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Abstract 22 
Black carbon-containing particles (BCc) are ubiquitous in ambient air, significantly 23 
contributing to particulate matter (PM) pollution. The unexpected outbreak of the 24 
COVID-19 pandemic in the summer of 2021 prompted a localized and prolonged 25 
lockdown in Yangzhou City, situated in the Yangtze River Delta, China. This lockdown 26 
led to significantly altering in local anthropogenic emissions, while neighboring cities 27 
continued regular operations, providing a unique opportunity for the investigation of 28 
BCc characteristics influenced by varying emission conditions. Single particle aerosol 29 
mass spectrometer (SPA-MS) analysis revealed a notable decrease in the proportion of 30 
freshly emitted BCc during the lockdown period (LD). However, we did observe a 31 
concurrent 7% increase in PM2.5 concentration during LD, with a higher proportion of 32 
aged BCc compared to the period before the lockdown (BLD). Evidence shows that 33 
regional transportation plays a vital role in the enhancement of PM2.5 during LD. 34 
Moreover, reactive trace gases (e.g., NOx, SO2, and VOCs) could form thick coatings 35 
on pre-existing particles likely via enhanced heterogeneous hydrolysis under high RH 36 
as well, resulting in significant BCc particle growth (~600 nm), as well as PM2.5, during 37 
LD. Our study highlights that short-term, strict local emission controls may not 38 
effectively reduce PM pollution due to the complex production and transmission 39 
characteristics of BCc and the non-linear responses of PM2.5 to its precursors. 40 
Achieving further effective PM2.5 reduction mandates a focus on nuanced control of 41 
BCc and necessitates a comprehensive and extensive approach with a regionally 42 
coordinated and balanced control strategy through joint regulation.  43 
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1. Introduction 44 

China has implemented long-term clean air measures to cut down anthropogenic 45 
emissions and improve air quality (Ge et al., 2020), resulting in a nationwide reduction 46 
of average fine particulate matter (PM2.5, aerodynamic diameter ≤ 2.5 μm) level from 47 
50 μg m-3 in 2015 to 30 μg m-3 in 2020 (Zhou et al., 2022). However, this PM2.5 48 
concentration remains significantly higher than the new World Health Organization 49 
(WHO) guideline value of 5 μg m-3 (WHO Global Air Quality Guidelines, 2021).  50 
 51 
Black carbon (BC) is a ubiquitous component of aerosols, typically constituting a small 52 
proportion (5~10%) of PM2.5 in the atmosphere (Chen et al., 2020). However, freshly 53 
emitted BC evolves into BC-containing particles (BCc) by undergoing atmospheric 54 
aging, contributing to a rise in the total mass of PM2.5 through processes of coating or 55 
embedding by other materials (Bond and Bergstrom, 2006; Peng et al., 2016). The 56 
number and mass fraction of BCc can excess 60% and 50% of PM2.5, respectively, 57 
emphasizing the significant role of BC in elevating the mass concentration of 58 
particulate matter (PM) (Sun et al., 2022; Xie et al., 2020; Chen et al., 2020).  59 
 60 
The atmospheric aging of BCc involves intricate chemical and physical transformations 61 
that influence their mixing state, morphology, hygroscopicity, and optical properties, 62 
all of which have profound implications for climate and human health (Bond et al., 63 
2013; Ramanathan et al., 2008). For example, freshly emitted BC particles are initially 64 
hydrophobic but possess a porous surface structure that facilitates the internal or 65 
external mixing with co-emitted primary organic/inorganic and secondary materials 66 
that are associated with BC (Cheng et al., 2012; Li et al., 2020). On the other hand, BCc 67 
undergoes continually aging processes, including the condensation of low-volatility 68 
vapors (Li et al., 2022), coagulation with preexisting aerosols (Kondo et al., 2011), and 69 
heterogeneous oxidation with gaseous pollutants (Zhang et al., 2024). This alteration 70 
may affect the coating thickness, morphology, size distribution, and hygroscopicity of 71 
BCc, thereby impacting their climate forcing as well as atmospheric lifetime (Luo et al., 72 
2022; Taylor et al., 2014). High loading of atmospheric BCc could also depress the 73 
development of the planetary boundary layer and exacerbate PM pollution episodes 74 
(Huang et al., 2018). BCc characteristics are influenced by various combustion sources 75 
and emission conditions, including local industrial burning, vehicle exhausts, 76 
residential coal burning, and biomass burning (Li et al., 2020; Sedlacek et al., 2022; 77 
Zhang et al., 2018), as well as long-range transport from other regions (Adachi et al., 78 
2014; Zhang et al., 2021). Those diverse conditions complicate the development of 79 
parameterizations of BCc properties, the insufficient understanding of complex 80 
emission sources, aging processes, and physical properties of BCc, hampering the 81 
effectiveness of air quality remediation (Cappa et al., 2019; Kahnert, 2010; Sun et al., 82 
2021).  83 
 84 
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Studies on the effects of large-scale and short-term stringent emission control events on 85 
air quality in China have been widely deployed, e.g., the 2008 Beijing Olympic Games 86 
(Wang et al., 2010; Zhou et al., 2010), the 2015 Asia-Pacific Economic Cooperation 87 
(APEC) (Zhu et al., 2015), the 2014 Nanjing Youth Olympic Games (Wang et al., 2022) 88 
and the national COVID-19 lockdown in 2020 winter (Huang et al., 2021; Le et al., 89 
2020; L. Li et al., 2020; Wang et al., 2020). Previous studies extensively investigated 90 
air pollutant variations during the COVID-19 lockdown in the winter of 2020 across 91 
different regions of the world. Stringent restrictions on industrial and vehicular 92 
activities have resulted in significant reductions in gaseous pollutants and particulate 93 
matter, not only in megacities (Chen et al., 2020; Jeong et al., 2022; Sun et al., 2020) 94 
but also in middle-sized cities (Clemente et al., 2022; Wang et al., 2021; Xu et al., 2020) 95 
and rural areas (Cui et al., 2021, 2020; Jain et al., 2021). Compared to the decreasing 96 
trends observed in most cities worldwide, the level of PM2.5 in Shanghai (Chang et al., 97 
2020), Hohhot (Zhou et al., 2022), and the Northeast of China Plain (Nie et al., 2021) 98 
increased unexpectedly. These observations reveal the complex aerosol chemistry of 99 
PM2.5 comprising primary and secondary components. The reduction of primary 100 
pollutants during lockdown resulted in a shift towards a higher proportion of secondary 101 
aerosols, including inorganic and organic species, exhibiting a non-linear response to 102 
emission changes (Zhang et al., 2021). Furthermore, some studies suggested that the 103 
increase in secondary aerosols during lockdown is due to the enhanced atmospheric 104 
oxidative capacity resulting from the rise in ozone levels (Y. Wang et al., 2021), 105 
unfavorable meteorological conditions (Chien et al., 2022; Sulaymon et al., 2021a), 106 
changes of local and regional emission sources (Feng et al., 2022). However, most 107 
previous studies focused on lockdown events during the cold seasons, and studies on 108 
summer lockdown events in China were very limited. 109 
 110 
Yangzhou is located in the central region of the Yangtze River Delta (YRD), at the 111 
junction of the Yangtze River and, the Beijing-Hangzhou Grand Canal, which serves as 112 
a prominent economic city, industrial-intensive area, and highly active inland shipping 113 
node in East China. Due to the complex emissions and feedback with the East Asian 114 
monsoons (Ding et al., 2019), this region is susceptible to anthropogenic aerosols, 115 
especially BCc originating from chemical, steelmaking, coal-fired, petrochemical 116 
enterprises, and transportation, etc. Extensive studies have investigated the responses 117 
of atmospheric pollutants to emission changes during the COVID-19 lockdown 118 
measures in the YRD (Chen et al., 2021; L. Li et al., 2020; Qin et al., 2021; K. Zhang 119 
et al., 2022). However, the key chemical and physical processes specifically responsible 120 
for the BCc in this region are still unclear. During the summer of 2021, Yangzhou 121 
experienced a resurgence of COVID-19 with over 500 confirmed cases. In response, 122 
stringent public health measures were imposed from July 28th to September 10th, 123 
including the closure of public transport, and suspension of non-essential industrial 124 
plants, restaurants, shopping malls, and entertainment clubs. People were also 125 
mandated to quarantine at home. Unlike the nationwide COVID-19 lockdown in China 126 
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during the cold season of 2020 (Le et al., 2020; Sulaymon et al., 2021b), the summer 127 
lockdown in Yangzhou was more localized but protracted, significantly altering local 128 
anthropogenic emissions while neighboring cities maintained regular operations, which 129 
provides a unique opportunity to explore and compare the diverse mixing states and, 130 
the aging process of BCc in different anthropogenic emission conditions in summer.  131 
 132 
Here we report the chemical compositions and aging characteristics of airborne BCc in 133 
YRD. Our investigation involved a combination of ground measurements, spaceborne 134 
observations, and mass spectrometric analysis conducted during the COVID-19 135 
lockdown in the summer of 2021 in Yangzhou. Additionally, we employed potential 136 
source contribution function (PSCF) analysis to investigate the air pollution patterns in 137 
the YRD.  138 
 139 

2. Methods 140 

2.1  Sampling site and instruments 141 
The in-situ online measurements were conducted at a rooftop laboratory 20 m above 142 
ground located in a national air quality monitoring station, Yangzhou Environmental 143 
Monitoring Center (32.41ºN, 119.40ºE), Yangzhou, China (Figure 1). This sampling 144 
site is a typical urban site surrounded by residential areas, arterial roads, parks, 145 
restaurants, and shopping centers. In this study, the measurement period was divided 146 
into three phases: the before-lockdown period (BLD: 30 June to 27 July 2021), the 147 
lockdown period (LD: 28 July to 9 September 2021), and the after-lockdown period 148 
(ALD: 10 September to 7 October 2021) (Figure 2).  149 
 150 
A single-particle aerosol mass spectrometer (SPA-MS, Hexin Analytical Instrument Co., 151 
Ltd., China) was deployed during the field campaign to obtain the chemical 152 
composition, size distribution, and mixing state of individual PM2.5 particles. A cyclone 153 
with a 2.5 μm cutpoint (Model URG-2000-30ED) and a Nafion dryer is equipped in 154 
front of the sampling inlet. Individual particles are introduced into the SPA-MS through 155 
a critical orifice at a flow rate of 3 L min-1. The vacuum aerodynamic diameters (Dva) 156 
are determined using the velocities derived from two continuous laser beams (diode Nd: 157 
YAG, 532 nm) spaced 6 cm apart. Subsequently, these particles are desorbed and 158 
ionized by a downstream pulsed laser (266 nm), and ion fragments are generated and 159 
measured by a Z-shaped bipolar time-of-flight mass spectrometer. A more detailed 160 
description of SPA-MS can be found in previous studies (Li et al., 2011).  161 
 162 
PM2.5 mass concentration was measured by a particulate matter monitor (XHPM2000E, 163 
Xianhe, China). Nitrogen oxides (NOx = NO + NO2), SO2, and ozone (O3) 164 
concentrations were detected with a set of Thermo Fisher Scientific instruments 165 
(Models 42i, 43i, and 49i). The concentrations of 103 volatile organic compounds 166 
(VOCs) in ambient air, comprising 57 ozone precursors (PAMS), 12 aldehydes and 167 
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ketones, and 34 toxic organics (TO15), were continuously monitored at hourly intervals 168 
using an online device (TH-300B, Tianhong, China). Meteorological parameters, 169 
including ambient temperature (T), relative humidity (RH), precipitation (PCP), wind 170 
direction (WD), and wind speed (WS) were observed synchronously using an automatic 171 
weather instrument (WXT530, Vaisala, Finland). All online data presented in this paper 172 
were hourly averaged at local time (Beijing time, UTC+8).    173 
 174 

2.2 Data analysis 175 
2.2.1 Satellite Product 176 
In this study, we utilized the Copernicus Atmosphere Monitoring Service (CAMS) 177 
Global Near-Real-Time dataset (available at https://developers.google.com/earth-178 
engine/datasets/catalog/ECMWF_CAMS_NRT), acquired from the European Centre 179 
for Medium-Range Weather Forecasts (ECMWF), to analyze the distribution of total 180 
surface column concentrations of NO2, SO2 and surface PM2.5 mass concentration. 181 
CAMS offers the capacity to continuously monitor the composition of the Earth's 182 
atmosphere at global and regional scales since 2016, with a spatial resolution of 44528 183 
meters (Benedetti et al., 2009; Morcrette et al., 2009). The details of the bands of the 184 
dataset used in this study are shown in Table S2. We calculated and plotted the averaged 185 
2-dimensional data of ECMWF/CAMS/NRT NO2, SO2, and PM2.5 during BLD and LD 186 
over the region of interest (17.93~54.74 ºN, 71.21~142.23 ºE) using Google Earth 187 
Engine (Gorelick et al., 2017). The integration of remote sensing measurements has 188 
provided a more comprehensive understanding of the sources and distributions of 189 
particle matter and gaseous pollutants facilitating the evaluation of the impact of human 190 
activities on air quality. 191 

2.2.2 Geographic Source Analysis 192 

The potential source contribution function (PSCF) analysis, based on the Hybrid 193 
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, can be employed 194 
to identify regional sources of air pollutants. Before conducting the PSCF analysis, 36 195 
hours of air mass backward trajectories with one-hour resolution at 500 m above ground 196 
level were calculated using the wind data from the Global Data Assimilation System 197 
(GDAS) provided by the National Oceanic and Atmospheric Administration (NOAA) 198 
(Wang et al., 2009). An open-source software MeteoInfo (Wang, 2014) was utilized for 199 
the PSCF analysis. The whole study area (110.1~133.4 ºE and 21.3~39.9 ºN) covered 200 
by the trajectories was divided into thousands of cells with a spatial resolution of 0.1° 201 
× 0.1°. The PSCF was simulated according to the following equation: 202 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖𝑖𝑖
                                                                    (1) 203 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖  is the conditional probability that the grid cell (𝑖𝑖, 𝑗𝑗) was a source of the 204 
species found in high concentration (Hopke et al., 1993); 𝑛𝑛𝑖𝑖𝑖𝑖  is the number of all 205 
trajectories passing through this grid cell, and 𝑚𝑚𝑖𝑖𝑖𝑖 is the number of trajectories. In this 206 
study, the pollution criterion values for different BCc particle types were set as the 75th 207 
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percentile of hourly average number fractions, respectively. To further improve the 208 
accuracy of the PSCF analysis and minimize analytical uncertainties, the Weighted 209 
PSCF (WPSCF) functions as shown in Equation (2~3) were applied (Polissar et al., 210 
1999). The weight (𝑊𝑊𝑖𝑖𝑖𝑖) for each grid cell was determined based on the number of 211 
trajectory endpoints (𝑛𝑛𝑖𝑖𝑖𝑖) as follows: 212 

  𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖                                                  (2) 213 

   𝑊𝑊𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧ 1.00                           𝑛𝑛𝑖𝑖𝑖𝑖 > 3𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎

 0.70       1.5𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 < 𝑛𝑛𝑖𝑖𝑖𝑖 ≤ 3𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎
 0.40             𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 < 𝑛𝑛𝑖𝑖𝑖𝑖 ≤ 1.5𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎
 0.17                           𝑛𝑛𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎

                               (3) 214 

Here, 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 is the average number of trajectory endpoints of each grid. 215 

2.2.3 SPA-MS Data Analysis  216 

In total, 1649574 particles were analyzed during the entire observation period. The size 217 
and chemical composition of single particles were analyzed using the Computational 218 
Continuation Core (COCO V1.4) toolkit in MATLAB 2022 (The MathWorks, Inc.). 219 
Our focus was on BCc, which was identified based on the relative peak area (RPA) of 220 
carbon ion clusters (C± 

n , n = 1, 2, 3, …), with a threshold of 0.05 (Zhang et al., 2021). 221 
An adaptive resonance theory-based neural network algorithm (ART-2a) was applied 222 
to classify the measured individual particles based on the presence and intensity of ion 223 
peaks, with a vigilance factor of 0.75, a learning rate of 0.05, and 20 iterations (Song et 224 
al., 1999). 225 
 226 

3. Results and discussion 227 

3.1  Field observations 228 
Figure 2 presents the temporal variations of meteorological parameters, PM2.5, NOx, 229 
and SO2 concentrations. Notably, PM2.5, NOx, and SO2 were significantly reduced at 230 
the end of BLD due to a high precipitation event, and the data collected during the 231 
precipitation were excluded from the data analysis. During BLD, the mean temperature 232 
(T) was 28±3 ℃, with an average relative humidity (RH) of 81±11%. The prevailing 233 
winds originated from the south and southeast, with a mean wind speed (WS) of 3.4±234 
0.9 m s-1. In comparison, LD shows a decline in temperature to 26±2 ℃ and WS to 2.3235 
±0.8 m s-1, but an increase in RH to 87±10%. Figure S2b and c present uniform 236 
distributions of RH and boundary-layer height (BLH) across the YRD during LD. The 237 
implication is that the resemblance of regional meteorological conditions in YRD and, 238 
the effective removal of the pollutants accumulated at the end of BLD, provides a 239 
favorable condition for investigating the regional transport of BCc during LD in 240 
Yangzhou. During ALD, the temperature declined to 25±3 ℃, the WS increased to 3.2241 
±1.4 m s-1, and RH decreased to a lower level of 75±15%. 242 
 243 
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Surface concentrations of NOx (19 μg m-3) and TVOC (56 μg m-3) were the lowest 244 
during LD compared to those of BLD and ALD, whereas the surface O3 concentration 245 
showed an increase of 13 μg m-³ (19%) during LD compared to BLD. The reduction of 246 
fresh NO emission alleviates O3 titration (Steinfeld, 1998) could be an explanation. 247 
Furthermore, analysis from Figure S3 indicates that the O3 level is higher than those 248 
of neighboring cities in the YRD, suggesting higher atmospheric oxidation capacity 249 
during LD. However, the average concentrations of PM2.5 (19.9 vs. 21.2 μg m-³), SO2 250 
(9.4 vs. 9.5 μg m-³), CO (0.61 vs. 0.64 mg m-3), and TVOC (58 vs. 56 μg m-³) were 251 
comparable during both BLD and LD (Figure 3). 252 
 253 
After LD, social activities gradually resumed in Yangzhou City, leading to an apparent 254 
increase in all observed pollutants during the ALD period. For instance, there were 255 
relative increases of 71% for NOx, 22% for SO2, 55% for TVOC, 30% for O3, 29% for 256 
PM2.5, and 17% for CO from LD to ALD, respectively(Figure 3). Given that both BC 257 
and CO are byproducts of incomplete combustion of carbon-containing fuels (Wang et 258 
al., 2015), and the high correlation between BC and CO (Zhou et al., 2009), it is 259 
plausible to infer that the primary emission source of BC during LD was different with 260 
that during ALD. 261 
 262 
Satellite-retrieved PM2.5, NO2, and SO2 data over the entire region of eastern China 263 
were also investigated, and results show that these pollutants were predominantly 264 
concentrated in Shanghai and its neighboring cities, including Yangzhou, during both 265 
BLD and LD (Figure S4). Figure 4 presents regional fractional changes, including 266 
Yangzhou, of mean PM2.5, NO2, and SO2 concentrations from the BLD to LD periods 267 
in YRD, all showing an increase of 29%, 6%, and 14%, respectively. In comparison, 268 
Yangzhou city experienced lower increases in these air pollutants, with slight changes 269 
of 6.0%, -18.0%, and -4.3% for PM2.5, NO2, and SO2, respectively. The implication is 270 
that, even though local primary emissions, such as NO2, and SO2, were reduced 271 
substantially during LD, they still could be affected by regional transport. Furthermore, 272 
as depicted in Figure S3, the concentrations of NO2 in major cities of the YRD were 273 
more than twice higher than in Yangzhou during LD, confirming a relatively lower local 274 
primary emissions due to the stringent lockdown. However, the higher level of SO2 in 275 
Yangzhou during LD may be attributed to the nearby power stations along the Yangtze 276 
River, which were not impacted by the lockdown measures. 277 
 278 

3.2 Chemical composition and size distribution of individual 279 

BCc 280 
Based on the SPA-MS analysis, a total of 1068362 BCc was collected during the whole 281 
study period. The BCc accounted for 59%, 69%, and 57% of the total number of 282 
measured particles in the BLD, LD, and ALD periods, respectively. Figure 5 shows the 283 
normalized average mass spectra of BCc during three periods. Ion height in each 284 
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spectrum reflects the number fraction of the detected BCc with the corresponding ion 285 
to the total BCc, while colors represent peak area ranges of detected ions. BCc in BLD, 286 
LD, and ALD shown similar mass spectra at m/z < 100, with common peaks including 287 
carbon ion clusters (C± 

n , n = 1~7), m/z 27[C2H3]+, 37[C3H]+, 43[C2H3O]+, 51[C4H3]+, 288 
63[C5H3]+, 46[NO2]−, 62[NO3]−, and 97[HSO4]−. However, the abundance of large m/z 289 
carbon ions (C± 

n , n > 7) in both BLD and ALD periods was 1.5 times higher than that in 290 
the LD. Previous studies have indicated that high-mass carbon ions may be linked to 291 
traffic emissions, particularly those from diesel trucks(Xie et al., 2020; Liu et al., 2019), 292 
and the observed reduction in such ions during LD suggests a decrease in local vehicle 293 
emissions. This trend is also consistent with the changes observed in aromatic 294 
compounds, e.g. m/z 119[C9H11]+. 295 
 296 
Further, BCc was classified into 12 types based on the differences in chemical features 297 
and temporal variations, as shown in Table S1. Fresh BC particles (BC-fresh) are those 298 
freshly emitted without undergoing significant atmospheric processing (Ding et al., 299 
2021). Five types of BC-fresh particles were identified according to their ion markers: 300 
(i) BC-pure is dominated by carbon clusters (C± 

n ) with minor ion signals of inorganic 301 
species, such as m/z 46[NO2]− and m/z 97[HSO4]− from nitrate and sulfate, respectively 302 
(Xie et al., 2020); (ii) BCc from biomass burning (BB) are characterized by ion signals 303 
at m/z 39[K]+, 45[CHO2]−, 59[C2H3O2]−, and 73[C3H5O2]−, with a relative peak area 304 
(RPA) more than 0.5 (Silva et al., 1999); (iii) coal combustion BCc (CC) typically 305 
include small carbon clusters (C± 

n , n = 1~4), metal elements (e.g., m/z 7[Li]+, 23[Na]+, 306 
27[Al]+, 56[Fe]+, 63[Cu]+ and 206/207/208[Pb]+), and organic carbon (38[C3H2]+, 307 
43[C2H3O]+) peaks in the positive mass spectrum, while the strong signals of secondary 308 
inorganic species (46[NO2]−, 43[AlO]−, 62[NO3]−, 80[SO3]−, 97[HSO4]−) in the 309 
negative ion mode suggest that CC particles were long-distance transported or more 310 
processed (Zhang et al., 2022; Zhang et al., 2009); (iv) particles from vehicle emission 311 
(VE) are characterized by the presence of ion signals at m/z 40[Ca]+, 51[V]+, 55[Mn]+, 312 
67[VO]+, 46[NO2]−, 62[NO3]−, and 79[PO3]−, as well as high loadings of organic 313 
carbon (41[C3H5]+, 43[C2H3O]+) and carbon clusters (C± 

n , n = 1~4) ion peaks (Yang et 314 
al., 2017); (v) BCc that are internally mixed with more than one type (BB, CC, and VE) 315 
are categorized as Mix type (Sun et al., 2022). 316 
 317 
Aged BC particles, denote as BC-aged, undergo a series of chemical reactions and 318 
physical transformations. These processes typically lead to changes in their morphology, 319 
hygroscopicity, and optical properties as they are coated with other materials (He et al., 320 
2015). Six types of BCc are classified as BC-aged and are further grouped into BCOC 321 
and BC-SNA, depending on whether they contain mainly organic carbon (OC) or 322 
sulfate/nitrate/ammonium (SNA). First, BCOC types indicate BC-aged particles that 323 
are internally mixed with OC. These particles are characterized by the presence of 324 
carbon clusters (C± 

n ) and CnHm
+ ions (n = 1~6, m = 1~3) in positive mass spectra (Xie 325 

et al., 2020). On the other hand, BC-aged particles that do not mix with OC are named 326 
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BC-SNA indicating the mix with secondary inorganic species. Additionally, BCOC 327 
particles with negative mass spectra dominated by nitrate ions (46[NO2] − and 328 
62[NO3]−) or sulfate ions (97[HSO4]−) are referred to as BCOC-N or BCOC-S, 329 
respectively; otherwise, BCOC particles showing similar peak areas of nitrate and 330 
sulfate are named BCOC-SN. The BC-SNA particles are further categorized as BC-N, 331 
BC-S, and BC-SN based on similar principles. Note the remaining particles that cannot 332 
be classified into either BC-fresh or BC-aged ones are denoted as BC-other. More 333 
details of BCc particle types are shown in Table S1 and Figure S1 in the Supplement. 334 
 335 
During BLD, the average number fraction of BC-fresh particles was 36% with sizes 336 
mainly concentrated at 500 nm, similar to the mode size of BC-aged particles was 520 337 
nm (Figure 6). The predominant BCc types during BLD were BCOC-S and BC-S (24% 338 
and 12% by number), likely because sulfate was removed less efficiently than organic 339 
matter (OM) and NO3 by heavy precipitation, especially during the warm seasons 340 
(Isokääntä et al., 2022). As shown in Figures 6c and d, the peak size of BC-SNA was 341 
larger than that of BCOC in all periods, indicating that organics coated BCc generally 342 
had a relatively thin coating compared to those coated by secondary inorganic species, 343 
which is consistent with previous studies (Sun et al., 2016; Wang et al., 2019).  344 
 345 
During the transition of BLD to LD, heavy precipitation occurred from the evening to 346 
July 27th and early morning of July 28th (the eve of lockdown), resulting in the removal 347 
of a majority of the pollutants (PM2.5: 4 μg m-3, O3: 35 μg m-3, NOx: 8 μg m-3). After 348 
that, strict lockdown were carried on and the primary emissions were abruptly cut down. 349 
As a result, the number fraction of BC-fresh particles significantly decreased from 37% 350 
to 28% and that of VE-type particles dropped from 12% to 3% (by number). Expectedly, 351 
with the decrease in NOx, an obvious enhancement of O3 was observed during LD 352 
(Figure 3). According to previous studies (Huang et al., 2021; Laughner et al., 2021), 353 
large reduction of NOx may promote the formation of O3 under a VOC-limited regime 354 
and enhance the oxidation capacity of the local atmosphere, which may promote the 355 
number fraction of BC-aged particles increased from 64% in the BLD to 72% in LD 356 
(Figure 7a), indicating the lockdown could accelerate aging of BCc through 357 
complicated chemical reactions and/or physical coagulation. Additionally, the most 358 
abundant type of BCc changed from BCOC-S (24% by number) in the BLD to BC-N 359 
(25%) in the LD (Figure 7a), suggesting different BCc formation pathways. Despite 360 
the abrupt reductions of NOx due to the city lockdown, it should be aware that the PM2.5 361 
concentration slightly increased during LD, highlighting the non-linear relationship 362 
between primary emissions and PM2.5 levels. 363 
 364 
During ALD (PM2.5: 26 μg m-3, NOx: 28 μg m-3, TVOC: 76 μg m-3), the number fraction 365 
of BC-fresh particles rose from 28% (LD) to 31% (ALD), while the fraction of VE 366 
particles also increased from 3% (LD) to 12% (ALD) (Figure 7a). Notably, the size 367 
distributions of BC-fresh and BC-aged particles presented relatively small peaks at 690 368 
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nm and 820 nm during ALD, in addition to the prominent peaks at 490 nm and 500 nm, 369 
which were different from those in the BLD and LD periods. These small peaks were 370 
relatively close to the dominant sizes of BC-fresh and BC-aged particles during LD 371 
(Figure 6). This result suggests that a substantial number of BCc with small sizes 372 
(around 500 nm) after the lockdown was lifted in Yangzhou, owing to the sudden 373 
enhancement of primary emissions; on the other hand, particles with large diameters 374 
(>690 nm) may have formed due to the participation of more trace reactive gases (e.g., 375 
NOx, SO2, and VOCs) in continuous aging reactions, resulting in thicker coatings on 376 
the surface of pre-existing particles and therefore a more clear separation of two-mode 377 
sizes during the ALD period than during the other two periods. This hypothesis was 378 
also supported by the increased number fraction of BCOC-SN during the ALD period 379 
(Figure 7a). Similar findings have been reported in the North China Plain (NCP) and 380 
the YRD during cold seasons, where thicker coatings on secondary aerosols were also 381 
observed under lower RH (<70%) (Zhang et al., 2021). This might be due to that 382 
particles with more organics and nitrate can result in earlier deliquescence and provide 383 
aqueous surfaces that facilitate the heterogeneous formation of secondary species under 384 
relatively low RH (Zhang et al., 2021). Among the three periods, the difference between 385 
the mode sizes of BC-aged and BC-fresh particles was the smallest (10 nm) during the 386 
ALD period (Figure 6a and b). This size reduction can be attributed to the increased 387 
BCOC and hydrophobic primary particles after lockdown (Figure 7). Because the 388 
internally mixed BCOC and hydrophobic primary particles may constrain further 389 
growth of secondary BC-SNA particles (Liu et al., 2016; Zhang et al., 2018), thereby 390 
leading to smaller-sized BC-aged particles. Moreover, the differences in BCc mode 391 
sizes between ALD and BLD periods also reveal an interesting fact that the lockdown 392 
effect may not only affect air quality during lockdown but also can influence the air 393 
quality even after lockdown, as the resumed emissions after lockdown may be subjected 394 
to different chemistry from that before lockdown. 395 
 396 
Throughout the entire observation, the changes in the number fraction of BC-SNA 397 
exhibited consistency with the variations in RH (Figure 7b), indicating that BC tends 398 
to mix with ammonium sulfate and ammonium nitrate under high RH conditions. 399 
Meanwhile, the number fraction of BCOC shows similar patterns as TVOC, suggesting 400 
that high TVOC levels may facilitate the coating of organics on BC cores under low 401 
RH condition. Figure 8 displays the number fraction of BCc species as a function of 402 
PM2.5. Overall, as PM2.5 levels increased, the number fraction of BC-aged particles also 403 
increased, while the proportion of BC-fresh particles decreased during BLD and LD, 404 
indicating a clear transition from BC-fresh particles to more aged ones, in line with the 405 
average size distribution during ALD has a small peak at 900 nm. Specifically, the 406 
increase in PM2.5 was driven by BCOC-S during BLD (Figure 8a), whereas BC-N 407 
played a vital role in the PM2.5 increase during LD (Figure 8b). Interestingly, the 408 
concentration of NOx, the primary precursor of BC-N, decreased by 31% and 41% 409 
during LD compared to BLD and ALD, respectively (Figure 3), indicating a strong 410 
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non-linear response of nitrate in BCc to NOx, likely due to much faster conversion of 411 
NOx to nitrate upon enhanced atmospheric oxidation capacity; additionally, the high 412 
proportion of BC-N during LD might be attributed to regional transport, similar to that 413 
in Shanghai during 2020 winter lockdown (Chang et al., 2020).  414 
 415 

3.3  Chemical aging of BCc 416 
As shown in Figure 5, in the average positive mass spectra of total BCc, the peak areas 417 
of C+ 

n , OM, and metals contributed to more than 95% of the total, while nitrate and 418 
sulfate peak areas accounted for more than 90% of the negative mass spectral signal. 419 
To better elucidate the aging processes of BCc during different lockdown periods, we 420 
summed the carbon clusters C± 

n  (n = 1~5, accounting for more than 99% of Cn) peak 421 
areas to represent BC, and the total peak area of sulfate, nitrate, and ammonium (SNA) 422 
to represent the second inorganic components coated on BC. Additionally, we defined 423 
the sum of positive peak areas, excluding C+ 

n  and metals, as OC to represent the OM 424 
coated on BC. These peak areas encompassed almost all the coating materials, except 425 
for metals, of BCc. The changes in the mixing state and morphology of BCc can provide 426 
insights into their aging characteristics, as reported previously (Kandler et al., 2018; 427 
Moffet et al., 2013). In this study, we use OC/Cn and SNA/Cn ratios to describe different 428 
types of chemical components coated on BC-fresh, and we use the ratio of the mode 429 
size of BC-aged (Daged) to that of contemporaneous BC-fresh (Dfresh) to represent the 430 
aging degree of BCc. 431 
 432 
Figure 9 illustrates the diurnal variations of the OC/Cn and SNA/Cn ratios along with 433 
the size distribution of BCc during different periods. We observed that both OC/Cn and 434 
SNA/Cn increased during nighttime and decreased during daytime. These variations 435 
showed the prominent enhancements of nocturnal OM and SNA, which could be 436 
attributed to the accelerated gas-to-particle partitioning and nocturnal secondary 437 
formation of organic/inorganic components under high relative humidity (RH > 85%) 438 
and relatively stagnant air mass (WS < 3 m s-1) (Figure S5). It is worth noting that from 439 
BLD to LD and ALD, the intensity of diurnal variations of OC/Cn and SNA/Cn 440 
increased obviously. This discrepancy can be attributed to several reasons. (i) During 441 
BLD, the frequent precipitations effectively scavenged the particles (Isokääntä et al., 442 
2022); (ii) In contrast, stronger solar radiation and higher O3 concentration during LD 443 
promoted photochemical formations of OC and SNA; (iii) After lockdown, more 444 
precursors due to increased local emissions may lead to more production of secondary 445 
components than that during BLD as explained earlier. These results indicate that the 446 
aging process and mixing state of BCc depend strongly on meteorological conditions 447 
as well as emission sources in urban cities. 448 
 449 
As shown in Figure 9, BCc with ~400 nm Dva exhibited significant diurnal fluctuations 450 
in the OC/Cn and SNA/Cn ratios, during LD. There is a noticeable increase in the 451 
proportion of BC-SNA particles during nighttime when RH is relatively high. These 452 
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observations suggest that nighttime heterogeneous hydrolysis may be considered a key 453 
mechanism responsible for the formation of BCOC and BC-SNA particles. According 454 
to Jacobson (2002), coagulation can be significant between particles with sizes <100nm 455 
and >1μm but insignificant for particles of >300nm, when the total particle number 456 
concentration is higher than 104 cm−3. During LD, the OC/Cn and SNA/Cn ratios of 457 
BCc with ~400 nm Dva exhibited pronounced diurnal variations (Figure 9) and the 458 
number fraction of BC-SNA increased obviously. Despite the difference between Dva 459 
and physical diameter, such results imply that chemical reactions should be considered 460 
as the major pathway for BCOC and BC-SNA particles of ~400 nm Dva, while the large-461 
sized BC-aged particles (>1 μm) may be partially from physical coagulation. 462 
Additionally, the larger mode peak (600 nm, Dva) and higher Daged/Dfresh ratios (1.11) 463 
were observed compared to those of BLD (510 nm, 1.03) and ALD (500 nm, 1.02) 464 
(Figure 6). Since RH was significantly higher during LD (average RH of 87%) than 465 
BLD (average RH of 81%) and ALD period (average RH of 75%), this result again 466 
supports that aqueous or heterogeneous reactions might play a more important role to 467 
facilitate the chemical conversion of trace reactive gases (e.g., SO2, NOx, and VOCs) 468 
and then formed a thicker coating on the surfaces of BC cores, leading to evident growth 469 
in the size of BCc. This aqueous or heterogeneous process during LD likely converted 470 
partially coated particles to fully thickly coated BCc as well. 471 
 472 

3.4  Source apportionment of BCc during lockdown 473 
In addition to local emissions, regional transport plays a significant role in influencing 474 
pollutant levels. The emergent lockdown in Yangzhou led to strict limitation on local 475 
emissions, while surrounding cities were still running as usual. This is supported by 476 
Figure S6, which illustrates the PM2.5 concentrations in Yangzhou and the other five 477 
surrounding YRD cities (e.g., Nanjing, Zhenjiang, Changzhou, Taizhou, and Chuzhou) 478 
during the campaign. High correlations between PM2.5 concentrations in Yangzhou and 479 
the other five cities were observed across all different periods (Figure S6). These 480 
findings underscore the importance of the regional transport in PM2.5 pollution during 481 
the campaign, providing an unique opportunity to investigate the transmission and 482 
source characteristics of BCc in YRD during summer. Herein, PSCF analysis was 483 
applied to qualitatively simulate the source probability distributions of the specific BCc 484 
particle types (BC-fresh, BC-aged, BCOC, and BC-SNA) during LD. 485 
 486 
As shown in Figure 10, the hotspots of potential sources for the four particle types 487 
exhibited strong agreements with each other and primarily concentrated in the southeast 488 
of Yangzhou, especially along the coast of the Yangtze River, with the WPSCF greater 489 
than 0.6. These hotspot areas also encompassed chemical enterprises, power plants, 490 
petrochemical industrial parks, and the Yangtze River in the YRD. This evidence 491 
suggests that the region of southeast Yangzhou and lower reaches of the Yangtze River 492 
are major source areas for the regionally transported BCc in Yangzhou during lockdown. 493 
Additionally, Luo et al. (2023) reported that regional transport of pollutants can occur 494 
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near the surface from upwind areas when the wind speed (WS) exceeds 2 m s-1. Figure 495 
S5b shows that the mean daytime WS was 3 m s-1, indicating that both BC-fresh and 496 
BC-aged particles, along with trace gases (e.g., SO2, NOx, and VOCs), originating from 497 
the hotspot areas, could be transported effectively to Yangzhou. Additionally, the 498 
average size of BCc remained around 600 nm at daytime (Figure S5c), suggesting that 499 
BCc could undergo continual aging reactions under relatively lower RH, but produce 500 
relatively thinly coated BCc with smaller sizes than those at nighttime (average size of 501 
650 nm). The mean nocturnal WS decreased to 2 m s-1, indicating that the regional 502 
atmosphere becomes stagnant (Figures S5a, b). As mentioned earlier and underscored 503 
here again, this stagnant and humid atmospheric condition may promote aqueous or 504 
heterogeneous reactions, likely further leading to the production of more thickly coated 505 
BCc than daytime ones.  506 
 507 

4. Conclusions and implications 508 

During the summer of 2021, the COVID-19 lockdown imposed in Yangzhou resulted 509 
in a significant decrease in anthropogenic emissions from traffic and manufacturing 510 
sectors. To examine the effects of this lockdown, we utilized spaceborne observations, 511 
ground-based measurements, and particularly SPA-MS analysis to explore the 512 
variations, aging characteristics, and sources of BCc in the YRD. We showed that the 513 
strict emission controls effectively reduced local gaseous pollutants. However, the 514 
decline in NOx (-30%) and TVOC (-5%) levels might on the other hand result in 515 
increased O3 (+19%), leading to a rise in BC-aged particles and a slight elevation in 516 
PM2.5 levels during the lockdown. Our results revealed a strong non-linear response of 517 
PM2.5 and O3 to the gaseous precursors.  518 
 519 
The SPA-MS analysis results further demonstrate significant enhancement of OM and 520 
SNA coating species on BC-fresh particles, owing to gas-to-particle partitioning and 521 
nocturnal multiphase chemistry. Consequently, we observed a higher fraction of BC-522 
aged particles (73%) during the lockdown due to enhanced oxidizing capacity and high 523 
relative humidity (RH > 85%). The BC-fresh particles tended to mix with SNA under 524 
high RH conditions, while high TVOC levels were accompanied by BCOC formation. 525 
However, BCOC particles generally exhibited smaller sizes compared to BC-SNA 526 
particles. Moreover, we propose that aqueous or heterogeneous reactions might be 527 
important to generate BCOC and BC-SNA particles, especially ones with 400 nm Dva, 528 
while coagulation might play a more prominent role in larger BC-aged particles. The 529 
aging process during LD promoted the conversion of partly coated particles to totally 530 
coated ones, with larger diameters (600 nm) and thicker coatings. 531 
 532 
It should be noted that the observed average PM2.5 concentration during the lockdown 533 
in Yangzhou was 21 μg m-3, which still significantly exceeds the WHO's air quality 534 
guideline of 5 μg m-3. Our research underscores the crucial role of BCc, which 535 
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constitutes a significant portion of PM2.5, in particulate matter pollution. These particles 536 
originate from diverse combustion sources and their behavior is intricately influenced 537 
by complex chemistry, regional transport, and meteorological factors. Mere reductions 538 
in local primary emissions from traffic and manufacturing sectors exhibit limited 539 
efficacy in air quality improvement. Therefore, effective air quality remediation 540 
strategies necessitate nuanced control of BCc alongside broader emission reduction 541 
efforts. We suggest a more comprehensive regulation of precursor gases from multiple 542 
sectors, a wide-ranging joint regulation approach as well as proper consideration of the 543 
chemistry, to develop an effective strategy for air quality improvement.  544 
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Figure 1. Geographical overview of the Yangtze River Delta (YRD) Region in China, depicting the 
major cities within the YRD and the sampling site located in Yangzhou. The color gradient from 
green to white indicates varying altitudes across the region (Maps were generated by using ArcGIS 
Pro). 
 

 
Figure 2. Temporal variations of (a) wind direction (WD) and wind speed (WS), (b) precipitation 
(PCP), (c) temperature (T) and relative humidity (RH), (d) concentrations of NOx and SO2, and (e) 
mass loading of PM2.5. The blue-grey, dark-blue, and crimson arrow ranges denote the periods 
before lockdown (BLD), during lockdown (LD), and after lockdown (ALD). 
 



 
Figure 3. Ground-based observations of PM2.5, NOx, SO2, O3, CO, and TVOC concentrations in 
Yangzhou. The figure compares the averages during the BLD (blue-grey), LD (dark-blue), and ALD 
(crimson) periods. Error bars indicate SDs over different lockdown periods. 
 

 
Figure 4. The fractional changes (i.e., (LD – BLD)/BLD) of (a) PM2.5, (b) NO2, and (c) SO2 
between BLD and LD periods based on spaceborne measurement. The circle symbols in the maps 
indicate the location of Yangzhou, and the green region represents the YRD. 
 



 
Figure 5. The average positive and negative mass spectra of BCc (a) before the lockdown period 
(BLD), (b) during the lockdown period (LD), and (c) after the lockdown period (ALD). 
 

 
Figure 6. Size distribution of different types of BCc during different periods in Yangzhou. (a) BC-
fresh particles, (b) BC-aged particles, (c) BCOC particles, and (d) BC-SNA particles. The Log-
normal distribution was used to fit the unimodal size distribution, and the Lorentz distribution was 
used to fit the bimodal size distribution. The corresponding mode sizes (with the standard deviations) 
are also shown. 
 



 

Figure 7. Number fractions of BCc. (a) The number fractions of different BCc along with the 
concentrations of PM2.5 and total volatile organic compounds (TVOC). (b) The number fractions of 
different types of BC-aged particles along with relative humidity (RH). 
 

 
Figure 8. Variations of number fractions of BCc particle types with PM2.5 mass concentrations 
during (a) the BLD period, (b) LD, and (c) the ALD period. 
 



 

Figure 9. Diurnal variations of the ratios of OC/Cn and SNA/Cn with a size distribution of BCc 
during (a, d) BLD, (b, e) LD, and (c, f) ALD. 
 

 

Figure 10. The PSCF maps for different BCc during LD. (a) BC-fresh. (b) BC-aged. (c) BCOC. (d) 
BC-SNA. 
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