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Abstract. Knowledge of solar surface irradiance (SSI) spatial and temporal characteristics is critical in many domains. While

meteorological ground stations can provide accurate measurements of SSI locally, they are sparsely distributed worldwide. SSI

estimations derived from satellite imagery are thus crucial to gain a finer understanding of the solar resource. To infer SSI from

satellite images is, however, not straightforward and it has been the focus of many researchers in the past thirty to forty years.

For long, the emphasis has been on models grounded in physical laws with, in some cases, simple statistical parametrizations.5

Recently, new satellite SSI retrieval methods are emerging, which directly infer the SSI from the satellite images using machine

learning. Although only a few such works have been published, their practical efficiency has already been questioned.

The objective of this paper is to better understand the potential and the pitfalls of this new coming family of methods. To

do so, simple multi-layer-perceptron (MLP) models are constructed with different training datasets of satellite-based radiance

measurements from Meteosat Second Generation (MSG) with collocated SSI ground measurements from Meteo-France. The10

performance of the models is evaluated on a test dataset independent from the training set both in space and time and compared

to that of a state-of-the-art physical retrieval model from the Copernicus Atmosphere Monitoring Service (CAMS).

We found that the data-driven model’s performance is very dependent on the training set. Provided the training set is suffi-

ciently large and similar enough to the test set, even a simple MLP has a root mean square error (RMSE) that is 19% lower than

CAMS and outperforms the physical retrieval model in 96% of the test stations. On the other hand, in certain configurations,15

the data-driven model can dramatically underperform even in stations located close to the training set: when geographical

separation was enforced between the training and test set, the MLP-based model exhibited an RMSE that was 50% to 100%

higher than that of CAMS in several locations.

1 Introduction

Spatial and temporal variabilities of solar surface irradiance (SSI) are of great interest across a range of fields, including20

climatology, solar energy, health, architecture, agriculture, and forestry. SSI estimations can be made using solar radiation

measurements from existing networks of meteorological ground stations. However, these are sparsely distributed worldwide.

Imaging systems space-borne by meteorological geostationary satellites represent complementary upwelling radiance sources

for SSI retrieval, as they enable better spatial and temporal coverage (Blanc et al., 2017; Müller and Pfeifroth, 2022; Tournadre,

2022). Since the eighties, multiple SSI retrieval approaches have been proposed using satellite images, from the earlier cloud25
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index methods (Cano et al., 1986; Rigollier and Wald, 1998) to more recent approaches relying on advanced radiative transfer

models (Xie et al., 2016; Qu et al., 2017). Some of these retrieval algorithms are operational and provide SSI estimations

worldwide. For example, HelioClim3 (Blanc et al., 2011a) offers real-time estimations of the Global Horizontal Irradiance

(GHI) over Africa and Europe. CAMS, the Copernicus Atmosphere Monitoring Service, is another near real-time service that

derives SSI estimations from data collected by both Meteosat and Himawari satellites; it covers areas including Africa, Europe,30

and a significant portion of Asia (Schroedter-Homscheidt et al., 2016). In the United States, the National Solar Radiation

Database (NSRDB, Sengupta et al. (2018)) serves as a valuable resource, providing SSI estimates primarily from the GOES

satellites. The performances of these solar radiation databases vary with the location and sky conditions; they are discussed

in detail in Forstinger et al. (2023). Statistical methods have also been developed to post-process these retrieval models and

correct their errors based on historical ground measurements (Polo et al., 2016, 2020; Huang et al., 2019). These correction35

algorithms, however, are mostly based on simple statistical methods and do not aim to replace the physical retrieval models

upstream. In addition, most of the correction models proposed in the literature are local and therefore cannot generalize to

locations they have not seen during training (Verbois et al., 2022).

In the past decade, Earth science has been revolutionized by the advent of machine and deep learning (Reichstein et al.,

2019; Boukabara et al., 2019), with important developments in remote sensing (Ball et al., 2017), severe weather predictions40

(McGovern et al., 2017; Racah et al., 2017), and numerical weather modeling (Brenowitz and Bretherton, 2018; Rasp et al.,

2018). In the field of SSI retrieval, new data-driven approaches are emerging based on automatic statistical learning, which

attempt to infer a direct relationship between satellite images and SSI ground measurements. Papers presenting such retrieval

methods report promising performance (Jiang et al., 2019; Hao et al., 2019, 2020). However, a more thorough analysis is

needed. In particular, the ability of machine learning-based models to generalize to new locations and specific meteorological45

and atmospheric events must be rigorously evaluated. Indeed, when Yang et al. (2022) evaluated the method proposed by Hao

et al. (2019) outside the algorithm’s training locations, they found that the method was performing significantly worse than

expected.

In this work, we propose to further explore the potential of machine learning-based satellite-retrieval methods and to identify

some of the main pitfalls that come with this type of approach. Our objective is not to introduce a new retrieval method; hence,50

we have deliberately opted for a simple, fully connected architecture. This choice allows our conclusions regarding generaliza-

tion to extend more effectively to the realm of complex networks (convolutional, recurrent, attention-based, generative, etc.),

which are generally prone to encountering greater generalization challenges (Wang et al., 2017; Ranalli and Zech, 2023). We

conduct a thorough and critical analysis of its performance and compare it with a state-of-the-art retrieval model, Heliosat 4

(Qu et al., 2017), operational as part of the Copernicus Atmosphere Monitoring Service (CAMS) radiation service.55

The paper is organized as follows. In Section 2, we present the data used in this study. In Section 3, we describe our proposed

machine-learning-based model. In Section 4, we set the stage for our analysis and present the experimental setups. The results

are discussed in Section 5. Discussion and conclusion are given in Section 6.
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2 Data

In this section, we briefly describe the data used in this study. Table 1 gives an overview.60

Table 1. Overview of data used in this study.

Data Time Sampling Spatial resolution Time extent Spatial Extent Source

SSI measurements 1 hour Punctual 2010-2019 231 locations in France Courtesy of Meteo-France

SSI measurements 1 minute Punctual 2018-2019 Carpentras (FR) BSRN Network

SSI estimations 1 hour ca. 4x5 km 2018-2019 France CAMS radiation services

CSI estimations 1 minute ca. 4x5 km 2018-2019 France CAMS radiation services

Climatic albedo 1 minute ca. 4x5 km 2010-2019 France CAMS radiation services

AOD measurements 1 minute Punctual 2018-2019 Carpentras (FR) Aeronet network

2.1 Satellite observation

We have been using readings of upwelling radiances Lλ from the multispectral optical imaging system aboard Meteosat second

generation (MSG) meteorological geostationary satellite. MSG has 12 different channels, but we only use three of them here:

two visible bands (centered on 0.6 µm and 0.8 µm ) and one infra-red band (centered on 10.8 µm). MSG channels have a

temporal resolution of 15 minutes and a spatial resolution of 3 km at Nadir (0,0)1, which above France corresponds to pixels65

of ca. 4 by 6 km (in the E-W and N-S directions, respectively) (EUMETSAT, 2017).

2.2 Ground measurements

2.2.1 Meteo-France stations

This study relies for training, validating, and testing on ground SSI measurements from 231 meteorological stations operated

by Météo-France and spread over metropolitan France, as shown in Figure 2. The stations are equipped with Kipp&Zonen70

thermopile pyranometers2 that measure 1-min Solar Surface Irradiance (SSI); here, however, we only have access to hourly

averages. The data span 9 years, between 2010 and 2019, but not all stations were operational during the whole period.

Strict quality checks (QC) are applied to the broadband data, as described extensively in (Verbois et al., 2023) and summa-

rized in Appendix A. The idea is to select among all the ground measurements of SSI the ones that are the less questionable,

both with commonly used automatic quality check procedures and expert visual-based scrupulous inspection, station per sta-75

tion, day per day.

1Except for the High-Resolution Visible (HRV) channel, which provides measurements with a resolution of 1 km, but on a reduced portion of the disk.

This channel is not used in this study.
2The details of the instrument at each station can be found at: https://donneespubliques.meteofrance.fr/?fond=contenu&idcontenu= 37
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The Météo-France station of Carpentras, included in the dataset described in Section 2.2.1, is also part of the BSRN (Ohmura

et al., 1998) and the Aerosol Robotic Network (AERONET) networks (Holben et al., 1998). As a BSRN station, it provides

measurements of 1-min SSI. As an AERONET station, it provides measurements of spectral aerosol optical depth (AOD).

The AOD at different wavelengths are measured with a Sun photometer but are only valid under clear-sky conditions. Cloud80

screening is thus applied to the raw data and measurements are therefore only available intermittently (Giles et al., 2019). In

this work, we use the AOD at 500 nm.

2.3 Copernicus Atmosphere Monitoring Services

The Copernicus Atmosphere Monitoring Service (CAMS) provides time series for various atmospheric and meteorological

variables.85

CAMS radiation service provides time series of global, direct, and diffuse ground irradiances. It relies on Heliosat 4, a state-

of-the-art physical retrieval method (Qu et al., 2017) to infer ground irradiance from MSG satellites and CAMS atmospheric

composition. CAMS estimations of SSI are used as a benchmark in this study. CAMS SSI natively comes with a resolution of

15 minutes, as it is derived from MSG. Here, however, we use hourly averages of SSI to match the resolution of the ground

data we use as a reference (Section 2.2.1).90

It should be noted that other physical retrieval methods might outperform CAMS (Forstinger et al., 2023). It remains,

nonetheless, a state-of-the-art retrieval model.

CAMS also implements the McClear clear-sky model, which provides estimations of global, diffuse, and direct clear-sky

irradiances. It is based on look-up tables from the radiative transfer model libRadtran and fed by partial aerosol optical depth,95

ozone and water vapor data from CAMS atmosphere services (Lefèvre et al., 2013; Gschwind et al., 2019). In this work, we

use its global component, abbreviated CSI for clear-sky irradiance. As it will be used to detect clear-sky instants in Carpentras

station, we use 1-minute values.

We also use the CSI hourly mean to compute clear-sky index kc from the SSI: kc = SSI
CSI .

100

2.4 Ground albedo

The ground albedo is the fraction of the total irradiance reaching the surface of the earth that is reflected by the ground. In this

work, we use the ground albedo to analyze the performance of the retrieval models. We rely on values derived from MODIS

data sets (Blanc et al., 2014).

3 Machine learning-based retrieval model105

In this section, we present our proposed machine learning-based SSI satellite retrieval model – ML model in short. We describe

the target and predictors in Section 3.1 and 3.2, respectively; the neural network architecture is detailed in Section 3.3. Finally,
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we shortly discuss running time in Section 3.4. A code snippet showing the exact implementation of the network in TensorFlow

is provided as supplementary material.

3.1 Target110

The target of the model is the hourly Solar Surface Irradiance (SSI) and more precisely the global horizontal irradiance (GHI)

component which is the downwelling shortwave surface flux. The ground truth, used for training the model and to evaluate its

performance, is provided by the Météo-France measurement stations described in Section 2.2.1. To accelerate the training, the

values are normalized by the corresponding average irradiance over the training period. The inverse transformation (also with

the average irradiance over the training period) is applied to the network predictions before starting to analyze its performance.115

3.2 Predictors

The choice of predictors is critical in statistical learning. Because we use a simple fully connected network (Section 3.3), we

want to keep the dimensions of the predictor set relatively low, while giving as much context as possible to the algorithm. We

are also restricted by the fact that ML model must be fully real-time and can therefore only utilize past and present data. To

estimate the SSI in each location (with latitude x and latitude y) at a given time t, predictors from 4 sources are used.120

The main inputs to ML model come from satellite measurements. We use the upwelling radiances L0.6µm, L0.8µm, and

L10.8µm, described in Section 2.1 3. To give the model as much spatial and temporal context as possible, 9 neighboring pixels

and 13 preceding 15-min time steps are used as input. This corresponds to a zone of ca 12 by 18 km and a period of 3 hours.

In summary, for a point with latitude and longitude (x,y) at time t0, such as the closest satellite pixel has coordinates (i0, j0),

the following predictors are taken from MSG data:125

Lλ(i, j, t) for i, j ∈ [i0 − 1, i0 +1]× [j0 − 1, j0 +1]

t ∈ [t0 − 12dt, t0], where dt= 15min

λ ∈ {0.6 µm, 0.8 µm, 10.8 µm}

The solar azimuth angle ψs and the solar elevation γs, computed using the sg2 python library (Blanc and Wald, 2012), are

also provided as predictors. They define the topocentric angular position of the Sun. The day of the year and the hour of the130

day are given as predictors too. Finally, the latitude and longitude, as well as the corresponding altitude are used as predictors.

In total, the model has 358 predictors, summarized in Table 2. Each predictor is normalized and centered. These 358 predic-

tors are concatenated in a single 1D vector which is used as input to the neural network.

3.3 The machine learning model: a fully connected network

As discussed in the introduction, the aim of this work is not to propose a new optimized retrieval model, but to investigate135

the advantage and drawbacks of purely ML-based models. We therefore implement a classic algorithm: a fully connected
3These are the channels mainly used by Heliosat 2 and Heliosat 4. Other wavelengths may nonetheless be useful to a machine-learning-based model, and

their impact on model performance should be explored in future works.
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Table 2. Predictors used to estimate SSI at given time and place.

Name Dimension Source

Satellite L0.6 µm 3× 3× 13 = 117 MSG

Satellite L0.8 µm 3× 3× 13 = 117 MSG

Satellite L10.8 µm 3× 3× 13 = 117 MSG

Solar position: elevation and azimuth angles 2 sg2 (Blanc and Wald, 2012)

Hour of the day and day of the year 2 Calendar

Location and altitude 3 BSRN

neural network (FCN), or Multiple Layer Perceptron (MLP). This model has been around for many years and has proven very

powerful in many fields and industries. It is not, however, the state-of-the-art in machine learning: deep architectures optimized

for e.g. images or time series have since been developed and outperform FCN for complex spatio-temporal problems. As we

will see in this paper, a simple FCN is nonetheless sufficient to at least partially solve the satellite retrieval challenge.140

Our FCN has the following configuration:

– one hidden layer of 64 neurons, for a total of 23,041 parameters.

– The hidden layer uses a relu activation function, and the last neuron uses a linear activation function.

– The weights are initialized randomly using a normal distribution.

– The loss function is the mean square error (mse).145

The same configuration, but with two and three hidden layers was also tested. As they had similar (validation) performance,

we preferred the simpler configuration.

The network is trained using the RMSprop algorithm with learning rate=0.001, rho=0.9, momentum=0.0, and epsilon=1e-07

(Griffin et al., 2003). Regularization is implemented through an early stopping procedure, which stop training if the validation

error does not decrease for more than 20 epochs.150

Because the last layer uses a linear activation function, there is no guarantee that the predicted value is positive. To ensure

we do not get any negative SSI estimation, any negative prediction is set to 0.

The random initialization of the network weights slightly impacts the network performance. The impact on the model

performance is, however, limited, as discussed in Appendix B. In this study, each model was trained 20 times, with different155

(randomly assigned) initial weights, and present the results for the worse performing model (in terms of test mse) in the rest

of the manuscript. Choosing the best-performing one – or any of the 20 runs – would lead to very similar results and the same

conclusions.
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3.4 Running time

An important aspect of real-time satellite retrieval methods is their running time. At minima, the model should not take longer160

to run on a full image than the satellite update time; for MTG it is 15 minutes, but for third-generation satellites such as MTG,

it goes as low as 5 minutes. For some applications, such as nowcasting and short-term forecasting, estimations are needed as

soon as possible and a processing time way below the satellite update time is beneficial.

Machine learning algorithms, including neural networks, may take a long time to train but usually have short running times.

Using a single core and an NVIDIA Tesla A100 80GB, training the ML models presented in this work takes a few minutes165

(depending on the size of the training set). Applying the models to the full MSG disk (3712× 3712 pixels) requires less than

2 seconds4 on the same machine. As a comparison, CAMS, whose running time varies with the time of day, takes up to

6 minutes and 30 seconds on a single core to treat the same inputs.

It should also be noted that while adding extra predictors - for example, more channels or a larger pixel neighborhood - could

significantly increase the training time of the ML model, it is likely to only marginally increase its running time.170

4 Experiments setup

In this section, we describe the setup of the experiments conducted in this study. In Section 4.1, we introduce the metrics used

to assess the performances of the SSI estimations; in Section 4.2, we discuss the splitting of the data into training and test sets;

finally, in Section 4.3, we describe the clear-sky detection method used in the result Section 5.2.

4.1 Performance metrics175

The SSI estimations produced by the ML model, x̂ML, as well as the SSI estimation from CAMS, x̂CAMS , are compared with

the ground measurements x of SSI from Météo-France stations. Both datasets have a resolution of 1 hour.

Three different error metrics are used, namely, the root mean square error RMSE, the mean bias error MBE and the standard

deviation of the error SDE:

RMSE =

√
1

n

∑
n
k=1(x̂k −xk)2 (1)180

MBE=
1

n

∑
n
k=1(x̂k −xk) (2)

SDE =

√
1

n

∑
n
k=1(x̂k −xk −MBE)2 (3)

where n is the number of points and x̂k ∈ {x̂ML
k , x̂CAMS

k }. MBE measures the accuracy – or bias – of the estimations, SDE

their precision, and RMSE is a combination of both. The three metrics are related as follows: RMSE2 =MBE2 +SDE2

The correlation between x̂ and x is also a popular metric. To compare estimations to measurements, and quantify the185

performance of a model, we use Pearson correlation coefficient ρpearson. Because it measures linear correlation, the Pearson

4This does not include data pre-processing.
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correlation is, however, not appropriate to unveil non-linear relationships between two time series. To quantify the strength and

direction of association between two time series, we thus prefer Spearman’s Rank-Order Correlation, ρspearman (Spearman,

1987).

To compare the performance of ML model and CAMS, we sometimes use the RMSE skill score, taking CAMS as a reference:190

Skill = 1− RMSEML

RMSECAMS
(4)

A positive Skill means that RMSEML < RMSECAMS i.e., that the ML model outperforms CAMS in terms of RMSE.

4.2 Training, validation, and test set

Splitting the data into a test and training set is a crucial step in machine learning studies. Machine learning models, such195

as neural networks, can achieve exceptional performance on data that is similar to the data used for their training. However,

their performance may deteriorate drastically when they operate outside their training space (Hastie et al., 2009). The model’s

ability to generalize to new, unseen data is a crucial metric of its performance. The definition of what constitutes data outside

the training space depends on the specific problem at hand, as it varies based on how the model will be used in practice.

The training and test set must therefore be selected carefully to ensure the model’s suitability for deployment in practical200

applications.

In this study, we evaluate a satellite retrieval model, which is meant to provide accurate SSI estimations in any location – at

least within a certain region – and at any (future) time. We must thus ensure that ML model generalizes in time and space. To

that end, we use different locations for training and testing and reserve the period 2018-07-01 to 2019-06-30 for testing while

only data from 2010-01-01 to 2018-06-30 is used for training. The setup, adapted from Verbois et al. (2022), is illustrated in205

Figure 1.

How we assign measurement stations to one set or the other is also important and will test the ability of the model to

generalize in space differently. In this study, we test four training setups, with different objectives in mind:

– Training setup 1, described in Section 4.2.1, allows us to evaluate the ability of the model to generalize in space when

training and test stations are geographically intertwined.210

– Training setup 2, described in Section 4.2.2, allows us to understand the sensitivity of the model performance to the

number of training years.

– Training setup 3, described in Section 4.2.3, allows us to understand the sensitivity of the model performance to the

density of training stations, when they are still intertwined with the test stations.

– Training setup 4, described in Section 4.2.4, enforces a geographical separation between training and test stations and215

thus allows us to test the ability of the model to generalize to locations geographically outside its training space.

For each training setup, a validation set is needed for early stopping (Section 3.3). In all four setups, max(10, 0.2×
(number of training stations)) stations are randomly chosen in the training set to constitute the validation set.
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Figure 1. Training, validation and test sets, after Verbois et al. (2023).

Figure 2. Distribution of train and test stations for training setups 1, 2, and 3 (a) and training setup 4 (b).

4.2.1 Training setup 1

In the first setup, 100 test stations are chosen randomly from those passing QC for more than 30% of the hours over the test220

period (2018-07-01 to 2019-06-30). In other words, QC must be passed for at least 8 hours per day on average. As night-time

is always flagged as failing QC, this is a stringent requirement.

All the remaining stations that pass QC for more than 30% of the hours over the training period (2010-01-01 to 2018-06-30)

are used as training stations – there are 129 of them. Three techniques are further applied:
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– The 100 test stations are chosen as a priority among the stations that do not pass QC for the training period. That is to225

maximize the number of stations used.

– The Carpentras station is manually added to the test set; that is because it is part of the Aeronet and BSRN networks (see

Section 2.2) and can thus be used for a more thorough analysis of the models’ performance.

– The three meteorological stations located in Corsica, an island 160 km from the shores of Metropolitan France are not

considered in this use case.230

The resulting training and test stations are shown in Figure 2.a.

4.2.2 Training setup 2

The second setup is identical to setup 1, except that only Y years out of the 5 available are used for training, with Y equal to

1, 2, 3, 4, or 5. The Y years closest to the testing period are used.

The same number of training stations as in training setup 1 is used for all Y . However, for low values of Y , because some235

stations do not have data for the whole training period, they may only add a few points to the training set.

4.2.3 Training setup 3

The third setup is also very similar to setup 1. The same 100 stations make up the test set, but only N stations are picked

for training. N varies from 20 to 100. There are
(
129
N

)
ways to choose N training stations among 129 candidates, and the

performance of the model is likely impacted by this choice, especially with low N. However, training with every possible240

combination is not computationally tractable5; instead, we randomly pick 20 combinations for each N.

4.2.4 Training setup 4

In the fourth setup, we enforce geographical separation between the training and test set. All the stations within a circle of

center 46°N, 4°E and of radius 215 km passing QC for more than 30% of the hours over the training period (2010-01-01 to

2018-06-30) are taken as training stations, and all stations outside of a circle of center 46◦ N, 4◦ E and radius 255 km passing245

QC for more than 30% of the hours over the test period (2018-07-01 to 2019-06-30) are used as test stations. This separation

is somewhat arbitrary, the objective is to keep enough stations in the training set while concentrating them in a region as small

as possible. This results in 66 training stations and 105 test stations, as illustrated in Figure 2.b.

4.3 Clear-sky detection

In Section 5.2, we focus our analysis on days with a majority of clear-sky instants. It is difficult to accurately detect clear-250

sky instants with mean hourly SSI; we, therefore, restrict the analysis to the station of Carpentras, for which we have minute

data (Section 2.2). We first detect clear-sky minutes with a 1-minute resolution, using the Reno and Hansen algorithm (with a

5max
((129

N

))
≈ 4.8× 1037 (N = 65)
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window length of 10 minutes) (Reno and Hansen, 2016) implemented in the pvlib python library (F. Holmgren et al., 2018).

We then select days for which 75% of the daytime is detected as clear-sky.

5 Results255

This results section is divided into three parts. In Section 5.1, we analyze the general performance of ML model with training

setup 1, for the whole test period. In Section 5.2, we still work with training setup 1, but focus on the specific case of clear-sky

days for the station of Carpentras. Finally, in Section 5.3, we discuss the impact of the number and location of training stations

on the performance of ML model (training setups 2, 3 and 4).

5.1 Model performance with a dense training set260

In this section, we analyze the performance of ML model with training setup 1, i.e. using the maximum number of randomly

chosen training stations (129). Although training and test stations are different, they are largely interlaced (Figure 2.a).

5.1.1 Overall performances

We first evaluate ML model and CAMS performance metrics for all 100 test stations and the whole test period. The overall

metrics are shown in Table 3. ML model has a significantly lower RMSE and SDE than CAMS – 19% and 18% respectively.265

The correlation between ML model and the ground measurements is higher than that between CAMS and the ground mea-

surements. In terms of bias, on the other hand, the difference between the two retrieval models is negligible: both MBE are

relatively low.

Table 3. Overall test metrics for CAMS and ML Model with training setup 1 (computed over 391481 samples).

ML model (training setup 1) CAMS

RMSE (Wm−2) 52.92 64.99

SDE (Wm−2) 52.28 64.02

MBE (Wm−2) -8.21 -11.22

ρpearson 0.977 0.966

To better understand the characteristics of ML model and CAMS estimations, we look at the joint distribution between esti-

mations and ground measurements, shown in Figures 3.a and 3.b. As suggested by ML model lower SDE, the joint distribution270

of this model is more tightly wrapped around the axis x=y than that of CAMS. In addition, the joint distribution does not show

any artifact or un-physical features – as is sometimes the case for e.g. overly smooth estimations or forecasts (Verbois et al.,

2020).

The distribution of SSI – estimated or measured – is highly dominated by the diurnal and annual pattern of the Sun. To

focus on the ability of the retrieval models to resolve clouds, we compare the clear-sky indices from the estimations and from275
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the ground measurements in Figure 3.c (ML model) and Figure 3.d (CAMS) by analyzing their joint distribution. Overall,

ML model estimations of the clear-sky index are more likely to be close to the ground measurements. In addition, CAMS

estimations of the clear-sky index are constrained to the interval [0.1,1] by design, whereas ML model better matches the

distribution of the ground measurements, with the clear-sky index values ranging from 0 to 1.8. Admittedly, this only concerns

a small portion of all instants, and, in addition, ML model tends to produce too many estimations with a high clear-sky index.280

Figure 3. Joint distributions of satellite-derived estimations and ground measurements, for CAMS model (a and c) and for ML (b and d).

5.1.2 Station-wise performances

Beyond the overall performance, a retrieval model needs to be consistent. We, therefore, analyze ML model and CAMS

performances for each test station independently. Figure 4 compares the RMSE, SDE, and MBE of the two models for each

station: one point in the graph corresponds to one station and the green band identifies stations for which ML model is better

than CAMS. We see that in terms of RMSE, ML model outperforms CAMS for all but 4 stations. Furthermore, the difference285
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between the two models for these 4 stations is small. In terms of SDE, ML model does even better, as it outperforms CAMS in

98% of the test stations. In terms of bias, interestingly, ML model has a higher MBE than CAMS for 58% of the stations, even

though its overall MBE was lower than that of CAMS. In addition, although CAMS and ML model have a low MBE overall,

it reaches 50 Wm−2 in some locations, which is not negligible.

5.1.3 Performance analysis with respect to different conditions290

To complete our analysis of the two models’ overall performances, we look at the metrics’ dependence on the sky conditions.

We use the clear-sky index as a proxy: low clear-sky index corresponds to overcast skies, high clear-sky index to mostly clear

skies, and intermediate clear-sky index to partly cloudy skies. This is certainly an oversimplification and a more sophisticated

analysis would be required for an accurate classification of the sky conditions; having access to the hourly average of SSI,

however, the value of the clear-sky index is a good first approximation. The station-wise RMSE, SDE, and MBE of ML model295

and CAMS are broken down per class of clear-sky index in Figure 5; boxplots are used to represent the metric’s spread across

stations (each boxplot is built with 100 points: one for each test station). We showed in Section 5.1.1 that ML model has a

lower RMSE and SDE than CAMS; we see here that it is mostly for low clear-sky indices that ML model outperforms CAMS.

For clear-sky indices larger than 0.9, both retrieval models have similar RMSE, and CAMS even has a slightly lower SDE

in that clear-sky index interval. In terms of bias, although both models have similar MBE overall (Table 3), their dependence300

on kc is different. CAMS overestimates the SSI for low clear-sky indices and underestimated it at high clear-sky indices; ML

model, on the contrary, systematically overestimates the SSI, but to a lesser extent.

5.2 Specific case of clear-sky days

The previous section should have convinced us that with training setup 1, ML model significantly and systematically outper-

forms CAMS in mainland France and under all-sky conditions. Figure 3 and Figure 5, however, suggest that things may be305

different under clear-sky conditions. Furthermore, SSI retrieval from satellite observations notably involves specific consider-

ations when there are no clouds: aerosol concentrations and ground albedo, for example, have a stronger impact on physical

estimations in cloudless skies (Scheck et al., 2016).

In this section, we focus on the performance of the two retrieval models under clear-sky conditions. To accurately identify

such conditions, however, the analysis done in Figure 5 is not sufficient: all clear-sky situations should be contained in the310

right-most kc bin ((0.9− [), but other situations (typically a mix of overshooting, clear-sky and partially cloudy) are likely

also contained in this bin. To rigorously select clear-sky conditions, we need 1-minute irradiance data (Section 4.3); we thus

focus on the Carpentras station (Section 2.2). Note that the ML model is the same as the one discussed in Section 5.1; only the

analysis is restricted to one location.
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Figure 4. Comparison of RMSE (a), MBE (b) and SDE (b) of ML model and CAMS for each station. The green band indicates for which

stations ML model outperforms CAMS; the corresponding percentage is indicated in bold green.
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Figure 5. Distribution of station RMSE (a), MBE (b) and SDE (b) of ML model and CAMS as a function of the clear-sky index kc. Each

boxplot is built with 100 points: one for each test station.

5.2.1 Clear-sky performances315

The performance metrics of ML model and CAMS for all skies and clear-sky days are shown in Table 5.2.1. As expected, ML

model has a lower RMSE and SDE than CAM for all skies; it even has a slightly lower MBE. For clear-sky days, both models
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have a significantly lower RMSE and SDE. But, contrary to the general case, CAMS significantly outperforms ML model in

all metrics, with RMSE, SDE, and MBE 27%, 26%, and 57% lower, respectively.

Table 4. Performance of ML model and cams for Carpentras stations under all skies (4012 samples) and under clear skies only (938 samples).

ML model (training setup 1) CAMS

All skies RMSE (Wm−2) 42.31 55.09

MBE (Wm−2) -3.31 7.40

SDE (Wm−2) 42.18 54.59

ρpearson 0.987 0.978

Clear-sky days RMSE (Wm−2) 21.82 15.95

MBE (Wm−2) -4.92 -2.07

SDE (Wm−2) 21.27 15.81

ρpearson 0.996 0.999

Several factors could explain the deficiency of ML model under clear skies. In cloudless conditions, the albedo of the320

ground plays a more important role than under cloudy skies; since ML model has no information about this quantity, it could

be one source of uncertainty. Aerosols and in particular aerosol optical depth (AOD) are also important under clear skies;

CAMS, through the clear-sky model McClear, accounts for AOD in its estimations, but ML model has no direct access to this

information.

5.2.2 Impact of aerosols325

Albedo variations are most often more significant in space, while AOD varies in both space and time. Because we perform the

clear-sky specific analysis in a single location, it is difficult to investigate the impact of albedo on the clear-sky performance.

We, therefore, focus in this section on the impact of aerosol on CAMS and ML model clear-sky estimations.

Figure 6.a shows the AOD at 500 nm measured at the Carpentras station for two consecutive clear-sky days. We chose

these dates as illustration because a significant drop in AOD can be observed from one day to the next. The corresponding330

measurements of hourly SSI are shown by black crosses in Figure 6.b. Even though both days have a clear-sky profile, the SSI

values are significantly higher for the second day, particularly in the middle of the day. CAMS estimations of SSI for that day,

shown on the same figure in red, match the observations very well: the model rightfully integrates the effect of aerosols. ML

model, in blue in the figure, correctly estimates two clear-sky days, but the values of SSI for the two days are nearly identical:

as suspected, ML model is not able to account for the effect of aerosol as well as CAMS.335

To further investigate the role of information about AOD at 500 nm in ML model under-performing for clear-sky days,

we analyze the relationship between the hourly estimation error and the corresponding hourly AOD average, under clear-sky
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Figure 6. Example of two consecutive clear-sky days (with aerosols) Carpentras.

conditions. This relationship is illustrated in Figure 7, which shows the distribution of the error of each retrieval model as a

function of AOD 500; the corresponding Spearman correlation is also displayed. Although there is no obvious pattern, the

error of ML model appears to have a relationship with AOD 500, as confirmed by the relatively high Spearman correlation.340

CAMS error, on the other hand, is weakly correlated with AOD 500. The remaining correlation may come form the fact that

CAMS uses modeled AOD, that can deviate from the ground truth. Even though correlation is not causation, this result fur-

ther supports the hypothesis that not accounting for AOD 500 in ML model causes some of the estimations error under clear sky.

This result is somewhat expected, as CAMS model integrates some information about the AOD (through McClear), whereas345

ML model does not. Adding AOD-related predictors to the neural network may help decrease the performance gap between

the two methods for clear skies.
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Figure 7. Joint distribution (2D histogram) of hourly average AOD and hourly estimation error for CAMS (a) and ML model (b). Spearman’s

Rank-Order Correlation between AOD and error is also given.

5.3 Sensitivity to the training set

To this point, we have analyzed the performance ML model with training setup 1, i.e. when the neural network is trained with

129 stations, interlaced with the test stations (Figure 2.a). Such a density of measurement stations is rare, and many of the350

regions covered by MSG – and thus by CAMS – are not as well equipped. In this section, we therefore evaluate the impact of

the size and location of the training set on the performance of ML model. We first reduce the number of training years (training

setup 2 - Section 4.2.2) and training stations while keeping the random split (training setup 3 - Section 4.2.3) and then enforce

geographical separation between training and test stations (training setup 4 - Section 4.2.4). In this section, we focus on RMSE

for conciseness.355
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5.3.1 Impact of the number of training years

We first evaluate the impact of the number of training years on ML model performance, using training setup 2 (Section 4.2.2).

Figure 8 shows the RMSE of ML model for the 100 test stations when the model is trained with all 129 training stations but with

a different number Y of training years. To account for the variations due to the model’s random initialization (further discussed

in Appendix B), 20 models were trained for each Y . The median RMSE is shown by a black line for each Y . Interestingly, the

Figure 8. Test RMSE as a function of the number Y of years used for the training (training setup 2); 20 models were trained for each Y to

account for the variations due to random initialization. Each red point represents the RMSE for one of the 20 models; the median performance

for each Y is shown by a black line.
360

variations due to random initialization of the network are more important than the variations due to the number of training years,

making the interpretation a bit uncertain. The performance of ML model nonetheless appears slightly impacted by the number

of training years: the median RMSE of ML model decreases monotonously with the increasing number of training years with

a maximum of 55 W.m−2 for Y = 1 and a minimum of 52 W.m−2 for Y = 5 . For Y ≥ 3, however, the improvement is

negligible.365

Importantly, ML model performs significantly better than CAMS even with a single training year. One year of data for 129

stations is a relatively large data set; it is, therefore, not surprising that it suffices for the small neural network used here (a

MLP) to converge. However, it is noteworthy that the diversity of situations encountered with one year and 129 stations is

sufficient for the ML model to largely outperform CAMS.

5.3.2 Impact of the number of training stations370

We then consider the influence of the number of training stations on the ML model performance, using training setup 3

(Section 4.2.3). Figure 9 shows the RMSE of ML model for the 100 test stations as a function of the number of training stations

N . As discussed in Section 4.2.3, we repeat the experiment 20 times for each choice of N , with different randomly chosen

training stations at each iteration. For N = 129, as there are only 129 candidates, the 20 iterations are done with the same
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training stations. The variations of the RMSE for N = 129 are thus only caused by the variations in the random initialization375

of the weights between runs, discussed in Appendix B.

For N ≥ 40, the RMSE of ML model remains significantly lower than that of CAMS, even though it increases a bit on

average for N ≤ 100. For N = 20, however, ML model performances deteriorate markedly: the RMSE of the best-performing

run is higher than for N ≥ 40, and the RMSE of the worst-performing run largely exceeds that of CAMS. We also notice that

the RMSE variations between runs are more important for N = 20. Put in perspective with the results of Section 5.3.1, this380

suggests that the issue is not the size of the training set, but the location of the training stations.

Figure 9. Test RMSE as a function of the number N of stations used for the training with 20 random picks of N among 129 (training setup

3).

5.3.3 Impact of the location of the training stations

To further investigate the impact of the relative location of the training and test stations on ML model performances, we enforce

a geographical separation between them (training setup 4 - Section 4.2.4)6. Table 5 shows the overall metrics for ML model and

CAMS. The performance of the latter is similar to the one described in Section 5.1, even though we use different test stations.385

Contrastingly, the RMSE and SDE of ML model are much higher with this training setup than they were with training setup 1

or 2 (with N≥40). Whereas ML model was outperforming CAMS with training setup 1, the average performances of the two

retrieval models are almost equivalent here.

As in Section 5.1.3, it is interesting to analyze the performances per station. Figure 10 compares the RMSE of ML model

and CAMS for each station. We see that while the two retrieval models have similar RMSE on average, the distributions of390

the station-wise RMSE are very different. ML model RMSE is slightly lower for 82 of the 105 test stations, while CAMS

performs somewhat better for 18 other stations. For 3 to 5 locations, however, ML model RMSE is dramatically higher than

that of CAMS: in the worst case, RMSEML model is more than two times higher than RMSECAMS .

6It should be noted that the test stations are not the same as in training setup 1 and 2; the values of RMSE, MBE, SDE or ρpearson should thus not be

compared with previous sections.
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Table 5. Overall test metrics for CAMS and ML Model with training setup 4 (computed over 411733 samples).

ML model (training setup 4) CAMS

RMSE (W.m−2) 61.04 63.49

MBE (W.m−2) -6.69 10.25

SDE (W.m−2) 60.68 62.66

ρpearson 0.969 0.967

Figure 10. Comparison of RMSE of ML model (training setup 4) and CAMS for each station. The green band indicates for which stations

ML model outperforms CAMS; the percentage of such station is indicated in bold green.

5.3.4 Impact of Albedo

We have shown that, with geographical separation between training and testing sets (training setup 4), ML model performs395

reasonably well on average but is susceptible to providing highly inaccurate estimations in some locations. To try and under-

stand what causes highly inaccurate estimations, the geographical distribution of test RMSE skill is represented in Figure 11.

Interestingly, the distance to the training set does not have a clear impact on the performance of ML model. Rather, most of

the stations for which ML model is largely outperformed by CAMS (i.e. with high negative skill scores) are located on the

Mediterranean or Atlantic coasts. Ocean and continental tiles have different albedos, which significantly impacts the radiance400

observed by the satellite (Blanc et al., 2014). Physical retrieval models account for that difference, but ML model does not have

direct access to that information; this could explain its poor performance in seaside stations.
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Figure 11. Geographical distribution of the RMSE skill score of ML model in training setup 4. Positive values show the stations where ML

model outperforms CAMS.

To test that hypothesis, Figure 12.b shows the RMSE skill score of each test station as a function of its mean albedo. We

observe that while a negative skill score does not necessarily imply a low albedo, a low albedo (lower than 0.1) systematically

comes with a negative skill score. The existence of a positive relationship between albedo and RMSE skill score is further405

supported by a statistically significant Spearman correlation coefficient of 0.348 between the two values. Figure 12.a shows

the same plot but for training setup 1. We see that in this case, low albedo does not come with negative RMSE skill scores.

This absence of relationship – or at least its lower strength compared to training setup 4 – is confirmed by a statistically

non-significant (p= 0.07) Spearman correlation coefficient of 0.184 between the RMSE skill score and the albedo.

To understand the difference of behavior between the two training setups, it is useful to look at the distribution of the albedo410

for training stations in either case; the mean albedo of training stations are hence shown on the y=0 axis in Figure 12. In training

setup 1, several training stations have a mean albedo between 0.025 and 0.1, while in training setup 4, all training stations’

albedo are greater than 0.1. This suggests that the RMSE skill score is not directly influenced by the test station albedo, but

rather by the distance between the test stations albedo and the training stations albedo. In other words, ML model is not able

to generalize to stations with an albedo it hasn’t seen during training.415
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Figure 12. RMSE skill score as a function of station mean albedo for training setup 1 (a) and training setup 4 (b). The distribution of the

training stations’ albedo is also shown on the y=0 axis.

6 Discussions and Conclusions

6.1 With a dense training set, great potential with some reserves

Machine learning for satellite retrieval has great potential. Provided we have the right data, performance improvement over

traditional approaches can be important. We indeed showed that when trained with a network of measurement stations spread

evenly across France, a simple neural network has significantly lower error metrics and better overall representativity than420

CAMS, a state-of-the-art physical retrieval model. Because we ensured that we tested the ability of the model to extrapolate

in space and time, that means that such a model could be used operationally and, on average, provide better estimations than

CAMS.

We found, however, that the neural network is not able to properly account for the role of Aerosols in clear-sky estimations,

whereas CAMS underlying model – as well as other physical models – can. This only slightly impacts the performance of425

23



the ML model in France, where the effect of AOD on SSI is relatively small, but in other regions – for example desertic

zones (Eissa et al., 2015) – the ML model may underperform. Perhaps more critically, this lack of representativity of physical

phenomena undermines the confidence in the model.

6.2 Strong dependence on the training set

Our results show that the model’s performance is very dependent on the training set. First, we found that even a simple network430

– with only one hidden layer – requires a relatively large number of training stations to outperform CAMS. In many regions,

good-quality ground measurements are too scarce for this model to be useful. Therefore, while the ML model tested in this

work could easily be adapted to be used operationally in France, it is unlikely that it can be extended to most other regions of

the globe.

We further demonstrated that rather than the number of training stations, their location relative to the test sites is crucial.435

Our analysis showed that, in certain configurations, the neural network can underperform even in stations located close to the

training set. We know that neural networks often have difficulty making predictions out of the training domain; the challenge

here is that determining which location is out of the training domain is not straightforward. Whether two locations are similar

in the eye of the network does not depend directly on the geographical distance between these locations. Our analysis suggests

that its albedo may play a role in the ability of the neural network to generalize to a location, but it is likely not the only cause.440

Understanding the factors that describe the similarity between two locations should be an important aspect of future research.

6.3 Perspectives

Third-generation geostationary satellites are already operational above the United States (GOES-R) and Japan (Himawari-8),

while Meteosat Thid-Generation will soon cover Europe and Africa. These new meteorological satellites have better temporal,

spatial, and spectral resolutions than their second-generation counterparts. They thus produce a significantly larger amount of445

data. To treat these data operationally and fully benefit from the additional information, deep learning certainly has a critical

role to play.

However, the solar research community needs to address the limitations of purely statistical models, as revealed in this

paper. We believe that the answer resides at least partly in hybrid models, mixing physical modeling and statistical learning.

Variations of hybrid models include the use of machine learning models trained on datasets derived from physical simulations.450

These models can serve as proxies for parts of existing physical models and can be further fine-tuned on real datasets via

transfer learning. This approach balances the incorporation of underlying physical principles with considerations of real-world

complexities and uncertainties. Another approach is to design machine learning models with physical constraints incorporated

as regularization, such as conservation laws and material properties. This can ensure that the model stays within the realm

of physical possibility while also incorporating data-driven components. A third option could be the direct incorporation of455

physical equations into the loss function of the machine learning model. This approach optimizes the model’s predictions to

be both data-driven and physically consistent. During the training process, the model is guided by both observed data and

underlying physical laws.
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A better understanding of the generalization capabilities of the models is also critical. We saw in this paper that the albedo

may play a role, but more research is needed to understand to what extent and in which conditions we can expect the model to460

generalize well. Data segmentation algorithms could be useful to optimize the construction of training datasets and to identify

locations where the retrieval model may not be trusted.

The investigation of more sophisticated neural network architectures is also of interest and would become particularly

relevant when dealing with larger input datasets. Architectures such as Convolutional Neural Networks (CNNs), Recurrent

Neural Networks (RNNs), or Spatio-Temporal Transformers hold promise, especially when a broader context in both time and465

space is required. However, it is important to recognize that such complexity may raise the risk of generalization issues, as

more complex models are generally more likely to overfit.

Finally, we must remember that machine learning models are often opaque, making it difficult to understand how they make

their predictions. This means that it is unlikely, at least in the short term, that we will be able to derive new physics from these

models. If we focus only on machine learning, we may limit our understanding of the world around us. We, therefore, believe470

that the research community should continue to invest in the development and improvement of physical retrieval models.

Data availability. The following data sources are accessible online for free:

– CAMS estimates of solar surface irradiances and clear-sky irradiances can be downloaded from the soda website: https://www.

soda-pro.com/help/cams-services/cams-radiation-service/download-europe-volume or with the following pvlib function: https://pvlib-python.

readthedocs.io/en/stable/reference/generated/pvlib.iotools.get_cams.html475

– MSG data is available on the Eumetsat website: https://www.eumetsat.int/access-our-data

– Ground irradiance data for Carpentras station can be downloaded from the BSRN website: https://bsrn.awi.de

Meteo-France data was generously provided by Meteo-France for research purpose. More information can be found on the Meteo-France

public data website: https://donneespubliques.meteofrance.fr

Appendix A: Quality check480

The quality check procedure applied to Meteo-France ground measurements is described in detail in Verbois et al. (2023). In

summary, it consists of the following checks:

1. Each value is tested for extremely rare limits (ERL) as recommended by Long and Dutton (2010):

−2<GHI < 1.2Isccos
1.2(θz)+ 50Wm−2

where Isc is the solar constant adjusted for Earth-Sun distance, and θz the solar zenith angle.

2. A digital model of the horizon (Blanc et al., 2011b) is used to exclude every instant for which the sun is under the

horizon.485
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3. A visual check on the spatial coherence of kc is performed.

4. A visual check for shadow is performed in the solar azimuth - solar elevation plan.

Out of the original 286 stations available, 46 are fully exculded by QC.

Appendix B: Performance variations due to random initialization

Figure B1 shows the RMSE, MBE and SDE of 20 models ran with exactly the same setup - described in Section 3.3, but490

different randomly chosen weight initialization. SDE and RMSE vary between 50-52 Wm−2, and 50-53 Wm−2 respectively;

This is relatively small compared to CAMS, that has a RMSE of 64.9 Wm−2 and an SDE of 64 Wm−2. The MBE, on the other

hand, varies between 0 and 9 Wm−2. That is more important compared to CASM MBE (ca 12 Wm−2), but still relatively mall

compared to the average SSI in France.

Figure B1. Target diagram showing the RMSE, MBE and SDE of 20 models ran with exactly the same setup, but different weight initializa-

tion.
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