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Abstract. Particle size is one of the key factors influencing how aerosol particles affect their climate and health effects. 

Therefore, a better understanding of particle size distributions from various sources is crucial. In urban environments, aerosols 

are produced in a large number of varying processes and conditions. This study intended to develop the source apportionment 15 

of urban aerosols by utilising a novel approach to positive matrix factorization (PMF). The particle source profiles were 

detected in particle number size distribution data measured simultaneously in a street canyon and at a nearby urban background 

station between February 2015 and June 2019 in Helsinki, southern Finland. The novelty of the method is combining the data 

from both sites and finding profiles for the unified data. Five aerosol sources were found. Four of them were detected at both 

of the stations: slightly aged traffic (TRA2), secondary combustion aerosol (SCA), secondary aerosol (SecA), and long-range 20 

transported aerosol (LRT). One of the sources, fresh traffic (TRA1) was only detected at a street canyon. The factors were 

identified based on available auxiliary data. Additionally, the trends of the found factors were studied, and statistically 

significant decreasing trends were found for TRA1 and SecA. A statistically significant increasing trend was found for TRA2. 

This work implies that traffic-related aerosols remain important in urban environments and that aerosol sources can be detected 

by using only particle number size distribution data as input in the PMF method. 25 

1 Introduction 

Urban aerosol is a complex mixture of particles of various sizes and compositions originating from multiple anthropogenic 

and natural sources, including sea salt, fuel combustion (e.g., in thermal power generation, incineration, domestic heating, 

combustion engines), road, tire, and brake wear, dust, pollen, volcanic ash, forest fires, and industry (Almeida et al., 2006; 

Guerreiro et al., 2015; Karanasiou et al., 2009). Of these anthropogenic sources are predominant in urban areas (Guerreiro et 30 

al., 2015). The negative health effects related to particulate matter (PM) pollution (PM2.5 and PM10) are commonly accepted 
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and well-documented (i.e., Koenig, 2000; J. Wu et al., 2017), also leading to indirect financial consequences through increased 

mortality and treatment of respiratory and cardiovascular diseases (Johnston et al., 2021). The recent WHO good practice 

statement encourages the systematic measurement of particle number concentration (PNC) ≥ 10 nm, emphasizing the 

significance of PNC in addition to PM mass (WHO, 2021). 35 

Source apportionment of aerosols can be done in multiple ways. Commonly used source apportionment techniques in 

atmospheric sciences include k-means cluster analysis, principal component analysis (PCA), and receptor modelling methods. 

In this work, a receptor modelling method called positive matrix factorization (PMF) was used. PMF is a mathematical multi-

derivative method developed by Paatero, (1997) that can be performed for many types of data, and it is the most widely used 

and established source apportion method for atmospheric aerosol particle data currently (Hopke et al, 2020; Hopke et al., 2022; 40 

Yang et al, 2020). The decision to use PMF was made because PMF is a well-established source apportionment method in 

environmental sciences, and there was suitable software available. Additionally, as PMF is a factor analysis method, it is 

fundamentally suitable to this kind of study, as it assumes that the observed data is a combination of latent underlying factors. 

In contrast, PCA, for example, attempts to linearly combine the underlying variables to reduce the size of the data.  PMF has 

been used for chemical composition data (e.g. Li et al. 2003; Makkonen et al., 2023), mass spectra (e.g. (Oduber et al., 2021; 45 

Teinilä et al., 2022), particle number size distribution (PNSD) (Krecl et al., 2008; Zhou et al., 2005) and in combined matrixes 

with PNSD and auxiliary data (Rivas et al., 2020). However, conducting source apportionment solely based on PNSD data 

and using auxiliary data only to verify the sources seems to have some challenges as the source profiles might be mixed with 

multiple sources (Zhou et al., 2005, Jollife & Cadima, 2016, Krecl et al., 2008). This makes interpreting of results using 

auxiliary data more difficult. To improve the separation between sources when using only PNSD data as input to PMF, PNSD 50 

data from two sites is combined into one data file in this study.  

Urban aerosol size distributions have been studied in a comprehensive review of urban aerosols consisting of approximately 

200 articles, including 114 cities in 43 countries (Wu & Boor, 2021). They stated that in urban environments, the majority of 

particles are in the size range of 10-100 nm, and the PNC decrease approximately by a factor of 100 when the particle size 

increases from 100 nm to 1000 nm. In particular, PMF especially has been applied to size distribution data in numerous studies 55 

in urban, suburban, urban background, or residential locations in Asia, Australia, the Middle East, Europe, and the USA. (Al-

Dabbous et al., 2015; Dai et al., 2021; Friend et al., 2012; Gu et al., 2011; Harrison et al., 2011; Kasumba et al., 2009; Kim et 

al, 2004; Krecl et al., 2008; Leoni et al., 2018; Liu, et al., 2017; Ogulei et al., 2007; Pokorná, et al., 2020; Rivas et al., 2020; 

Squizzato et al., 2019; Thimmaiah et al., 2009; Vu et al., 2016; Wang, et al., 2013; Yue et al., 2008; Zong et al., 2019). Only 

one of the studies used data from Helsinki (Rivas et al., 2020). In this study, particle PNSD was investigated in urban 60 

background (UB) and street canyon (SC) sites in Helsinki, southern Finland. The simultaneous data from these two sites have 

been analysed in previous studies. Okuljar et al. (2021) investigated the relative contribution of traffic and atmospheric new 

particle formation to the concentration of sub-3 nm particles. They utilized PNC data between 1-800 nm and auxiliary data 

from the stations. They found that the particle concentrations in the SC were higher over the whole size range. Additionally, 

they associated particles in the size range of 1-25 nm with local sources at the UB and found particles in the size range of 1-65 
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100 nm to have a dominant contribution from local sources in the SC. Rivas et al., (2020) used data from both sites in a study 

that applied PMF on PNSD data across four European cities. They identified five factors for both stations: nucleation, fresh 

traffic, urban background, biogenic, and secondary. 

Earlier studies conducted in the Helsinki metropolitan area have shown that PNSDs vary based on the dominant source. 

Nucleation-produced particles are the smallest, with mode particle sizes of 7-11 nm; traffic-influenced emissions have varying 70 

mode particle sizes of 10-75 nm, with the smaller particles produced by nucleation and larger particles from (Harni et al., 2023; 

Pirjola et al., 2017; Rivas et al., 2020). Woodburning has been shown to produce slightly larger particles at a mode particle 

size of 46 nm and to have a wide particle size distribution (Harni et al., 2023; Pirjola et al., 2017). Biogenic emissions have 

been shown to produce particles with mode sizes between 69 and 100 nm (Harni et al., 2023; Rivas et al., 2020). 

This study was intended to improve the understanding of urban aerosol sources by applying statistical source apportionment 75 

methods such as PMF (EPA PMF 5) to long-term size distribution data. The factors were identified based on the diurnal cycles 

of PMF factors, available supporting data, including gases (NOx, CO2, O3), and particle chemistry. The data used in this study 

was measured at two sites, an SC and UB from February 2015 to June 2019. These datasets, comprising more than 4 years 

also allowed indicative investigation of the trends in PNSDs and a discussion of the reasons for the changes observed in 

PNSDs. The PMF has been applied to the data from these two sites earlier in a study by Rivas et al., (2020). However, they 80 

used data from January 2007 to December 2016 whereas data in this study is from January 2015 to June 2019. Additionally, 

Rivas et al., (2020) used NO2, NO, SO2, CO, and O3 data in addition to PNSD data in the PMF input files to separate the 

sources. In contrast, in this study only the PNSD data was included in the PMF input files and the results were later compared 

to the other measurement data. In addition to this, the novelty of this study arises from how the data was handled from the two 

nearby sites with strongly overlapping aerosol sources by adding the data from the two sites to the same data matrix 85 

horizontally as columns instead of doing two separate PMF analyses.  

2 Experimental 

2.1 Measurement sites 

The data used in this study was measured at two atmospheric measurement stations. The first measurement station is an SC 

site at Mäkelänkatu in Helsinki Finland (60° 11' 47.53" N, 24° 57' 6.41" E), and it is governed by the Helsinki Region 90 

Environmental Services Authority. The measurement site is situated beside one of the busiest main roads in Helsinki and is 

heavily influenced by traffic emissions. The SC measurement site is described in detail by Barreira et al. (2021). The second 

station, the UB station, is located at Kumpula Helsinki SMEAR III ( 60° 12' 10.41" N, 24° 57' 40.53" E). The site is situated 

near a park area more than 100 m from the nearest busy road Järvi et al. (2009) describes the SMEAR III station in detail. The 

distance between the SC and UB stations is approximately 900 m. 95 
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2.2 Instruments 

Particle PNSD data used in this work was measured between February 13, 2015 and June 5, 2019. The instruments used in the 

measurements are listed in Table 1. At the SC site, PNSDs were measured with a differential mobility particle sizer (DMPS) 

consisting of a condensation particle counter (CPC, A 20, Airmodus, Helsinki, Finland) and a Vienna-type differential mobility 

analyser (DMA). At the UB site, PNSDs were measured with a twin differential mobility particle sizer (Twin-DMPS). Hoppel 100 

(1978) describes the working principle of DMA and response functions in detail. The size spectra of DMPS at the SC site were 

measured in 26-size bins with particle sizes ranging from 6 to 800 nm and a time resolution of approx. 8 min 40 s to 9 min 5 

s. The DMPS at the UB site measured particles in 50-size bins with particle sizes of 3-794 nm with a time resolution of approx.. 

9 min 50 s to 10 min 5 s. Both of the DMPS systems were made by the University of Helsinki and approved by European 

Center for Aerosol Calibration and Characterization. Both of the systems had dryers in the inlet lines to keep the relative 105 

humidity (RH) below 40%. The DMPS charger had difficulties charging the three smallest particle size bins (6.0, 7.3, and 9.0 

nm) on the SC site; therefore, particles smaller than 10 nm were excluded from the analysis for both sites. Both DMPS systems 

participated in an intercomparison with a reference instrument from Leibniz Institute for Tropospheric Research (TROPOS) 

SMPS in the UB station between June 11 and 14, 2021, and demonstrated comparable results. Non-refractory PM1 (organics, 

sulphate, nitrate, ammonium, chloride) was measured with an aerosol chemical speciation monitor (Q-ACSM, Aerodyne 110 

Research Inc., [Ng et al., 2011]) at the SC site. A mass-based Q-ACSM calibration was performed using dried size-selected 

(300 nm of mobility diameter) ammonium nitrate and ammonium sulphate aerosol particles. The effective nitrate-response 

factor (RFNO3) relative ionization efficiencies of sulphate and ammonium (RIENH4) and relative ionization efficiency of 

sulphate (RIESO4) were determined, and analyte signals were converted into nitrate-equivalent mass concentrations. IE(NO3) 

varied over the years and the final correction of the NRPM1 mass was done against the mass concentrations derived from 115 

DMPS data as described by Barreira et al., (2021). The RIE for SO4 varied from 0.51-0.61 and for NH4 3.8-5.32. An effusive 

source of naphthalene, located in the detection region, was used as a reference for m/z and ion transmission calibrations. A 

Nafion dryer was installed prior to the instrument inlet so that the RH of the sample flow was maintained below 40%.  A 

chemical composition-dependent collection efficiency was used having been calculated according to Middlebrook et al. (2012), 

with the exception that a collection efficiency of 0.45 was used for samples when ammonium was below the detection limit. 120 

More information can be found in Barreira et al. (2021).  

PM2.5 and PM10 mass concentrations were measured with a Tapered Element Oscillating Microbalance (TEOM, model 1405). 

The black carbon (BC) concentrations at the SC were measured using an Aethalometer (AE33, Magee Scientific). NOx and O3 

concentrations were measured with Horiba APNA 370 and Horiba APOA-370. At the SC, CO2 concentrations were measured 

with LICOR model LI-7000 and CO with Horiba APMA-360. At the UB, NOX and O3 were measured with Thermo 125 

Environmental Instruments 42S and 49. SO2 and CO were measured with Horiba APMA 370 and Horiba, APSA 360.  
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Table 1: The list of instruments used in the measurements. 

Instrument Station Measured variable 

DMPS (Airmodus CPC A20 with 

Vienna type DMA) 

SC PNSD 

DMPS (Twin-DMPS, Aalto et al. 

2001) 

UB PNSD 

Q-ACSM (Aerodyne Research) SC Non-refractory PM1 

TEOM (model 1405, Thermo 

Scientific) 

SC PM10 and PM2.5 

Aethalometer (AE33, Magee 

Scientific) 

SC BC 

Ambient NOx Monitor (APNA-370, 

Horiba) 

SC NOx 

Ambient Ozone Monitor (APOA-370, 

Horiba) 

SC O3 

LICOR (model LI-7000) SC CO2 

Ambient Carbon Monoxide Monitor 

(APMA-360, Horiba) 

SC CO 

NO-NO2-NOx Analyzer (42C, 

Thermo Environmental Instruments) 

UB NOx 

O3 Analyzer (model 49C, Thermo 

Environmental Instruments) 

UB O3 

Ambient Carbon Monoxide Monitor 

(APMA- 370, Horiba) 

UB CO 

Ambient Sulfur Dioxide Analyzer 

(APSA -370, Horiba) 

UB SO2 

 

2.3 Meteorology 

Helsinki is a northern city with four seasons. The total radiance (Itot) and RH were measured beside the UB at the Helsinki 130 

Kumpula weather station (60.203071N, 24.961305E, 24 m asl). The temperature (T) used in this study was measured at the 

Helsinki Kaisaniemi weather station (60.17523N, 24.94459E, 3 m asl), situated 2.4 km south of the SC and 3.2 km from the 

UB; the T data measured at the Helsinki Kumpula weather station had a large gap in late 2017, missing several months of data. 
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The monthly average RH, T, and Itot are presented in Fig. 1. The RH reached maximum values during early winter (November-

January), and the lowest values were measured during late spring (May). T and Itot reached maximum values during the summer 135 

months (June-August). The Itot reached the maximum slightly earlier (June-July) than the T (July-August). The highest monthly 

average T was measured during July 2018 (21.3 °C), and the lowest T was in January 2016 (-9.2 °C, Fig. 1c). In this paper, 

meteorological data was used in the interpretation of the results. 

 

Figure 1: A presents monthly mean values for Itot, B for RH, and C for T over the measurement period (2015-2019) in Helsinki. The 140 
constant blue line represents the monthly mean value. The bars show the standard deviation, and the red dots show the maximum 

and minimum values counted from hourly values. 

2.4 Data processing 

The data was processed in the following manner before being input into the PMF: Initially, outliers were identified and 

eliminated separately at both stations. Subsequently, the data was averaged on an hourly basis independently at each station. 145 

The data was then interpolated to 16-size bins at both locations. Finally, the data from the two sites was merged horizontally 
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into a single matrix with 32 bins in total. In more detail, strong outliers were removed from the DMPS data by calculating the 

total concentration and removing the data points that had a concentration ten times larger or smaller than the adjacent 

measurement points. These relatively relaxed outlier criteria were applied because the measurement site is less than a meter 

from the driving lanes, and therefore, variations in the concentrations can be expected due to passing cars. After removing the 150 

outliers, the size distribution data from the DMPS was averaged over 1-hour periods to minimize the effect of varying lengths 

of measurement cycles (approx. 8 min 40 s to 9 min 5 s at the SC and approx.. 9 min 50 s to 10 min 5 s at the UB). Additionally, 

this allowed for matching time stamps on the SC and UB data. Only 1-hour data points that had full coverage of data from 

both stations were included in the subsequent analyses. Averaging is not expected to affect the source profiles significantly, 

and average PNSD data has been used in PMF analysis in previous publications (e.g., Ogulei, Hopke, & Wallace, 2006). 155 

The data analysis was done using a novel method of combing PNSD data from the two measurement stations horizontally so 

that PMF solved factors for both stations simultaneously. To the authors’ knowledge, this approach has not been used before. 

In this approach, a single common factor is calculated for both stations, comprising 32 size bins. The initial 16 size bins are 

associated with the SC and the remaining 16 with the UB. Given that there is only one set of factors, the time series are identical 

for both stations, whereas the size distribution profiles vary between the sites. If a factor has a substantial local contribution at 160 

one of the sites but not at the other, then its profile would be pronounced at that station and near zero at the other. To be able 

to do this reliably and give even weight to data of both stations, the number of bins and the particle size limits needed to be 

scaled to the same. This was also necessary because growing the size of data files over a certain point would cause EPA PMF 

5.0 program to crash during the analysis because of the program running out of memory. The data was reduced so that SC and 

UB PNSDs were presented in 16-size bins each. Data size bins have been modified for PMF in other studies. For example, 165 

Zhou et al. (2005), reduced 165 bins to 33 by averaging over five bins. In this study, bins were reduced so that a vector with 

an even lognormal bin width was created starting from 1 nm (lognormal width of 0.11 in this study). Then, the SC and UB 

data were interpolated linearly to this diameter vector so that the value for each new diameter point was given as a linear 

interpolation in a logarithmic x-axis between the nearest original diameters. The new size bin midpoint diameters were: 12.6, 

16.2, 20.9, 26.9, 34.7, 44.7, 57.5, 74.1, 95.5, 123, 158, 204, 263, 339, 437, and 562 nm. The interpolation needs to be done on 170 

a logarithmic x-axis; otherwise, the interpolated concentration is overestimated with a negative derivative and underestimated 

with a positive derivative of the PNSD curve. This effect is demonstrated in supplement Fig. S1. This approach enabled us to 

give the same diameters to both sites regardless of the original size bins. This procedure has two drawbacks. One is that the 

data is levelled slightly, as the interpolated values are always between two original values. Therefore, the highest peaks are 

slightly lower and the lowest bottoms are slightly higher than in the original data. The second drawback is that some of the 175 

smaller changes in the PNSD may be lost. An example of reduced data compared to the original data is presented in supplement 

Fig. S2.  

The decision to join the data together horizontally instead of doing the PMF analysis separately for the SC and UB was made 

because the idea in this study was to use only PNSD data as input data in PMF analysis and only to use the auxiliary data for 

identification of the factors. When the PMF analyses were done separately for the stations without additional data, the PMF 180 
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was able to split the measured PNSD into factors at each site. However, seemingly any number of factors could be fitted, with 

PMF only fractioning the measured PNSD to more sub-modes.  Additionally, when PMF analysis was performed separately 

the attained factors had different modes and mode concentration in between the stations in all cases. This is not likely to 

resemble reality as the stations reside less than 1 km from each other and therefore somewhat similar background and long-

range transport factors would be expected. Adding the data from the two sites together horizontally forces the PMF to find a 185 

common time series between the stations. This is beneficial in finding the common factors for the UB and SC as the time series 

of the common factors can be expected to be similar because of the small distance between the stations. On the other hand, 

joining the data horizontally does not force the same factor profiles for both sites. An additional problem of doing the PMF 

separately for the stations was that all factors at the SC site seemed to correlate strongly with the traffic diurnal cycle indicating 

that the traffic emissions are split between the different factors. The figures showing the 4, 5, and 6-factor solutions of the 190 

PMF analyses done separately for SC and UB are presented in supplemental material S3, S4, and S5 respectively. The negative 

side of merging the data horizontally can be expected to lower the total explained a fraction of the PNSD while the common 

time series are forced for both of the stations. 

Source apportionment is typically conducted seasonally (winter, spring, summer, and autumn) among most long-term size 

distribution source apportionment analyses (Hopke et al., 2022). However, in this study, the data were analysed in one set to 195 

allow us to evaluate the changes in the contributions of various factors over the whole measurement period. Rose et al. (2021) 

stated that to maintain the representation of the total reliable concentration (Ntot), data coverage needs to exceed 50% on the 

seasonal level and 60% on the annual level; for the reliable evaluation of diurnal variation, yearly coverage of 75 % was 

required. The seasonal coverages of the overlapping data for both sites are presented in Table 2. Notably, the coverages for the 

first and last seasons (i.e., winter 2015 and summer 2019) were low, as the measurement period started and ended in the middle 200 

of the seasons. 

Table 2: Seasonal overlapping data coverage for UB and SC sites. 

 Winter (Dec-

Feb) 

Spring (Mar-

May) 

Summer (Jun-

Aug) 

Autumn (Sep-

Nov) 

2015 14% 81% 92% 92% 

2016 62% 70% 88% 90% 

2017 86% 49% 89% 91% 

2018 73% 48% 84% 93% 

2019 85% 88% 5% - 
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2.5 PMF 

Developed by Paatero (1997), PMF is a multi-derivative method that is widely used in environmental sciences to apportion 205 

the sources of the measured data. PMF is a least-squares method based on the fact that the matrix X with dimensions n x m 

can be presented as a product of two matrixes: A, with dimensions n x y,  and B, with dimensions of y x m. This can be used 

so that the matrix n x m is the measured result matrix with n observations and with m species, or, in the case of PNSD, particle 

size bins and y can be set as the number of independent sources.  

In estimating error, the methodology was established by Ogulei, Hopke, Zhou, et al. (2006)  and further developed by Rivas 210 

et al. (2020). The measurement uncertainties (σij) were calculated with the following equation: 

𝜎𝑖𝑗 = 𝛼(𝑁𝑖𝑗 + Ṉ𝑗) 

where α is the arbitrary constant, similar to  Rivas et al.’s (2020) work (0.02 for the SC and 0.022 for the UB), and Nij is the 

concentration of sample i in size bin column j, and the Ṉj is the arithmetic mean of concentration in size bin j. The overall 

uncertainty was calculated using the following equation: 215 

𝑆𝑖𝑗 = 𝜎𝑖𝑗 + 𝐶3 ∙ 𝑁𝑖𝑗 

where σij is measurement uncertainty, C3 is an arbitrary constant that was set in this study to 0.1 for both the UB and SC, and 

Nij is the concentration of bin j of sample i.  

Wiedensohler et al. (2012) stated that concentration measurement errors seem to be approximately double for particles in the 

size range of 200-800 nm compared to 20-200 nm. Therefore, in this study, the measurement errors are corrected for these 220 

particle sizes by doubling the α factor. 

The most reasonable solution to fit the data was a five-factor solution based on the testing to produce results with the most 

meaningful physical interpretation and reasonable residuals. The robustness of the solution was tested using five different 

random seeds as starting points. Performing analysis with a larger seed number sometimes caused the program to crash. In 

addition to using random sees a displacement analysis was performed on the solutions. The results of the displacement analysis 225 

showed no drop in Q values or swaps in any of the analyses. The factors were identified as fresh traffic (TRA1), slightly aged 

traffic (TRA2), secondary combustion aerosol (SCA), secondary aerosol (SecA), and long-range transported aerosol (LRT). 

The dispersion-corrected PMF results were also calculated for the five factors for comparison, and the difference in the results 

calculated without the dispersion correction was found to be negligible (Dai et al., 2021). The differences between the normal 

and dispersion normalised PMF were evaluated based on the Pearson correlation coefficients between workday diurnals (>0.98 230 

for all factors), weekend diurnals (>0.98 for all factors), monthly contributions (>0.96 for all factors) and factor profiles (>0.97 

for all factors). In dispersion correction, the original measurement data is normalized by the ventilation coefficient which is 

the height of the boundary layer times the average wind speed during the period. The goal of the dispersion correction is to 

reduce the inaccuracy in the source apportion caused by the dispersion of aerosol in the atmosphere (Dai et al., 2021). The 

results calculated with dispersion normalization are presented in supplement Fig. S6. Fig. 2 shows the mean residuals, mean 235 

scaled residuals, mean relative residuals, and Q/Qexp values for the different number of factors between 2 and 10. At the chosen 
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five-factor solution, the mean relative residual was only around 2.8% on average. The residual and Q/Qexp values decrease 

continuously as the number of factors increases. However, for scaled residuals, mean relative residuals and Q/Qexp values, the 

decrease is smaller after increasing the number of factors past five. This is an indication that five is an acceptable number of 

factors. Additionally, the neighbouring solutions of four and six are presented in supplemental Figures S7 and S8, respectively.  240 

The four-factor solution merges the factors described later in this paper (SCA and SecA). In a five-factor solution, these two 

have notably different diurnal profiles, and therefore, merging them is not sensible. The six-factor solution presented in S8 

splits the SCA into two factors that have very similar diurnal profiles and contributions throughout the year, and therefore, 

they are likely to be from the same source. In supplemental material S9, the average relative residuals with the standard 

deviation are presented for each size bin. Also, the figures showing the regressions between the modelled and measured 245 

concentrations after interpolation are presented in supplemental material S10. The average difference between these was 12.7 

% at SC and 6.7 % at UB and the temporal patterns for the difference have been presented in supplemental material S11. 

 

Figure 2: Mean residuals (A), mean scaled residuals (B), mean relative residuals (C), and Q/Qexp values (D) for the different number 

of factors between 2 and 10. The mean residuals presented have been calculated size-wise as an average over the unified dataset 250 
from the SC and UB measurement locations. 
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2.6 Trend analysis 

Time series of PMF factors were fitted with trends using the Theil-Sen estimator established by Theil (1950) and further 

developed by Sen (1968). The base-level concentrations at the beginning of the measurement period were calculated using the 

slope determined by the Theil-Sen estimator with each data point and, counting the median. Because factors had clear seasonal, 255 

variance the Theil-Sen estimator was plotted in two ways. One involved using the seasonal Theil-Sen estimator, in which only 

data from the same months is compared in forming the estimate. The other way was first removing seasonality from data using 

the seasonal-trend decomposition procedure presented by Cleveland et al. (1990). The seasonal trend removal was needed 

because the reliability of the results was evaluated using the Mann-Kendall test for monotonic trends (Mann, 1945), which can 

not be done with seasonal data. The results are presented in Table 5. Figures showing the trend decomposition for the factors 260 

and the fitted Theil-Sen estimators are presented in the supplemental material. The trend decompositions for TRA1, TRA2, 

SCA, SecA, and LRT are presented in S12, S13, S14, S15, and S16, respectively. Additionally, the fitted Theil-Sen estimators 

are presented for TRA1, TRA2, SCA, SecA, and LRT in S17, S18, S19, S20, and S21 respectively. Notably, the trends 

calculated using the seasonal Theil-Sen estimator and the Theil-Sen estimator calculated from data without seasonal variability 

were almost identical, increasing the confidence in using seasonal trend decomposition for the data (Table 5). 265 

3 Results and discussions 

3.1 General description of PNSD  

Particle PNSD was found to be noticeably different between stations. The time series of the daily average PNSD in each year 

are presented in Fig. 3. Figure 3k presents the Pearson correlation coefficient as a function of particle size when the daily PNC 

in each of the 16-size bins are compared between the SC and UB. The observed PNSD at the SC in the size range of 12.6 to 270 

562 nm contained significantly more nanosized (< 100 nm) particles on many occasions, as well as higher overall particle 

concentrations compared to the UB. Notably, the correlation was higher for the larger particle sizes, indicating that if the 

smallest particles are disregarded, the time series would be relatively similar. The higher overall PNC at the SC, higher 

correlation above 200 nm particles, and lower correlation below 200 nm particles compared to the UB indicate that there was 

at least one local source producing a lot of nanosized particles at SC that was missing at UB. 275 
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Figure 3: Time series of daily average PNSD for SC and UB for each year: 2015 (A and B), 2016 (C and D), 2017 (E and F), 2018 (G 

and H), and 2019 (I and J). The data used is reduced to 16-size bins. The particle diameter (Dp) is presented on the y-axis, the x-axis 

presents the time, and PNC (cm3) is shown by logarithmic color scale. The yearly correlation between the UB and SC stations 

(Pearson correlation coefficient) is presented in the bottom plot for the various particle sizes and daily mean concentrations. 280 
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3.2 Identification of factors 

The most reasonable solution in the PMF analysis was a five-factor solution. The factors were identified based on the diurnal 

profiles, annual variation of the factors, and comparison to the available auxiliary data measured at the UB and SC sites (trace 

gases, particle chemistry, PM mass concentrations, and meteorology). The factor profiles and identification variables, their 

diurnal contributions for workdays and weekends, and monthly contributions are presented in Fig. 4 and Table 3. The 285 

contributions depicted in Fig. 4 represent the scaling factors applied to each source profile at specific times. For instance, if 

the contribution at a certain time is two, the corresponding source profile is scaled by a factor of two at that moment. The 

source profiles and their contributions are normalized such that the mean contribution from each source averages to one over 

the measurement period. These contributions were also calculated for each factor separately in supplemental material S22 for 

different wind directions. 290 

Table 3: PMF factors, their size modes, correlating variables, and identification. 

Factor PN size 

mode (nm) 

Important correlating 

variables 

Identification arguments 

TRA1 12.6 BC, NO, NO2, and NOx 

at SC 

Particle size and diurnal 

profile similar to traffic 

intensity. Correlation with 

traffic tracers. 

TRA2 16.2 NOx and NO at UB Diurnal profile is similar 

to traffic. Slightly behind 

TRA1 

SCA 44.7 NOx at UB, m/z 60 Delayed peak after TRA1 

and TRA2 correlation 

with NOx at UB 

SecA 74.1 Total organics, m/z 43 

 

No difference between 

workdays and weekends, 

highest concentrations in 

summer. 

LRT 204 PM2.5, SO4, NO3 and 

total organics 

Correlations with 

variables related to LRT 

and minimal diurnal 

profile 
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Figure 4: PMF factors presented for both stations on linear (A for SC, C for UB) and logarithmic x-axis. E presents the hourly 

relative contributions during workdays, F during weekends, and G the average monthly contributions. Note that the linear scales 

for plots A and B are different. The value presented in contribution figures is the factor with which to multiply the factor profile at 295 
any current time to get the total contribution. The average for the contribution factor is 1 over the whole measurement period for 

all the factors. 
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TRA1 was interpreted to represent particles that originated from local traffic emissions in the immediate proximity of the 

measurement station. This factor was the dominant factor in the SC, while it was almost zero at the UB, which was located on 

a hill over 100 m from the nearest busy road. TRA1 had the highest number of particles in the smallest measured particle size 300 

(12.6 nm) and the second mode at around 50-60 nm. Possibly, a third mode at 100-200 nm can be seen as a tail in the log-log 

plot (Fig. 4b). Similar non-volatile modes at 10 nm and 70 nm particle diameters have been reported for laboratory 

measurements for modern gasoline cars (Karjalainen et al., 2014). During weekdays, TRA1 had a distinctive diurnal profile, 

similar to BC and NOx; these are often related to traffic emissions, with the largest peak during the morning rush hour and the 

second, slightly lower peak during the afternoon rush hour (Fig. 5a). TRA1 had significantly lower contributions during 305 

weekends, but a high correlation with NOx and BC (Fig. 5b). Overall, the linear relationship between the variables (Pearson 

correlation coefficient R) for TRA1 with BC (AE33 with 880 nm) and NOx were 0.76 and 0.85 at the SC, respectively. TRA1 

had also a high correlation with NO2 and NO at SC (Table 4). 

 

Figure 5: Diurnal profiles for TRA1 factor-related PNC concentrations at the SC, along with NOx and BC880 concentrations 310 
presented separately for workdays (A) and weekends (B). 

TRA2 was interpreted as a slightly aged traffic-related factor. Atmospheric aging of aerosols is expected to increase the mode 

particle size of PNSD due to the oxidation of gaseous volatile organic compounds (VOCs) into compounds with lower 

volatilities. These oxidized compounds then condense on existing particles, making them larger. Furthermore, smaller particles 

experience greater diffusion losses. Consequently, we can expect a shift in the mode particle size toward larger particles during 315 

aging. The aged nature of the factor was concluded as shown in Fig. 4e; the morning rush hour peak of TRA2 is observed 1 

hour later compared to TRA1. TRA2 also has similar contributions at the SC and UB, and therefore, the TRA2 was considered 

to be slightly aged, as the road is further away (100 m) from the UB station. Additionally, the mode particle size was larger 

for TRA2 compared to TRA1, with a maximum mode particle size of 16.2 nm at both stations. TRA2 also displayed a diurnal 

trend that matches the traffic pattern, having a peak during the morning rush hour and elevated concentrations for the rest of 320 

the working hours of the day (Fig. 4e). The morning peak was noticed approximately 1 hour later than the TRA1 factor. 

Therefore, TRA2 can be considered slightly aged, regionally processed traffic emissions. The most significant correlations of 

TRA2 with auxiliary data were with NOx and NO measured at the UB (Table 4). Additionally, TRA2 correlated moderately 
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with NOx and NO measured at the SC. This moderate correlation was expected, as the NOx and NO measured at the UB are 

the background levels that are also measured at the SC. However, in addition, the NOx and NO concentrations at the SC are 325 

strongly influenced by the immediate traffic emissions, and therefore, the correlation of TRA2 with the concentrations at the 

SC is lower than with the concentrations at the UB. This also supports the slightly aged character of TRA2, as the SC site was 

dominated by immediate traffic-caused emissions (Fig. 4a). The TRA2 was more concentrated during colder months, which 

might be because in cold T VOCs condense more efficiently on existing particles (Fig. 4g). In addition, the boundary layer is 

shallower during cold months enhancing the accumulation of primary pollutants.  330 

The SCA factor had a peak particle size of 44.7 nm at both sites and was interpreted as a secondary aerosol originating from 

combustion processes (i.e., of liquid fuel such as diesel, oil solid fuel such as biomass and coal, or gas). SCA had relatively 

weak correlations with the primary traffic emissions (e.g., NOx, BC, CO, m/z 57) data, as could be expected for atmospherically 

processed aerosol. Of these m/z 57 (C4H9+, C3H5O+) is a part of the HOA mass fraction that is linked to traffic exhaust 

emissions (Crilley et al., 2013; Crippa et al., 2012; Daellenbach et al., 2016; Mohr et al., 2012).  The strongest Pearson 335 

correlation coefficient of 0.56 was observed between SCA and NOx at the UB site (Table 4). SCA and NOx at the UB site also 

had similar diurnal patterns on working days and weekends (Fig. 6). The highest SCA peak was seen approximately 3 hours 

later than for the TRA1 factor, indicating that the SCA factor included traffic emissions that had been aged/processed a couple 

of hours in the atmosphere. SCA was found to have an evening peak in addition to the morning rush hour peak (Fig. 4e). The 

evening peak was more pronounced during weekends, which indicates possible contributions from biomass combustion (Fig. 340 

4f). In an earlier study, BC originating from biomass combustion was shown to contribute 15 ± 14% at the SC and between 41 

± 14 and 46 ± 15% of the BC in residential/detached house areas (Helin et al., 2018). To support this, the diurnal trends of 

SCA and organic fragments at m/z 60 (Q-ACSM) at the SC were plotted (Fig. 6). The fragments at m/z 60, particularly its 

fraction of the total OA, have widely been used as a marker for primary wood combustion emissions (Alfarra et al., 2007). The 

shape of the m/z 60 diurnal profile was similar to the SCA diurnal profile during the workdays and weekends strengthening 345 

the assumption of wood combustion contribution to SCA. An important thing to note is that the overall correlation with the 

m/z 60 was still relatively low (Table 4). The similar rush hour peak of m/z 60 to that of SCA was slightly surprising as the 

m/z 60 is usually related to biomass combustion and not traffic. The annual variation of SCA is small (Fig. 4g). Likely because 

although during the wintertime, the amount of biomass combustion increases the amount of sunlight is low, limiting SOA 

formation, whereas during summer, the amount of biomass burning is lower, but the amount of sunlight increases, thus 350 

enhancing SOA formation. In contrast, traffic emissions remain stable throughout the whole year. 
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Figure 6: Diurnal profiles for SCA factor-related PNC concentrations at the SC, along with NOx concentration at the UB station 

and organic fragments at m/z 60 concentrations at the SC during workdays (A) and weekends (B). 

The SecA factor had a peak particle size of 74.1 nm at both sites and was interpreted as an aged, photochemically formed 355 

secondary aerosol from biogenic and anthropogenic precursors. This assumption is based on the negligible difference in diurnal 

profiles between workdays and weekends and elevated contribution during the summer months with the highest total radiance 

(Fig. 1a and 4g). Additionally, the strongest correlations of the SecA factor were with total organics and m/z 43 (Table 4). The 

m/z 43 has been associated with less oxidated secondary organic aerosol (Chen et al., 2022) Anthropogenic and biogenic VOCs 

are shown to be important SecA precursors in a traffic environment (Saarikoski et al., 2023). In addition, the SecA had 360 

moderate correlations with m/z 57 and m/z 60 (Table 4). The reason for this is likely to be the high total amount of organics 

as the m/z 57 and m/z 60 do not refer to the relative fraction of the total organics but absolute concentrations of the mass 

fraction and therefore they might be elevated with the higher total organic mass in particles. Surprisingly, the SecA factor also 

somewhat correlates with BC (Table 4), possibly indicating that BC particles that are ubiquitous in traffic environments might 

act as cores for or be mixed into these SecA particles.  365 

The long-range transport (LRT) factor had a peak particle size of 204 nm at both sites and is interpreted as a long-range 

transport because of its strong correlations with PM2.5, SO4, NO3, and organics (Table 4). The correlation was even higher 

(0.80) with the sum of NO3 and SO4 at the SC. Typically higher concentrations of accumulation mode particles have been 

observed during LRT events (Timonen et al., 2008). Furthermore, Niemi et al. (2009) showed that relatively high 

concentrations of inorganic ions, especially SO4, NH4, and BC, are typically observed during LRT events. The correlation of 370 

LRT with NH4 was relatively high, but the correlation with BC was quite low (Table 4). The reason for the low correlation 

with BC might be due to local sources of BC (e.g., traffic and the short atmospheric lifetime of BC; (Cape et al.,)). Additionally, 

Niemi et al. (2009) did not report high concentrations of NO3 during the LRT episodes, likely because of evaporation losses 

of ammonium nitrate from the Teflon filters.  However, more recent studies with online analysis of NO3 have linked elevated 

NO3 concentrations to LRT episodes in the area (Harni et al., 2023; Barreira et al., 2021; Pirjola et al., 2017). Also, elevated 375 

PM1 and PM2.5 concentrations have been related to the LRT episodes in the area (Harni et al., 2023; Barreira et al., 2021; 

Niemi et al., 2009; Pirjola et al., 2017). The LRT factor had a moderate correlation with m/z 60. This is likely to be caused by 
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the large PM of LRT particles and therefore higher total organic mass. Additionally, the correlation with m/z 60 might indicate 

the contribution of remote biomass burning to the LRT factor. 

Table 4: Pearson correlation coefficients of the PMF solution factors (LRT, SCA, SecA TRA1, and TRA2) with other factors and 380 
other measured parameters ( with NOx, O3, SO2, NO, and CO from the UB station; NO, NOx, NO2, PM10, PM2.5 PMcoarse, O3, CO, 

BC880(AE33), CO2, PMtot, m/z 43, m/z 57, m/z 60, Chl, NH4, NO3, ORGtot and SO4 from SC, Itot, and RH from the Kumpula weather 

station, and T from the Kaisaniemi weather station. 
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3.3 Monthly average contributions and trends of factors 385 

Figure 7 represents the time series for the contributions of the PMF factors to PNC at the SC and UB sites. The average monthly 

contributions at the SC site were 52%, 15%, 17%, 13%, and 3% for TRA1, TRA2, SCA, SecA, and LRT, respectively. For 

the UB, the corresponding monthly average contributions were 1%, 36%, 34%, 23%, and 7% for TRA1, TRA2, SCA, SecA, 

and LRT, respectively. TRA1 was seen to be the main contributor to PNC at the SC, while at the UB, the PNC was usually 

dominated by the slightly aged combustion-related factors, TRA2 and SCA, with quite similar contributions, as could be 390 

expected for stations situated next to the road and 100 m away from the road. During summertime, SecA also made a 

contribution that was roughly even with those of TRA2 and SCA at both stations, highlighting the importance of secondary 

aerosol formation even in urban environments. Barreira et al. (2021) described the increased contribution of organics aerosol 

mass during summertime in Helsinki. Similar contributions of traffic-related aerosols either fresh (46%) like TRA1 in this 

study or aged (27 %) like TRA2+SCA (sum 28 %) have been reported in the roadside environment  (Al-Dabbous & Kumar, 395 

2015).  

 

Figure 7: Contribution of various factors to PNC at the SC (A) and UB (B) sites. 

The contributions of factors at the SC and UB stations were also calculated in terms of particle volume. Notably, the 

contributions of the various factors to volume concentrations were different when compared to contributions to the PNC (Fig. 400 

8). The average monthly contributions at the SC were 28%, 1%, 4%, 26%, and 41% TRA1, TRA2, SCA, SecA, and LRT, 
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respectively. For the UB, the monthly average contributions were 1%, 5%, 7%, 29%, and 59% for TRA1, TRA2, SCA, SecA, 

and LRT, respectively. Compared to PNC, the contributions of TRA1, TRA2, and SCA decreased, whereas those of SecA and 

especially LRT increased. The largest contributor to volume concentration was LRT, followed by SecA at the UB. At the SC, 

the second largest contributor to particle volume during summer months was also SecA but during winter the second largest 405 

contributor was TRA1. The contributions of LRT to volume concentration varied greatly from month to month at both stations. 

The months of the highest concentrations varied between years, highlighting the event nature of this factor, as singular strong 

events can increase LRT contributions. This is in contrast to for example TRA1, which shows little month-to-month variation, 

and the concentrations stay relatively stable between the different months in Fig. 7 and Fig. 8. 

 410 

Figure 8: Monthly average volume-based contributions of various factors at the SC (A) and UB (B) stations during the measurement 

period. 

Three statistically significant trends in the factor concentrations were found: decreasing trends of -9.5% and  -6.5% yearly for 

TRA1 and SecA, respectively, and an increasing trend of 6.4% yearly for TRA2 (Table 5). The decreasing trend of TRA1 

seems to imply that the primary emissions from traffic have been decreasing over the years, supported by the fact that the 415 

vehicle fleet renewed rapidly in Finland between 2015 and 2019. For instance, the proportions of low-emission (EURO 6/VI 

grade) vehicles in driven kilometers have increased in different vehicle classes in Finland as follows: cars from 6% to 29%, 

vans from 1% to 25%, and trucks from 7% to 31% (VTT's LIPASTO calculation system for traffic exhaust emission in 
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Finland). The proportion of low-emission city buses has increased particularly quickly in the Helsinki metropolitan area, from 

17% to 59%  over the course of 5 years (statistics from the Helsinki Regional Transport Authority HSL). The impact of bus 420 

emissions is significant at the Mäkelänkatu SC site, since there is a bus lane very close (0.5 m) to the air quality monitoring 

station. Notably, TRA2 has increased, possibly due to the change in the engine and after-treatment techniques of the vehicles, 

emphasizing the significance of atmospheric processes interacting traffic emissions. 

      

The decrease of the SecA factor is more complex, to explain as it was speculated to have both anthropogenic and biogenic 425 

sources. The latter is closely connected to relatively stable biogenic sources and meteorology (T and Itot) and the former to the 

fast development of cleaner engine and after-treatment technologies driven by new emission limits. In the previous chapter, 

SecA concentrations were shown to indicate possible correlation with BC. One possible reason for this was suggested to be 

that the BC particles could act as cores for SecA. In fact, the decreasing trend was similar to earlier presented BC trends 

(decrease between -10& and -6% yr-1) in different environments (traffic, urban background, and regional background) in 430 

Finland (Luoma et al., 2021). No statistically significant trend was found for SCA or LRT, although a slight decrease was 

indicated for both. There could be many reasons for this. Although traffic emissions have decreased (e.g. Barreira et al., 2021), 

biomass combustion for residential heating has increased lately. LRT emissions are mainly affected by meteorological 

conditions and can vary a lot between years. We note that more data (years) is needed to see if the trends found in this study 

were real as the larger the sample size is, the better the hypothetical test is. Table 5 presents all the results of the trend analysis. 435 

Table 5: Seasonal Theil-Sen estimators and Theil-Sen estimators calculated from data with seasonality removed with confidence 

levels and base-level concentrations at the beginning of the measurement period for TRA1, TRA2, SCA, SecA, and LRT. The trend 

in the table is significant if the significance level is above 95% (p-value < 0.05). 

  TRA1 TRA2 SCA SecA LRT 

Seasonal 

Thel-Sen 

estimator 

Base 

concentration 

(cm-3) 

5175 953 1445 1073 214 

Yearly 

change (cm-3) 

-493 61 -32 -70 -6 

Relative 

change (%) 

-9.5 6.4 -2.2 -6.5 -2.7 

Theil-Sen 

estimator 

for data 

with no 

seasonality 

Base 

concentration 

(cm-3) 

5149 953 1407 1074 210 

Yearly 

change (cm-3) 

-471 62 -11 -70 -5 
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Relative 

change (%) 

-9.1 6.5 -1 -6.6 -2.3 

Significance yes yes no yes no 

Conclusions and summary 

Particle size is one of the most important parameters of atmospheric particles in terms of health and climate effects. In this 440 

study, the origin and characteristics of particle PNSD were investigated in Helsinki, southern Finland. The measurements were 

carried out at two sites, an UB and a SC site, between 2015 and 2019. The source apportionment based solely on the particle 

PNSD data was performed using PMF. A novel approach to analyse the data was used, as the particle PNSD data were 

combined from two nearby sites. As a result, the same factors with the same time series were obtained for both sites, only with 

different profiles. If a similar profile was seen at both sites the source was considered regional.  445 

Five factors were found in the data: TRA1, TRA2, SCA, SecA, and LRT. Three of the factors were related to traffic. TRA1 

had a clear diurnal profile, with the highest peak during the morning rush hour and the second, slightly lower peak during the 

afternoon rush hour. TRA2 peaked approximately 1 hour later than TRA1, indicating slight processing in the atmosphere. SCA 

reached a maximum 3 hours later than TRA1, being much more aged. SCA had an evening peak in addition to the morning 

rush hour peak, which indicated that it might have originated from both liquid fuel (mainly traffic) and solid fuel (biomass) 450 

combustion. TRA1 was the main contributor to PNC at the SC, while at the UB, the PNC was usually dominated by the slightly 

aged combustion-related factors TRA2 and SCA. During summertime, SecA also had a significant contribution to aerosol PNC 

at both stations. 

The trend analysis revealed that TRA1 and SecA have been decreasing by 9.1% and 6.6% yearly, respectively. For TRA2, an 

increasing trend of 6.5% yearly was discovered. These findings indicate that the properties of particle emissions originating 455 

from traffic have changed in recent years, probably due to the changes in vehicle engines and after-treatment techniques. The 

significant decreasing trend for TRA1 implies that while the improved emission reduction techniques seem to be reducing 

freshly emitted particulate emissions of traffic, the slightly aged traffic emissions are even increasing, as an increasing trend 

was observed for TRA2. This change in vehicle fleets is not only related to direct emissions; decreased SecA can be speculated 

to be linked to decreased core particle concentrations, such as BC. 460 

The SCA factor seemed to be a mix of aged traffic particles and particles from biomass combustion. However, the contribution 

of biomass combustion to the PNC in the traffic environment entails high uncertainty. Additionally, all the factors had more 

than one mode. Therefore, in addition to the particle size bins, adding the auxiliary data to the PMF analysis might improve 

the separation between the factors. However, the novel method of attaching simultaneous data from two sites seems to improve 

the detection of various factors and could be useful in locations where PNSD data is available from more than one site. 465 

In conclusion, traffic remains a large contributor to ambient PNCin urban environments despite the decreasing trend caused 

by the improvements in emission reduction technologies and electrification of the traffic fleet. Additionally, while the primary 
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emissions have decreased the effect on the secondary aerosols is more uncertain; in this study, the concentrations of slightly 

aged aerosols were increasing. Therefore, studying how emissions age in the atmosphere is important in the future. 

Additionally, the study demonstrated that detecting aerosol source factors purely based on PNSD data is possible, but attaching 470 

the factors to individual sources would be difficult without available auxiliary data.  
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