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Abstract. The most recent generation of climate models that has informed the 6th Assessment Report (AR6) of IPCC is char-

acterized by the presence of several models with larger equilibrium climate sensitivities (ECSs) and transient climate responses

(TCRs) than exhibited by the previous generation. Partly as a result, AR6 did not use any direct quantifications of ECSs and

TCRs based on 4×CO2 and 1pctCO2 simulations and relied on other evidence when assessing the Earth’s actual ECS and TCR.

Here I use historical observed global-mean temperature and simulations produced under the Detection and Attribution Model5

Intercomparison Project to constrain the ECS, TCR, and historical aerosol-related cooling. I introduce additivity criteria that

disqualify 8 of the participating 16 models from consideration in multi-model averaging calculations. Based on the remaining 8

models I obtain an average adjusted ECS of 3.5±0.4 K and a TCR of 1.8±0.3 K (both at 68% confidence). Both are consistent

with the AR6 estimates but with substantially reduced uncertainties. Furthermore, importantly I find that the optimal cooling

due to short-lived climate forcers consistent with the observed temperature record should on average be about 47±39% of what10

these models simulate in their aerosol-only simulations, yielding a multi-model-mean, global-, and annual-mean cooling due to

near-term climate forcers for 2000-2014, relative to 1850-1899, of 0.24± 0.11 K (at 68% confidence). This is consistent with

but at the lower end of the very likely uncertainty range of IPCC. There is a correlation between the models’ ECSs and their

aerosol-related cooling, whereby large-ECS models tend to be associated also with large aerosol-related cooling. The results

imply that a reduction of the aerosol-related cooling, along with a more moderate adjustment of the greenhouse-gas related15

warming, for most models would bring the historical global mean temperature simulated by these models into better agreement

with observations.

1 Introduction

The equilibrium climate sensitivity (ECS) is a well-established (Arrhenius, 1896) yet, despite progress, poorly constrained

property of the climate system (Knutti et al., 2017; Forster et al., 2021; Smith and Forster, 2021). For a hypothetical doubling20

of the atmospheric CO2 content above preindustrial levels, it states the associated surface temperature increase at equilibrium.

Similarly, the transient climate response (TCR) measures the warming simulated in simulations with CO2 increasing at 1% per

annum (p.a.) above its preindustrial abundance at the time of CO2 doubling. For both quantities, disagreement amongst cli-

mate models, particularly in the most recent generation (Meehl et al., 2020), persisting despite ever improving model physics

and resolution, is an impediment to narrowing their associated long-standing uncertainties. The large spreads in ECSs and25

1



TCRs characterizing the present generation of climate models are contributing to some substantial inter-model spread in sim-

ulated end-of-century warming in future-scenario simulations (Lee et al., 2021). It is therefore desirable to reduce these model

disagreements to more confidently project future climate under any climate scenario.

A standard optimal detection framework assumes that (a) changes in an observed or simulated quantity such as temperature

are the sum of changes driven by individual climate forcers (referred to as “additivity”) in the presence of climatological30

noise, and (b) model imperfections can be captured by introducing scaling or correction factors to those model responses to

external climate forcers. This amounts, in a regression analysis, to optimally reproducing the observed variations and thereby

constraining the TCR and ECS (Schurer et al., 2018, and references therein). The presence of climatological noise means

that attribution benefits from using as many models and simulations as possible. Approaches of this kind have been used

in many studies using CMIP5 and earlier model generations (e.g. Hasselmann, 1993; Hegerl et al., 1997; Allen and Tett,35

1999; Schurer et al., 2018) and again for the most recent generation, CMIP6 (Gillett et al., 2021). When separating the GHG

and aerosol influences, the main problem is that GHGs and aerosols cause warming and cooling effects on climate that are

similar in terms of overall temporal developments and therefore can be difficult to distinguish statistically in observational or

simulated records of temperature (see below). Furthermore, especially before CMIP6 single-model ensembles used to be small

(the largest single-model ensemble used by Schurer et al. (2018) had 6 ensemble members). These two problems, along with40

general model disagreements on the sizes of these effects, combine to yield substantial uncertainties characterizing successive

quantifications of TCR, ECS, and aerosol-induced cooling, such as for CMIP6 1.2 to 1.9 K for the TCR and −0.7 to −0.1K

for the aerosol-induced cooling (Gillett et al., 2021). Both uncertainties contribute to uncertain projections of future global

warming, e.g. 2.1 to 3.5 K of warming in 2081-2100, relative to 1850-1900, in the middle-of-the-road Shared Socioeconomic

Pathway (SSP) 245 (Lee et al., 2021).45

In this work I explore what “historical", all-forcings experiments and single-forcing experiments conducted for the Detection

and Attribution Model Intercomparison Project (DAMIP, Gillett et al., 2016) imply for the ECS, TCR, and the aerosol-driven

cooling which partially offsets global warming.

Decreases in future aerosol loading are thought to contribute to projected warming (Andreae et al., 2005), but the size of

this effect is highly uncertain (Forster et al., 2021; Watson-Parris and Smith, 2022). In individual CMIP6 models mismatches50

between observed and simulated “historical" global-mean surface temperatures have been associated with a misrepresentation

of the aerosol-induced cooling (Andrews et al., 2020; Smith and Forster, 2021; Golaz et al., 2022), such that despite the

increases in the mean ECS and TCR characterizing the 6th Coupled Model Intercomparison Project (CMIP6) ensemble of

models, relative to CMIP5, the simulated historical warming in CMIP6 is actually smaller than in CMIP5 (Flynn and Mauritsen,

2020; Smith and Forster, 2021; Flynn et al., 2023). Smith and Forster (2021) assess that differences between CMIP5 and CMIP655

“historical” simulations are due to an increased ensemble-mean climate sensitivity in CMIP6 versus CMIP5, compensated by

a marginally increased aerosol radiative forcing and associated cooling. This causes lower temperatures during 1960-1990 and

a larger post-1990 warming trend in the CMIP6 models (Flynn et al., 2023).

The CMIP6 generation of climate model simulations differs from previous generations in some important respects:

2



– The CMIP6 ensemble now contains several single-model “large” ensembles (i.e. consisting of at least 10 ensemble60

members, table 1), including for some single-forcing experiments.

– Studies targeting CMIP5 generally only used single-forcing simulations for the GHG and natural influences, inferring the

influence of aerosols from these and the “historical”, all-forcings simulations (Schurer et al., 2018). Here I will exploit

single-forcing simulations explicitly targeting anthropogenic aerosols (as have Gillett et al., 2021). Using these “hist-aer”

simulations means I will explicitly test for and not simply assume additivity, as has been underlying these earlier studies.65

– Since the 1990s, aerosol forcing has been on a declining trend (Szopa et al., 2021; Hodnebrog et al., 2024). This trend

reversal means that the aerosol influence is becoming better distinguishable from the dominant influence of the ever-

increasing GHG-induced warming. The additional years in the CMIP6 DAMIP simulations since this turnaround might

critically improve the detectability of the aerosol influence.

A fundamental problem remains that nature has produced only one realization which might deviate in unknown ways from70

what the average of a large ensemble of hypothetical such realizations would indicate. This problem probably requires a

probabilistic approach to tackle, which would be a further development on the method laid out below. I will return to this

problem in section 4.

Below I develop a regression approach to evaluate, for all models participating in DAMIP, the fidelity of the simulation of

both GHG-driven surface warming and aerosol-related cooling in the CMIP6 ensemble.75

2 Data and Method

2.1 DAMIP models and experiments

Simulations produced for DAMIP, “historical" simulations (Eyring et al., 2016) extended to 2020 using the (SSP245 simula-

tions (Gidden et al., 2019), and published ECS and TCR values that are based on 4×CO2 and 1pctCO2 simulations (Eyring

et al., 2016) form the basis of this analysis. I use all 16 models for which “hist-GHG”, “hist-aer”, and “hist-nat” simulations80

are available (table 1). The hist-GHG, hist-aer, and hist-nat experiments are identical to the “historical”, coupled all-forcings

simulations except that forcings other than the GHGs, aerosols or their precursors, and natural (solar, volcanic) influences,

respectively, are held at their 1850 values (Gillett et al., 2016).

The models that have completed these simulations span large ranges of ECSs (between 2.5 and 5.6 K) and TCRs (between

1.5 and 2.7 K). For 12 models the simulation period for DAMIP simulations is 1850-2020, but four models (CESM2, E3SM-85

2-0, GISS-E2-1-G, MPI-ESM1-2-LR) end their DAMIP simulations in 2014.

Furthermore as an observational reference I use the HadCRUT5 global-mean temperature climatology (Morice et al., 2021).

The choice of this reference is not crucial; other reference datasets yield very similar results to those shown here. I form

ensemble-, global-, and annual-mean temperature timeseries from the available simulations.

HadCRUT5 is an amalgamate of sea-surface temperatures and near-surface air temperatures over land and sea ice (Morice90

et al., 2021). For a rigorous comparison with the temperature fields provided by the CMIP6 models, I thus form, individually
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Table 1. DAMIP models, ensemble sizes of the experiments, literature ECS values of the models, and references for the ECS values and

the model data. MPI-ESM1-2-LR actually has not completed hist-nat. For this model the hist-nat temperature change is inferred from its

“hist-sol” and “hist-volc” ensembles (Gillett et al., 2016).

Model

Sizes of ensembles

(historical/hist-

aer/hist-GHG/hist-

nat/ssp245)

ECS

(K)

TCR

(K)

Reference for

ECS and TCR
References for data

ACCESS-CM2 5/3/3/3/10 4.7 2.1 Meehl et al. (2020) Dix et al. (2019a, b, 2020a, b, c)

ACCESS-ESM1-5 40/3/3/3/40 3.9 2.0 Meehl et al. (2020) Ziehn et al. (2019a, b, 2020a, b, c)

BCC-CSM2-MR 3/3/3/3/1 3.0 1.7 Meehl et al. (2020) Wu et al. (2018, 2019a, b, c); Xin et al. (2019)

CanESM5 25/15/25/25/25 5.6 2.7 Meehl et al. (2020) Swart et al. (2019a, b, c, d, e)

CESM2 11/2/1/2/0 5.2 2.0 Meehl et al. (2020) Danabasoglu (2019a, b, c, 2020)

CNRM-CM6-1 21/10/10/10/6 4.8 2.1 Meehl et al. (2020) Voldoire (2018, 2019a, b, c, d)

E3SM-2-0 11/5/5/5/0 4.0 2.4 E3SM (2022a) E3SM (2022b, c, d, e)

FGOALS-g3 5/1/3/3/4 2.9 1.5 Scafetta (2023) Li (2019, 2020a, b, c, d)

GFDL-ESM4 3/1/1/3/3 2.6 1.6 Meehl et al. (2020)
Krasting et al. (2018); Horowitz et al.

(2018a, b, c); John et al. (2018)
GISS-E2-1-G 11/5/18/5/0 2.7 1.8 Meehl et al. (2020) NASA/GISS (2018a, b, c, d)

HadGEM3-GC31-LL 55/55/55/57/55 5.6 2.6 Meehl et al. (2020)
Ridley et al. (2019); Jones (2019a, b, c); Good

(2019)
IPSL-CM6A-LR 33/10/10/10/11 4.6 2.3 Meehl et al. (2020) Boucher et al. (2018a, b, c, d, 2019)

MIROC6 50/10/50/50/50 2.6 1.6 Meehl et al. (2020)
Tatebe and Watanabe (2018); Shiogama

(2019a, b, c); Shiogama et al. (2019)

MPI-ESM1-2-LR 38/30/30/30/0 3.0 1.8 Meehl et al. (2020)
Wieners et al. (2019); Müller et al.

(2019a, b, c, d)
MRI-ESM2-0 10/3/5/4/5 3.2 1.6 Meehl et al. (2020) Yukimoto et al. (2019a, b, c, d, e)

NorESM2-LM 3/1/3/3/3 2.5 1.5 Meehl et al. (2020) Seland et al. (2019a, b, c, d, e)

for every model, similar amalgamates of “surface temperature" (ts) and “surface air temperature" (tas) using

T = (1− f − s)Ts +(f + s)Tsa (1)

where T is the global-, annual-, and ensemble-mean temperature used in the below analysis, Ts is the monthly-mean, latitude-

longitude resolved surface temperature, Tsa is the monthly-mean surface-air temperature, f is the land fraction at every grid-95

point, s the monthly-mean sea ice fraction, and the overline marks global and annual averaging. For sea ice I use sea ice

concentration on the ocean grid (siconc), regridded to the atmosphere grid using nearest-neighbour interpolation. Only for

the GISS-E2-1-G model I use sea ice concentration on the atmosphere grid (siconca) because of unavailability of the siconc

variable.

Furthermore, to reduce the influence of interannual variations, I apply a 15-year boxcar filter to the hist-aer and hist-GHG100

ensemble means, but not to the hist-nat, historical, and HadCRUT5 datasets. This choice is based on the understanding that
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interannual variations in hist-aer and hist-GHG reflect random climate variability which I do not expect to correlate with

the climate variability in the “historical" ensemble or in HadCRUT5. Volcanic eruptions produce forced variations on the

annual timescale in the hist-nat and "historical" ensembles and in HadCRUT5 which I want to preserve. Hence the asymmetric

application of the filter.105
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Figure 1. (a) Simulated global- and annual-mean warming for 2000-2014 in the hist-GHG ensembles of the DAMIP models, relative to

the 1850-1899 mean, versus their ECSs (black) and TCRs (violet, all in K). The width of the horizontal lines corresponds to std(Ti)/
√
15,

where the Ti are the annual-mean temperatures for 2000-2014. Solid lines: best-estimate proportional fits. The models’ names are abbreviated

to three characters. AC1 = ACCESS-ESM1-5. AC2 = ACCESS-CM2. Also stated are the best-fit proportionality constants and correlation

coefficients. (b) Simulated global-mean warming between 1850-1899 and 2000-2014 in the “historical" ensembles versus the sum of these

warmings simulated in the respective hist-GHG, hist-aer, and hist-nat ensembles. The solid line marks the diagonal, dashed lines the 80 and

120% lines. The lengths of the bars in both directions correspond to the statistical uncertainties at 68% confidence. Models marked in violet

are excluded from the multi-model mean calculations because they do not satisfy the additivity constraints (eqs. 4, 5).

Figure 1 summarizes the behaviour of surface/surface-air temperature in the 16 models over the historical period. Panel (a)

indicates that as there is an approximate proportionality between the simulated warming attributable to GHGs (as taken from

the hist-GHG ensembles) and the models’ tabulated ECS and TCR values. Furthermore, panel (b) indicates that with some

notable exceptions, the models are mostly additive in the sense that the sum of the warmings simulated in the three DAMIP

experiments is mostly quite similar to the warming simulated in the models’ historical ensembles.110

2.2 Regression models

Using a linear regression approach, I derive rescaling factors α1, β1, γ1, α2, β2, and γ2 for the temperature responses to GHG,

aerosol, and natural forcings such that the resultant sums of the rescaled simulated temperature anomalies minimize the root-

mean-squared deviations ϵ1 and ϵ2 versus the ensemble-, global-, and annual-mean “historical" temperature anomaly Thist

and the HadCRUT5 temperature anomaly record Tobs, respectively, over the period 1850-2020 or 2014 (171 or 165 years),115
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respectively:

Tobs = α1ThGHG +β1Thaer + γ1Thnat + δ1 + ϵ1 and (2)

Thist = α2ThGHG +β2Thaer + γ2Thnat + δ2 + ϵ2. (3)

ThGHG, Thaer, and Thnat are all normalized relative to their 1850-1899 average. δ1 and δ2 are intercepts that account for

uncertainties (due to natural variability and other factors) in this normalization process, i.e. the other regression coefficients120

are insensitive to the normalization. ϵ1 and ϵ2 are the regression residual timeseries. This approach is similar to Gillett et al.

(2021).

For a model which is perfectly additive in the anthropogenic GHGs, anthropogenic aerosol, and natural forcings, in the

absence of climatological noise, and if the regression model was complete, the regression coefficients α2, β2, and γ2 would be

1. However, omitted here is the influence of ozone. Since 1900, the temperature changes due to ozone have been around −30%125

of that of the aerosols in the IPCC’s best estimate (figure 7.8 of Forster et al., 2021). Therefore, the terms β1Thaer and β2Thaer

are going to capture the contributions of both aerosol and ozone changes (i.e. the “near-term climate forcers”, NTCFs) to the

evolutions of Tobs and Thist. Because of the offsetting role of ozone, I thus expect β2 < 1 for the perfect model, whereas for

the GHG influence I expect α2 ≈ 1.

With this understanding, I introduce thresholds130

0.8≤ α2 ≤ 1.2 (4)

and

0.6≤ β2 ≤ 1.1 (5)

to identify and define models that satisfy additivity, and only use only those models satisfying both criteria in an “emergent

constraint" approach, to calculate best estimates and uncertainty ranges for the ECS, TCR, and aerosol-induced cooling (see135

below). This is the main difference w.r.t. Gillett et al. (2021) who use all models without considering their additivity prop-

erties. Essentially these two conditions remove models from multi-model emergent-constraint calculations if their regression

coefficients versus Thist deviate substantially from expectations. I will discuss the role of ozone separately below.

I note that there is a considerable joint uncertainty resulting from substantial anticorrelations between ThGHG and Thaer,

but much smaller correlations (and practically no joint uncertainty) between ThGHG and Tnat, and between Thaer and Tnat.140

This allows me to simplify the analysis and focus in the following only on the GHG and aerosol influences. To study their joint

uncertainty, I calculate, as a function of α and β and time, the regression error timeseries

robs(α,β) = Tobs −αTGHG −βThaer − γ1Thnat − δ1 (6)

I thus define an error function

Eobs(α,β)≡

√√√√r2obs(α,β)

ϵ21
, (7)145
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where the overbar denotes the 171 and 165-year means over 1850-2020 and 1850-2014, respectively.

I define that a regression fit differs from the optimal fit of equation 2 if Eobs >Emax, where Emax is a value of the error

function, to be determined below, where the fits associated with such an RMS residual differ significantly from the optimal fit.

Substituting Qobs(α,β) = r2obs(α,β), with ∆α= α−α1 and ∆β = β−β1, I express Qobs as a quadratic form expanded

around the minimum:150

Qobs(α,β) = ϵ21 +
1

2
(∆α,∆β)M

∆α

∆β

 (8)

where terms linear in (∆α,∆β) are 0 because the expansion is around the minimum of Qobs, and

M=

 ∂2

∂α2
∂2

∂α∂β

∂2

∂α∂β
∂2

∂β2

Qobs = 2

 T 2
hGHG ThGHGThaer

ThGHGThaer T 2
haer

 (9)

The Hesse or curvature matrix M is characterized by its two positive eigenvalues λ1 and λ2 and associated eigenvectors e1

and e2, with λ1 < λ2. The extreme case of Thaer ∼ ThGHG, i.e. M is degenerate, would imply λ1 = 0. This is not actually the155

case for any of the models considered here, but the two regressors are similar enough that λ1 is close to 0. The analysis implies

that the error function Eobs forms ellipses around the minimum with two orthogonal axes that point in the directions of the

eigenvectors with curvatures in these directions proportional to
√
λ1 and

√
λ2.

I interpret the eigenvectors e1 and e2 as the directions in (α,β) parameter space that correspond to optimal cancellation (for

e1) and optimal reinforcement (for e2) of the warming effects due to GHGs and NTCFs. For the case of optimal cancellation,160

GHG warming and NTCF-induced cooling are at all statistically distinguishable in the observed temperature record because of

a trend reversal in SO2 precursor emissions in the late 20th century (Szopa et al., 2021) causing anthropogenic aerosol-induced

cooling to be on a declining trend (in absolute terms) since then, in contrast to the monotonically increasing warming since

1850 associated with GHGs. This means that variations in the contributions of both processes in this direction of optimal

cancellation cause detectable variations in the temperature trend of the final 20 years of the regression fit (2001-2020 or165

1995-2014, respectively) that I will relate to the trend uncertainty of the observed temperature record. This analysis will

define bounds Emax on the cost function Eobs and consequently the regression parameters (α1,β1). The analysis implies that

regression parameters outside these bounds yield significantly and detectably inferior regression fits.

Variations in the direction of optimal reinforcement (e2) by contrast produce shifts of the regression fits away from the

optimum in either direction. By comparing these shifts to the uncertainty in the mean of the detrended 2001-2020 (or 1995-170

2014, respectively) global temperature record (∼0.03 K in HadCRUT5) I find bounds on the cost function that are substantially

more restrictive than the bounds associated with variations in the direction of optimal cancellation discussed above. I will

therefore only present an analysis to variations in the direction of cancellation e1 which yields more conservative, wider error

bounds.

Analogously, I define an error function Ehist(α,β) for the regressions to the “historical" ensemble means:175

Ehist(α,β)≡

√√√√r2hist(α,β)

ϵ22
. (10)
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where

rhist(α,β) = Thist −αTGHG −βThaer − γ2Thnat − δ2. (11)

The ellipses spanned by Ehist have the same orientations and aspect ratios of the two main axes as those spanned by Eobs.

3 Evaluation180

3.1 Example model calculations

As an example, figure 2 shows the result of the analysis for the HadGEM3-GC31-LL model. GHGs drive a warming of

around 2 K in this model over 1850-2020 (light green line), offset by aerosol-driven cooling of around −0.9 K by 2020 (dark

green). Natural influences explain the temporary features associated with volcanic eruptions and solar forcing (blue line).

Optimal regression parameters α2, β2, and γ2 for Thist are close to 1 (i.e. HadGEM3-GC31-LL is nearly “additive", violet185

line). However, the regression against Tobs requires substantial reductions in the parameters describing both the GHG and the

aerosol influences (α1 and β1), to the point that the aerosol cooling would need to be reduced by around 75%, and the GHG

influence by 30%, to match the observed record (orange line).

Figure A1 contains equivalent plots for the remaining 15 models.

3.1.1 When are two regression fits statistically indistinguishable?190

I note that the observational record exhibits a nearly linear warming trend towards the end of the record (figure 2). Furthermore

during much of the 20th century the aerosol-induced cooling is directly opposed to the GHG warming, but in the 1990s its trend

changes sign in the HadGEM3-GC31-LL hist-aer ensemble. This trend reversal is a major reason that the GHG and aerosol

influences are at all statistically distinguishable in the historical record. I thus define two regression fits to be significantly

different if their 20-year trends for 2001-2020 (or 1995-2014, for CESM2, E3SM-2-0, GISS-E2-1-G, and MPI-ESM1-2-LR)195

differ by more than the observational uncertainties at 95% confidence in these trend (κ= 6.7 and 6.3 mK a−1, respectively).

I evaluate the regression fits in regression parameter space (α,β) along the lines that correspond to optimal cancellation of

the warming and cooling impacts of GHGs and aerosols, respectively. This is the line spanned by the eigenvector corresponding

to the smaller eigenvalue λ1, e1, i.e.

(α,β) = (α1,β1)+ c · e1 (12)200

This line marks the direction of maximum joint uncertainty in the regression parameters.

I plot the error functions Eobs against the 2001-2020 (or 1995-2014) trends in the associated fits T (α,β) = αThGHG +

βThaer + γ1Thnat + δ1, evaluated along the line described by eq. 12 (figure 3). By evaluating Eobs at the two trend values

that differ from the trend in the optimal solution by κ, I find model-dependent values for Emax. For all but three of the

models Emax ≤ 1.13. These models (BCC-CSM2-MR, FGOALS-g3, NorESM2-LM) do not simulate the trend change in the205
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Figure 2. Ensemble-, global-, and annual-mean temperature anomalies relative to the 1850-1899 average for HadGEM3-GC31-LL. Black

symbols and dark green, light green, and blue lines: The DAMIP and “historical"/SSP245 ensemble means as indicated. The hist-GHG and

hist-aer temperature evolutions have been smoothed using a 15-year boxcar filter. Violet: Optimal regression fits to Thist following equation

3. Orange: Optimal regression fits to Tobs, the HadCRUT5 reconstruction, following equation 2. Red symbols: HadCRUT5 (Morice et al.,

2021). The regression coefficients α1, β1, γ1, δ1, α2, β2, γ2, and δ2 that are stated in orange and violet are as defined in equations 2 and 3.

aerosol-induced cooling characterizing the other models (figure A1). The other 12 models yielding smaller, regular values for

Emax all simulate a substantial change in the rate of cooling such that their hist-aer temperature timeseries become statistically

independent from their hist-GHG temperatures, and almost all exhibit warming trends during the final two decades of their

hist-aer ensembles (figures 2 and A1).

3.2 Joint uncertainty analysis of the GHG and aerosol influences for all models210

Figure 4 illustrates firstly that additivity does not extend to all models, i.e. the centres of many open ellipses are outside the

“additivity rectangles”. However, a subgroup of eight models does satisfy eqs. 4 and 5 (ACCESS-CM2, ACCESS-ESM1-5,

CESM2, E3SM-2-0, GISS-E2-1-G, HadGEM3-GC31-LL, MIROC6, MPI-ESM1-2-LR). I note that this criterion disqualifies

four models which also do not satisfy additivity in their simulated warming as expressed in figure 1(b), i.e. CanESM5, GFDL-

ESM4, MRI-ESM2-0, and NorESM2-LM.215

In all cases except for three models (BCC-CSM2-MR, FGOALS-g3, MPI-ESM1-2-LR) there are no substantial overlaps

between the regression uncertainty ellipses for the fits to Tobs and Thist. This means 13 of the models have systematic differ-
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Figure 3. Error function Eobs as a function of the 2001-2020 (for CESM2, E3SM-2-0, and GISS-E2-1-G: 1995-2014) temperature trends

in the regression fits to Tobs (eq. 2), for the DAMIP models. The trends are evaluated along the line in (α,β) parameter space described

by equation 12. Vertical solid line: Trend in the optimal fit (that minimizes Eobs). Vertical dashed lines: Trends in the sub-optimal fits that

differ from the optimal trend by the observational trend uncertainty κ. Horizontal line: Value of the error function corresponding to this trend

uncertainty. The number in the titles is the value of the error function at these points.
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Figure 4. Error functions Eobs (colours, eq. .7) and Ehist (contours, eq. 10) where these functions are smaller than max(Emax,1.1), for

the 16 DAMIP models. Rectangle: Window of additivity defined by eqs. 4 and 5. “Aer. cooling" is the global-, ensemble-, and annual-mean

cooling for 2000-2014 relative to 1850-1899 as simulated in the models’ hist-aer ensembles. “ECS" is as in table 1.
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ences between the simulated historical and the observed temperature evolutions large enough to show in this lack of overlap of

the regression parameters. This implies irreconcilable scaling factors α and β for the GHG or NTCF influences, or both.

Specifically regarding the GHG rescaling factor α (plotted on the horizontal axes in figure 4), for some large-ECS models220

including ACCESS-CM2, CanESM5, CESM2, HadGEM3-GC31-LL, and IPSL-CM6-LR, the analysis suggests that α1 < 1,

i.e. to better match the HadCRUT5 timeseries, the GHG influences in these models need to be scaled down (Gillett et al., 2021).

Lastly, for almost all models the analysis suggests that the NTCF rescaling factor β1 < 0.6, i.e. the filled ellipses are centred

below the rectangles of additivity in figure 4. Exceptions are the MIROC6, MPI-ESM1-2-LR, and MRI-ESM2-0 models

where the regression yields an NTCF influence consistent with no rescaling. Exaggeration of the NTCF influence is large225

and unambiguous for ACCESS-CM2, ACCESS-ESM1-5, CanESM5, E3SM-2-0, HadGEM3-GC31, and NorESM2-LM; these

models all simulate at least 0.66K of cooling in their hist-aer ensembles (Gillett et al., 2021).

3.3 Emergent constraints for the ECS and the aerosol cooling influence

3.3.1 The GHG influence

Figure 5 shows the result of the regression analysis (section 2.2) for all models. The ensemble includes three models (CanESM5,230

CESM2, HadGEM3-GC31-LL) that have ECSs exceeding the “very likely” range given by AR6 (2 to 5 K, Forster et al., 2021,

figure 5a). For these three models, the GHG correction factors α1 < 1 (i.e. reductions of the GHG influences would bring

their historical simulations into better agreement with the observations). At the other end of the spectrum, MIROC6, with an

ECS of 2.6 K, requires an increase in the GHG-induced warming by 23% to bring its historical evolution into agreement with

HadCRUT5. In general, the distribution (panel a) can be approximated by ECS ∼ α−1
1 . Equivalently, panel (b) shows the ECS235

·α1 versus α1. The thus “adjusted" ECSs (i.e., ECS ·α1) are now within the AR6 “likely" range (2.5 - 4 K) for all eight models

that satisfy additivity, and the multi-model spread of these models’ ECSs is smaller than the AR6 uncertainty range. I obtain

a multi-model-mean adjusted ECS of 3.5± 0.4 K at 68% confidence (figure 5b). Replacing in the above analysis the ECSs

with TCRs gives essentially the same result. Two models (CanESM5 and HadGEM3-GC31-LL) have TCRs outside the “very

likely" AR6 range (1.2 to 2.4 K). Multiplying the TCR with α1 yields “adjusted" TCRs that are now almost all within the likely240

range of AR6 (1.4 to 2.2 K) for models satisfying additivity. The multi-model mean adjusted TCR of 1.8± 0.3 K compares

very well to the AR6 estimate.

3.3.2 The aerosol influence

The second part of this analysis concerns the aerosol-induced cooling. There is an anticorrelation (with a correlation coefficient

of −0.49) between the cooling attributable to anthropogenic aerosol increases, as discerned from hist-aer, and the ECSs of245

the 16 models (figure 5e). This means that large-ECS models tend to compensate some of their GHG-induced warming by

simulating a relatively large cooling due to aerosols. In other words, the biases in both properties are coupled.

Focussing here only on the eight models that satisfy additivity, their NTCF rescaling factors β1 are in the range 0.1 to 1.25

with a mean (standard deviation) of 0.47 (0.39). In this group, the MPI-ESM1-2-LR and MIROC6 models are the only models
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Figure 5. (a) The models’ ECSs (K) versus α1 (equation 2). The lengths of the horizontal lines depict the regression uncertainties at 68%

confidence. Solid line: Regression fit assuming ECS·α1 =const. Dashed and dotted lines: Uncertainty ranges at 68 and 95% confidence. The

yellow and green regions are the likely (i.e. 66% confidence) and very likely (90%) ECS intervals assessed by AR6 (Forster et al., 2021).

(b) Same as (a) but for ECS·α1 versus α1. The solid, dashed and dotted lines are the mean and the 68 and 95% confidence intervals. (c) and

(d): Same as (a) and (b) but for the TCR. (e) The tabulated ECSs versus cooling simulated in the hist-aer ensembles for 2000-2014 relative

to 1850-1899. Solid line: Best linear fit. (f) The aerosol-induced cooling taken from hist-aer times β1 (K) versus the correction factors to

aerosol cooling β1 (equation 2). Blue solid and dashed lines denote the means and 68% confidence limits of both quantities. The black line

and the green box are the AR6 best estimate and the 5 to 95% uncertainty range for the temperature change due to NTCFs (figure 7.8 of

Forster et al., 2021). The numbers in black denote the means and standard deviations of β1 and of aerosol-induced cooling times β1, in K.

The models marked in violet are excluded from this averaging.
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that are consistent with no rescaling of their NTCF-induced cooling. Average adjusted aerosol-induced cooling between 1850-250

1899 and 2000-2014 in this group amount to 0.24±0.11 K, when their average unadjusted cooling is 0.67±0.31 K (both at 68%

confidence). For comparison, this places my analysis at the lower end of the AR6 estimate of 0.31 (0.15 to 0.57) K (at 5 to 95%

confidence) of cooling due to aerosols and ozone combined. (The AR6 range is inferred from the data accompanying figure 7.8

of Forster et al., 2021). If the models were perfect and the ozone influence was proportional to that of the aerosols, offsetting

around 30% of the aerosol-induced cooling, a value β1 ≈ 0.7 would be expected, but only MIROC6 and GISS-E2-1-G get close255

to this. The fact that five of the other models have rescaling factors β1 in the range 0.1 to 0.4 makes it implausible that ozone is

the explanation here. Four of these models (MPI-ESM1-2-LR, MIROC6, GISS-ES-1-G, ACCESS-ESM1-5) agree within their

68% uncertainty ranges with the AR6 best estimate (0.31 K). The other four (CESM2, E3SM-2-0, ACCESS-CM2, HadGEM3-

GC31-LL)require a smaller NTCF-induced cooling than that. Flynn et al. (2023) find that models that better reproduce the

observed temperature evolution all simulate relatively small aerosol-induced cooling, in agreement with this study, and Gillett260

et al. (2021) also find small rescaling factors for the aerosol influence for several of the same models used here.

4 Discussion and conclusions

Mismatches between the observed global-mean surface temperature and CMIP6 “historical" simulated temperature have been

documented before and attributed, in some cases, to a deficient simulation of aerosol-related cooling (Andrews et al., 2020;

Flynn and Mauritsen, 2020; Smith and Forster, 2021; Golaz et al., 2022; Flynn et al., 2023). Here I exploit these mismatches265

to derive scaling factors for the GHG-induced warming and the aerosol-related cooling on temperature that in a hypothetical

model would bring the simulated historical temperature into optimal agreement with the HadCRUT5 climatology. I then relate

these scaling factors to the warming attributable to GHGs, on the one hand, and on the other hand to the cooling attributable

to anthropogenic NTCFs. The GHG scaling factors very approximately follow an inverse relationship with the ECSs of the

models, such that the products of the ECSs and the scaling factors are in better agreement with the AR6 evaluation of the270

planetary ECS than the modelled ECSs themselves. Particularly for three large-ECS models with ECSs outside the AR6 “very

likely” range (Forster et al., 2021), this adjustment brings these ECSs into agreement with the AR6 estimate. Essentially the

same holds for the TCR.

These results are consistent with quantifications of the aerosol and GHG influences based on energy balance calculations

(e.g. Storelvmo et al., 2016; Smith and Forster, 2021; Smith et al., 2021) but arrived at using an independent approach. Smith275

and Forster (2021) use energy budget constraints to find that despite reductions in historical aerosol and GHG forcing from

CMIP5 to CMIP6, stronger climate feedbacks in CMIP6 models, which are reflected in the increased ECSs in CMIP6 models,

cause both stronger aerosol cooling and from 1990 increased GHG warming. This analysis generally confirms their results and

but shows that a tendency to overestimate aerosol-induced cooling pertains not just to the high-ECS models but to many of

the moderate-ECS models as well. Only for one model (MPI-ESM1-2-LR) I find a rescaling factor larger than 1 (Gillett et al.,280

2021). At 0.26 K the mean aerosol cooling simulated by MPI-ESM1-2-LR is the second-smallest in the ensemble. Storelvmo

et al. (2016) employ a purely observations-based approach to find that aerosols masked approximately 1/3 of the GHG-induced
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warming since the 1960s, leaving a TCR of 2±0.8K. Again, my results are consistent with but largely independent of their

results. Smith et al. (2021) use an energy balance approach constrained by CMIP6 input data to quantify the ECS and the TCR

at 3.1 and 1.8 K, respectively, in agreement with my results, and give a very wide uncertainty range of −1.8 to −0.5 Wm−2285

since 1750. Applying a conversion factor of 0.5 K W−1 m2 (Forster et al., 2021) yields 0.25 to 0.9 K of cooling due to aerosol.

Furthermore adjusting for some anthropogenic aerosol increase between 1750 and 1850-1899, and accounting for some offset

by ozone, my result is consistent but near the low end of this range.

Hodnebrog et al. (2024), in a recent study, attribute much of the observed recent increase in the Earth’s energy imbalance

to a reduction in the anthropogenic aerosol forcing. While the methodology used by these authors differs from my approach,290

this finding is likely inconsistent with the conclusion arrived at here that aerosols, in the adjusted multi-model mean, exert a

substantially smaller influence on climate than the ever-increasing GHGs. It also appears inconsistent with the plain results

of the hist-aer and hist-GHG simulations (figures 2 and A1), where the warming attributable to aerosols over 2001-2019 is

generally smaller than that simulated in the hist-GHG ensembles over the same period. This is even before this warming is

scaled down, as is laid out above. More research is required to reconcile these findings.295

I find an anticorrelation between the total simulated aerosol-induced cooling since 1850 and the ECSs of the models, sug-

gesting that both quantities are coupled and that there could be a compensation of errors between these two processes. The eight

models considered here, that satisfy additivity, span a considerable range in simulated aerosol-induced cooling for 1850-1899

to 2000-2014, namely 0.3 to 1.2 K, with a mean (standard deviation) of 0.67 K (0.31 K). Applying the correction factor β1

reduces the range to 0.04 to 0.36 K with a mean (standard deviation) of 0.24 (0.11) K. This is now interpreted to mean the300

cooling due aerosols between 1850-1899 and 2000-2014, offset by warming due to ozone in the same period.

There are several limitations to the analysis presented here: The first is that the hist-GHG experiment quantifies the responses

of the climate models to all GHGs in combination, whereas the ECSs and TCRs are expressions of the sensitivity of climate

only to CO2 increases. I have shown that there are near-perfect proportionalities and high degrees of correlation (0.80 and

0.87, respectively) between the warmings simulated in hist-GHG and the ECSs and TCRs in the 16 models used here (figure305

1), suggesting that the substantial model diversities that exist for these quantities are due to the same processes, i.e. climate

feedbacks e.g. due to cloud adjustments that are not sensitive to the detailed properties of the driving GHGs.

A further, more fundamental limitation is that the models do not respond perfectly additively to GHG and aerosol forcing.

This is expressed in deviations from 1 for the α2, β2, and γ2 parameters in equation 3 (figure 4). The non-additivity is due

to a variety of reasons, including forcings not included in the analysis (such as land use and ozone changes). I have tested310

the sensitivity of the results to including in the analysis the impact of warming due to ozone changes, by using the “hist-

totalO3” simulations that were produced under DAMIP, and by correspondingly expanding equations 2 and 3 by a term for

the temperature anomalies simulated under this experiment. Five models (CanESM5, GISS-E2-1-G, HadGEM3-GC31-LL,

MIROC6, and MPI-ESM1-2-LR) have completed this experiment but two of these (CanESM5, MPI-ESM1-2-LR) are “non-

additive" in the expanded regression model. Ozone changes are the most important anthropogenic radiative forcing agent315

after those considered here (GHGs and aerosols, Forster et al., 2021). Repeating the analysis based on just GISS-E2-1-G,

HadGEM3-GC31-LL, and MIROC6, but with a term added to the regression models for ozone-induced warming, I obtain
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quite similar values for the ECS (3.2±1 K), TCR (1.8± 0.4 K), and aerosol-induced cooling (−0.29±0.11 K. This suggests

that ozone forcing is neither the leading explanation for the non-additivity nor for the small aerosol-induced cooling found

here. More models completing the hist-totalO3 simulations would help.320

A further reason for non-additivity could be a substantial influence of random variations on the regression. I note that the

model with the joint smallest hist-aer ensemble size (GFDL-ESM4) exhibits too substantial a non-additivity to be included

in the multi-model averages (section 3.3), and the models with the best additivity (HadGEM3-GC31-LL, MIROC6, MPI-

ESM1-2-LR) have all contributed large ensembles. However there is not a consistent association of additivity with ensemble

sizes. For example, CanESM5 has large ensembles for all experiments but still exhibits substantial non-additivity. Quite a few325

models have ensemble sizes of 3 for their hist-aer or hist-GHG ensembles, but this group includes some models with good

and poor additivity. In some cases, the non-additivity can be traced to an extremely small eigenvalue λ1 of the covariance

matrix M: For HadGEM3-GC31-LL, as an example of an “additive" model, I find λ1 = 0.02. Examples of poor additivity

include FGOALS-g3 (λ1 =8·10−4), IPSL-CM6A-LR (λ1 =3·10−3), and NorESM2-LM (λ1 =6·10−3). However, the group

of additive models also includes MIROC6 (2·10−3). So near-degeneracy of M also does not completely explain why some330

models exhibit non-additivity. Other factors may come into play, including that some models simply respond non-linearly to

the applied forcings, or even that errors exist in the experimental setups. It is beyond the scope of this paper to fully diagnose

these occurrences of non-additivity. However, removing such models from the emergent-constraint calculations of section 3.3

substantially improves model consensus.

Several models indicating that large reductions in aerosol cooling would be beneficial for bringing the simulated historical335

temperature record into better agreement with observations, including ACCESS-ESM1-5, E3SM-2-0, HadGEM3-GC31-LL,

and MRI-ESM2-0, all have β2 > 0.6, i.e. these models behave relatively additively, and the inference that exaggerated historical

aerosol-induced cooling contributes substantially to errors in the simulations of global-mean temperature by these models is

quite well founded.

Bellouin et al. (2020) review the constraints posed by observed temperature on the effective radiative forcing of aerosols.340

Applying a conversion factor of 0.5 K W−1 m2 (Forster et al., 2021) I translate their effective radiative forcing estimate into

a cooling influence over the historical period. In their discussion, which considers both direct and indirect aerosol effects on

radiation, the best-estimate uncertainty interval of aerosol radiative forcing (−1.6 to −0.35 Wm−2, translated into approxi-

mately 0.18 to 0.8 K of aerosol-induced cooling) includes most models considered here for both their unadjusted and adjusted

aerosol-induced cooling, although the best-estimate multi-model mean cooling due to NTCFs inferred here of 0.24 K is near345

the low end of this range. Accounting for the influence of ozone (Forster et al., 2021), this translates into a best estimate of

0.38 K, which better compares to Bellouin et al. (2020)’s headline estimate. As noted above, my estimate for the cooling due

to NTCFs is skewing slightly smaller than the one in AR6 but with overlapping uncertainty ranges.

The results qualitatively confirm Smith and Forster (2021) who find that excessive cooling due to aerosols in 1960-1990

causes cold biases in this period in many CMIP6 “historical” simulations. My analysis leaves open the question whether the350

excessive response to aerosol forcing in most models is due to too much aerosol being produced in these models (i.e. a problem
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with the CMIP6 forcing data), or whether the internal model physics of aerosol-radiation and aerosol-cloud interactions is

flawed. The fact that this behaviour is common to most models suggests the former is a likely factor.

Figure 3 shows that the regression coefficients versus the HadCRUT5 temperature, α2 and β2, are subject to substantially

larger uncertainties than those versus the ensemble-mean simulated temperatures, α1 ad β1. This is a reflection of the larger355

noise associated with observed temperature compared to an ensemble mean surface temperature. Despite this larger uncertainty,

the analysis does indicate, for most models, differences between these two parameter pairs that are irreconcilable within the

statistical uncertainties. In a follow-on paper I will investigate this aspect further using a probabilistic approach.

In summary, I have used a reconstruction of global-mean merged surface / surface-air temperature and DAMIP and historical

simulations by 16 contemporary climate models to derive constraints for the GHG-induced warming and the aerosol-induced360

cooling, by far the leading influences driving global warming. Using an emergent constraint approach, I derive a “corrected"

ensemble-mean equilibrium climate sensitivity of about 3.5±0.4 K and a corrected TCR of 1.8± 0.3 K (both at 68% confi-

dence), in excellent agreement with the AR6 estimates but with reduced uncertainties (Forster et al., 2021). For eight mod-

els with relatively good additivity, I find that reductions in the NTCF-induced cooling, along with some reductions in the

GHG-induced warming for models with large ECSs, would bring their historical simulations into better agreement with the365

observational record. The results presented here highlight ongoing difficulties with correctly simulating climate feedbacks in

global models. Substantial, systematic, and nearly community-wide issues with representing historical global surface temper-

ature reduce confidence in quantitative projections of global warming by models affected by these problems. Interestingly, at

least some CMIP3 models were consistent with observations without any need for rescaling the aerosol and GHG signatures

(Stone et al., 2007b), including for the precursor of CESM2 (Stone et al., 2007a). This may suggest that at least for this model370

development occurring in the intervening time has introduced this problem.

The analysis is limited by the substantial anticorrelation between the GHG and the aerosol global-mean warming signatures.

I anticipate that as anthropogenic aerosol production continues, as projected, to decline in the future (Lee et al., 2021), the anti-

correlation between GHG-induced warming and aerosol-induced cooling will reduce, allowing for a more confident attribution

of their respective roles in driving global warming.375

Data availability. All model data used here have been downloaded from the Earth System Grid Federation, e.g. https://esgf-node.llnl.

gov/search/cmip6/. HadCRUT5.0.1.0 data were obtained from http://www.metoffice.gov.uk/hadobs/hadcrut5 on 1 July 2023 and are ©

British Crown Copyright, Met Office [2019], provided under an Open Government License, http://www.nationalarchives.gov.uk/doc/open-

government-licence/version/3/.

Appendix A: Regression fits for the remaining models380

For models not represented in figure 2, the regression fits are given below.
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Figure A1. Same as figure 2 but for the ACCESS-CM2, ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CESM2, CNRM-CM6-1, E3SM-

2-0, FGOALS-g3, GFDL-ESM4, GISS-E2-1-G, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0, and NorESM2-LM models.

18



A1

Author contributions. OM conceived of and conducted the analysis and wrote the paper.

Competing interests. The author declares no competing interests.

Acknowledgements. I acknowledge fruitful discussions with Dáithí Stone. I acknowledge the World Climate Research Programme, which,385

through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. I thank the climate modeling groups for producing and

making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple

funding agencies who support CMIP6 and ESGF. I acknowledge the UK MetOffice for providing the HadCRUT5 data. I acknowledge two

reviewers for their thoughtful, constructive comments that have helped improve the paper.

19



References390

Allen, M. and Tett, S.: Checking for model consistency in optimal fingerprinting, Climate Dynamics, 15, 419–434, https://doi.org/10.1007/

s00382005029, 1999.

Andreae, M., Jones, C., and Cox, P.: Strong present-day aerosol cooling implies a hot future, Nature, 435, 1187–1190, https://doi.org/10.

1038/nature03671, 2005.

Andrews, M. B., Ridley, J. K., Wood, R. A., Andrews, T., Blockley, E. W., Booth, B., Burke, E., Dittus, A. J., Florek, P., Gray, L. J., Haddad,395

S., Hardiman, S. C., Hermanson, L., Hodson, D., Hogan, E., Jones, G. S., Knight, J. R., Kuhlbrodt, T., Misios, S., Mizielinski, M. S.,

Ringer, M. A., Robson, J., and Sutton, R. T.: Historical simulations with HadGEM3-GC3.1 for CMIP6, Journal of Advances in Modeling

Earth Systems, 12, e2019MS001 995, https://doi.org/https://doi.org/10.1029/2019MS001995, e2019MS001995 10.1029/2019MS001995,

2020.

Arrhenius, S.: Nature’s heat usage, Nord. Tidsk., pp. 121–130, 1896.400

Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-

L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T.,

McCoy, D. T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourde-

val, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate Change, Reviews

of Geophysics, 58, e2019RG000 660, https://doi.org/https://doi.org/10.1029/2019RG000660, e2019RG000660 10.1029/2019RG000660,405

2020.

Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas,

N., Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.5195, 2018a.

Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., and Gastineau, G.: IPSL IPSL-CM6A-LR410

model output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.13825, 2018b.

Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., and Gastineau, G.: IPSL IPSL-CM6A-LR

model output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.13827, 2018c.

Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., and Gastineau, G.: IPSL IPSL-CM6A-LR

model output prepared for CMIP6 DAMIP hist-nat, https://doi.org/10.22033/ESGF/CMIP6.13831, 2018d.415

Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Dupont, E., and

Lurton, T.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP ssp245, https://doi.org/10.22033/ESGF/CMIP6.5264,

2019.

Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.7627, 2019a.

Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.7604, 2019b.420

Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 DAMIP hist-nat, https://doi.org/10.22033/ESGF/CMIP6.7609, 2019c.

Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.7605, 2020.

Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah, C., Marsland, S., O’Farrell, S., Rashid, H., Srbinovsky,

J., Sullivan, A., Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M., Bodman, R., Dias, F. B., Domingues, C. M.,

Hannah, N., Heerdegen, A., Savita, A., Wales, S., Allen, C., Druken, K., Evans, B., Richards, C., Ridzwan, S. M., Roberts, D.,425

20

https://doi.org/10.1007/s00382005029
https://doi.org/10.1007/s00382005029
https://doi.org/10.1007/s00382005029
https://doi.org/10.1038/nature03671
https://doi.org/10.1038/nature03671
https://doi.org/10.1038/nature03671
https://doi.org/https://doi.org/10.1029/2019MS001995
https://doi.org/https://doi.org/10.1029/2019RG000660
https://doi.org/10.22033/ESGF/CMIP6.5195
https://doi.org/10.22033/ESGF/CMIP6.13825
https://doi.org/10.22033/ESGF/CMIP6.13827
https://doi.org/10.22033/ESGF/CMIP6.13831
https://doi.org/10.22033/ESGF/CMIP6.5264
https://doi.org/10.22033/ESGF/CMIP6.7627
https://doi.org/10.22033/ESGF/CMIP6.7604
https://doi.org/10.22033/ESGF/CMIP6.7609
https://doi.org/10.22033/ESGF/CMIP6.7605


Smillie, J., Snow, K., Ward, M., and Yang, R.: CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.4271, 2019a.

Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah, C., Marsland, S., O’Farrell, S., Rashid, H., Srbinovsky,

J., Sullivan, A., Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M., Bodman, R., Dias, F. B., Domingues, C. M.,

Hannah, N., Heerdegen, A., Savita, A., Wales, S., Allen, C., Druken, K., Evans, B., Richards, C., Ridzwan, S. M., Roberts, D., Smil-430

lie, J., Snow, K., Ward, M., and Yang, R.: CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP ssp245,

https://doi.org/10.22033/ESGF/CMIP6.4321, 2019b.

Dix, M., Mackallah, C., Bi, D., Bodman, R., Marsland, S., Rashid, H., Woodhouse, M., and Druken, K.: CSIRO-ARCCSS ACCESS-CM2

model output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.14365, 2020a.

Dix, M., Mackallah, C., Bi, D., Bodman, R., Marsland, S., Rashid, H., Woodhouse, M., and Druken, K.: CSIRO-ARCCSS ACCESS-CM2435

model output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.14369, 2020b.

Dix, M., Mackallah, C., Bi, D., Bodman, R., Marsland, S., Rashid, H., Woodhouse, M., and Druken, K.: CSIRO-ARCCSS ACCESS-CM2

model output prepared for CMIP6 DAMIP hist-nat, https://doi.org/10.22033/ESGF/CMIP6.14377, 2020c.

E3SM: The DOE E3SM model version 2: Overview of the physical model and initial model evaluation, https://climatemodeling.science.

energy.gov/news/doe-e3sm-model-version-2-overview-physical-model-and-initial-model-evaluation, 2022a.440

E3SM: E3SM-Project E3SM2.0 model output prepared for CMIP6 CMIP historical, http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.

CMIP.E3SM-Project.E3SM-2-0.historical, 2022b.

E3SM: E3SM-Project E3SM2.0 model output prepared for CMIP6 DAMIP hist-GHG, http://cera-www.dkrz.de/WDCC/meta/CMIP6/

CMIP6.DAMIP.E3SM-Project.E3SM-2-0.hist-GHG, 2022c.

E3SM: E3SM-Project E3SM2.0 model output prepared for CMIP6 DAMIP hist-aer, http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.445

DAMIP.E3SM-Project.E3SM-2-0.hist-aer, 2022d.

E3SM: E3SM-Project E3SM2.0 model output prepared for CMIP6 DAMIP hist-nat, http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.

DAMIP.E3SM-Project.E3SM-2-0.hist-nat, 2022e.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model

Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937–1958,450

https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Flynn, C. M. and Mauritsen, T.: On the climate sensitivity and historical warming evolution in recent coupled model ensembles, Atmospheric

Chemistry and Physics, 20, 7829–7842, https://doi.org/10.5194/acp-20-7829-2020, 2020.

Flynn, C. M., Huusko, L., Modak, A., and Mauritsen, T.: Strong aerosol cooling alone does not explain cold-biased mid-century temperatures

in CMIP6 models, Atmospheric Chemistry and Physics, 23, 15 121–15 133, https://doi.org/10.5194/acp-23-15121-2023, 2023.455

Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild, M.,

and Zhang, H.: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity, in: Climate Change 2021: The Physical Science

Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M.,

Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., p. 923–1054, Cambridge University460

Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.009, 2021.

Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin,

K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest,

21

https://doi.org/10.22033/ESGF/CMIP6.4271
https://doi.org/10.22033/ESGF/CMIP6.4321
https://doi.org/10.22033/ESGF/CMIP6.14365
https://doi.org/10.22033/ESGF/CMIP6.14369
https://doi.org/10.22033/ESGF/CMIP6.14377
https://climatemodeling.science.energy.gov/news/doe-e3sm-model-version-2-overview-physical-model-and-initial-model-evaluation
https://climatemodeling.science.energy.gov/news/doe-e3sm-model-version-2-overview-physical-model-and-initial-model-evaluation
https://climatemodeling.science.energy.gov/news/doe-e3sm-model-version-2-overview-physical-model-and-initial-model-evaluation
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.CMIP.E3SM-Project.E3SM-2-0.historical
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.CMIP.E3SM-Project.E3SM-2-0.historical
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.CMIP.E3SM-Project.E3SM-2-0.historical
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.DAMIP.E3SM-Project.E3SM-2-0.hist-GHG
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.DAMIP.E3SM-Project.E3SM-2-0.hist-GHG
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.DAMIP.E3SM-Project.E3SM-2-0.hist-GHG
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.DAMIP.E3SM-Project.E3SM-2-0.hist-aer
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.DAMIP.E3SM-Project.E3SM-2-0.hist-aer
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.DAMIP.E3SM-Project.E3SM-2-0.hist-aer
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.DAMIP.E3SM-Project.E3SM-2-0.hist-nat
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.DAMIP.E3SM-Project.E3SM-2-0.hist-nat
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.DAMIP.E3SM-Project.E3SM-2-0.hist-nat
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/acp-20-7829-2020
https://doi.org/10.5194/acp-23-15121-2023
https://doi.org/10.1017/9781009157896.009


E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized

emissions trajectories through the end of the century, Geoscientific Model Development, 12, 1443–1475, https://doi.org/10.5194/gmd-12-465

1443-2019, 2019.

Gillett, N., Kirchmeier-Young, M., Ribes, A., Shiogama, H., Hegerl, G. C., Knutti, R., Gastineau, G., John, J. G., Li, L., Nazarenko, L.,

Rosenbloom, N., Seland, O., Wu, T., Yukimoto, S., and Ziehn, T.: Constraining human contributions to observed warming since the

pre-industrial period, Nature Climare Change, 11, 207–212, https://doi.org/10.1038/s41558-020-00965-9, 2021.

Gillett, N. P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R., Matthes, K., Santer, B. D., Stone, D., and Tebaldi, C.: The Detection and470

Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6, Geoscientific Model Development, 9, 3685–3697,

https://doi.org/10.5194/gmd-9-3685-2016, 2016.

Golaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., Bradley, A. M., Tang, Q., Maltrud, M. E., Forsyth, R. M.,

Zhang, C., Zhou, T., Zhang, K., Zender, C. S., Wu, M., Wang, H., Turner, A. K., Singh, B., Richter, J. H., Qin, Y., Petersen, M. R.,

Mametjanov, A., Ma, P.-L., Larson, V. E., Krishna, J., Keen, N. D., Jeffery, N., Hunke, E. C., Hannah, W. M., Guba, O., Griffin, B. M.,475

Feng, Y., Engwirda, D., Di Vittorio, A. V., Dang, C., Conlon, L. M., Chen, C.-C.-J., Brunke, M. A., Bisht, G., Benedict, J. J., Asay-

Davis, X. S., Zhang, Y., Zhang, M., Zeng, X., Xie, S., Wolfram, P. J., Vo, T., Veneziani, M., Tesfa, T. K., Sreepathi, S., Salinger, A. G.,

Reeves Eyre, J. E. J., Prather, M. J., Mahajan, S., Li, Q., Jones, P. W., Jacob, R. L., Huebler, G. W., Huang, X., Hillman, B. R., Harrop, B. E.,

Foucar, J. G., Fang, Y., Comeau, D. S., Caldwell, P. M., Bartoletti, T., Balaguru, K., Taylor, M. A., McCoy, R. B., Leung, L. R., and Bader,

D. C.: The DOE E3SM model Vversion 2: Overview of the physical model and initial model evaluation, Journal of Advances in Modeling480

Earth Systems, 14, e2022MS003 156, https://doi.org/https://doi.org/10.1029/2022MS003156, e2022MS003156 2022MS003156, 2022.

Good, P.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 ScenarioMIP ssp245,

https://doi.org/10.22033/ESGF/CMIP6.10851, 2019.

Hasselmann, K.: Optimal fingerprints for the detection of time-dependent climate change, Journal of Climate, pp. 1957–1971, 1993.

Hegerl, G., Hasselmann, K., Cubasch, U., Mitchell, J. F. B., Roeckner, E., Voss, R., and Waszkewitz, J.: Multi-fingerprint detection and485

attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change, Climate Dynamics, 13, 613–634,

https://doi.org/10.1007/s003820050186, 1997.

Hodnebrog, , Myhre, G., Jouan, C., Andrews, T., Forster, P. M., Jia, H., Quaas, J., Loeb, N. G., Olivié, D. J. L., Schulz, M., and Paynter,

D.: Recent reductions in aerosol emissions have increased Earth’s energy imbalance, Communinctions Earth and Environment, 5, https:

//doi.org/10.1038/s43247-024-01324-8, 2024.490

Horowitz, L. W., John, J. G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Zadeh, N. T., Wilson, C.,

Dunne, J. P., Ploshay, J., Winton, M., and Zeng, Y.: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 DAMIP hist-GHG,

https://doi.org/10.22033/ESGF/CMIP6.8570, 2018a.

Horowitz, L. W., John, J. G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Zadeh, N. T., Wilson, C.,

Dunne, J. P., Ploshay, J., Winton, M., and Zeng, Y.: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 DAMIP hist-aer,495

https://doi.org/10.22033/ESGF/CMIP6.8571, 2018b.

Horowitz, L. W., John, J. G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Zadeh, N. T., Wilson, C.,

Dunne, J. P., Ploshay, J., Winton, M., and Zeng, Y.: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 DAMIP hist-nat,

https://doi.org/10.22033/ESGF/CMIP6.8575, 2018c.

John, J. G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Wilson, C., Zadeh, N. T., Dunne, J. P., Dussin, R.,500

Horowitz, L. W., Krasting, J. P., Lin, P., Malyshev, S., Naik, V., Ploshay, J., Shevliakova, E., Silvers, L., Stock, C., Winton, M., and Zeng,

22

https://doi.org/10.5194/gmd-12-1443-2019
https://doi.org/10.5194/gmd-12-1443-2019
https://doi.org/10.5194/gmd-12-1443-2019
https://doi.org/10.1038/s41558-020-00965-9
https://doi.org/10.5194/gmd-9-3685-2016
https://doi.org/https://doi.org/10.1029/2022MS003156
https://doi.org/10.22033/ESGF/CMIP6.10851
https://doi.org/10.1007/s003820050186
https://doi.org/10.1038/s43247-024-01324-8
https://doi.org/10.1038/s43247-024-01324-8
https://doi.org/10.1038/s43247-024-01324-8
https://doi.org/10.22033/ESGF/CMIP6.8570
https://doi.org/10.22033/ESGF/CMIP6.8571
https://doi.org/10.22033/ESGF/CMIP6.8575


Y.: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP ssp245, https://doi.org/10.22033/ESGF/CMIP6.8686,

2018.

Jones, G.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.6051,

2019a.505

Jones, G.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.6052,

2019b.

Jones, G.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 DAMIP hist-nat, https://doi.org/10.22033/ESGF/CMIP6.6059,

2019c.

Knutti, R., Rugenstein, M., and Hegerl, G.: Beyond equilibrium climate sensitivity, Nature Geosci., 10, 727–736, https://doi.org/10.1038/510

ngeo3017, 2017.

Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis,

C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A., Gauthier, P. P., Ginoux, P., Griffies, S. M., Hallberg, R.,

Harrison, M., Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J.,

Silvers, L., Wyman, B., Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held, I. M., Horowitz, L. W., Lin, P., Milly, P.,515

Shevliakova, E., Stock, C., Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4 model output prepared for

CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.8597, 2018.

Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J., Engelbrecht, F., Fischer, E., Fyfe, J., Jones, C., Maycock, A., Mutemi,

J., Ndiaye, O., Panickal, S., and Zhou, T.: Future Global Climate: Scenario-Based Projections and Near- Term Information, in: Cli-

mate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergov-520

ernmental Panel on Climate Change, edited by Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud,

N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O.,

Yu, R., and Zhou, B., chap. 4, p. 553–672, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,

https://doi.org/doi:10.1017/9781009157896.006, 2021.

Li, L.: CAS FGOALS-g3 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.3356, 2019.525

Li, L.: CAS FGOALS-g3 model output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.3321, 2020a.

Li, L.: CAS FGOALS-g3 model output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.3323, 2020b.

Li, L.: CAS FGOALS-g3 model output prepared for CMIP6 DAMIP hist-nat, https://doi.org/10.22033/ESGF/CMIP6.3330, 2020c.

Li, L.: CAS FGOALS-g3 model output prepared for CMIP6 ScenarioMIP ssp245, 2020d.

Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for interpreting530

equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models, Science Advances, 6, eaba1981,

https://doi.org/10.1126/sciadv.aba1981, 2020.

Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E., Dunn, R. J. H., Osborn, T. J., Jones, P. D., and Simpson,

I. R.: An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set, Journal of Geophysical Research:

Atmospheres, 126, e2019JD032 361, https://doi.org/https://doi.org/10.1029/2019JD032361, e2019JD032361 2019JD032361, 2021.535

Müller, W., Ilyina, T., Li, H., Timmreck, C., Gayler, V., Wieners, K.-H., Botzet, M., Brovkin, V., Giorgetta, M., Jungclaus, J., Reick, C.,

Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S.,

Behrens, J., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G.,

Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R.,

23

https://doi.org/10.22033/ESGF/CMIP6.8686
https://doi.org/10.22033/ESGF/CMIP6.6051
https://doi.org/10.22033/ESGF/CMIP6.6052
https://doi.org/10.22033/ESGF/CMIP6.6059
https://doi.org/10.1038/ngeo3017
https://doi.org/10.1038/ngeo3017
https://doi.org/10.1038/ngeo3017
https://doi.org/10.22033/ESGF/CMIP6.8597
https://doi.org/doi:10.1017/9781009157896.006
https://doi.org/10.22033/ESGF/CMIP6.3356
https://doi.org/10.22033/ESGF/CMIP6.3321
https://doi.org/10.22033/ESGF/CMIP6.3323
https://doi.org/10.22033/ESGF/CMIP6.3330
https://doi.org/10.1126/sciadv.aba1981
https://doi.org/https://doi.org/10.1029/2019JD032361


Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M540

MPI-ESM1.2-LR model output prepared for CMIP6 DAMIP hist-sol, https://doi.org/10.22033/ESGF/CMIP6.15030, 2019a.

Müller, W., Ilyina, T., Li, H., Timmreck, C., Gayler, V., Wieners, K.-H., Botzet, M., Brovkin, V., Giorgetta, M., Jungclaus, J., Reick, C.,

Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S.,

Behrens, J., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G.,

Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R.,545

Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M

MPI-ESM1.2-LR model output prepared for CMIP6 DAMIP hist-volc, https://doi.org/10.22033/ESGF/CMIP6.15033, 2019b.

Müller, W., Ilyina, T., Li, H., Timmreck, C., Gayler, V., Wieners, K.-H., Botzet, M., Brovkin, V., Giorgetta, M., Jungclaus, J., Reick, C.,

Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S.,

Behrens, J., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G.,550

Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R.,

Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M

MPI-ESM1.2-LR model output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.15024, 2019c.

Müller, W., Ilyina, T., Li, H., Timmreck, C., Gayler, V., Wieners, K.-H., Botzet, M., Brovkin, V., Giorgetta, M., Jungclaus, J., Reick, C.,

Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S.,555

Behrens, J., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G.,

Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R.,

Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M

MPI-ESM1.2-LR model output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.15022, 2019d.

NASA/GISS: NASA-GISS GISS-E2.1G model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.7127,560

2018a.

NASA/GISS: NASA-GISS GISS-E2.1G model output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.7079,

2018b.

NASA/GISS: NASA-GISS GISS-E2.1G model output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.7081,

2018c.565

NASA/GISS: NASA-GISS GISS-E2.1G model output prepared for CMIP6 DAMIP hist-nat, 2018d.

Ridley, J., Menary, M., Kuhlbrodt, T., Andrews, M., and Andrews, T.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP

historical, https://doi.org/10.22033/ESGF/CMIP6.6109, 2019.

Scafetta, N.: CMIP6 GCM Validation Based on ECS and TCR Ranking for 21st Century Temperature Projections and Risk Assessment,

Atmosphere, 14, https://doi.org/10.3390/atmos14020345, 2023.570

Schurer, A., Hegerl, G., Ribes, A., Polson, D., Morice, C., and Tett, S.: Estimating the Transient Climate Response from Observed Warming,

Journal of Climate, 31, 8645–8663, https://doi.org/10.1175/JCLI-D-17-0717.1, 2018.

Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,

A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,

O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC575

NorESM2-LM model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.8036, 2019a.

24

https://doi.org/10.22033/ESGF/CMIP6.15030
https://doi.org/10.22033/ESGF/CMIP6.15033
https://doi.org/10.22033/ESGF/CMIP6.15024
https://doi.org/10.22033/ESGF/CMIP6.15022
https://doi.org/10.22033/ESGF/CMIP6.7127
https://doi.org/10.22033/ESGF/CMIP6.7079
https://doi.org/10.22033/ESGF/CMIP6.7081
https://doi.org/10.22033/ESGF/CMIP6.6109
https://doi.org/10.3390/atmos14020345
https://doi.org/10.1175/JCLI-D-17-0717.1
https://doi.org/10.22033/ESGF/CMIP6.8036


Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,

A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,

O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC

NorESM2-LM model output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.7966, 2019b.580

Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,

A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,

O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC

NorESM2-LM model output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.7969, 2019c.

Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,585

A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,

O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC

NorESM2-LM model output prepared for CMIP6 DAMIP hist-nat, https://doi.org/10.22033/ESGF/CMIP6.7979, 2019d.

Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,

A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,590

O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC

NorESM2-LM model output prepared for CMIP6 ScenarioMIP ssp245, https://doi.org/10.22033/ESGF/CMIP6.8253, 2019e.

Shiogama, H.: MIROC MIROC6 model output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.5578, 2019a.

Shiogama, H.: MIROC MIROC6 model output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.5579, 2019b.

Shiogama, H.: MIROC MIROC6 model output prepared for CMIP6 DAMIP hist-nat, https://doi.org/10.22033/ESGF/CMIP6.5583, 2019c.595

Shiogama, H., Abe, M., and Tatebe, H.: MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP ssp245,

https://doi.org/10.22033/ESGF/CMIP6.5746, 2019.

Smith, C. J. and Forster, P. M.: Suppressed late-20th century warming in CMIP6 models explained by forcing and feedbacks, Geophysical

Research Letters, 48, e2021GL094 948, https://doi.org/https://doi.org/10.1029/2021GL094948, e2021GL094948 2021GL094948, 2021.

Smith, C. J., Harris, G. R., Palmer, M. D., Bellouin, N., Collins, W., Myhre, G., Schulz, M., Golaz, J.-C., Ringer, M., Storelvmo, T.,600

and Forster, P. M.: Energy Budget Constraints on the Time History of Aerosol Forcing and Climate Sensitivity, Journal of Geophysical

Research: Atmospheres, 126, e2020JD033 622, https://doi.org/https://doi.org/10.1029/2020JD033622, e2020JD033622 2020JD033622,

2021.

Stone, D. A., Allen, M. R., Selten, F., Kliphuis, M., and Stott, P. A.: The detection and attribution of climate change Using an ensemble of

opportunity, Journal of Climate, 20, 504–516, https://doi.org/https://doi.org/10.1175/JCLI3966.1, 2007a.605

Stone, D. A., Allen, M. R., and Stott, P. A.: A multimodel update on the detection and attribution of global surface warming, Journal of

Climate, 20, 517–530, https://doi.org/https://doi.org/10.1175/JCLI3964.1, 2007b.

Storelvmo, T., Leirvik, T., Lohmann, U., Phillips, P., and Wild, M.: Disentangling greenhouse warming and aerosol cooling to reveal Earth’s

climate sensitivity, Nature Geoscience, 9, 286–289, https://doi.org/10.1038/ngeo2670, 2016.

Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,610

Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma

CanESM5 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.3610, 2019a.

25

https://doi.org/10.22033/ESGF/CMIP6.7966
https://doi.org/10.22033/ESGF/CMIP6.7969
https://doi.org/10.22033/ESGF/CMIP6.7979
https://doi.org/10.22033/ESGF/CMIP6.8253
https://doi.org/10.22033/ESGF/CMIP6.5578
https://doi.org/10.22033/ESGF/CMIP6.5579
https://doi.org/10.22033/ESGF/CMIP6.5583
https://doi.org/10.22033/ESGF/CMIP6.5746
https://doi.org/https://doi.org/10.1029/2021GL094948
https://doi.org/https://doi.org/10.1029/2020JD033622
https://doi.org/https://doi.org/10.1175/JCLI3966.1
https://doi.org/https://doi.org/10.1175/JCLI3964.1
https://doi.org/10.1038/ngeo2670
https://doi.org/10.22033/ESGF/CMIP6.3610


Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,

Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma

CanESM5 model output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.3596, 2019b.615

Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,

Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma

CanESM5 model output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.3597, 2019c.

Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,

Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma620

CanESM5 model output prepared for CMIP6 DAMIP hist-nat, https://doi.org/10.22033/ESGF/CMIP6.3601, 2019d.

Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,

Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma

CanESM5 model output prepared for CMIP6 ScenarioMIP ssp245, https://doi.org/10.22033/ESGF/CMIP6.3685, 2019e.

Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W., Fuzzi, S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., Liao, H.,625

Unger, N., and Zanis, P.: Short-Lived Climate Forcers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte, V., Zhai, P.,

Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews,

J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., p. 817–922, Cambridge University Press, Cambridge, United Kingdom

and New York, NY, USA, https://doi.org/10.1017/9781009157896.008, 2021.630

Tatebe, H. and Watanabe, M.: MIROC MIROC6 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.5603, 2018.

Voldoire, A.: CMIP6 simulations of the CNRM-CERFACS based on CNRM-CM6-1 model for CMIP experiment historical,

https://doi.org/10.22033/ESGF/CMIP6.4066, 2018.

Voldoire, A.: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 DAMIP hist-GHG,635

https://doi.org/10.22033/ESGF/CMIP6.4043, 2019a.

Voldoire, A.: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 DAMIP hist-aer,

https://doi.org/10.22033/ESGF/CMIP6.4044, 2019b.

Voldoire, A.: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 DAMIP hist-nat,

https://doi.org/10.22033/ESGF/CMIP6.4048, 2019c.640

Voldoire, A.: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 ScenarioMIP ssp245,

https://doi.org/10.22033/ESGF/CMIP6.4189, 2019d.

Watson-Parris, D. and Smith, C.: Large uncertainty in future warming due to aerosol forcing, Nature Climate Change, 12, 1111–1113,

https://doi.org/10.1038/s41558-022-01516-0, 2022.

Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V.,645

Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler,

S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,

Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S.,

Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output

prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.6595, 2019.650

26

https://doi.org/10.22033/ESGF/CMIP6.3596
https://doi.org/10.22033/ESGF/CMIP6.3597
https://doi.org/10.22033/ESGF/CMIP6.3601
https://doi.org/10.22033/ESGF/CMIP6.3685
https://doi.org/10.1017/9781009157896.008
https://doi.org/10.22033/ESGF/CMIP6.5603
https://doi.org/10.22033/ESGF/CMIP6.4066
https://doi.org/10.22033/ESGF/CMIP6.4043
https://doi.org/10.22033/ESGF/CMIP6.4044
https://doi.org/10.22033/ESGF/CMIP6.4048
https://doi.org/10.22033/ESGF/CMIP6.4189
https://doi.org/10.1038/s41558-022-01516-0
https://doi.org/10.22033/ESGF/CMIP6.6595


Wu, T., Chu, M., Dong, M., Fang, Y., Jie, W., Li, J., Li, W., Liu, Q., Shi, X., Xin, X., Yan, J., Zhang, F., Zhang, J., Zhang, L., and Zhang, Y.:

BCC BCC-CSM2MR model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.2948, 2018.

Wu, T., Chu, M., Dong, M., Fang, Y., Jie, W., Li, J., Li, W., Liu, Q., Shi, X., Xin, X., Yan, J., Zhang, F., Zhang, J., Zhang, L., and Zhang, Y.:

BCC BCC-CSM2MR model output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.2924, 2019a.

Wu, T., Chu, M., Dong, M., Fang, Y., Jie, W., Li, J., Li, W., Liu, Q., Shi, X., Xin, X., Yan, J., Zhang, F., Zhang, J., Zhang, L., and Zhang, Y.:655

BCC BCC-CSM2MR model output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.2925, 2019b.

Wu, T., Chu, M., Dong, M., Fang, Y., Jie, W., Li, J., Li, W., Liu, Q., Shi, X., Xin, X., Yan, J., Zhang, F., Zhang, J., Zhang, L., and Zhang, Y.:

BCC BCC-CSM2MR model output prepared for CMIP6 DAMIP hist-nat, https://doi.org/10.22033/ESGF/CMIP6.2929, 2019c.

Xin, X., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., Liu, Q., Yan, J., Ma, Q., and Wei, M.: BCC BCC-CSM2MR model output prepared for

CMIP6 ScenarioMIP ssp245, https://doi.org/10.22033/ESGF/CMIP6.3030, 2019.660

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura,

H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.6842, 2019a.

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura,

H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 DAMIP hist-GHG,665

https://doi.org/10.22033/ESGF/CMIP6.6820, 2019b.

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura,

H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 DAMIP hist-aer,

https://doi.org/10.22033/ESGF/CMIP6.6821, 2019c.

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura,670

H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 DAMIP hist-nat,

https://doi.org/10.22033/ESGF/CMIP6.6825, 2019d.

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H.,

Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP ssp245,

https://doi.org/10.22033/ESGF/CMIP6.6910, 2019e.675

Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J., Stevens, L., Vohralik, P.,

Mackallah, C., Sullivan, A., O’Farrell, S., and Druken, K.: CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.4272, 2019a.

Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J., Stevens, L., Vohralik, P.,

Mackallah, C., Sullivan, A., O’Farrell, S., and Druken, K.: CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 ScenarioMIP680

ssp245, https://doi.org/10.22033/ESGF/CMIP6.4322, 2019b.

Ziehn, T., Dix, M., Mackallah, C., Chamberlain, M., Lenton, A., Law, R., Druken, K., and Ridzwan, S. M.: CSIRO ACCESS-ESM1.5 model

output prepared for CMIP6 DAMIP hist-GHG, https://doi.org/10.22033/ESGF/CMIP6.14366, 2020a.

Ziehn, T., Dix, M., Mackallah, C., Chamberlain, M., Lenton, A., Law, R., Druken, K., and Ridzwan, S. M.: CSIRO ACCESS-ESM1.5 model

output prepared for CMIP6 DAMIP hist-aer, https://doi.org/10.22033/ESGF/CMIP6.14370, 2020b.685

Ziehn, T., Dix, M., Mackallah, C., Chamberlain, M., Lenton, A., Law, R., Druken, K., and Ridzwan, S. M.: CSIRO ACCESS-ESM1.5 model

output prepared for CMIP6 DAMIP hist-nat, https://doi.org/10.22033/ESGF/CMIP6.14378, 2020c.

27

https://doi.org/10.22033/ESGF/CMIP6.2948
https://doi.org/10.22033/ESGF/CMIP6.2924
https://doi.org/10.22033/ESGF/CMIP6.2925
https://doi.org/10.22033/ESGF/CMIP6.2929
https://doi.org/10.22033/ESGF/CMIP6.3030
https://doi.org/10.22033/ESGF/CMIP6.6842
https://doi.org/10.22033/ESGF/CMIP6.6820
https://doi.org/10.22033/ESGF/CMIP6.6821
https://doi.org/10.22033/ESGF/CMIP6.6825
https://doi.org/10.22033/ESGF/CMIP6.6910
https://doi.org/10.22033/ESGF/CMIP6.4272
https://doi.org/10.22033/ESGF/CMIP6.4322
https://doi.org/10.22033/ESGF/CMIP6.14366
https://doi.org/10.22033/ESGF/CMIP6.14370
https://doi.org/10.22033/ESGF/CMIP6.14378

