/10.1038/s41467-021-24192-8, 2021.
524	Wu, J. J., Zhang, D. D., Chen, Q., Feng, J., Li, Q. X., Yang, F., Zhang, Q., and Cheng,
525	X. L.: Shifts in soil organic carbon dynamics under detritus input manipulations in
526	a coniferous forest ecosystem in subtropical China, Soil Biol. Biochem., 126, 1-

527	10, https://doi.org/10.1016/j.soilb io.2018.08.010, 2018.
528	Wu, J. J., Zhang, H., Pan, Y. T., Cheng, X. L., Zhang, K. R., and Liu, G. H.: Particulate
529	organic carbon is more sensitive to nitrogen addition than mineral-associated
530	organic carbon: A meta-analysis, Soil Till. Res., 232, 105770.
531	https://doi.org/10.1016/J.STILL.2023.105770, 2023.
532	Wu, Z. F., Tang, Z. H., Yu, T. Y., Zhang, J. C., Zheng, Y. M., Yang, J. S., and Wu, Y.:
533	Nitrogen fertilization rates mediate rhizosphere soil carbon emissions of
534	continuous peanut monoculture by altering cellulose-specific microbes, Front. in
535	Plant Sci., 14, 1109860, https://doi.org/10.3389/fpls.2023.1109860, 2023.
536	Ye, C. L., Chen, D. M., Hall, S. J., Pan, S., Yan, X. B., Bai, T. S., Guo, H., Zhang, Y.,
537	Bai, Y. F., and Hu, S. J.: Reconciling multiple impacts of nitrogen enrichment on
538	soil carbon: plant, microbial and geochemical controls, Ecol. Lett., 21, 1162-1173.
539	https://doi.org/10.1111/ele.13083, 2018.
540	Yu, G. H., Xiao, J., Hu, S. J., Polizzotto, M. L., Zhao, F. J., Mcgrath, S. P., Li, H., Ran,
541	W., and Shen, Q. R.: Mineral availability as a key regulator of soil carbon storage,
542	Environ. Sci. Technol., 51, 4960-4969, https://doi.org/10.1021/acs.est.7b00305,
543	2017.
544	Yu, G. R., Jia, Y. L., He, N. P., Zhu, J. X., Chen, Z., Wang, Q. F., Piao, S. L., Liu, X. J.,
545	He, H. L., Gou, X. B., Wen, Z., Li, P., Ding, G. A., and Goulding, K.: Stabilization
546	of atmospheric nitrogen deposition in China over the past decade, Nat. Geosci., 12,
547	424-429, https://doi.org/10.1038/s41561-019-0352-4, 2019.
548	Zhang, H., Liu, Y. H., Zhou, Z. Y., and Zhang, Y. Y.: Inorganic nitrogen addition affects
549	soil respiration and belowground organic carbon fraction for a Pinus tabuliformis
550	forest, Forests, 10, 369, https://doi.org/10.3390/f10050369, 2019.
551	
552	

553 Figure captions

554

555 Fig. 1 Effects of N addition on the contents of particulate organic carbon (POC, a) and 556 mineral-associated organic carbon (MAOC, b) and MAOC: POC ratio (c). Boxes and 557 horizontal lines represent the quartile range and median, respectively, with lines 558 extending 1.5 times above and below the quartile range (n = 4). P represents the N 559 addition effect. Significant differences between various N addition treatments are shown by different letters above the boxes (P < 0.05). CT, LN and HN represent control, 560 561 low-nitrogen and high-nitrogen, respectively, and the corresponding N addition rates 562 are 0, 40 and 80 kg N ha⁻¹ yr⁻¹.

563

564

Fig. 2 Effects of N addition on the content of exchangeable cations (K⁺, **a**; Na⁺, **b**; Ca²⁺, **c**; Mg²⁺, **d**; Al³⁺, **e**) in soil samples. Boxes and horizontal lines represent the quartile range and median, respectively, with lines extending 1.5 times above and below the quartile range (n = 4). *P* represents the N addition effect. Significant differences between various N addition treatments are shown by different letters above the boxes (P < 0.05). CT, LN and HN represent control, low-nitrogen and high-nitrogen, respectively, and the corresponding N addition rates are 0, 40 and 80 kg N ha⁻¹ yr⁻¹.

572

573

Fig. 3 Effects of N addition on the activities of β-glucosidase (BG, **a**) and 1, 4-βcellobiohydrolase (CBH, **b**). Boxes and center lines represent the quartile range and median, respectively, with lines extending 1.5 times above and below the quartile range (n = 4). *P* represents the N addition effect. Significant differences between various N addition treatments are shown by different letters above the boxes (*P* < 0.05). CT, LN and HN represent control, low-nitrogen and high-nitrogen, respectively, and the corresponding N addition rates are 0, 40 and 80 kg N ha⁻¹ yr⁻¹.

581

582

583 Fig. 4 Effects of N addition on aboveground litter biomass (a) and fine root 584 biomass(b). Boxes and center lines represent the quartile range and median, 585 respectively, with lines extending 1.5 times above and below the quartile range (n = 4).

- 586P represents the N addition effect. Significant differences between various N addition587treatments are shown by different letters above the boxes (P < 0.05). CT, LN and HN588represent control, low-nitrogen and high-nitrogen, respectively, and the corresponding589N addition rates are 0, 40 and 80 kg N ha⁻¹ yr⁻¹.
- 590
- 591

Fig. 5 Principal component analysis of soil organic carbon fractions and other soil
parameters. POC: particulate organic carbon; MAOC: mineral-associated organic
carbon; SOC: soil organic carbon; MN: mineral nitrogen; Litter: aboveground litter
biomass; Root: fine root biomass; BG: β-glucosidase; CBH: 1, 4-β-cellobiohydrolase.

597

Fig. 6 Conceptual diagram representing how the soil organic carbon (SOC) fractions
in the subtropical *Castanopsis fabri* forest react to the addition of N. Notably, N
addition increases particulate organic carbon (POC) content but exerts no marked
influence on mineral-associated organic carbon (MAOC) content; however, it reduces
SOC persistence. The white up, down, and horizontal arrows represent the positive,
negative, and neutral effects of N addition, respectively.

604 Note: 1 N addition increases aboveground litter input, which enhances POC content. 2 N addition leads to soil acidification and inhibits soil enzyme activities. This 605 function potentially reduces POC decomposition, ultimately increasing POC content. 606 (3) Ca²⁺ and K⁺ leaching negatively affect SOC bridging, whereas Al³⁺ dissolution 607 positively influences SOC adsorption. These opposing effects may offset each other, 608 609 resulting in a scenario in which MAOC content experiences no marked changes upon 610 N addition. ④ Fine root biomass remains largely unaffected by N addition, 611 contributing to the protection of soil aggregates and, therefore, to the preservation of 612 MAOC content.

626 627

625

