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Abstract. Reliable short-term sea ice forecasts are needed to support maritime operations in polar regions. While sea ice

forecasts produced by physical-based models still have limited accuracy, statistical post-processing techniques (often called

calibration) can be applied to reduce forecast errors. In this study, post-processing methods based on supervised machine

learning have been developed for improving the skill of sea ice concentration forecasts from the TOPAZ4 prediction system for

lead times from 1 to 10 days. The deep learning models use predictors from TOPAZ4 sea ice forecasts, weather forecasts, and5

sea ice concentration observations.
::::::::
Predicting

:::
the

:::
sea

:::
ice

:::::::::::
concentration

:::
for

:::
the

::::
next

:::
10

::::
days

::::
takes

:::::
about

::
4
:::::::
minutes

:::::::::
(including

:::
data

:::::::::::
preparation),

:::::
which

::
is
:::::::::
reasonable

::
in
:::
an

:::::::::
operational

:::::::
context.

:
On average, the forecasts from the deep learning models have

a root mean square error 41 % lower than TOPAZ4 forecasts, and 29 % lower than forecasts based on persistence of the sea

ice concentration observations. They also significantly improve the forecasts for the location of the ice edges, with similar

improvements as for the root mean square error. Furthermore, the impact of different type of predictors (observations, sea ice10

and weather forecasts) on the predictions has been evaluated. Sea ice observations are the most important type of predictors,

and the weather forecasts have a much stronger impact on the predictions than sea ice forecasts.

1 Introduction

Due to increasing maritime traffic in the Arctic (Gunnarsson, 2021; Müller et al., 2023), there is a growing demand for reliable

short-term sea-ice forecasts that can support marine operations (Wagner et al., 2020). While short-term sea-ice forecasts are15

operationally produced by several institutions using dynamical models (e.g. Sakov et al., 2012; Smith et al., 2016; Barton et al.,

2021; Williams et al., 2021; Ponsoni et al., 2023; Röhrs et al., 2023), the usefulness of these forecasts in Arctic navigation is

often limited by their inaccuracies
::::::::::::::::
(Veland et al., 2021). Melsom et al. (2019) reported that the location of the ice edge is

predicted with a mean accuracy of 39 km in 5-day forecasts from the TOPAZ4 prediction system (Sakov et al., 2012), with

large seasonal variability in the forecast performances
::::
larger

::::::
errors

:::::
during

:::
the

:::::::
summer

:::::
when

::::
most

::
of

:::
the

::::::::
maritime

:::::
traffic

::::::
occurs20

::::::::::::::::
(Müller et al., 2023). Furthermore, the sea ice concentration (SIC) forecasts from the regional model Barents-2.5km v2.0 are,

in most cases, not better than persistence of SIC observations for short lead times (Röhrs et al., 2023).
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It is common practice to post-process weather forecasts produced by dynamical (physical-based) models in order to improve

their skill. Statistical correction techniques (often called calibration) have been applied to weather
::::::::::
atmospheric forecasts at

time scales ranging from hours to seasons (e.g. Wang et al., 2019; Vannitsem et al., 2021; Frnda et al., 2022; Roberts et al.,25

2023), particularly on essential variables for end-users such as temperature, wind, and precipitation. In sea ice forecasting,

most calibration
:::::::::::::
post-processing methods have been developed for subseasonal to seasonal time scales (e.g. Zhao et al., 2020;

Director et al., 2021; Dirkson et al., 2019, 2022), but short-term sea ice forecasts produced by dynamical models are usually

not calibrated
::::::::::::
post-processed despite their potential interests for end-users (Wagner et al., 2020). Nevertheless, Palerme and

Müller (2021) showed that the errors of short-term sea ice drift forecasts (up to 10 days) from the TOPAZ4 prediction system30

(Sakov et al., 2012) can be significantly reduced using random forest models (by 8 % and 7 % for the direction and speed of sea

ice drift, respectively). These calibrated
::::::::::::
post-processed

:
sea ice drift forecasts have been distributed on the IcySea commercial

application from 2020 to 2023
::::
2024 (https://driftnoise.com/icysea.html ; von Schuckmann et al., 2021), and can be considered

as an exception in operational short-term sea ice forecasting.

Another approach consists of developing statistical sea ice forecasts without using dynamical sea ice model outputs. This35

has been used for sea ice forecasting at different time scales (e.g. Kim et al., 2020; Fritzner et al., 2020; Liu et al., 2021;

Andersson et al., 2021; Grigoryev et al., 2022; Ren et al., 2022), with the advantage of greatly reducing the computational

cost compared to dynamical models. Andersson et al. (2021) developed a deep learning seasonal forecasting system (IceNet)

predicting the probability that SIC exceeds 15 %. IceNet significantly outperforms the European Centre for Medium-Range

Weather Forecasts (ECMWF) SEAS5 dynamical seasonal prediction system (Johnson et al., 2019) for lead times from 2 to 640

months, and runs over 2000 times faster on a laptop than SEAS5 on a supercomputer. While many studies have investigated

such approaches for sea ice forecasting, most of them were not focused on operational short-term forecasting. Grigoryev et al.

(2022) developed short-term (up to 10 days) data-driven SIC forecasts for several Arctic seas in an operational context with

considering real-time availability of data. Their forecasts, based on U-Net convolutional neural networks (Ronneberger et al.,

2015) with predictors from sea ice observations and weather forecasts, significantly outperformed persistence and linear trend45

forecasts.

Most of the short-term sea ice prediction systems based on machine learning do not use predictors from dynamical sea-ice

models (Fritzner et al., 2020; Liu et al., 2021; Grigoryev et al., 2022; Ren et al., 2022)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fritzner et al., 2020; Liu et al., 2021; Grigoryev et al., 2022; Ren et al., 2022; Keller et al., 2023; Kvanum et al., 2024)

, and it is currently unclear whether adding such predictors would significantly improve forecast accuracy. Producing statistical

sea ice forecasts
:::
This

:::::
study

:::::
aims

::
at

::::::::
assessing

:::
the

::::::
impact

::
of

:
using predictors from dynamical sea ice model outputs is called50

a calibration, and this study aims to assess
:::::
models

:::
in

:::
the

::::::::::
development

:::
of

:::
SIC

::::::::
forecasts

::::
from

::::::::
machine

:::::::
learning,

:::
as

::::
well

::
as the

impact of calibrating SIC forecasts
:::::::::::::
post-processing

::::
SIC

:::::::
forecasts

:::::
from

:
a
:::::::::

dynamical
::::

sea
:::
ice

:::::
model

:
for lead times from 1 to

10 days. The calibration methods developed are
::::::::::::
post-processing

:::::::
method

:::::::::
developed

:
is
:
based on convolutional neural networks

with
:
a
:
U-Net architectures

:::::::::
architecture

:
(Ronneberger et al., 2015), and use predictors from TOPAZ4 SIC forecasts, ECMWF

weather forecasts, and SIC observations from the Advanced Microwave Scanning Radiometer 2 (AMSR2). The calibration
:
It is55

evaluated by assessing the improvement compared to the raw TOPAZ4 forecasts, and to predictions from similar deep learning

models as those used for the calibration but without
::::::
without

:::::
using predictors from TOPAZ4 sea ice forecasts. In section 2, the
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dataused in this study are presented. The
:
,
:::
the development of the deep learning models, the evaluation metrics, as well as the

benchmark forecasts are described in section 3.
:::::::
methods

::::
used

:::
for

:::::::::
evaluating

:::
the

:::::::
forecasts

:::
are

:::::::::
presented.

:
The results are then

presented in section 4
::::::::
described

::
in

::::::
section

::
3, followed by the discussions and conclusions in section 5.

:
4.
:

60

2 Data
:::
and

::::::::
methods

2.1 Sea ice observations

The AMSR2 sensor is a conically scanning, dual-polarised microwave radiometer that measures the microwave emissions

emitted from the Earth’s surface across several frequencies. AMSR2 SIC data are currently assimilated into sea ice prediction

systems, such as the Barents-2.5km model (Röhrs et al., 2023; Durán Moro et al., 2023), due to its capability of daily coverage65

of the polar regions and its independence of solar illumination, enabling year-round observation. The AMSR2 SIC observations

used in this study were produced using the resolution-enhancing (reSICCI3LF) algorithm, which was initially developed for

the European Space Agency Climate Change Initiative (ESA CCI) (Lavergne et al., 2021) and adapted for the AMSR2 mission

in the Sea Ice Retrievals and data Assimilation in NOrway (SIRANO) project (Rusin et al., 2023). This algorithm aims at

producing high-resolution SIC fields with low measurement uncertainties by combining two retrievals. The 19 and 37 GHz70

channels are used to derive a coarse SIC field (15 km) with low measurement uncertainties, whereas the 89 GHz channels are

used to derive a higher resolution SIC field (∼5km) with larger uncertainties. The high resolution details derived from the 89

GHz channels are then added to the coarse SIC field, enabling the production of a SIC field with low measurement uncertainties

at a higher spatial resolution (∼5km). Using this algorithm, daily averaged pan-Arctic SIC fields were produced for the period

2012-2022 on a 5 km Equal-Area Scalable Earth 2.0 (EASE2) grid. In this study, these new observations were
::
are

:
used as75

reference for evaluating the SIC forecasts, as well as for some predictors and the target variable of deep learning models.

Evaluation of the ice edge positions from the new AMSR2 sea ice concentration observations used in this study and the

product OSI-408-a from the Ocean and Sea Ice Satellite Application Facility (OSI SAF) during the period 2017-2022. The

ice charts produced by the Ice Service of the Norwegian Meteorological Institute are used as reference, and the analysis has

therefore been done in the area covered by the ice charts (European Arctic). The ice edge distance error (see section 3.2) is80

used for calculating the mean distance between the ice edges, and the monthly mean distances are reported in this figure. The

red and blue lines correspond to the ice edge distance errors after all products were integrated onto the 10 km OSI-408-a grid.

The black line shows the ice edge distance error for the new AMSR2 SIC product on its 5 km grid, thus retaining information

on the finer resolution.

The new AMSR2 observations were evaluated and compared to the Ocean and Sea Ice Satellite Application Facility85

(OSI-SAF) product OSI-408-a, which is also based on AMSR2 retrievals but with a spatial resolution of 10 km. The position of

the ice edge (defined by the 10 % SIC contour here) was evaluated during the period from 2017 to 2022 using
::
In

:::::::
addition,

:
the ice

charts from
:::::::
produced

:::
by the Ice Service of the Norwegian Meteorological Institute (JCOMM Expert Team on sea ice, 2017)

as reference. All the data sets were projected onto the grid of the OSI-408-a product using nearest neighbor interpolation, but

only the area covered by the ice charts (European Arctic) was taken into account for this evaluation. The mean distances90
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between the ice edges from
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(https://www.cryo.met.no/en/latest-ice-charts; JCOMM Expert Team on sea ice, 2017)

::
are

:::::
used

::
as

::
an

:::::::::::
independent

::::::
dataset

:::
for

:::::::::
evaluating

:
the AMSR2 products and from the

:::
SIC

:::::::::::
observations

::::
and

:::
the

::::::::
forecasts

:::::::::
developed

::
in

:::
this

::::::
study.

::::
The

:::
ice

::::::
charts

:::
are

::::::::
manually

::::::
drawn

:::
by

:
ice charts were assessed by dividing the Integrated Ice Edge Error

(IIEE; Goessling et al., 2016) by the ice edge length from the ice charts, which is a variation of a metric introduced by

Melsom et al. (2019). Overall, the new AMSR2 data set outperforms the OSI-408-a product (figure 1) , with mean values95

of 16.8 km and 20.6 km for the new AMSR2 observations and the OSI-408-a product, respectively. Moreover, the new AMSR2

observations particularly outperform the OSI-408a product close to the sea ice minimum (in August, September and October)

compared to the rest of the year. In order to assess the impact of the resolution, a supplementary analysis was performed on the

5 km grid from the new AMSR2 SIC observations with interpolating
::::::
analysts

:::::
using

::::::
several

:::::
types

::
of

::::::
remote

:::::::
sensing

::::
data.

::::
Due

::
to

::::
their

::::
high

:::::
spatial

:::::::::
resolution,

:::::::::::::::
synthetic-aperture

:::::
radar

:::::
(SAR)

::::::
images

:::::::::
constitute

:::
the

::::
main

::::::
source

::
of

::::::::::
information

:::::
where

::::
they

:::
are100

::::::::
available.

:::::::::
Elsewhere,

::::::
visible

:::
and

:::::::
infrared

:::::::::::
observations

:::
are

::::
used

::
in

:::::::
priority,

:::::
while

::::::
passive

:::::::::
microwave

::::::::
retrievals

:::
are

::::
used

::::::
where

::
no

:::::
other

::::::::::
observations

:::
are

::::::::
available.

::::
For

:::::::::
evaluating

:::
the

:::
SIC

::::::::
forecasts,

:::
the

:::
ice

::::::
charts

::::
were

::::::::::
interpolated

:::
on

:::
the

::::
grid

::::
used

:::
for

:::
the

::::
deep

:::::::
learning

::::::
models

:::::
using

:::::::
nearest

:::::::
neighbor

::::::::::::
interpolation.

::
It

::
is

:::::
worth

::::::
noting

:::
that

:
the ice charts onto this grid. On the 5 km

grid, the mean distance between the ice edges from the new
::::::
provide

:::
SIC

:::::::::
categories

::::
and

:::
are

:::
not

::::::::
produced

::::::
during

:::::::::
weekends.

::::::::
Therefore,

:::
the

:::::::
number

::
of

:::
ice

:::::
charts

::::::::
available

::
in

:::::
2022

::
for

:::::::::
evaluating

:::
the

::::
SIC

:::::::
forecasts

::::::
varies

::::::::
depending

:::
on

::::
lead

::::
time

::::::::
(between105

:::
144

:::
and

:::::
243),

:::
and

::
is
:::::::::::
considerably

:::::
lower

::::
than

:::
the

::::::
number

:::
of AMSR2 observations and the ice charts is 15.4 km, adding further

confidence in the quality of the new product
:::
SIC

:::::::::::
observations

::::::::
available.

2.2 Predictors and data sets used for the deep learning models

The calibration methods
:::::::::::::
post-processing

::::::
method

:
developed in this study are

::
is applied to TOPAZ4 sea ice forecasts. TOPAZ4

is a numerical prediction system producing 10-day forecasts at 12.5 km resolution for the Arctic and the North Atlantic with110

hourly time steps (Sakov et al., 2012). It consists of a sea ice model with one thickness category and an elastic–viscous–plastic

rheology (Hunke and Dukowicz, 1997) coupled with the version 2.2 of the Hybrid Coordinate Ocean Model (HYCOM; Bleck,

2002; Chassignet et al., 2006). Sea ice and oceanic observations are assimilated weekly using an ensemble Kalman filter, and

the ocean surface is forced by ECMWF high resolution weather forecasts.

Wind and temperature high-resolution forecasts (HRES) from the ECMWF Integrated Forecasting System (IFS) are also115

used as predictors. These forecasts have lead times up to 10 days and are produced 4 times per day, but only the forecasts

starting at 00:00 UTC are used in this study. Due to the developments of IFS HRES over time, forecasts produced by different

model cycles have been used, and it is worth noting that the spatial resolution has changed from about 16 to 9 km in March

2016 (https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model).

In this work, the deep learning models have been developed using 8 predictors that can be divided into four
::::
three

:
categories120

(table 1). First,
:::
two

:::::::::
predictors

:::
are

::::::
derived

::::
from

:
AMSR2 SIC observations acquired before the forecast start dateare used in two

predictors, which are ,
::::
and

::::::
consist

::
of

:
the SIC observations from the day preceding the forecast start date, and the SIC trend

calculated over the 5 days preceding the forecast start date . Then, predictors from the TOPAZ4 ocean model are used and can

be considered as the second category. These variables are the SIC forecasts for the predicted lead time, as well as the difference
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Table 1. List of predictors used for the deep learning models.

Source Variable Time

AMSR2 SIC observations Day preceding the forecast start date

AMSR2 SIC trend 5 days preceding the forecast start date

ECMWF 2-meter temperature Mean value between the forecast start date and the predicted lead time

ECMWF 10-meter x wind component Mean value between the forecast start date and the predicted lead time

ECMWF 10-meter y wind component Mean value between the forecast start date and the predicted lead time

TOPAZ4 Land sea mask Constant predictor

TOPAZ4 SIC forecasts Predicted lead time

TOPAZ4 and AMSR2 TOPAZ4 initial errors Day preceding the forecast start date and 1-day lead time

between TOPAZ4 SIC during the first daily time step and the SIC observed the day before (hereafter referred as "TOPAZ4125

initial errors"
::
(in

::
%

:::
per

::::
day). The third

:::::
second

:
category consists of weather forecasts from ECMWF that have been averaged

between the forecast start date and the predicted lead time. These predictors are the 2-m temperature, as well as the x and y

components of the 10-m wind on the grid used for the deep learning models. Finally the land sea mask from
::::
Then,

:::::::::
predictors

::::
from

:::
the TOPAZ4 is used as a constant predictor and

:::::
ocean

:::::
model

:
can be considered as the last category.

:::::
These

::::::::
variables

:::
are

::
the

::::
SIC

::::::::
forecasts

:::
for

:::
the

:::::::
predicted

::::
lead

:::::
time,

:::
the

::::::::
difference

::::::::
between

:::::::
TOPAZ4

::::
SIC

::::::
during

:::
the

:::
first

:::::
daily

::::
time

::::
step

:::
and

:::
the

::::
SIC130

:::::::
observed

:::
the

::::
day

:::::
before

::::::::
(hereafter

:::::::
referred

::
to

::
as

:::::::::
"TOPAZ4

:::::
initial

:::::::
errors"),

::::
and

:::
the

::::
land

:::
sea

::::
mask

::::::::
(constant

:::::::::
predictor).

:

The predictors from weather and sea ice forecasts vary depending on lead time. Therefore, different
::::
deep

:::::::
learning

:
regression

models were developed for each lead time from 1 to 10 days. Before developing the deep learning models, all the predictors

and the SIC observations used for the target variable were projected onto a common grid using nearest neighbor interpolation.

This grid has the same projection and spatial resolution (12.5 km) as the TOPAZ4 prediction system, but is smaller (544 x 544)135

due to the constraints related to the U-Net architecture (the x and y axes must be divided by 2 several times). Nevertheless,

this grid includes all the grid points that can potentially be covered by sea ice from the TOPAZ4 prediction system. When

providing the predictors to the neural networks, all the grid points must contain valid values, meaning that the land grid points

must be filled with valid values for oceanic variables. In this study, the land grid points were considered as ice-free ocean in

the predictors. Furthermore, all the predictors and the target variable have been normalized (resulting in values ranging from140

0 to 1) before providing them to the neural networks. The training data set was used to compute the minimum and maximum

values of the variables, which were then used for the normalization.

Though TOPAZ4 produces 10-day forecasts daily, only the forecasts starting on Thursdays (when data assimilation is per-

formed) are stored in the long-term archive. Therefore, weekly data during the period 2013 - 2020 were used for training the

deep learning models, resulting in about 400 forecasts for each lead time. However, we stored daily TOPAZ4 forecasts from145

2021, and we therefore used daily data for the validation and test data sets, which consist of the forecasts from 2021 and 2022,

respectively.
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3 Methods

2.1 Development of the deep learning models

U-Net neural networks are designed to perform image segmentation tasks using an encoder-decoder architecture (Ronneberger150

et al., 2015), and have been successfully used in earlier studies for sea ice forecasting (Andersson et al., 2021; Grigoryev et al., 2022)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Andersson et al., 2021; Grigoryev et al., 2022; Keller et al., 2023; Kvanum et al., 2024). Several variations from the original

U-Net architecture of Ronneberger et al. (2015) are tested in our study. First, some models were developed using residual

connections (He et al., 2016) in the convolutional blocks , (meaning that the residual was learned at each block. This has been

:
),
::::::
which

:::
was

:
shown to ease neural network training (He et al., 2016).

:
It
::

is
::::::

worth
:::::
noting

::::
that

:::
the

:::::::
residual

::::::
U-Net

::::::::::
architecture155

:::
was

::::
used

:::
by

::::::::::::::::
Keller et al. (2023)

::
for

:::::::::
predicting

:::
the

:::
sea

::
ice

::::::
extent

::
in

:::
the

:::::::
Beaufort

::::
sea. Furthermore, the impact of using attention

blocks introduced by Oktay et al. (2018) in the decoder, and designed to improve predictions in challenging areas
:::
give

:::::
more

:::::
weight

:::::::::
(attention)

:::
on

::::
areas

::::
that

:::
are

::::::::::
challenging

::
to

::::::
predict

:::::
(these

::::::
regions

:::
are

::::::::
identified

:::
by

:::
the

:::::::
attention

::::::
blocks

::::::
during

:::::::
training),

is also evaluated. The benefit of using attention blocks for sea ice forecasting was already shown by Ren et al. (2022) who de-

veloped an attention block (different from the one used in this study) for sea ice prediction with a fully convolutional network.160

Finally, average pooling was used in the downsampling blocks of the encoder instead of max pooling due to slightly better

performances observed during the tuning phase (see supplement).

In the original U-Net architecture (Ronneberger et al., 2015), the number of convolutional filters is doubled (divided by two)

at every layer in the encoder (decoder). We used the same strategy with 32 convolutional filters in the first layer, and with

the He normal weight initialization technique (He et al., 2015). 5 downsampling and 5 upsampling operations were used in165

the neural networks, resulting in feature maps with a size of 17 x 17 grid points in the bottleneck (compared to 544 x 544

grid points in the predictors). The models were trained using 100 epochs and a batch size of 4. An Adam optimizer was used

with an initial learning rate of 0.005, which was then divided by 2 every 25 epochs.
:::
The

:::::
mean

:::::::
squared

::::
error

::::
was

::::
used

::
as

::::
loss

:::::::
function

:::
and

:::
the

:::::
model

:::::::
version

::::
with

:::
the

::::
best

::::::::
validation

::::
loss

:::
was

:::::::
selected

::::::
during

::::::
training

:::
in

::::
order

::
to

:::::
avoid

:::::::::
overfitting.

:
Training

the models, which contain between 31 and 39 million parameters, takes about 2
:
3
:
hours on a 12 GB GPU (NVIDIA Tesla P100170

PCIe). In order to avoid overfitting, the model version with the best validation loss was selected during training. For further

details regarding the model architectures, note that the codes used for creating the deep learning models are publicly available

in a GitHub directory (see code availability section).

2.2 Verification scores

The forecasts are evaluated using two verification scores in this study. In order to analyze the full range of SIC values in the175

forecasts, as well as to strongly penalize large errors, the root mean square error (RMSE) is calculated over all oceanic grid

points. In addition, the
:::
sea

:::
ice

::::
edge

:::::::
position

::
is
::::
also

:::::::::
evaluated.

:::::
While

:::
the

:::
ice

:::::
edge

::
is

::::::
defined

::::
here

:::
by

:::
the

:::
15

::
%

::::
SIC

:::::::
contour

:::::::::
(excluding

:::::::::
coastlines)

:::::
when

:::
the

::::::::
AMSR2

:::
SIC

:::::::::::
observations

:::
are

:::::
used

::
as

:::::::::
reference,

:::
the

:::
10

::
%

::::
SIC

:::::::
contour

::
is

::::
used

::::::
when

:::
the

:::::::
forecasts

:::
are

::::::::
compared

::
to
:::
the

:::
ice

:::::
charts

:::::
from

:::
the

:::::::::
Norwegian

:::::::::::::
Meteorological

:::::::
Institute

::::
(the

::
10

::
%

::::
SIC

::::::
contour

::::::::
separates

::::
two

:::
sea

::
ice

::::::::::
categories).

::::
The Integrated Ice Edge Error (IIEE; Goessling et al., 2016) divided by the observed ice edge length (hereafter180
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referred to as "ice edge distance error") is used for evaluating the ice edge positions. The ice edge is defined here by the 15 %

SIC contour (excluding coastlines), and the ice edge length is assessed using the method introduced by Melsom et al. (2019).

While the IIEE measures the area of mismatch between two data sets, the ice edge distance error (Melsom et al., 2019) assesses

the mean distance between two ice edges. The ice edge distance error has also the advantage of being less seasonally dependent

than the IIEE which is greatly influenced by the ice edge length (Goessling et al., 2016; Palerme et al., 2019). Therefore, it is185

more suitable than the IIEE for comparing and averaging forecast scores from different seasons. Furthermore, the Wilcoxon

signed-rank test is used in this study to analyze the statistical significance of the differences between the forecast scores due to

its relevance for paired observations (the same observations are used for evaluating different forecasts) and for non-parametric

data (the errors are not normally distributed
::
for

::::
SIC). This analysis was performed using the two-tailed hypothesis with a

significance level of 0.05.
:
It
::
is

:::::
worth

::::::
noting

:::
that

:::
the

::::::::
Wilcoxon

::::::::::
signed-rank

::::
test

:::::::
assesses

:::
the

::::::::
statistical

::::::::::
significance

:::::::
between

:::
the190

:::::::::
differences

::
in

:::
the

::::::::::
distribution

::
of

:::
the

:::::
errors

::::
(and

:::
not

:::::::
between

:::
the

:::::
mean

::::::
errors).

:

2.3 Benchmark forecasts

The impact of the calibration is assessed by comparing the forecasts from the
::::::::::
performances

:::
of

:::
the deep learning models

:::
are

::::::::
evaluated

::
by

::::::::
assessing

:::
the

:::::::::::
improvement

:::::::::
compared to the raw TOPAZ4 forecasts. In addition, several benchmark forecasts are

used as reference. First, persistence of the AMSR2 SIC observations from the day preceding the forecast start date (hereafter195

referred to as "Persistence
:::::::::
persistence

::
of

::::::::
AMSR2

:::
SIC") is used, and can be considered as the limit from which the forecasts

are skillful.
:::::
When

:::
the

::::::::
forecasts

:::
are

::::::::
evaluated

:::::
using

:::
the

:::
ice

::::::
charts

::
as

:::::::::
reference,

::
a

::::::
similar

:::::::::
benchmark

::::::::
forecast

::::::::
consisting

:::
of

:::::::::
persistence

::
of

:::
the

:::
ice

:::::
charts

::::
from

:::
the

::::
day

::::::::
preceding

:::
the

:::::::
forecast

::::
start

::::
date

:
is
::::
also

::::
used

::::::::
(hereafter

:::::::
referred

::
as

:::::::::::
"persistence

::
of

:::
the

::
ice

::::::::
charts"). The second benchmark forecast (hereafter referred to as "Anomaly

::::::
anomaly

:
persistence") consists of calculating

the SIC anomalies from AMSR2 observations compared to a climatological reference the day before the forecast start date,200

and adding these initial anomalies to the climatology during the target date. Then, the values lower than 0 % and higher than

100 % are assigned to 0 and 100 %, respectively. All the full years between the launch of AMSR2 (May 2012) and the test

period (2022) were used for calculating the climatology, resulting in a 9-year period (2013 - 2021). The last benchmark forecast

consists of calculating the difference between TOPAZ
:::::::
TOPAZ4

:
SIC during the first daily time step and the SIC observed the

day before (in order to use only observations available at the forecast start date), and then subtracting this difference from the205

TOPAZ4 forecasts for each lead time (hereafter referred to as "TOPAZ4 bias corrected"). The resulting values lower than 0 %

and higher than 100 % are then assigned to 0 and 100 %, respectively. Note that this forecast is equal to Persistence
:::::::::
persistence

::
of

:::::::
AMSR2

:::
SIC

:
for 1-day lead time.

3 Results

3.1
:::

Sea
::
ice

:::::::::::::
concentration

:::::::::::
observations210
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Figure 1.
::::::::
Evaluation

::
of

:::
the

:::
ice

:::
edge

::::::::
positions

::::
from

::
the

::::
new

::::::
AMSR2

:::
sea

:::
ice

::::::::::
concentration

::::::::::
observations

:::
used

::
in
:::
this

:::::
study

:::
and

:::
the

::::::
product

::::::::
OSI-408-a

::::
from

::
the

::::::
Ocean

:::
and

:::
Sea

:::
Ice

::::::
Satellite

:::::::::
Application

::::::
Facility

::::
(OSI

::::
SAF)

::::::
during

::
the

::::::
period

::::::::
2017-2022.

::::
The

::
ice

:::::
charts

:::::::
produced

:::
by

::
the

:::
Ice

::::::
Service

::
of

::
the

:::::::::
Norwegian

:::::::::::
Meteorological

::::::
Institute

:::
are

::::
used

::
as

:::::::
reference,

:::
and

:::
the

::::::
analysis

:::
has

:::::::
therefore

::::
been

::::
done

::
in

::
the

::::
area

::::::
covered

::
by

:::
the

::
ice

:::::
charts

::::::::
(European

::::::
Arctic).

:::
The

:::
ice

::::
edge

::::::
distance

::::
error

::::
(see

:::::
section

::::
2.4)

:
is
::::

used
:::
for

::::::::
calculating

:::
the

::::
mean

:::::::
distance

::::::
between

:::
the

:::
ice

:::::
edges,

:::
and

::
the

:::::::
monthly

::::
mean

:::::::
distances

:::
are

::::::
reported

::
in
:::
this

::::::
figure.

:::
The

:::
red

:::
and

:::
blue

::::
lines

:::::::::
correspond

:
to
:::

the
:::
ice

::::
edge

::::::
distance

:::::
errors

:::
after

:::
all

::::::
products

::::
were

::::::::
integrated

::::
onto

::
the

:::::
10 km

::::::::
OSI-408-a

::::
grid.

:::
The

:::::
black

:::
line

:::::
shows

::
the

:::
ice

::::
edge

::::::
distance

::::
error

:::
for

:::
the

:::
new

::::::
AMSR2

::::
SIC

::::::
product

::
on

::
its

::
5

::
km

::::
grid,

::::
thus

::::::
retaining

:::::::::
information

:::
on

::
the

::::
finer

::::::::
resolution.

:::
The

::::
new

:::::::
AMSR2

::::::::::
observations

:::::
were

::::::::
evaluated

:::
and

::::::::
compared

::
to

:::
the

::::::
Ocean

:::
and

:::
Sea

:::
Ice

:::::::
Satellite

::::::::::
Application

::::::
Facility

::::::::::
(OSI-SAF)

::::::
product

::::::::::
OSI-408-a,

:::::
which

::
is
::::
also

:::::
based

:::
on

:::::::
AMSR2

::::::::
retrievals

:::
but

::::
with

::
a
::::::
spatial

::::::::
resolution

:::
of

::::::
10 km.

:::
The

:::::::
position

:::
of

:::
the

:::
ice

::::
edge

:::::::
(defined

::
by

:::
the

:::::
10 %

::::
SIC

::::::
contour

:::::
here)

:::
was

::::::::
evaluated

::::::
during

:::
the

::::::
period

::::
from

:::::
2017

::
to

::::
2022

:::::
using

:::
the

:::
ice

:::::
charts

:::::
from

:::
the

:::::::::
Norwegian

::::::::::::
Meteorological

:::::::
Institute

::::::::::::::::::::::::::::::::::
(JCOMM Expert Team on sea ice, 2017)

::
as

::::::::
reference.

:::
All

:::
the

:::
data

::::
sets

::::
were

::::::::
projected

::::
onto

::
the

::::
grid

::
of

:::
the

:::::::::
OSI-408-a

:::::::
product

:::::
using

::::::
nearest

::::::::
neighbor

:::::::::::
interpolation,

:::
but

::::
only

:::
the

::::
area

:::::::
covered

:::
by

:::
the

:::
ice

:::::
charts

:::::::::
(European215

::::::
Arctic)

::::
was

:::::
taken

:::
into

:::::::
account

::::
for

:::
this

::::::::::
evaluation.

::::
The

:::::
mean

::::::::
distances

:::::::
between

:::
the

:::
ice

::::::
edges

::::
from

::::
the

:::::::
AMSR2

::::::::
products

:::
and

::::
from

::::
the

:::
ice

:::::
charts

:::::
were

:::::::
assessed

:::::
using

:::
the

:::
ice

:::::
edge

:::::::
distance

:::::
error.

:::::::
Overall,

:::
the

::::
new

:::::::
AMSR2

::::
data

:::
set

:::::::::::
outperforms

:::
the

::::::::
OSI-408-a

:::::::
product

::::::
(figure

:::
1),

::::
with

:::::
mean

:::::
values

::
of
:::::::

16.8 km
::::
and

:::::::
20.6 km

:::
for

:::
the

:::
new

::::::::
AMSR2

::::::::::
observations

::::
and

:::
the

:::::::::
OSI-408-a

:::::::
product,

::::::::::
respectively.

:::::::::
Moreover,

::::
the

::::
new

:::::::
AMSR2

:::::::::::
observations

::::::::::
particularly

::::::::::
outperform

:::
the

::::::::
OSI-408a

:::::::
product

:::::
close

:::
to

:::
the

:::
sea

:::
ice

::::::::
minimum

:::
(in

:::::::
August,

:::::::::
September

:::
and

::::::::
October)

:::::::::
compared

::
to

:::
the

:::
rest

:::
of

:::
the

::::
year.

:::
In

::::
order

:::
to

:::::
assess

:::
the

::::::
impact

:::
of

:::
the220

::::::::
resolution,

::
a
::::::::::::
supplementary

:::::::
analysis

:::
was

:::::::::
performed

::
on

:::
the

::
5

:::
km

:::
grid

:::::
from

::
the

::::
new

:::::::
AMSR2

::::
SIC

::::::::::
observations

::::
with

:::::::::::
interpolating
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Figure 2. 5-day sea ice concentration forecasts from different forecasting systems initialized on 22/10/2022. a) AMSR2 sea ice concentration

observations on 26/10/2022 (target date). b) AMSR2 sea ice concentration observations during the day preceding the forecast start date

(21/10/2022). 5-day sea ice concentration forecasts from different systems: TOPAZ4 (c), TOPAZ4 bias corrected (d), deep learning model

with the U-Net architecture (e), deep learning model with the Residual U-Net architecture (f), deep learning model with the Attention U-Net

architecture (g), deep learning model with the Attention Residual U-Net architecture (h).It is worth noting that the color scale is not linear.

::
the

:::
ice

::::::
charts

::::
onto

:::
this

:::::
grid.

:::
On

:::
the

:
5
::::
km

::::
grid,

:::
the

:::::
mean

:::::::
distance

:::::::
between

:::
the

:::
ice

:::::
edges

:::::
from

:::
the

::::
new

:::::::
AMSR2

:::::::::::
observations

:::
and

:::
the

:::
ice

:::::
charts

::
is

:::::::
15.4 km,

::::::
adding

::::::
further

:::::::::
confidence

::
in

:::
the

::::::
quality

::
of

:::
the

::::
new

:::::::
product.

:

3.2 Model architectures

The original U-Net architecture (with average pooling instead of max pooling) is compared to architectures including residual225

and attention blocks in figures 2 and 3. It is worth noting that the architecture influences the number of model parameters, which

:::
can

::::
also

:::::::
influence

:::
the

::::::::::::
performances.

::::
The

::::::
number

:::
of

:::::::::
parameters varies from 31 million for the U-Net models to 39 million for

the Attention Residual U-Net models. The
:
,
:::
and

:::
the models with the Residual U-Net and Attention U-Net architectures contain

about 33 and 37 million parameters, respectively. Figure 2 shows 5-day forecasts initialized on 22/10/2022 from TOPAZ4,

TOPAZ4 bias corrected, and deep learning models developed with different architectures. Between the day preceding the230

forecast start date (21/10/2022) and the target date (26/10/2022), the sea ice cover has increased in the Laptev and East Siberian

seas, as well as in the Baffin Bay. Moreover, a few large polynyas were located around New Siberian Islands during the target

date, in an area not covered by sea ice during the day preceding the forecast start date. While all the deep learning models,

as well as TOPAZ4 and TOPAZ4 bias corrected, reproduce an increase in sea ice cover in the Laptev and East Siberian seas,

only the deep learning models predicted an increase in sea ice cover in the Baffin Bay. The model with the Attention U-Net235

architecture produces very small positive SIC (
::::
often

:
lower than 2 %) in large areas where no sea ice is observed during the

9



Figure 3. Comparison of the performances of deep learning models with different architectures during 2021 (validation period). a) Root

mean square error (RMSE) of the sea ice concentration. b) Mean error for the sea ice edge position defined by the 15 % sea ice concentration

contour (ice edge distance error).
::::::
AMSR2

:::
sea

:::
ice

::::::::::
concentration

:::::::::
observations

:::
are

::::
used

::
as

:::::::
reference.

target date
:
,
:::::
which

::
is

:
a
::::::
pattern

:::::
often

:::::::
observed

::::
with

::::
this

:::::
model

:::
for

:::::
other

::::
dates

::
as

::::
well. Nevertheless, it seems that adding residual

blocks to this model (resulting in the Attention Residual U-Net architecture)
:::::::::
consistently

:
helps to better predict these areas.

Furthermore, the model with the Attention Residual U-Net architecture produces the most realistic forecasts of the polynyas

among the deep learning models, but slightly underestimates the SIC in the Central Arctic.240

In figure 3, the performances of the deep models with different architectures are evaluated during the validation period

(2021). For 1-day lead time, the different architectures produce forecasts with similar performances, except the U-Net archi-

tecture for which the forecasts have a RMSE about 2 % larger. The models with the Attention Residual U-Net architecture

have the lowest RMSE for longer lead times, and the lowest errors for the position of the ice edge for lead times up to 5 days.

Therefore, the Attention Residual U-Net architecture has been selected for the rest of this study despite the higher errors for the245

position of the ice edge for 7 and 9-day lead times compared to the forecasts produced using the Residual U-Net architecture.

Furthermore, it is worth noting that the forecasts produced using the Attention Residual U-Net architecture have lower RMSE

and lower errors for the position of the ice edge than the forecasts from the models with the U-Net architecture for all lead

times. These differences are statistically significant (p-value from the Wilcoxon signed-rank test < 0.05) for all lead times and

metrics, except for the ice edge distance error for 10-day
::::
9-day

:
lead time.250

3.3 Performances of the deep learning models

The
:
In

:::::
figure

::
4,

:::
the

:
predictions from the models with the Attention Residual U-Net architecture are compared to the benchmark

forecasts during the test period (2022) in figure 4
::::
using

:::::::
AMSR2

::::
SIC

::::::::::
observations

:::
as

::::::::
reference. They significantly outperform

all the benchmark forecasts for all lead times. The RMSE is improved on average by 41 % compared to TOPAZ4 (between 28

% and 62 % depending on lead times), by 29 % compared to Persistence
:::::::::
persistence

::
of

:::::::
AMSR2

::::
SIC (between 19 % and 33%),255

by 23 % compared to TOPAZ
:::::::
TOPAZ4

:
bias corrected (between 19 % and 26 %), and by 27 % compared to Anomaly

:::::::
anomaly

10



Figure 4. Performances of the deep learning models with the Attention Residual U-Net architecture during 2022 (test period)
::::
using

:::
the

::::::
AMSR2

:::
sea

:::
ice

::::::::::
concentration

::::::::::
observations

::
as

:::::::
reference. The deep learning models using all predictors are shown by the blue curves, the

models which do not use predictors from TOPAZ4 sea ice forecasts (sea ice concentration forecasts and initial errors) are shown by the green

curves, the models which do not use predictors from ECMWF weather forecasts (2-m temperature and wind) are shown by the yellow curves,

and the models which do not use predictors from sea ice observations (AMSR2 sea ice concentration, AMSR2 sea ice concentration trend,

and TOPAZ4 initial errors) are shown by the pink
:::::
purple curves.

persistence (between 21 % and 31 %). Furthermore, the ice edge distance error is reduced on average by 44 % compared to

TOPAZ4, by 25 % compared to TOPAZ4 bias corrected, by 32 % compared to Persistence
:::::::::
persistence

:::
of

:::::::
AMSR2

:::
SIC, and by

34 % compared to Anomaly
:::::::
anomaly persistence.

In order to assess the impact of the different data sets used in the predictors (observations, sea ice and weather forecasts),260

other deep learning models were developed without including either predictors from TOPAZ4 sea ice forecasts (SIC forecasts

and TOPAZ4 initial errors), predictors from ECMWF weather forecasts (temperature and wind forecasts), or predictors from

AMSR2 SIC observations (SIC during the day preceding the forecast start date, SIC trend, and TOPAZ4 initial errors). These

models have the same architecture and hyperparameters as the models using all predictors, and their performances are also

shown in figure 4. Note that TOPAZ4 initial errors is considered as a predictor from TOPAZ4 sea ice forecasts and from265

AMSR2 SIC observations in this experiment since both data sets are needed to create this predictor. Overall, the predictions

are much more impacted by dropping ECMWF weather forecasts than by removing TOPAZ4 sea ice forecasts. On average,

the relative increase in RMSE is 2.1 % if the predictors from TOPAZ4 sea ice forecasts are removed compared to 7.7 % if the

predictors from ECMWF weather forecasts are removed. The differences in RMSE between the models using all predictors and

those developed without ECMWF weather forecasts are statistically significant for all lead times (p-value from the Wilcoxon270

signed-rank test < 0.05). When comparing the models using all predictors to those developed without TOPAZ4 sea ice forecasts,

the differences in RMSE are statistically significant for all lead times, except
:
1

:::
and

:
10 days. Furthermore, the forecasts from

ECMWF and TOPAZ4 have relatively similar impacts on the RMSE for lead times from 8 to 10 days. The differences in RMSE
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Figure 5.
::::::
Fraction

::
of
::::
days

::
in

::::
2022

::::
(test

:::::
period)

::::::
during

::::
which

:::
the

:::::::
forecasts

::::
from

:::
the

:::::
models

::::
with

:::
the

:::::::
Attention

:::::::
Residual

:::::
U-Net

:::::::::
architecture

::::::::
outperform

:::
the

::::::
different

:::::::::
benchmark

:::::::
forecasts

::::
when

:::
the

:::::::
forecasts

:::
are

:::::::
evaluated

::::
with

::
the

::::::
RMSE

::
(a)

:::
and

::::
with

:::
the

::
ice

::::
edge

:::::::
distance

::::
error

:::
(b).

::::::
AMSR2

:::
sea

::
ice

:::::::::::
concentration

:::::::::
observations

:::
are

:::
used

::
as
::::::::
reference.

between the models developed without TOPAZ4 sea ice forecasts and those developed without ECMWF weather forecasts

remain statistically significant for lead times up to 9 days, but this difference is not significant for 10-day lead time.275

The impact of removing predictors from TOPAZ4 or ECMWF forecasts is stronger for the position of the ice edge, with

a mean increase in ice edge distance error of 3.5 % and 12.3 % for the predictors from TOPAZ4 and ECMWF forecasts,

respectively. Nevertheless, the models developed without TOPAZ4 sea ice forecasts have slightly smaller ice edge distance

errors than the models using all predictors for lead times of 7 and 9 days, and the difference in ice edge distance error is not

statistically significant for 10-day lead time. Furthermore, removing the predictors from sea ice observations has a very strong280

impact on the predictions, with a mean relative increase of 39 % in RMSE and of 55 % in ice edge distance error.

Figure 5 shows the fraction of days in 2022 during which the forecasts produced by the deep learning models outperform the

different benchmark forecasts. When the forecasts are evaluated using the RMSE, the forecasts from the deep learning models

outperform all benchmark forecasts for lead times from 1 to 7 days, and at least 99 % of the different benchmark forecasts for

longer lead times. Moreover, the forecasts from the deep learning models outperform all benchmark forecasts for lead times285

from 1 to 5 days when the ice edge position is evaluated. For longer lead times, the deep learning models outperform at least

97 % of Persistence
:::::::::
persistence

:::
of

:::::::
AMSR2

:::
SIC

:
forecasts and 98 % of the Anomaly

:::::::
anomaly persistence forecasts. They also

predict the ice edge position with better accuracy than TOPAZ4 in at least 91 % of the cases for all lead times, and in at least

87 % of the cases compared to TOPAZ4 bias corrected.

::
In

:::::
order

::
to

::::::
assess

:::
the

::::::::::::
performances

::
of

:::
the

::::
SIC

::::::::
forecasts

:::::
using

:::::::::::
independent

:::::::::::
observations,

:::
an

:::::::::
additional

:::::::::
evaluation

::::
was290

::::::::
performed

:::
in

:::
the

:::::::::
European

:::::
Arctic

::::::
using

:::
the

:::
ice

::::::
charts

::::
from

::::
the

:::::::::
Norwegian

:::::::::::::
Meteorological

::::::::
Institute

::
as

:::::::::
reference

::::::
(figure

::
6).

:::::
Since

::::
the

:::
ice

:::::
charts

:::::::
provide

::::
sea

:::
ice

:::::::::
categories

::::
(and

::::
not

::::
SIC

::
as

::
a
:::::::::
continuous

:::::::::
variable),

::::
only

:::
the

::::
ice

::::
edge

::::::::
position

::
is

::::::::
evaluated

::
in

:::::
figure

::
6.

:::
On

::::::::
average,

:::
the

::::::::
forecasts

::::
from

:::
the

:::::
deep

:::::::
learning

::::::
models

:::::
have

::
an

:::
ice

:::::
edge

:::::::
distance

:::::
error

::
40

:::
%

:::::
lower

:::
than

::::::::
TOPAZ4

:::::::::
forecasts,

::
23

:::
%

:::::
lower

::::
than

::::::::
TOPAZ4

::::
bias

::::::::
corrected,

:::
29

::
%

::::::
lower

::::
than

:::::::::
persistence

:::
of

:::::::
AMSR2

::::
SIC,

::::
and

::
22

:::
%
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Figure 6. Fraction
::::::::::
Performances

:
of days in

::
the

::::
deep

:::::::
learning

::::::
models

::::
with

:::
the

:::::::
Attention

:::::::
Residual

:::::
U-Net

:::::::::
architecture

::::::
during 2022 (test

period)
::::
using

::
the

:::
ice

:::::
charts

::
as

::::::::
reference.

:::
The

:::
ice

:::
edge

:::::::
position

::::::
(defined

:::
by

::
the

:::
10

::
%

:::
SIC

:::::::
contour)

:
is
::::::::
evaluated.

::
a)

:::::
Mean

::
ice

::::
edge

:::::::
distance

::::
errors

::::::::
depending

:::
on

:::
lead

::::
time.

::
b)
:::::::
Fraction

::
of

::::
days

::
in

::::
2022 during which the forecasts from the models with the Attention Residual U-Net

architecture outperform the different benchmark forecasts when the forecasts are evaluated with the RMSE (a) and with
:::
using

:
the ice edge

distance error.
::
It

:
is
:::::
worth

:::::
noting

:::
that

:::
this

::::::::
evaluation

::
is

::::::::
performed

:::
over

:::
the

:::
area

::::::
covered

::
by

:::
the

:::
ice

::::
charts

::::
from

:::
the

::::::::
Norwegian

::::::::::::
Meteorological

::::::
Institute (b

:::::::
European

:::::
Arctic)

:
,
:::
and

:::
that

:::
the

::::::
number

::
of

:::::::
forecasts

:::::::
evaluated

:::::
varies

::::::::
depending

::
on

::::
lead

:::
time

:::::::
because

::
ice

:::::
charts

:::
are

:::
not

:::::::
produced

:::::
during

:::::::
weekends.

:::::
lower

:::
than

::::::::::
persistence

::
of

:::
the

:::
ice

:::::
charts.

::::::
While

::
the

::::::::
forecasts

::::
from

:::
the

:::::
deep

:::::::
learning

::::::
models

:::::::::
outperform

::::::::
TOPAZ4,

::::::::
TOPAZ4

::::
bias295

::::::::
corrected,

:::
and

::::::::::
persistence

::
of

:::::::
AMSR2

::::
SIC

:::
for

::
all

::::
lead

::::::
times,

::::
they

::::
have

:::::
worse

::::::::::::
performances

::::
than

:::::::::
persistence

::
of
:::

the
:::

ice
::::::
charts

::
for

:::::
1-day

::::
lead

::::
time

::::
(the

:::
ice

::::
edge

::::::::
distance

::::
error

::
is

::
33

:::
%

::::::
larger).

:::::::::
Moreover,

::::
only

:::
23

::
%

::
of

:::
the

::::::::
forecasts

::::
from

:::
the

:::::
deep

:::::::
learning

::::::
models

:::::::::
outperform

::::::::::
persistence

::
of

:::
the

:::
ice

:::::
charts

:::
for

:::::
1-day

::::
lead

::::
time.

:::::::::::
Nevertheless,

:::
the

::::::::
forecasts

::::
from

:::
the

::::
deep

:::::::
learning

:::::::
models

::::::::::
significantly

:::::::::
outperform

::::::::::
persistence

::
of

:::
the

::
ice

::::::
charts

::
for

::::::
longer

::::
lead

::::
times

::::::::
(p-value

::::
from

:::
the

::::::::
Wilcoxon

::::::::::
signed-rank

:::
test

::
<

:::::
0.05).

300

3.4 Predictor importances

In order to analyze the impact of each predictor on the forecasts, two approaches are used in this study. The first method is the

same as the one used in figure 4 to test the impact of removing some data sets from the list of predictors, except that only one

predictor is removed for each model. Then, the performances of the different models are compared to assess the impact of the

different predictors on the forecasts. Due to the relatively long computing time necessary for developing the different models,305

this experiment has only been performed using half of the lead times. While two predictors are used for the wind forecasts

(x and y components), only one model per lead time was developed with removing both predictors simultaneously to test the

impact of wind forecasts. It is worth noting that the importance of highly correlated predictors can be underestimated using

this method since similar information is provided to the neural network when one predictor is removed. The results from this

experiment are shown in figure 7. While all the predictors tend to reduce the RMSE averaged over all lead time, some predictors310
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Figure 7. Differences in root mean square error of the sea ice concentration (a) and in ice edge distance error (b) when one of the predictor

variables is not used in the deep learning models during 2022 (test period). The differences represent the subtraction between the perfor-

mances of the models in which one predictor was not used and the models using all the predictors. Therefore a positive value means that

adding the variable in the algorithm
:::::
model improves the forecasts.

::::::
AMSR2

:::
sea

::
ice

:::::::::::
concentration

:::::::::
observations

:::
are

::::
used

::
as

:::::::
reference.

have a negative impact on the predictions of the ice edge (ECMWF 2-m temperature forecasts, AMSR2 sea ice concentration

observations and trend). The wind forecasts have the largest impact among the predictors for all lead times. Removing the wind

forecasts leads to a mean absolute increase in RMSE of 0.72 % and a mean increase in ice edge distance error of 2.49 km. The

other predictors have a much lower impact on the forecasts. Overall, the predictors from TOPAZ4 (SIC forecasts and initial

errors) have the strongest impact on the predictions of the ice edge among the other predictors, with a mean difference in ice315

edge distance error of about 0.5 km for each predictor. However, the predictors from TOPAZ4 sea ice forecasts have a slight

negative impact on the 7-day forecasts of the ice edge position.

Another method called permutation feature importance has been used to assess the impact of the different predictors on the

forecasts (figure 8). In this method, only the models developed using all predictors are used. When making a forecast, one

predictor is randomly permuted by providing the predictor data from another forecast start date. The goal of this experiment320

is to test how much the models are fitted to the different predictors. Figure 8 shows that the neural networks are considerably

fitted on the TOPAZ4 SIC forecasts and the AMSR2 SIC observations. Permuting the fields from these predictors produces

very inaccurate forecasts, leading to mean absolute increases in RMSE of 11.4 % and 10.4 % if the TOPAZ4 SIC forecasts and

the AMSR2 SIC observations are permuted, respectively. Similar results were obtained for the position of the ice edge, with

large increases in the ice edge distance error if these predictors are permuted (65.7 km and 63.3 km for TOPAZ4 SIC forecasts325

and AMSR2 SIC observations, respectively). Moreover, the relative importances of these two predictors seem anti-correlated

depending on lead times. This suggests that the neural networks need at least one SIC field to guide the SIC predictions.

Furthermore, permuting the AMSR2 SIC trend seems to have almost no impact on the forecasts, suggesting that the neural

networks use this predictor only marginally.
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Figure 8. Differences in root mean square error of the sea ice concentration (a) and in ice edge distance error (b) when the field from a wrong

date is provided to the deep learning models for one predictor during 2022 (test period). The differences represent the subtraction between

the performances of the models in which one predictor is shuffled and the reference model.
::::::
AMSR2

:::
sea

::
ice

::::::::::
concentration

::::::::::
observations

:::
are

:::
used

::
as

::::::::
reference.

Figure 9. Seasonal variability in the performances of the deep learning models with the Attention Residual U-Net architecture in 2022 (test

period) for different lead times (1, 5, and 10 days) when the forecasts are evaluated using the RMSE (a, b, c) and using the ice edge distance

error (d, e, f).
::::::
AMSR2

:::
sea

::
ice

:::::::::::
concentration

:::::::::
observations

:::
are

::::
used

::
as

:::::::
reference.

15



3.5 Seasonal and spatial variabilities330

Figure 9 shows the seasonal variability in the performances of the deep learning models for lead times of 1, 5, and 10 days.

Overall, the calibration shows
::::
deep

:::::::
learning

::::::
models

:::::
show

:
robust results, with no significant

:::
clear

:
seasonal cycle in the relative

improvement compared to TOPAZ4 forecasts and Persistence
:::::::::
persistence

::
of

:::::::
AMSR2

::::
SIC. Moreover, the deep learning models

significantly outperform all the benchmark forecasts for all the months, except in November when the 10-day forecasts are

evaluated using the ice edge distance error. In November, the 10-day forecasts from the deep learning models have similar ice335

edge distance error as the TOPAZ4 bias corrected forecasts.

The spatial variability in the performances of the deep learning models in 2022 is shown in figure 10. The grid points with less

than 50 days during which the AMSR2 observations indicate some sea ice (SIC higher than 0 %) are excluded from the analysis

in order to keep only meaningful data. Nevertheless, figure 10 must be interpreted carefully because forecasts from different

seasons with varying sea ice edge positions are taken into account in this analysis. The forecasts from the deep learning models340

outperform the TOPAZ4 forecasts almost everywhere, but have slightly lower performances in the East Siberian sea compared

to the rest of the Arctic. The
:::::::::::
Nevertheless,

::
it

::
is

::::::
difficult

::
to
:::::::::
determine

::
if

::::
these

::::::
poorer

:::::::::::
performances

:::
in

:::
the

:::
East

::::::::
Siberian

:::
sea

:::
are

::::::::
persistent

::::::
because

:::::
only

:::
one

::::
year

::
is

::::
used

:::
for

:::
this

:::::::
analysis.

:::::::::::
Furthermore,

:::
the

:
relative improvement from the calibration

:::::::
forecasts

:::::::
produced

:::
by

:::
the

:::::
deep

:::::::
learning

:::::::
models compared to TOPAZ4 forecasts decreases with increasing lead times. Compared to

Persistence and Anomaly
:::::::::
persistence

::
of

:::::::
AMSR2

::::
SIC

::::
and

:::::::
anomaly

:
persistence, the relative improvement in RMSE increases345

with increasing lead times. There is an area in the Central Arctic where the 1-day forecasts from the deep learning models have

larger RMSE than TOPAZ4 bias corrected, Persistence, and Anomaly
:::::::::
persistence

::
of

::::::::
AMSR2

::::
SIC,

:::
and

::::::::
anomaly persistence.

However, the forecasts from the deep learning models have low RMSE in this area, meaning that the relative differences in this

area do not represent large absolute values. Except for this area in the Central Arctic for 1-day lead time, the forecasts from the

deep learning models outperform the benchmark forecasts almost everywhere, with larger improvements in areas where the350

marginal ice zone is often located.

4 Discussion and conclusion

The forecasts from the deep learning models developed in this study significantly outperform all the benchmark forecasts for

all lead times
::::
when

:::
the

:::::::
AMSR2

::::
SIC

:::::::::::
observations

:::
are

::::
used

::
as

::::::::
reference, with a mean RMSE 41 % lower than for TOPAZ4

forecasts and 29 % lower than for Persistence
:::::::::
persistence

::
of

::::::::
AMSR2

:::
SIC. They also considerably better predict the ice edge355

position than the benchmark forecasts (the ice edge distance error is reduced by 44 % and 32 % compared to TOPAZ4 and

Persistence
:::::::::
persistence

::
of

:::::::
AMSR2

::::
SIC, respectively). Moreover, their good performances for various seasons and locations, as

well as the relatively similar results obtained during the validation and test periods (see supplement), suggest that these models

are robust.
:::::
While

::
it

::::
takes

::::
less

::::
than

:
a
::::::
second

::
to

::::::
predict

:::
the

:::
sea

:::
ice

::::::::::::
concentration

:::
for

:::
one

::::
lead

::::
time

:::
on

:
a
:::
12

:::
GB

::::
GPU

:::::::::
(NVIDIA

::::
Tesla

:::::
P100

:::::
PCIe)

:::::
once

:::
the

:::
list

::
of

:::::::::
predictors

::
is

::::::::
available,

:::
the

:::
full

:::::::::
processing

:::::
chain

::::::::
including

::::
the

:::::::::
production

::
of

:::
the

:::::::::
predictors360

::
on

:
a
::::::::

common
::::
grid

:::::
takes

:::::
about

:
4
:::::::
minutes

:::
for

:::
all

::::
lead

:::::
times.

::::
This

::
is
:::::::::
negligible

::::::::
compared

::
to
::::

the
::::
time

::::::::
necessary

:::
for

:::::::::
producing

:::::::
TOPAZ4

:::::::::
forecasts,

:::
and

::::::::
therefore

:::::::::
reasonable

:::
in

::
an

::::::::::
operational

:::::::
context.

::::::::
However,

:::
the

::::::::::
production

::
of

::::::::
TOPAZ4

::::::::
forecasts

::::
was
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Figure 10. Root mean square error (RMSE) of the forecasts from the deep learning models with the Attention Residual U-Net architecture

(first row) in 2022 (test period). Relative improvement in RMSE (%) compared to the TOPAZ4 forecasts (second row), TOPAZ4 bias

corrected (third row), Persistence
::::::::
persistence

::
of

:::::::
AMSR2

:::
SIC

:
(fourth row), and Anomaly

::::::
anomaly

:
persistence (fifth row). Positive values

mean that the deep learning forecasts outperform the benchmark forecasts. The
::::::
AMSR2

:::
sea

:::
ice

::::::::::
concentration

::::::::::
observations

:::
are

::::
used

::
as

:::::::
reference,

:::
and

:::
the

:
grid points with less than 50 days during which the AMSR2 observations indicate some sea ice (sea ice concentration

higher than 0 %) are not taken into account in this figure.

::::::
stopped

::
in
::::::::

February
:::::
2024,

::::
and

:::
the

:::::::
AMSR2

::::
SIC

:::::::::::
observations

::::
used

::
in

::::
this

:::::
study

:::
are

:::
not

::::::::
available

::
in

::::
near

::::
real

::::
time

::::
yet.

::::
This

:::::::
prevents

:::
the

:::::::::
operational

:::
use

::
of
:::
the

:::::::::::::
post-processing

:::::::
method

::::::::
presented

:::::
here.

:::::
Using

:::
the

:::
ice

:::::
charts

::::
from

:::
the

::::::::::
Norwegian

::::::::::::
Meteorological

:::::::
Institute

:::
as

::::::::
reference,

:::
the

::::::::
forecasts

::::
from

:::
the

::::
deep

:::::::
learning

:::::::
models365

:::::::::
outperform

:::
all

:::::::::
benchmark

::::::::
forecasts

::
for

::::
lead

:::::
times

::::::
longer

::::
than

:
1
::::
day

::
in

:::
the

::::::::
European

::::::
Arctic,

:::
but

:::
are

:::::
worse

::::
than

::::::::::
persistence

::
of

::
the

:::
ice

::::::
charts

:::
for

:::::
1-day

::::
lead

:::::
time.

:::::
Since

:::
the

::::
deep

:::::::
learning

:::::::
models

:::
are

::::::
trained

:::::
using

:::::::
AMSR2

::::
SIC

:::::::::::
observations

:::
for

:::
the

:::::
target

:::::::
variable,

::
it

:::::
cannot

:::
be

:::::::
expected

::::
that

::::
they

:::::::
perform

:::::
better

::::
than

:::
the

:::::::::
differences

:::::::
between

:::
the

::::
two

:::::::::::
observational

:::::::
products

::::::
(figure

:::
1).
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:::::
While

:::::
using

:::
ice

:::::
charts

:::
for

:::::::
training

::::
deep

::::::::
learning

::::::
models

:::
has

:::::
been

:::::::
recently

::::::::
proposed

:::
by

:::::::::::::::::
Kvanum et al. (2024)

:
,
:::
this

:::::
does

:::
not

::::
allow

::
to
:::::::
predict

::
the

::::
SIC

::
as

::
a

:::::::::
continuous

:::::::
variable.

:
370

Whereas previous studies used the original U-Net architectures for SIC predictions (Andersson et al., 2021; Grigoryev

et al., 2022), our results suggest that slightly better performances can be achieved by adding residual and attention blocks

(RMSE about 2.8 % lower on average), resulting in the Attention Residual U-Net architecture. In addition to the original U-

Net architecture, Grigoryev et al. (2022) also tested a recurrent U-Net architecture in order to take into account the temporal

evolution of the sea ice before the forecast start date. They obtained slightly better results with the recurrent U-Net architecture375

for short lead-times (until 5 days in the Labrador and Laptev seas and until 10 days in the Barents sea), but worse than with

the original U-Net architecture for longer lead times. Furthermore, they reported that the computational cost for training the

recurrent U-Net models was much higher than for training the U-Net models. In this study, training the models with the

Attention Residual U-Net architecture took about the same time as training the models with the U-Net architecture, and the

models with the Attention
:::::::
Residual U-Net architecture have better performances than the models with the U-Net architecture380

for all lead times.

Including predictors from ECMWF weather forecasts (particularly the wind) has a significant
::::::::::
considerable

:
impact on the

SIC predictions, resulting in a 7.7 % reduction in RMSE. This is consistent with the findings from Grigoryev et al. (2022)

who assessed the impact of using predictors from weather forecasts produced by the National Centers for Environmental

Prediction (NCEP) Global Forecast System (GFS), and reported significant improvements when these predictors are included385

in their U-Net models. Nevertheless, the impact of ECMWF weather forecasts decreases with increasing lead times in our

study. This could be due to the lower skill of weather forecasts for longer lead times, as well as to the pre-processing of

these variables before providing them to the neural networks. Averaging the weather forecasts between the forecast start date

and the predicted lead time could decrease the impact of these predictors for long lead times. This could be mitigated by

providing several predictors covering different lead time ranges to the neural networks, but with the disadvantage of increasing390

the computational cost.

The impact of using predictors from TOPAZ4 sea ice forecasts is much lower since these predictors lead to a reduction in

RMSE of only 2.1 % on average. While the impact of using sea ice forecasts from TOPAZ4 is limited in this study, this does not

mean that using predictors from sea ice forecasts does not have stronger potential. TOPAZ4 is an operational system that has

been constantly developed since 2012, which can lead to inconsistencies limiting the impact of these predictors. The production395

of consistent re-forecasts with operational systems could increase the impact of sea ice forecasts in the development of such

methods, and should be recommended in the sea ice community. Furthermore, it is likely that more accurate physical-based

sea ice forecasts would have larger potential as predictors for machine learning models.

:::::
While

:::
this

:::::
study

:::::::
focused

:::
on

:::::::::
developing

:::::::::
pan-Arctic

::::
SIC

::::::::
forecasts

::
at

:::
the

::::
same

:::::::::
resolution

::
as

:::
the

::::::::
TOPAZ4

:::::::::
prediction

::::::
system

::::
(12.5

:::::
km),

::::
there

::
is
::::

also
::

a
:::::
need

:::
for

::::::
higher

::::::::
resolution

:::::::::
(kilometer

::::::
scale)

:::
sea

:::
ice

::::::::
forecasts

::::::::::::::::::
(Wagner et al., 2020).

:::::
This

:::
can

:::
be400

::::::::
addressed

:::
by

:::::::::
developing

::::::::
regional

::::
high

:::::::::
resolution

:::::::::
prediction

:::::::
systems

:::::
using

:::::
deep

:::::::
learning

:::::
such

::
as

::::
the

:::::
recent

::::::
works

:::::
from

::::::::::::::::
Keller et al. (2023)

:::
and

:::::::::::::::::
Kvanum et al. (2024)

:
.
:
Most studies on sea ice forecasting using machine learning have focused on

predicting the SIC and the sea ice edge (e.g. Kim et al., 2020; Fritzner et al., 2020; Liu et al., 2021; Andersson et al., 2021;
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Grigoryev et al., 2022; Ren et al., 2022), probably due to the larger number of reliable SIC observations available compared

to other variables such as thickness, drift, and type. However, predictions of other sea ice variables such as thickness and drift405

are necessary for seafarers, and additional efforts should be made to better predict these variables as well. Finally, probabilistic

forecasts can also be developed using supervised machine learning (Haynes et al., 2023), which should have strong potential

for sea ice forecasting at short time scales and would be highly relevant for end-users (Wagner et al., 2020).
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