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Abstract. Satellite-derived agricultural drought indices can
provide a complementary perspective of terrestrial vegetation
trends. In addition, their integration for drought assessments
under future climates is beneficial for providing more com-
prehensive assessments. However, satellite-derived drought5

indices are only available for the Earth observation era. In
this study, we aim to improve the agricultural drought assess-
ments under future climate change by applying deep learn-
ing (DL) to predict satellite-derived vegetation indices from
a regional climate simulation. The simulation is produced by10

the Terrestrial Systems Modeling Platform (TSMP) and per-
formed in a free evolution mode over Europe. TSMP simu-
lations incorporate variables from underground to the top of
the atmosphere (ground-to-atmosphere; G2A) and are widely
used for research studies related to water cycle and climate15

change. We leverage these simulations for long-term fore-
casting and DL to map the forecast variables into normalized
difference vegetation index (NDVI) and brightness tempera-
ture (BT) images that are not part of the simulation model.
These predicted images are then used to derive different20

vegetation and agricultural drought indices, namely NDVI
anomaly, BT anomaly, vegetation condition index (VCI),
thermal condition index (TCI), and vegetation health index
(VHI). The developed DL model could be integrated with
data assimilation and used for downstream tasks, i.e., for es-25

timating the NDVI and BT for periods where no satellite data
are available and for modeling the impact of extreme events
on vegetation responses with different climate change sce-
narios. Moreover, our study could be used as a complemen-
tary evaluation framework for TSMP-based climate change30

simulations. To ensure reliability and to assess the model’s
applicability to different seasons and regions, we provide an

analysis of model biases and uncertainties across different
regions over the pan-European domain. We further provide
an analysis about the contribution of the input variables from 35

the TSMP model components to ensure a better understand-
ing of the model prediction. A comprehensive evaluation
of the long-term TSMP simulation using reference remote
sensing data showed sufficiently good agreements between
the model predictions and observations. While model per- 40

formance varies on the test set between different climate re-
gions, it achieves a mean absolute error (MAE) of 0.027 and
1.90 K with coefficient of determination (R2) scores of 0.88
and 0.92 for the NDVI and BT, respectively, at 0.11° reso-
lution for sub-seasonal predictions. In summary, we demon- 45

strate the feasibility of using DL on a TSMP simulation to
synthesize NDVI and BT satellite images, which can be used
for agricultural drought forecasting. Our implementation is
publicly available at the project page (https://hakamshams.
github.io/Focal-TSMP, last access: 4 April 2024). 50

1 Introduction

According to recent studies on historical trends and current
projections, different regions of the Earth would be under
a changing climate more vulnerable to extreme events such
as flash droughts (Christian et al., 2021, 2023; Yuan et al., 55

2023), meteorological and agricultural droughts (Essa et al.,
2023), forest wildfires (Patacca et al., 2023), and water stor-
age deficiency (Pokhrel et al., 2021). The expected increase
in concurrence of agricultural droughts would cause crop
production losses and vegetation mortality. In particular, peo- 60

ple in regions with fragile adaptation and mitigation strate-
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gies would be more affected. Therefore, forecasting the veg-
etation responses and their evolving patterns conditioned on
climate scenarios is a requirement to form better mitigation
and adaptation strategies.

In relation to this, there has been a growing line of re-5

search in the past on improving and deploying climate mod-
eling that attempts to simulate the underlying processes of
the Earth system (Shrestha et al., 2014; Gasper et al., 2014;
Lawrence et al., 2019). These modeling platforms are essen-
tial for realizing and forecasting climatic extreme events such10

as droughts in a model simulation (Miralles et al., 2019). For
instance, the simulated outputs of modeling systems can be
used to derive agricultural drought indices based on a defi-
ciency in precipitation (McKee, 1995; Vicente-Serrano et al.,
2010) or soil moisture (Martínez-Fernández et al., 2015).15

Nowadays, satellite observations around the world provide
a near-real-time global monitoring of vegetation and drought
conditions. Vegetation products derived from satellite land
surface reflectances can be used as proxies for vegetation
health and consequently as agricultural drought indicators20

(Qin et al., 2021; Vreugdenhil et al., 2022). While histori-
cal trends in satellite-based droughts have been extensively
studied, satellite-based agricultural drought assessment and
its relation to climate simulations under climate change re-
mains not fully explored. In this study, we propose to use25

deep learning (DL) to improve the agricultural drought anal-
ysis by predicting satellite-derived vegetation indices that
can be combined with meteorological or hydrological indices
which are often used in studies of drought assessment to pro-
vide more comprehensive assessments. In fact, some studies30

highlighted inconsistencies in the long-term drought trends
(Sheffield et al., 2012; Kew et al., 2021; Vicente-Serrano
et al., 2022). Meanwhile, others showed a different perspec-
tive of trends related to terrestrial vegetation from remote
sensing products (Zhu et al., 2016; Kogan et al., 2020). This35

is usually explained as assessments are highly dependent on
drought definition (Satoh et al., 2021; Reyniers et al., 2023)
and extreme event attribution (Van Oldenborgh et al., 2021),
i.e., the drought indicator that was chosen in the methodol-
ogy and the variations in modeling platforms. In addition,40

prescribed vegetation assumptions exist in climate simula-
tions which limit the modeling of atmospheric carbon ef-
fects or soil moisture deficiency on vegetation (Pirret et al.,
2020; Pokhrel et al., 2021; Reyniers et al., 2023). If we add
to this the complex spatiotemporal response of vegetation45

to climate variability (Seneviratne et al., 2021; Jin et al.,
2023), i.e., regional responses to climate have different dy-
namics and are more complicated than those on a global
scale, we can conclude that predicting the vegetation state
in response to drought under climate conditions still poses50

a major challenge. More precisely, in this study we predict
satellite-based vegetation products from a free, evolving sim-
ulation based on the Terrestrial Systems Modeling Platform
(TSMP) (Furusho-Percot et al., 2019a). TSMP simulations
integrate variables from groundwater to the top of the atmo-55

sphere (ground-to-atmosphere; G2A) and are primarily em-
ployed in studies on the water cycle and climate change (Ma
et al., 2021; Furusho-Percot et al., 2022; Naz et al., 2023;
Patakchi Yousefi and Kollet, 2023). In particular, we predict
from the TSMP simulation the normalized difference veg- 60

etation index (NDVI) and brightness temperature (BT) as
they would have been observed from the Advanced Very-
High-Resolution Radiometer (AVHRR) from the National
Oceanic and Atmospheric Administration (NOAA) satellite
systems. The NDVI is computed from the reflectance in vis- 65

ible red (ρR) and near-infrared (ρNIR) bands. It is a standard
product that is extensively used in applications for vegeta-
tion health and crop yield (Tucker, 1979). BT is a calibrated
spectral radiation derived from the thermal band (ρIR) and
can be used for temperature-related vegetation stress mon- 70

itoring (Kogan, 1995a). We assume that a climate simula-
tion (i.e., TSMP simulation) that is close to the true state of
the Earth should be able to model vegetation products (i.e.,
NDVI and BT) regardless of the target satellite platform (in
this study, the AVHRR from the NOAA). Recently, DL mod- 75

els have become popular for building a predictive model for
tasks that include complex or intractable cause-and-effect re-
lations within the Earth system (Bergen et al., 2019; Tuia
et al., 2023; de Burgh-Day and Leeuwenburg, 2023). In addi-
tion, DL can be used to handle biases implicitly, thus simpli- 80

fying the entire workflow (Schultz et al., 2021). For instance,
DL was recently used in climate modeling for bias correction
and downscaling to project extremes (Blanchard et al., 2022),
weather forecasting (Lam et al., 2022; Chen et al., 2023; Bi
et al., 2023; Ben-Bouallegue et al., 2023), supporting data 85

assimilation systems (Düben et al., 2021; Valmassoi et al.,
2022; Yu et al., 2023), and generalized multi-task learning
(Nguyen et al., 2023; Lessig et al., 2023). In this work, we
thus propose a DL approach based on focal modulation net-
works (Yang et al., 2022) to simultaneously predict the NDVI 90

and BT from the model simulation. In this way, we leverage
a climate simulation for long-term forecasting and DL for
mapping the forecast variables to vegetation-related indices
that are not part of the simulation model.

Forward operators like radiative transfer solvers are nor- 95

mally used to synthesize spectral band satellite images from
the output of a numerical weather model (Scheck et al., 2016;
Geiss et al., 2021; Li et al., 2022). In this paper, we investi-
gate the use of DL to predict products of atmospherically cor-
rected albedo and emissivity on land (atmospherically cor- 100

rected bottom of atmosphere) like the NDVI and BT simul-
taneously rather than training the neural network to serve as
an emulator for a predefined physical-based radiative trans-
fer model. In other words, our training data for DL are de-
rived from real-world satellite observations (empirical oper- 105

ator) without assimilating data or assumptions about radia-
tions. Besides, there are climate–vegetation models which
directly simulate the vegetation dynamic based on ecologi-
cal processes and statistical modeling. Nevertheless, they are
limited by the complexity of the processes and poor gener- 110
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alization (Chen et al., 2021). Unlike hydro-meteorological
variables that can be predicted or forecast using a numeri-
cal weather model, vegetation products demand an extended
modeling representation of the surface and sub-surface (Lees
et al., 2022). Recently, Salakpi et al. (2022a, b) predicted5

short-term vegetation products based on previous vegetation
conditions and observational anomaly indices in a Bayesian
auto-regressive approach. However, the interaction between
vegetation and climate variability exhibits a strong non-linear
behavior. In this respect, many studies explored the applica-10

bility of DL for vegetation health prediction using climate
models and remote sensing data (Das and Ghosh, 2016; Ad-
ede et al., 2019; Ferchichi et al., 2022; Wu et al., 2020; Kraft
et al., 2019; Prodhan et al., 2021). A common approach is to
use past vegetation conditions to predict the short-term fu-15

ture variations (Nay et al., 2018; Yu et al., 2022; Hammad
and Falchetta, 2022; Lees et al., 2022; Vo et al., 2023). In
a related work, Requena-Mesa et al. (2021) addressed the
problem of optical satellite imagery forecasting as a guided
video prediction task. In their framework, vegetation dynam-20

ics approximated by the NDVI are modeled at high resolu-
tion using past satellite images as initial conditions and static
and reanalysis data as a model guidance. Similar approaches
with this framework were presented in Robin et al. (2022),
Kladny et al. (2022), and Diaconu et al. (2022) and on a25

continental scale in Benson et al. (2023). While these works
differ in their methodologies, i.e., in the predicted vegeta-
tion products, model architectures, and spatiotemporal reso-
lutions, they have a good performance overall for short-term
forecasting. Although short-term forecasting, i.e., for a few30

weeks, is very useful for short-term planning, a more sig-
nificant contribution could be achieved with a much longer
forecasting time (Marj and Meijerink, 2011). Nonetheless,
only few studies addressed the forecasting of long-term veg-
etation conditions (Marj and Meijerink, 2011; Miao et al.,35

2015; Patil et al., 2017; Chen et al., 2021; Wei et al., 2023).
In addition, most studies focused only on a single indica-
tor. The combination of different indicators like the NDVI
and BT with their corresponding drought indices provides
complementary information on the vegetation state and is40

beneficial for vegetation monitoring (Yang et al., 2020). As
mentioned before, we aim to use DL to predict vegetation
products like the NDVI and BT from a regional climate sim-
ulation on a continental scale. We also focus on long-term
forecasting without using an initial state, i.e., satellite images45

from previous time steps. Unlike aforementioned works, we
use more input data for the neural network from the surface
and sub-surface to account for a more detailed representation
of the reflectance and emissivity on the ground. In addition,
we built the neural network on vision transformers (Dosovit-50

skiy et al., 2021) and convolutional neural network (CNN)
models taking into account the spatial context around each
input pixel and operating on the whole scene at once. This
was motivated by previous studies that indicate that an ef-
fective model of the environment should consider the spatial55

correlation within the domain. Previous works train and eval-
uate DL models on bias-corrected reanalysis data. In con-
trast, we evaluate the approach with real-world observations
using a run of the simulation in the past. It is worth noting
that this evaluation is more consistent with real-world de- 60

ployment schemes, since it is questionable how a model that
has been trained and evaluated on reanalysis data will per-
form on biased climate projection simulations. Thus, we opt
for a simulation that mimics a climate projection of the past
and train and evaluate the model on it to internally correct 65

biases and predict vegetation products.
To showcase the potential of our approach, we apply the

predicted NDVI and BT for long-term agricultural drought
forecasting, where we derive the vegetation condition index
(VCI), thermal condition index (TCI), and vegetation health 70

index (VHI) (Yang et al., 2020) as agricultural drought in-
dicators from the predicted NDVI and BT. As part of this,
we analyze whether a DL model trained on a simulation pro-
duced by the TSMP can be used for vegetation health fore-
casting on a continental scale by identifying regions and pe- 75

riods of uncertainty in the model prediction. Moreover, we
analyze the importance of the input explanatory variables.
We achieve an overall mean absolute error (MAE) of 0.027
and 1.90 K with coefficient of determination (R2) scores of
0.88 and 0.92 in predicting the NDVI and BT, respectively, 80

for sub-seasonal predictions at 0.11° resolution. Our results
indicate that a direct prediction of vegetation products from
a TSMP simulation with DL is an effective way for scenario-
based assessments of vegetation response to climate change.

The rest of this article is organized as follows. Section 2 85

describes the datasets that are used in the experiments. The
methodology is described in Sect. 3. Experimental results
and an analysis on variable importance are given in Sect. 4.
Finally, conclusions are provided in Sect. 5.

2 Datasets and data preprocessing 90

In this section, we describe the datasets used in the experi-
ments. The TSMP simulation is presented in Sect. 2.1, the
observational remote sensing data for model training and
evaluation are presented in Sect. 2.2, and the preprocessing
framework of the data is described in Sect. 2.3. 95

2.1 Regional Earth system simulation

For this study, we use the simulation produced by the Terres-
trial System Modeling Platform (TSMP) version 1.1. at the
Institute of Bio- and Geosciences – Agrosphere (IBG-3) of
the Jülich Research Centre (FZJ) and originally described in 100

Shrestha et al. (2014) and Gasper et al. (2014). The simula-
tion used in this study is introduced in Furusho-Percot et al.
(2019a). The TSMP is a physics-based integrated simulation
representing a realization of the terrestrial hydrologic and en-
ergy cycles that cannot be directly obtained from measure- 105
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ments. Its setup consists of three main interconnected model
components:

– The Consortium for Small-scale Modeling (COSMO)
version 5.01 is a numerical weather model to simulate
the diabatic and adiabatic atmospheric processes (Bal-5

dauf et al., 2011).

– The Community Land Model (CLM) version 3.5 is used
to simulate the bio-geophysical processes on the land
surface (Oleson et al., 2004, 2008).

– ParFlow version 3.2 is a hydrological model that ex-10

plicitly simulates the 3D dynamic processes of water
in the land surface and underground (Jones and Wood-
ward, 2001; Kollet and Maxwell, 2006; Jefferson and
Maxwell, 2015; Maxwell et al., 2015; Kuffour et al.,
2020).15

ECMWF ERA-Interim data (Dee et al., 2011) were used to
define the initial and boundary conditions for the simula-
tion. Based on this setup, a spinup of 10 years (1979–1988)
was conducted to initialize the surface and subsurface hydro-
logic and energy conditions and to reach the dynamic equi-20

librium with the atmosphere before the actual run (1989–
2019). We selected variables available within the period ap-
plicable for the analysis. This results in 29 main variables
from COSMO, 8 variables from the CLM, and 2 main vari-
ables from ParFlow. Additionally, we used 3 static variables25

from the analysis (Poshyvailo-Strube et al., 2022). An analy-
sis on the explanatory variables is provided in Sect. 4, and
variable descriptions are listed in Tables A1 and A2. The
three model components were fully coupled via the OASIS3
coupler (Valcke, 2013) to form a unified soil–vegetation–30

atmosphere model. This scheme was built without nudg-
ing, allowing the free-running of the simulated variables.
Thus, the TSMP is ideal for representing the heterogene-
ity of the water cycle from the subsurface to the top of the
atmosphere in a free evolution. In addition, the long-term35

simulation is performed for a historical time period from
January 1989 until summer in September 2019 with out-
put variables aggregated on a daily basis and extending over
the EURO-CORDEX EUR-11 domain (Giorgi et al., 2009;
Gutowski et al., 2016; Jacob et al., 2020). The grid speci-40

fication for the TSMP is a standardized rotated coordinate
system (φ(rotated pole) = 39.5° N, λ(rotated pole) = 18° E) with a
spatial resolution of∼ 0.11° (∼ 12.5 km) and 412×424 grid
cells in the rotated latitudinal and longitudinal direction, re-
spectively. These spatiotemporal dimensions and the model45

setup make the TSMP suitable for climatological studies on
a continental scale.

2.2 Observational remote sensing data

Satellite-based vegetation health products were obtained
from NOAA.1 The blended version (Yang et al., 2020) is 50

composed of long-term remote sensing data derived from
two systems of satellites: the AVHRR from 1981 to 2012
and its successor, the Visible Infrared Imaging Radiometer
Suite (VIIRS), from 2013 onwards. The dataset includes two
essential products, namely the NDVI and the BT (Table A3). 55

The NDVI is computed from the red (ρR) and near-infrared
(ρNIR) bands:

NDVI=
(ρNIR− ρR)

(ρNIR+ ρR)
. (1)

The NDVI is unitless and given in the range [−0.1, 1].
Same NDVI values should not be interpreted similarly for 60

different ecosystems. In other words, the interpretation is
highly dependent on the location and ecosystem productiv-
ity (Kogan, 1995b). The BT is derived from the infrared
(ρIR) band and given in Kelvin (K) within the range [0, 400].
To handle high-frequency noise caused by clouds, aerosol, 65

and atmospheric variation, along with different random error
sources, the NDVI and BT were temporally aggregated into
smoothed, noise-reduced weekly products. In addition, post-
launch calibration coefficients and solar and sensor zenith
angles are applied to account for sensor degradation and or- 70

bital drift. The outlier removal is essential for excluding in-
valid measurements. Additionally, this weekly temporal res-
olution is enough to capture the phenological phases of veg-
etation and is adequate for satellite data application (Kogan
et al., 2011; Yang et al., 2020). Based on the NDVI, BT, and 75

their long-term climatologies, the upper and lower bounds of
the ecosystem (minimum and maximum values for the NDVI
and BT) can be estimated. Hence, the VCI, TCI, and VHI can
be derived pixel-wise (Kogan, 1995a, 1990). The vegetation
condition index is given by 80

VCI= 100
(NDVI−NDVImin)

(NDVImax−NDVImin)
,

with VCI ∈ [0,100] , (2)

where NDVI is the weekly noise-reduced NDVI and
NDVImin and NDVImax are the multi-year weekly absolute
minimum and maximum NDVI values, respectively. The
thermal condition index is given by 85

TCI= 100
(BTmax−BT)
(BTmax−BTmin)

, with TCI ∈ [0,100] , (3)

where BT is the weekly noise-reduced BT and BTmin and
BTmax are the multi-year weekly absolute minimum and
maximum BT values, respectively. The vegetation health in-
dex is given by 90

VHI= (α)VCI+ (1−α)TCI, with VHI ∈ [0,100] , (4)
1Center for Satellite Applications and Research (STAR) https://

www.star.nesdis.noaa.gov/star/index.php, last access: 4 April 2024

https://www.star.nesdis.noaa.gov/star/index.php
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where α is a weighting coefficient. While VCI is a proxy for
the moisture condition and its lower values reflect a water-
related stress, TCI is a proxy for the thermal condition, and
its lower values indicate a temperature- and wetness-related
stress. The composite index VHI is a linear combination5

of the former two indices for approximating the vegetation
health. VHI fluctuates annually between 0 (unfavorable con-
dition) and 100 (favorable condition). The values of these
indices above 100 and below 0 are clipped. The dataset is
provided globally with ∼ 0.05° (∼ 4 km) spatial resolution10

mapped onto the Plate carrée projection. NOAA vegetation
products have been broadly used for research and real-world
applications. For a summary of the validation and studies that
use this dataset for agricultural drought monitoring, we refer
to Yang et al. (2020).15

2.3 Preprocessing

In this section we describe the data preprocessing that is
needed prior to applying DL. Overall the TSMP has 30 years
of data (1989–2019). We reserved the years 1989–2009
(AVHRR era) and 2013–2016 (VIIRS era) for training,20

2010–2011 (AVHRR era) and 2017 (VIIRS era) for valida-
tion, and 2012 (AVHRR era) and 2018–2019 (VIIRS era)
for testing. For the TSMP, we excluded the lateral bound-
ary relaxation zone by removing invalid grid points from
the boundaries. This results in a final grid with 397× 40925

grid cells in the latitudinal and longitudinal direction, re-
spectively. In order to connect local-related characteristics
to climate conditions, we computed three additional static
variables from the static variables described in Table A2.
We computed slope (Horn, 1981) and roughness (Wilson30

et al., 2007) from orography and distance to water from
the land–sea mask. Due to the fact that the remote sens-
ing data were obtained from two different satellite systems,
the data derived from the VIIRS have to be first adjusted
to insure continuity and consistency with the data derived35

from the AVHRR. Yang et al. (2018, 2021b) showed that
the discrepancy between sensors are mainly due to the dif-
ferences in spectral response ranges and calibration parame-
ters. Compared to the BT/TCI, this has a greater impact on
the NDVI/VCI (Kogan et al., 2015). Considering this issue,40

we followed the same re-compositing approach as described
in Yang et al. (2021b). The re-compositing approach can
be used to generate cross-sensor vegetation products for the
time period from 2013 to 2019. In fact, the NDVI/BT from
different sensors can be decomposed into climatologies and45

VCI and TCI. The climatology provides information about
the ecosystem, and it is sensor-specific, while the VCI/TCI
for the same ecosystem location are cross-sensor. Thus, us-
ing climatology from the AVHRR and VCI from the VIIRS,
Eq. (2) can be reformulated to re-composite NDVI for the50

AVHRR as follows:

NDVI′(AVHRR) =

(
VCI(VIIRS)

100

)
(NDVI(max,AVHRR)

−NDVI(min,AVHRR))+NDVI(min,AVHRR) , (5)

where NDVI′(AVHRR) is the converted weekly noise-reduced
NDVI from the VIIRS to the AVHRR; VCI(VIIRS) is the
vegetation condition index derived from the VIIRS; and 55

NDVI(min,AVHRR) and NDVI(max,AVHRR) are the multi-year
weekly absolute minimum and maximum NDVI values (cli-
matology) derived from the AVHRR, respectively. Similarly,
from Eq. (3) we have

BT′(AVHRR) = BT(max,AVHRR)

−

(
TCI(VIIRS)

100

)
(BT(max,AVHRR)−BT(min,AVHRR)) , (6) 60

where BT′(AVHRR) is the converted weekly noise-reduced BT
from the VIIRS to the AVHRR; TCI(VIIRS) is the thermal
condition index derived from the VIIRS; and BT(min,AVHRR)
and BT(max,AVHRR) are the multi-year weekly absolute mini-
mum and maximum BT values (climatology) derived from 65

the AVHRR, respectively. Please note that VCI(VIIRS) and
TCI(VIIRS) were based on a long-term pseudo-VIIRS clima-
tology (for more details on this, please see Yang et al., 2018).
In addition, the TSMP simulation and target remote sensing
data have to be spatially aligned in the same domain. After 70

the continuity at the NDVI and BT levels was realized, we
mapped these two products onto the TSMP rotated coordi-
nate system over the EURO-CORDEX EUR-11 domain. For
the mapping, we upscaled the data from 0.05 to 0.11° res-
olution based on a first-order conservative mapping (Jones, 75

1999) using the package from Zhuang et al. (2020). For cal-
culating the spatial mean, we excluded invalid, water, and
coastal lines pixels. Afterwards, we computed the VCI, TCI
and VHI based on Eqs. (2)–(4). We note that the weighted
coefficient α in Eq. (4) can be empirically calibrated as a 80

spatially variant factor (Zeng et al., 2022, 2023). Following
previous works, we set α to its standard value of 0.5 in all
experiments as in Yang et al. (2020). Furthermore, masks
over desert and very cold areas were extracted from the qual-
ity assurance (QA) metadata provided with the data. Eventu- 85

ally, the preprocessed data were aggregated into data cubes
({variable, lat, lon}) on a weekly basis and stored as netCDF
files. This remote sensing dataset can serve as a reference to
train and evaluate the DL model performance. Overall, this
includes 1263, 156, and 139 samples (weeks) for training, 90

validation, and testing, respectively. To avoid overfitting or
the dominance of a few input variables, we normalized the
input of the TSMP by subtracting the mean and dividing by
the standard deviation corresponding to each input variable.
These statistics were computed only from the years that are 95

used for training. The invalid values of pixels were replaced
with zero values as input to the DL model.
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3 Methodology

Given TSMP ∈ RV×T×W×H as a climate change simulation,
where V is the number of output variables from the COSMO,
CLM, and ParFlow models and the static forcing variables;
T is the temporal dimension; andW andH are the spatial ex-5

tensions, our objective is to construct a mapping function to
predict NDVI ∈ RI×W×H and BT ∈ RI×W×H on a weekly
basis, where I is the number of weeks. To accomplish this,
we propose to approximate this function as a function f us-
ing a DL model based on a U-Net (Ronneberger et al., 2015)10

with focal modulations (Yang et al., 2022) as building blocks:

f : (TSMP;θ)→ (NDVI,BT), (7)

where θ is the weight of the model. The input for DL is
a data cube representing a specific week i of TSMP data,
and the output is the NDVI and BT corresponding to the15

same week i. We denote the weekly averaged input data
cube produced by the TSMP as Xi ∈ RV×W×H , where we
obtain Xi by taking the mean of the days corresponding to
the week i. For simplicity, we will drop the notation i in
the following sections. Firstly, the network architecture is in-20

troduced in Sect. 3.1, and the focal modulation is then de-
scribed in Sect. 3.2. Section 3.3 discusses the loss function,
and Sect. 3.4 outlines the baseline approaches. Implementa-
tion and technical details are given in Sect. 3.5. Finally, the
evaluation metrics are described Sect. 3.6.25

3.1 Model architecture

The recent applications of vision transformers (ViTs) have
covered many tasks in the field of computer vision. The net-
work design of ViTs, along with the multi-head self-attention
mechanism (Vaswani et al., 2017), allows ViTs to stand as the30

state-of-the-art backbone in recent DL models. In contrast
to CNNs, ViTs with self-attention modules can handle long-
range interactions across tokens (pixels) more efficiently. In a
nutshell, the self-attention module aims to transfer pixel rep-
resentations of a given image into a new feature representa-35

tion based on a weighted aggregation of interactions between
every individual pixel and its surrounding. This mechanism
allows the model to focus on more relevant regions of the in-
put images. Despite this powerful transforming process, the
computational requirement of a standard ViT has been a lim-40

itation when applying it to vision tasks. More recently, the
focal modulation network (Yang et al., 2022) has been in-
troduced to substitute the self-attention mechanism with a
lightweight focal module. In contrast to self-attention, focal
modulation starts with contextual aggregation and ends with45

interactions. Based on this recently introduced mechanism,
DL models were developed for medical image segmentation
(Naderi et al., 2022; Rasoulian et al., 2023), change detec-
tion for remote sensing data (Fazry et al., 2023), and video
action recognition (Wasim et al., 2023). We build our model50

on focal modulation networks and extend their applications

in geoscience. Figure 1 provides an overview of the model
architecture. The model design follows the U-Net shape with
encoder and decoder layers connected via skip connections
and followed by two regression heads. This allows the model 55

to extract features in a hierarchical way and predict the NDVI
and BT with customized heads. In the following, we describe
the main parts of the model:

– Patch embedding. The patch embedding is implemented
as a single 1D convolution, where one patch is equiva- 60

lent to one pixel. The role of this embedding is to project
the input X from V dimension into a channel dimension
that matches the channel dimension C(en,1) of the first
encoder block. In contrast to related works with trans-
formers, we do not reduce the spatial resolution at this 65

step. This is important for mitigating blurring effects in
regression tasks. An analysis of the impact of the patch
size for embedding is provided in Appendix E.

– Encoder. The encoder consists of three encoding lay-
ers. Each layer has two consecutive focal modulation 70

blocks that have the same number of channels. We use
focal modulation to capture local to global dependen-
cies in the domain (Sect. 3.2). We apply down-sampling
to the output of the first two encoder layers to re-
duce the spatial resolution by a factor of 2 and double 75

the number of channels. The down-sampling is imple-
mented as a 2D convolution with a 2× 2 kernel size
and a stride of 2. We set C(en,1) = 96 as the number
of channels of the first encoder layer. Consequently, the
encoder has the dimensionality {C(en,1) = 96,C(en,2) = 80

192,C(en,3) = 384}, where C(en,2) is the dimensionality
for the second encoder layer and C(en,3) is the dimen-
sionality for the third encoder layer. The encoder allows
the network to extract low- to high-level features in a
hierarchical way. Note that focal modulation allows an 85

additional hierarchical feature extraction at each level
(Sect. 3.2).

– Skip connections. These connections copy outputs from
each encoder layer into its corresponding decoder layer.
The purpose of this is to enhance the gradient flow in 90

the network and to prevent vanishing gradient issues.

– Decoder. The decoder has a similar design to the
encoder. It consists of three decoder layers with two
consecutive focal modulation blocks for each decoder
layer. The input for the first decoder layer is the output 95

of the last encoder layer copied via a skip connection.
The input for the second and third decoder layers is a
concatenation of the output from the previous decoder
layer with the output of the corresponding encoder
layer. The outputs of the first and second decoder layers 100

are up-sampled to double the image size and to reduce
the dimensionality by a factor of 2. The up-sampling
is implemented as a bilinear interpolation followed
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Figure 1. An overview of the proposed model for predicting the NDVI and BT from a TSMP climate simulation. The model follows the
U-Net shape with encoder and decoder layers. We use focal modulation as the basic building block for the model. The input TSMP simulation
is first encoded into a latent representation via encoder layers. In a subsequent step, the decoder constructs new features to be given as input
to two separated regression heads that output the NDVI and BT simultaneously. The predicted NDVI and BT can then be used to derive
different agricultural drought indices such as the VCI, TCI, and VHI.

by a 2D convolution with a 1× 1 kernel size and a
stride of 1. The decoder layers have the dimensionality
{C(de,1) = C(en,3) = 384,C(de,2) = C(en,2)+C(de,1) =

384,C(de,3) = C(en,1)+C(de,2) = 288}, where C(de,1),
C(de,2), and C(de,3) are the dimensionality for the5

first, second, and third decoder layers, respectively.
The purpose of the decoder is to gradually construct
the input for the regression heads from the encoded
features.

– Regression heads. The output of the last decoder layer10

is then given as input to two separated regression heads
to predict the NDVI and BT. Each head has two 2D con-
volutions with a 3×3 kernel size and a stride of 1 with a
LeakyReLU activation in between. The regression head
reduces the dimensionality from C(de,3) = 288 to 12815

and then to 1.

3.2 Focal modulations

We first describe how the block is implemented and then de-
scribe the main focal modulation module denoted as FM.
Figure 2 illustrates the architecture of the focal modula-20

tion block used in both the encoder and decoder layers.
The design follows a typical transformer block. Let Xk ∈
RN×Ck×W k

×H k
be the input at the kth block, where N is

the batch size (number of input tensors), Ck is the number
of input channels, and W k and H k are the spatial resolution.25

Firstly, the input is normalized across N via a layer normal-
ization (Ba et al., 2016) denoted as LayerNorm. Using the in-
dices n ∈ {1, . . .,N}, ck ∈ {1, . . .,Ck}, wk ∈ {1, . . .,W k

}, and

hk ∈ {1, . . .,H k
}, the LayerNorm can be written as

LayerNorm(Xk;(γ kl ,β
k
l ))=

(
Xkn(ck,wk,hk)−µ

k
n

σ kn

)
· γ kl (ck)+βkl (ck) , (8) 30

µkn =
1

CkW kH k

Ck∑
ck=1

W k∑
wk=1

H k∑
hk=1

Xkn(ck,wk,hk) , (9)

σ kn =

√√√√ 1
CkW kH k

Ck∑
ck=1

W k∑
wk=1

H k∑
hk=1

(Xkn(ck,wk,hk)−µ
k
n)

2 , (10)

where Xkn(ck,wk,hk) is the input tensor of order n in the batch,
µkn and σ kn are the computed mean and standard deviation of
the corresponding input Xkn(ck,wk,hk), and γ kl (ck) ∈ R

Ck and 35

βkl (ck) ∈ R
Ck are per-channel learnable parameters.

These learnable parameters are shared across input ten-
sors. The output of LayerNorm is then passed into the func-
tion FM. After that, the output of the first part is normalized
by a second LayerNorm and passed into a feed-forward layer 40

(FFL). The FFL consists of one linear layer that maps the
dimensionality to rmlp×C

k followed by a GELU activation
(Hendrycks and Gimpel, 2016) and a second linear layer to
bring the dimensionality back to Ck , where rmlp is the MLP
ratio parameter. We set rmlp to 4 for the encoder and decrease 45

it to 2 for the decoder to reduce the number of model param-
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Figure 2. An illustration of the focal modulation block. It follows
the typical transformer block with a focal modulation instead of
self-attention. Xk represents the input to the kth block.

eters. The output of each block can be formulated as follows:

FocalModulationBlock(Xk), γ k2(
FFL

(
LayerNorm(γ k1FM(LayerNorm(Xk))+Xk)

))
+

(
γ k1FM(LayerNorm(Xk))+Xk)

)
, (11)

where γ k1 ∈ R
Ck and γ k2 ∈ R

Ck are learnable scaling parame-
ters. The main component of each focal modulation block is
the FM function. As seen in Fig. 3, it consists of three main5

steps: hierarchical contextualization, gated aggregation, and
interactions.

– Hierarchical contextualization. The objective of this
part is to encode local to global range dependencies
for every pixel. It is based on Focal Transformer (Yang10

et al., 2021a) and aims to extract features at four dif-
ferent levels. Let Xk be the input for FM and L= 4 be
the number of levels. Firstly, Xk is projected by a lin-
ear layer into a new representation Lk0 = Linear(Xk) ∈
RN×Ck×W k

×H k
. Afterwards, the contexts are obtained15

in a recursive manner using a sequence of three depth-
wise 2D convolutions (DWConv2D) with GELU ac-
tivation and with increased receptive fields. In DW-
Conv2D, each output channel corresponds to a convo-
lution on one input channel. We denote rl as the ker-20

nel size at level l and start with r1 = 3. Thereby, the
kernel sizes at the focal levels have the values r1 = 3,
r2 = 5, and r3 = 7. To obtain a global feature represen-
tation, a global average pooling (GAP) followed by a
GELU activation is applied at level l = 4. Using the in-25

dex l ∈ {1, . . .,L}, the hierarchical contextualization can
be formulated as follows:

Lkl ,
{

GELU(DWConv2D(Lkl−1)), if 1≤ l < L,
GELU(GAP(Lkl−1)) , otherwise.

(12)

– Gated aggregation. The gated aggregation adaptively
summarizes the extracted hierarchical contexts Lkl into30

a modulator. First, Xk is projected by a linear layer
into four gates, Gk

= Linear(Xk) ∈ RN×L×W k
×H k

. As
can be seen from the example in Fig. 3, the third gate
focuses on the water area while other gates focus on
different segmented regions. This allows each pixel to 35

adaptively aggregate features from different semantic
regions conditioned on its context. Pixels in a less dy-
namic environment may depend on more distant pix-
els, while pixels in a more dynamic environment may
depend more on the local context. The aggregation is 40

performed over different focal levels and followed by a
linear layer:

XkL , Linear

(
L∑
l=1

Gk
l �Lkl

)
, (13)

where XkL ∈ R
N×Ck×W k

×H k
are the contextual aggre-

gated features for each pixel called the modulator, Gk
l is 45

the gate corresponding to level l, and� is the Hadamard
operator (element-wise multiplication).

– Interaction. Finally, the interaction between the queried
pixels and the modulator is given with the following for-
mula: 50

FM(Xk), XkL�Linear(Xk) ∈ RN×C
k
×W k

×H k

. (14)

3.3 Loss function

For training we use the mean absolute error (MAE) as a loss
function, since it is less sensitive to outliers than the mean
squared error (MSE): 55

LMAE =
1

NWH

N∑
n=1

W∑
w=1

H∑
h=1
|Y(n,w,h)− Ŷ(n,w,h)| , (15)

where N is the batch size and Y(n,w,h) and Ŷ(n,w,h) are the
predicted and observed images, respectively.

In addition, to increase local variability and balance the
blurring effects from Eq. (15), we use a perceptual loss 60

(Ledig et al., 2017; Johnson et al., 2016) based on a pre-
trained VGG-19 network (Simonyan and Zisserman, 2014)
on ImageNet (Deng et al., 2009). This additional loss con-
strains the generated images to have a similar structure
and spatial variability to the observed images by comparing 65

multi-level features extracted by a VGG classifier network
from both the predicted and observed images:

LVGG = 8L1
VGG+

J∑
j=2

LjVGG , (16)

LjVGG =
1

NCjW jH j

N∑
n=1

Cj∑
c=1

W j∑
w=1

H j∑
h=1

|φj (Y(n,j,c,w,h,))−φj (Ŷ(n,j,c,w,h))| , (17)
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Figure 3. An illustration of the function FM at kth block. It consists of three main parts: focal contextualization, gated aggregation, and
interaction. Firstly, the query, value, and gates are obtained by projecting Xk with linear layers. Then, a stack of depth-wise 2D convolutions
followed by a global pooling is used on the value to derive contextual features around pixels. Gates are used to adaptive aggregate contextual
features into a modulator. Finally, the interaction between queried pixels and the modulator is performed and projected by a final linear layer
to compute the output. The shown images are examples of learned gates along with the pixel-wise magnitude of the corresponding modulator
at the first block encoder. The bright colors (i.e., green to yellow) for specific regions represent higher values which correspond to higher
attentions of the model to that regions.

where J is the number of levels from which the VGG fea-
tures are extracted; W j and H j are the spatial extensions
of the respective level within the VGG classifier; Cj is the
number of the channel dimension of the respective level; and
φj (Y(n,j,c,w,h,)) and φj (Ŷ(n,j,c,w,h,)) are the extracted fea-5

tures at level j from the predicted and observed images, re-
spectively. In contrast to classification problems where high-
level features play a more important role, we multiply the
low-level features by a weighting factor of 8 to preserve the
local features and give them more importance since these are10

more relevant to our regression task. The VGG network was
originally trained with RGB images, and giving the NDVI
and BT as input is not directly possible. To solve this is-
sue, we replicate the NDVI and BT along the channel dimen-
sion and feed each of them separately to the VGG network.15

The impact of using this perceptual loss is evaluated in Ap-
pendix D. The entire loss function to be minimized is thus
given as follows:

L= LNDVI
MAE + 0.1LNDVI

VGG +LBT
MAE+ 0.1LBT

VGG , (18)

where LNDVI
MAE and LNDVI

VGG are the MAE and VGG losses on the20

NDVI and LBT
MAE and LBT

VGG are the MAE and VGG losses on
BT, respectively. The weighting factor of 0.1 is set to balance
the losses. The model is trained with a stochastic gradient de-
scent. More technical details regarding the training are pro-
vided in Sect. 3.5.25

3.4 Baseline approaches

We study the performance of recently developed vision trans-
formers on our task. We achieve this by sharing the over-
all model architecture and implementing the main building
block inside the encoder and decoder according to different 30

algorithms. The implemented models are as follows:

– U-Net (Ronneberger et al., 2015) serves as a baseline
of typical U-Net models. We implemented this model
based on a 2D CNN with residual convolutional blocks.
The U-Net model does not use an attention mechanism. 35

– Swin Transformer V1 (Liu et al., 2021) performs self-
attention in shifted windows to reduce the computa-
tional complexity compared to the original ViT. Trans-
formers based on this model have been commonly ap-
plied for a variety of tasks in remote sensing and com- 40

puter vision (Wang et al., 2022a; Gao et al., 2021; Wang
et al., 2022b; Aleissaee et al., 2023).

Swin Transformer V2 (Liu et al., 2022) is an improved
model of Swin V1. The attention mechanism is replaced
with a scaled cosine attention to measure pixel feature 45

similarities. Swin V2 utilizes post-normalization layers
inside the main block, thus making the optimization of
large models more stable. In addition, it proposes to re-
place the positional encoding inside the windows with
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a log-spaced continuous one to ease downstream tasks
with pre-trained models.

– Wave-MLP (Tang et al., 2022) is a MLP-Mixer-based
transformer model. The basic block is built on a stack of
MLPs. Wave-MLP represents each pixel as a wave func-5

tion with amplitude features representing pixel contents
and phase to measure the relations with other pixels.

Apart from these models, we report the results for two NDVI
and BT climatology baselines. The climatology is based on
multi-year mean values computed from remote sensing ob-10

servations pixel-wise and on a weekly basis. The first is
climatology-I computed from the years 1981–1988 which
represents a prescribed satellite phenology before the begin-
ning of the simulation. The second is climatology-II com-
puted from the training years 1989–2016 in an overlap with15

the simulation period. The later climatology represents a
function that models the annual cycles, and it can be used
to check if the models generalize beyond the mean annual
cycles of the predicted NDVI or BT.

3.5 Implementation details20

We re-implemented all aforementioned DL models in our
framework and trained them with three different random
seeds, which ensures a fair comparison and better estimation.
All models have almost the same capacity with ∼ 12 million
parameters. The encoders for the transformer models were25

pre-trained on ImageNet-1K (Deng et al., 2009), while the
weights in the decoders and regression heads were initial-
ized randomly from a standard normal distribution. To in-
crease the generalization and robustness of the models, we
use four augmentation techniques. This includes flipping and30

rotating the input with a probability of 0.5 and randomly per-
turbing the input variables by adding noise from a normal
distribution with zero mean and a standard deviation of 0.02
with a probability of 0.5. In addition, to generate the input
corresponding to week i during training, we randomly aver-35

age two days corresponding to the week i as an additional
augmentation technique. All models were trained with the L
loss Eq. (18) using the PyTorch framework (Paszke et al.,
2019) with a learning rate of 0.0003 and a scheduler to de-
cay the learning rate by a factor of 0.9 every 16 epochs. The40

AdamW optimizer (Loshchilov and Hutter, 2019) was used
for the gradient descent with (β1 = 0.9, β2 = 0.999) and a
weight decay of 0.05. We use a dropout probability of 0.2
and a stochastic depth rate of 0.3. We train with a batch
size of N = 2 for 100 epochs. For Swin Transformers, we45

set the window size to 8 and use the following number of
heads {3,6,12} for the encoder and the same order for the
decoder. The down-sampling in the encoder followed the
original implementation in Swin Transformer. Wave-MLP
was trained with the dimensionality {C(en,1) = 64,C(en,2) =50

128,C(en,3) = 320} and rmlp = 4 for both the encoder and
the decoder. Wave-MLP and Swin V2 use a dropout prob-

ability of 0.1 and a stochastic depth rate of 0.2. In addition,
we follow the official implementation of Wave-MLP and use
GroupNorm (Wu and He, 2018) with a group of 1 instead 55

of LayerNorm. Finally, all models were trained on individual
NVIDIA RTX A6000 GPUs with 48 GB.

3.6 Evaluation metrics

To measure the model performance, we use the mean ab-
solute error (MAE), root-mean-square error (RMSE), co- 60

efficient of determination (R2), Pearson correlation coef-
ficient (Rp), and Spearman correlation coefficient (Rs). In
addition, we compute the bias as (predicted− observed=
Y(w,h)− Ŷ(w,h)). We compute the metrics for each sample
and then average the values to obtain the final metrics. The 65

MAE is computed from Eq. (15), while the RMSE can be
calculated as follows:

RMSE(Y(w,h), Ŷ(w,h))=√√√√ 1
WH

W∑
w=1

H∑
h=1
(Y(w,h)− Ŷ(w,h))2 . (19)

R2 measures the variation of the perdition from the
regression-fitted line, and it is calculated as follows: 70

R2(Y(w,h), Ŷ(w,h))=

1−
∑W
w=1

∑H
h=1(Y(w,h)− Ŷ(w,h))2∑W

w=1
∑H
h=1(Y(w,h)−

ˆ̄Y(w,h) TS1)2
, (20)

where ˆ̄Y(w,h) TS2 is the overall mean observed value. The
highest value for R2 is 1, which represents a perfect fit.
Please note that R2 measures the variability in Ŷ(w,h) pre-
dicted by the model; thus it is by definition inversely pro- 75

portional to the variance and noise in the observations and
should be interpreted carefully.

The Pearson correlation (Rp) is a parametric correlation
that measures the linear correlation between the predicted
and observed values: 80

Rp(Y(w,h), Ŷ(w,h))=∑W
w=1

∑H
h=1(Y(w,h)− Ȳ(w,h) TS3 )(Ŷ(w,h)− ˆ̄Y(w,h) TS4 )√∑W

w=1
∑H
h=1(Y(w,h)− Ȳ(w,h) TS5 )2

√∑W
w=1

∑H
h=1(Ŷ(w,h)−

ˆ̄Y(w,h) TS6 )2
,

(21)

where Ȳ(w,h) TS7 is the mean predicted value. The best value
for Rp is 1, which represents a perfect positive correlation.

The Spearman correlation (Rs) is a non-parametric mea-
sure of the relationship between predicted and observed val- 85

ues that can be calculated as follows:

Rs(Y(w,h), Ŷ(w,h))= Rp(R(Y(w,h)),R(Ŷ(w,h))) , (22)

where R(Y(w,h)) and R(Ŷ(w,h)) are ranks obtained from the
predicted and observed values, respectively. A perfect posi-
tive correlation occurs when Rs is 1. 90
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4 Experimental results and analysis

4.1 NDVI and BT prediction

The quantitative results of the models are shown in Tables 1
and 2. Pixels without a vegetation cover (i.e., pixels over
desert) were excluded from the results. Including these pix-5

els will overestimate the model performance since they have
small variations throughout the years. For the masking, we
use NOAA quality assurance (QA) metadata. As can be
seen in Tables 1 and 2, all DL models outperform the first
climatology-I baseline by a huge margin. This is because the10

climatology was calculated before the simulation run. This
climatology cannot capture the dynamic after 3 decades. The
second climatology-II baseline is stronger. It uses informa-
tion from multiple years within the simulation run. All DL
models still achieve better results indicating that the mod-15

els have learned the seasonal dynamic beyond climatology.
In addition, these climatology baselines cannot be used to
derive drought indices (Sect. 4.2) since the inter-annual vari-
ability in the NDVI and BT is neglected as average cycles
are used. Furthermore, comparing the correlation and results20

of the BT with the NDVI, we can observe that all models
achieve higher correlation metrics (R2, Rp, and Rs) on the
BT than on the NDVI. This can be explained by the fact that
the NDVI is a composition of two bands while the BT is only
derived from the infrared band; thus it is harder for the mod-25

els to estimate the NDVI than the BT. In general, all DL mod-
els provide close results and are considered suitable for the
task. Focal Modulation clearly outperformed other DL mod-
els on the validation set for both NDVI and BT predictions.
For the test set on the NDVI, it comes slightly after the Wave-30

MLP model. However, Focal Modulation can generalize bet-
ter for BT, thus providing a balanced prediction between the
NDVI and BT, and consequently it is capable of generating
an overall better prediction.

In Table 3, we report the estimated inference time for the35

DL models. For the Focal Modulation model, the estimated
inference time to generate one sample for the NDVI and
BT containing 397× 409× 2 grid points is 0.24± 0.01 s on
one NVIDIA GeForce RTX 3090 GPU and 12±0.1 s on one
AMD Ryzen 9 3900X 12-Core CPU. U-Net with a 2D CNN40

does not include operations for the attention mechanism; thus
it is the fastest, but the performance is lower.

Qualitative results for the model prediction with Focal
Modulation are shown in Figs. 4 and 5. We take weeks from
different seasons through the years and remove pixels over45

desert for the calculations of bias distribution and regression
line. Positive bias values mean that the model overestimates
the NDVI (BT) while negative ones indicate that the model
underestimates the NDVI (BT). As shown in Figs. 4 and 5,
the biases vary across the weeks and locations. For week 750

in 2012, the biases for both the NDVI and the BT are rela-
tively high. Week 26 in 2019 exhibits similar high biases in
both the NDVI and the BT over high-latitude regions. The re-

spective distribution of biases is also shown in Figs. 4 and 5.
Overall, the results show that the dynamics over the years are 55

well captured. The biases for both the NDVI and the BT are
closely centered around zero with a shift for the center of bias
distribution from zeros. This shift is, however, in the same di-
rection for both the NDVI and the BT. We can also observe
that the model fits the regression lines better for weeks 14, 26, 60

and 39 than for week 7 in winter 2012. The comparison be-
tween the distributions of predicted and observed NDVI/BT
also confirms the observation that the model captured the dy-
namic throughout the years.

While this provides examples of the performance for in- 65

dividual samples, in Fig. 6 we provide an additional exper-
iment where we analyze biases of model predictions in dif-
ferent seasons of the year and over PRUDENCE regions (see
Fig. C1 in the Appendix for the definition of PRUDENCE
regions). This allows us to assess the model weaknesses and 70

strengths with different seasonality and spatial variability.
The mean biases were computed pixel-wise from both the
validation and test year time series, where we computed the
biases for each pixel from the weeks that belong to a spe-
cific season and averaged the results to obtain the last metric. 75

In addition, we computed the Pearson correlation Rp pixel-
wise in a similar way. As seen in Fig. 6, there are clusters
of positive and negative biases that vary with seasons over
specific regions. For instance, for NDVI prediction, the east-
ern part of the British Isles exhibits positive biases for all 80

seasons, while Iceland and northern Africa show constant
negative biases. For BT, southeastern Europe has persistent
positive biases with larger errors during winter. Pixels over
desert, i.e., northern Africa, show less variability in the NDVI
where only little seasonality is shown as in Fig. 4. Thus, 85

such regions are easier to predict with relatively small bi-
ases. However, any fluctuation in the NDVI prediction over
these pixels will lead to lower correlation compared to other
regions, since the time series primarily represent small vari-
ations around the mean NDVI value. In comparison to other 90

seasons, the winter season has relatively poor predictions, es-
pecially in the high-latitude regions. One possible explana-
tion for these errors is the lack of accurate training data in
Scandinavian regions during winter. For instance, previous
studies on ParFlow-CLM models showed that hydrological 95

modeling performs worse in northeastern Europe due to er-
rors in snow dynamics and regional forces (Naz et al., 2023;
Furusho-Percot et al., 2019a). It was also shown by Yang
et al. (2020) and Eisfelder et al. (2023) that high-latitude re-
gions are less reliable in deriving vegetation products due 100

to snow cover and its effects on the albedo and larger sen-
sor zenith angles. Another source of model errors is that
NOAA vegetation products depend on temporal composit-
ing to handle high frequency and atmosphere transmittance
(Yang et al., 2020). The absence of a generalized physical- 105

based model to enhance accuracy over various surfaces and
for all conditions generates difficulties for satellite products
(Kogan, 1995b). Nagol et al. (2009) assessed the uncertainty
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Table 1. Comparing the performance of different DL models. The metrics are shown for the validation set. The best and second-best results
of each metric are highlighted in bold and italic text, respectively. (±) denotes the standard deviation for three different runs.

Validation – Years (2010, 2011, 2017) – 156 weeks

NDVI

Algorithm MAE (↓) RMSE (↓) R2 (↑) Rp (↑) Rs (↑)

climatology-I 0.0550 0.0680 0.5763 0.8939 0.8669
climatology-II 0.0326 0.0416 0.8372 0.9353 0.9113

U-Net 0.0277± 0.0001 0.0365± 0.0002 0.8743± 0.0008 0.9406± 0.0005 0.9172± 0.0005
Wave-MLP 0.0272± 0.0003 0.0358± 0.0003 0.8784± 0.0018 0.9422± 0.0018 0.9183± 0.0021
Swin Transformer V1 0.0273± 0.0003 0.0362± 0.0003 0.8759± 0.0022 0.9411± 0.0013 0.9161± 0.0023
Swin Transformer V2 0.0277± 0.0003 0.0369± 0.0003 0.8703± 0.0021 0.9415± 0.0010 0.9167± 0.0008
Focal Modulation 0.0269± 0.0001 0.0358± 0.0002 0.8790± 0.0017 0.9432± 0.0001 0.9194± 0.0009

BT (K)

Algorithm MAE (↓) RMSE (↓) R2 (↑) Rp (↑) Rs (↑)

climatology-I 2.9130 3.7302 0.8454 0.9466 0.9408
climatology-II 2.3017 3.0020 0.8963 0.9601 0.9539

U-Net 1.9377± 0.0093 2.6067± 0.0057 0.9243± 0.0014 0.9667± 0.0004 0.9603± 0.0007
Wave-MLP 1.9200± 0.0491 2.5834± 0.0486 0.9248± 0.0035 0.9668± 0.0006 0.9603± 0.0007
Swin Transformer V1 1.9642± 0.0246 2.6341± 0.0303 0.9221± 0.0012 0.9661± 0.0005 0.9590± 0.0006
Swin Transformer V2 1.9741± 0.0191 2.6420± 0.0258 0.9225± 0.0013 0.9659± 0.0011 0.9590± 0.0014
Focal Modulation 1.9010± 0.0071 2.5364± 0.0073 0.9280± 0.0012 0.9679± 0.0001 0.9614± 0.0007

Table 2. Comparing the performance of different DL models. The metrics are shown for the test set. The best and second-best results of each
metric are highlighted in bold and italic text, respectively. (±) denotes the standard deviation for three different runs.

Test – Years (2012, 2018, 2019) – 139 weeks

NDVI

Algorithm MAE (↓) RMSE (↓) R2 (↑) Rp (↑) Rs (↑)

climatology-I 0.0567 0.0697 0.5529 0.8933 0.8704
climatology-II 0.0314 0.0400 0.8507 0.9433 0.9254

U-Net 0.0274± 0.0004 0.0359± 0.0005 0.8772± 0.0006 0.9435± 0.0006 0.9237± 0.0009
Wave-MLP 0.0261± 0.0006 0.0343± 0.0008 0.8861± 0.0043 0.9467± 0.0024 0.9252± 0.0011
Swin Transformer V1 0.0269± 0.0003 0.0355± 0.0004 0.8795± 0.0029 0.9442± 0.0010 0.9239± 0.0014
Swin Transformer V2 0.0270± 0.0005 0.0359± 0.0005 0.8766± 0.0038 0.9447± 0.0012 0.9251± 0.0020
Focal Modulation 0.0266± 0.0003 0.0350± 0.0004 0.8808± 0.0014 0.9454± 0.0009 0.9253± 0.0016

BT (K)

Algorithm MAE (↓) RMSE (↓) R2 (↑) Rp (↑) Rs (↑)

climatology-I 2.8806 3.6864 0.8447 0.9485 0.9470
climatology-II 2.2024 2.8880 0.9036 0.9623 0.9606

U-Net 1.9920± 0.0148 2.6652± 0.0262 0.9164± 0.0021 0.9644± 0.0009 0.9616± 0.0005
Wave-MLP 1.9376± 0.0184 2.6221± 0.0177 0.9172± 0.0005 0.9647± 0.0005 0.9619± 0.0008
Swin Transformer V1 1.9563± 0.0329 2.6381± 0.0397 0.9169± 0.0038 0.9649± 0.0009 0.9627± 0.0008
Swin Transformer V2 1.9516± 0.0639 2.6277± 0.0874 0.9183± 0.0060 0.9641± 0.0025 0.9619± 0.0020
Focal Modulation 1.9179± 0.0458 2.5745± 0.0470 0.9204± 0.0030 0.9664± 0.0007 0.9636± 0.0006
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Figure 4. Example predictions for the weekly NDVI from the test set. (a) Predicted NDVI. (b) Bias computed as prediction minus observed.
(c) Distribution of biases. (d) Regression results as predicted versus observed. (e) Distribution of NDVI values for NOAA observation and
model prediction. The metrics are computed over all pixels with vegetation cover.

Table 3. Inference time in seconds for different DL models.

Algorithm GPU1 CPU2

U-Net 0.09± 0.02 5± 0.2
Wave-MLP 0.28± 0.00 10± 0.3
Swin Transformer V1 0.18± 0.00 11± 0.2
Swin Transformer V2 0.19± 0.00 11± 0.2
Focal Modulation 0.24± 0.01 12± 0.1

1 NVIDIA GeForce RTX 3090 GPU, 2 AMD Ryzen 9 3900X
12-Core CPU

of the NDVI in this regard. These issues add some uncertain-
ties to the model training and evaluation. Using more recent
atmospheric correction methods such as in Moravec et al.
(2021) could also enhance the results. Furthermore, as men-
tioned in Sect. 2.1, the TSMP simulation was performed in5

a free mode and had no modeling of anthropogenic-related
influences. Given that agricultural systems and human activ-
ities which are interlinked with drought events could change
and follow adaptation strategies (Van Loon et al., 2016), this

certainly contributes to the error budget of the model. De- 10

veloping realistic land use and water management scenarios
within a probabilistic TSMP could reduce these errors. In ad-
dition, the uncertainty in the TSMP is highly linked to po-
tential errors in the driving forces and spinup initialization.
While these errors are common limitations of simulations 15

and remote sensing data, it should be noted that the predic-
tion of a DL model has its own uncertainty. Therefore, more
efforts are needed to recognize the sources of uncertainty in
model prediction (Sect. 4.2).

In Fig. 7, we visualize the computations over each PRU- 20

DENCE region separately. For Fig. 7a and b, we fit a normal
distribution over the normalized histogram of biases for each
season and over all PRUDENCE regions. For instance, pos-
itive shifts in the estimated means are shown in the NDVI
for both FR and AL regions during autumn. The same pat- 25

tern is shown for SC and BI during summer. As can also be
seen in Fig. 7b, a positive shift in BT is shown for all re-
gions during autumn. Furthermore, the shape of the distribu-
tion gives an overview of the prediction homogeneity within
the region; i.e., the prediction is highly uncertain over EA 30
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Figure 5. Example predictions for the weekly BT from the test set. (a) Predicted BT. (b) Bias computed as prediction minus observed.
(c) Distribution of biases. (d) Regression results as predicted versus observed. (e) Distribution of BT values for NOAA observation and
model prediction. The metrics are computed over all pixels with vegetation cover.

during winter and consequently has a relatively high stan-
dard deviation. The mean values in Fig. 7c and d represent
the expected MAE for all seasons combined. Figure 7c in-
dicates that in general the model predictions for the NDVI
are less certain during autumn in comparison to other peri-5

ods and over BI within the PRUDENCE regions. For BT, it
can be seen in Fig. 7d that the prediction is less certain during
winter and over ME and EA regions.

4.2 Agricultural drought assessment

In this section, we assess the model’s capability to predict10

different agricultural drought indices on a high temporal res-
olution (weekly basis). More specifically, we use the pre-
dicted NDVI and BT along with their multi-year climatol-
ogy to derive the NDVI and BT anomalies and the VCI,
TCI, and VHI drought indices. The NDVI and BT anoma-15

lies were computed by subtracting the mean value of the re-
spective pixel and week from the predictions (observations).
The VCI, TCI, and VHI were computed from Eqs. (2)–(4).
Figures 8 and 9 compare the predicted agricultural drought

indices VCI, TCI and VHI by the Focal Modulation model 20

with the observed ones from NOAA remote sensing data for
the years 2010–2012 (Fig. 8) and 2017–2019 (Fig. 9). We
spatially average the values inside each PRUDENCE region
and plot their respective time series on a weekly basis. Gen-
erally, values below 40 are identified as abnormally dry con- 25

ditions (Kogan et al., 2015; Yang et al., 2020). Overall, the
prediction resembles the seasonal wetness and dryness on a
regional scale. The agreements between predictions and ob-
servations vary across regions and time with satisfactory Rp
values ranging from 0.50 to 0.77, 0.38 to 0.70, and 0.50 to 30

0.75 for the VCI, TCI, and VHI, respectively. MAE values
fluctuate in the ranges of 9.99–6.81, 13.88–10.24, and 5.80–
2.69 for the VCI, TCI, and VHI, respectively. While there
is a satisfactory agreement with observations, there are some
obvious discrepancies, i.e., in the TCI over the Iberian Penin- 35

sula (IP) during summer 2018. More interestingly, we show
the bounded results of an ensemble of DL models. This en-
semble consists of the results of all DL models. As can be
seen, all DL models which are based on different algorithms
yield close predictions with small standard deviations. This 40
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Figure 6. An analysis of uncertainty and model generalization for different times of the year. The analysis was performed on the validation
and test sets as one set. (a) NDVI mean bias. (b) NDVI mean Pearson correlation. (c) BT mean bias. (d) BT mean Pearson correlation.

supports the idea that errors in model prediction can probably
be more attributed to biases in the TSMP model and remote
sensing reference data. In this respect, Yang et al. (2021b)
showed that vegetation products over regions with extremely
little seasonality, i.e., desert and high mountains, have higher5

errors. This can be seen in Eqs. (2)–(4), where small differ-
ences between maximum and minimum values could lead to
higher deviation in the vegetation indices.

Finally, as observed from the plots, the thermal surface
condition represented by the TCI contributes more to the10

agricultural drought events over Europe than the deficiency
in vegetation moisture condition approximated as the VCI
does. This is in agreement with Zeng et al. (2023), who
showed that drought affecting vegetation is more likely to
be associated with abnormally high temperatures in Europe.15

This is critical for studies that rely on the NDVI as the sole

vegetation product to identify drought events over Europe
(Sect. 1). In the Appendix, we show the time series for NDVI
and BT anomalies in Figs. F1 and F2. We also show veg-
etation health maps for different seasons from the valida- 20

tion and test years. These predicted maps are depicted in
Fig. 10. As shown, the model predicts an increase in agri-
cultural droughts in the summer of 2018 in central Europe
and France. Xoplaki et al. (2023) associated this extremely
dry summer with compound extreme events. 25

Furthermore, in Fig. 11, we provide an analysis of the fre-
quency of extreme droughts for the two periods 2010–2012
and 2017–2019. Frequency represents the percent of weeks
with severe to exceptional drought events where VHI< 26
(Kogan et al., 2020). While Figs. 8 and 9 provide overviews 30

of the averaged values over the regions, the analysis in
Fig. 11 provides a spatial comparison between the model pre-
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Figure 7. An analysis of uncertainty and model generalization for different times of the year over each PRUDENCE region. The analysis was
performed on the validation and test sets as one set. (a) NDVI bias distribution. (b) BT bias distribution. Shown are the probability density
functions. (c) NDVI MAE. (d) BT MAE.

diction and observations. The major hotspots for the highest
extremes are found outside the PRUDENCE regions (north
of the Black Sea, northwestern Africa, Egypt, and the north-
west of the Middle East). In comparison to the PRUDENCE
regions, the Iberian Peninsula and France exhibit more ex-5

treme droughts. The model predicts more extreme droughts
in those regions and agrees with observations. For the period
2010–2012, the model predicts fewer extreme droughts in the
Mediterranean and eastern Europe, while for the 2017–2019
period the model underestimates the frequency of extremes10

in the central European region.
Moreover, Fig. 12 evaluates the model’s capability to cap-

ture the seasonal dynamic in drought indices. As seen in
Fig. 12a, the mean Rp values are greater than 0.5 and around
0.6 for all seasons. MAE values show the highest error in the15

VCI for the winter season. One notable observation is that the
error bars have relatively large values indicating a variation in
prediction accuracy across the years within the same seasons.
This can be attributed to the seasonality shift in the long-term
trends. Klimavičius et al. (2023) showed that meteorological20

forces like air temperature have a strong impact on growing
seasons and phenological trends of the NDVI (VCI). The cu-
mulative distribution functions (CDFs) in Fig. 12b express

the main difference in the CDF for the VCI during winter,
while the model prediction overestimates the TCI over the 25

seasons.

4.3 Variable importance

To analyze the impact of each TSMP model component
on the model prediction, we present in Table 4 the predic-
tion results obtained with COSMO, the CLM, and ParFlow. 30

For this experiment, we train three models based on focal
modulation with the dimensionality {C(en,1) = 64,C(en,2) =

128,C(en,3) = 256}. As seen in Table 4, compared to the
CLM and ParFlow, COSMO achieves the best results for the
validation set while the CLM outperforms both for the test 35

set. COSMO has important variables related to water con-
tents and clouds along with other variables related to the at-
mospheric effects on the reflected signal on the ground. The
CLM has complementary variables related to heat fluxes and
evapotranspiration. ParFlow can approximate the hydrology 40

and serve as a proxy for the soil conditions. The results show
that all model components are useful, and the best result is
obtained when all these models are used.

While Table 4 provides an overview on the importance
of model components, a priori choice of proper input vari- 45
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Figure 8. Comparison of spatially averaged weekly agricultural drought indices between the model prediction and NOAA observation over
each PRUDENCE region. Drought indices were computed from the long-term climatology (1989–2016) pixel-wise and on a weekly basis.
All results are obtained with the focal modulation network. The ensemble model is the result of all DL models described in Sect. 3. NDVI
and BT anomalies are provided in Fig. F1 in the Appendix.
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Figure 9. Comparison of spatially averaged weekly agricultural drought indices between the model prediction and NOAA observations over
each PRUDENCE region. Drought indices were computed based on the long-term climatology (1989–2016) pixel-wise and on a weekly
basis. All results are obtained with the focal modulation network. The ensemble model is the result of all DL models described in Sect. 3.
NDVI and BT anomalies are provided in Fig. F2 in the Appendix.
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Figure 10. Comparison between the seasonal predicted vegetation health index (VHI) and NOAA observations over the pan-European
domain.

Figure 11. Comparison between the predicted drought frequency and NOAA observations over the pan-European domain. Frequency repre-
sents the percent of weeks with severe to exceptional drought events (VHI< 26).

ables from each of these model components to predict the
NDVI and BT requires substantive efforts and assumptions,
especially when the underlying physical process to construct
albedo and emissivity from the TSMP and trace the atmo-
spheric effects with satellite and solar geometry is very com-5

plex. Channel attention (Woo et al., 2018; Hu et al., 2018)
was commonly used in the field of computer vision and re-
mote sensing to enhance feature representations inside DL
models. A channel attention module aims to calibrate the in-
put variables/channels by learning an input-dependent scale10

for each channel. Thus, it can model the inter-correlation
across variables adaptively. In this work, we propose to
use channel attention to determine the relative importance

of TSMP input variables. Implementation details about the
module are provided in Appendix B and Fig. B1. We used 15

channel attention directly before the patch embedding for
the U-Net model. To disentangle the correlation between the
NDVI and the BT, we trained two separate models: one to
predict the NDVI and another one to predict BT. Note that
we only used channel attention for this experiment. Figure 13 20

provides example attentions induced for each input variable
from COSMO, the CLM, and ParFlow with respect to all
weeks in the test and validation sets. The attention value is
the mean value, and it represents the variable importance to
predict the NDVI (BT). Error bars show how the attention 25

changes across the weeks and input samples. We observe that
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Figure 12. An evaluation of seasonally predicted agricultural drought indices with ground truth NOAA observations at a resolution of 0.88°.
(a) The bottom row shows the mean absolute error (MAE) for different seasons, and the top row shows Pearson correlations (Rp) for these
seasons. (b) Comparison of the cumulative distribution functions between predictions and observations.

Table 4. Impact of TSMP model components on the model performance. The metrics are shown for the validation and test sets. All models
were trained with the focal modulation network. The best result of each metric is highlighted in bold text.

Validation – Years (2010, 2011, 2017) – 156 weeks

NDVI BT (K)

Model MAE (↓) RMSE (↓) R2 (↑) Rp (↑) Rs (↑) MAE (↓) RMSE(↓) R2 (↑) Rp (↑) Rs (↑)

COSMO 0.0281 0.0372 0.8696 0.9403 0.9160 1.9975 2.6389 0.9227 0.9667 0.9615
CLM 0.0289 0.0382 0.8586 0.9369 0.9115 2.0187 2.7080 0.9160 0.9653 0.9600
ParFlow 0.0303 0.0396 0.8500 0.9314 0.9042 2.2029 2.9254 0.9052 0.9617 0.9545
COSMO + CLM + ParFlow 0.0270 0.0359 0.8781 0.9433 0.9184 1.8981 2.5433 0.9266 0.9679 0.9613

Test – Years (2012, 2018, 2019) – 139 weeks

NDVI BT (K)

Model MAE (↓) RMSE(↓) R2 (↑) Rp (↑) Rs (↑) MAE (↓) RMSE (↓) R2 (↑) Rp (↑) Rs (↑)

COSMO 0.0285 0.0372 0.8619 0.9437 0.9238 2.0847 2.7549 0.9060 0.9633 0.9612
CLM 0.0269 0.0355 0.8782 0.9443 0.9238 1.9362 2.6303 0.9185 0.9650 0.9637
ParFlow 0.0291 0.0379 0.8648 0.9396 0.9175 2.2663 2.9481 0.8962 0.9635 0.9604
COSMO + CLM + ParFlow 0.0268 0.0353 0.8795 0.9452 0.9243 1.8730 2.5277 0.9227 0.9672 0.9642

the distributions of attention values for the NDVI and BT are
close. This indicates that the importance of highly relevant
input variables is probably shared for both the NDVI and the
BT. In addition, the standard deviations (error bars) suggest
that the choice of prior explanatory variables is not trivial5

since the relative importance can change with time and input
samples.

Overall, not all variables are relevant for the model. For
COSMO, atmosphere water divergence (hudiv), humidity-
related variables (hus, hur), precipitation variables (pr, prc,10

prg), surface air pressure (ps), drag coefficient of heat (tch),

and geopotential height (zg200) receive the highest attention
from the DL model. For the CLM, all variables are consid-
ered important, with snowfall flux (prsn) and precipitation on
ground (prso) being less important. Regarding ParFlow vari- 15

ables, it can be seen that the model considers most under-
ground water-related variables as relatively important. This
is intuitive since water and the amount of underground water
storage are important factors for the vegetation growth. The
availability of groundwater supply can reduce vulnerability 20

to agricultural drought (Meza et al., 2020; Ma et al., 2021).
Some previous studies showed that precipitation and temper-
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Figure 13. Channel attention for TSMP input variables. The activations are shown for both the NDVI (a) and the BT (b) with respect to all
weeks in the validation and test sets.

ature are strong predictors of the NDVI (Miao et al., 2015;
Wu et al., 2020; Gao et al., 2023). In addition, the climatol-
ogy of the long-term NDVI is highly correlated with precip-
itation and the biome classification (Yang et al., 2021b). The
relatively high value for zg200 in BT prediction can be ex-5

plained as the decrease in zg200 increases the likelihood of
heat wave occurrence (Miralles et al., 2019). The attention
values for COSMO can be interpreted as Nagol et al. (2009)
showed that scattering and absorption in the atmosphere af-
fect the visible and near-infrared radiance considerably. Shi10

et al. (2018) and Geiss et al. (2021) analyzed the influence of
cloud-related parametrization on visible and infrared satel-
lite images and found that the accuracy is closely related to
the cloud representation. A further study about the impact of
surface- and air pressure and water- and ice clouds on visible15

and near-infrared bands can be found in Baur et al. (2023). It
needs to be emphasized that the correlations shown in Fig. 13
must not be interpreted as a causal reasoning. One main rea-
son is that data in Earth science are subject to complicated
interactions and are inherently interdependent. There may be20

hidden confounding variables that influence the explanatory
variables and the evolution of the climate and vegetation vari-
ability. It is also worth noting that the learned variable im-
portance by machine learning models is dependent on how
the variables are represented in the training data (Betancourt25

et al., 2022). Furthermore, some variables have larger biases
than others since the TSMP was run in a free-mode simula-
tion. This may drive the model to rely less on such variables
even if they are considered important in scientific literature.
The same thing applies to highly correlated variables where30

changing the model architecture may alter dependencies as
well (Betancourt et al., 2022).

5 Conclusions and outlook

In this paper, we presented a new deep-learning-based ap-
proach for vegetation health prediction from a regional cli- 35

mate simulation. The developed model enabled the predic-
tion of variables which are not part of the input simulation.
In particular, we developed a vision transformer model with
focal modulation to predict NDVI and BT images from a
long-term TSMP ground-to-atmosphere (G2A) simulation at 40

0.11° resolution and on a weekly basis. We further validated
the approach with NOAA remote sensing satellite observa-
tions and identified regions of uncertainty in the model pre-
dictions. As part of this, agricultural drought assessment was
performed based on vegetation health products, namely the 45

VCI, TCI, and VHI, which were derived from the predicted
NDVI and BT, and long-term climatology. In this regard,
the applicability of the model was spatially and temporally
analyzed on a continental scale. Additionally, we extended
the commonly used explanatory variables by using plenty of 50

TSMP variables and analyzed their relative importance for
the task with channel attention as an explainable AI method.
The evaluation confirms that a DL model that was trained
on observations has the capacity to predict the NDVI and
BT from a TSMP climate simulation with a sufficiently good 55

agreement with real-world satellite observations.
Although our model is trained to predict vegetation prod-

ucts as they would be observed from the AVHRR platform,
it would be possible to predict target variables from differ-
ent platforms or by following different atmospheric correc- 60

tions. This could be done as future work by training multi-
ple DL models. Moreover, our work can be extended to pre-
dict other vegetation products from different satellite plat-
forms depending on requirements. The proposed approach
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can be used to predict future trends in the vegetation dynamic
based on climate scenarios. Providing this information, the
model can help to recognize regions that are expected to be
more vulnerable to agricultural drought risks. The predicted
satellite-based indices can be combined with different mete-5

orological drought indices to provide more comprehensive
drought assessments under future climate change. We be-
lieve that our approach could also be useful to combine deep
learning with data assimilation, i.e., to simulate remote sens-
ing products from downscaled simulations and to be used as10

a supportive evaluation framework to further investigate the
predictive capability of the simulation to reproduce drought
events and consequently to improve the TSMP model devel-
opment.
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Appendix A: Datasets

Table A1. Technical details on the output variables in the TSMP EUR-11 simulation. For more information on the data, we refer to Furusho-
Percot et al. (2019a).

Model Variable name Long name Unit Level

COSMO awt Atmosphere total water content kg m−2 1
capec Specific convectively available potential energy J kg−1 1
capeml Cape of mean surface layer parcel J kg−1 1
ceiling Cloud ceiling height (above mean sea level) m 1
cli Vertical integrated cloud ice kg m−2 1
clt Total cloud fraction 1 1
clw Vertical integrated cloud water kg m−2 1
hudiv Atmosphere water divergence kg m−2 1
hur2 2 m relative humidity % 1
hur (200, 500, 850) Relative humidity (at 200, 500, and 850 hPa) % 3
hus2 2 m specific humidity 1 1
hur (200, 500, 850) Relative humidity (at 200, 500, and 850 hPa) 1 3
incml Convective inhibition of mean surface layer parcel J kg−1 1
pr Precipitation kg m−2 1
prc Convective precipitation kg m−2 1
prg Large scale precipitation kg m−2 1
prt Total rainwater content vertically integrated kg m−2 1
ps Surface air pressure Pa 1
psl Sea level pressure Pa 1
snt Total snow content vertically integrated kg m−2 1
ta (200, 500, 850) Air temperature (at 200, 500, and 850 hPa) K 3
tch Drag coefficient of heat 1 1
td2 2 m dew point temperature K 1
ua (200, 500, 850) Eastward wind (at 200, 500, and 850 hPa) m s−1 3
uas Eastward near-surface wind velocity m s−1 1
va (200, 500, 850) Northward wind (at 200, 500, and 850 hPa) m s−1 3
vas Northward near-surface wind velocity m s−1 1
zg (200, 500, 850) Geopotential height (at 200, 500, and 850 hPa) m 3
zmla Height of boundary layer m 1

CLM evspsbl Evapotranspiration mm s−1 1
hfls Surface upward sensible heat flux W m−2 1
hfss Surface upward sensible heat flux W m−2 1
prsn Snowfall flux kg m−2 s−2 1
prso Precipitation on ground kg m−2 s−2 1
rlds Incoming shortwave radiation W m−2 1
tas Near-surface air temperature K 1
trspsbl Transpiration W m−2 1

ParFlow sgw Groundwater saturation 1 15
wtd Water table depth m 1
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Table A2. Technical details on the static variables from the CLM in the TSMP EUR-11 simulation and the computed static variables.

Model Variable name Long name Unit Level

CLM orog Surface height or digital elevation model (DEM) m 1
sftlf Land–sea fraction % 1
zbot Atmospheric reference height (from COSMO to CLM) m 1

Computed from land–sea fraction – Distance to water km 1
Computed from orography – Roughness 1 1
Computed from orography – Slope ° 1

Table A3. Technical details on the spectral channel characteristics for the Advanced Very-High-Resolution Radiometer (AVHRR) and the
Visible Infrared Imaging Radiometer Suite (VIIRS).

Satellite system Spectral band Spectral range (µm)

AVHRR ρR 0.58–0.68
ρNIR 0.725–1.1
ρIR 10.3–11.3

VIIRS ρR 0.600–0.680
ρNIR 0.846–0.885
ρIR 10.500–12.400
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Appendix B: Channel attention

Channel attention aims to condense the input channels into a
lower dimensionality and then construct channel scales with
a sigmoid activation function (Sigmoid(x)= 1

1+e−x ∈ [0,1]).
In this manner, the neural network learns to calibrate the in-5

put channels with the learned scaling depending on the input
channels. Given X ∈ RV×W×H as input TSMP simulation,
where V is the number of output variables from COSMO,
the CLM, and ParFlow and W and H are the spatial exten-
sions, the channel attention is computed as follows:10

ChannelAttention(X), Sigmoid(
MLP

(
GAP(X)

)
+MLP

(
GSD(X)

))
∈ RV×1×1 , (B1)

where Sigmoid is the sigmoid function and MLP consists
of two linear layers with a ReLU activation in between.
The first layer decreases the dimension to V

ratt
, and the

subsequent layer maps it back to V . GAP is global av-15

erage pooling, and GSD is the global standard deviation.
For the experiments in Sect. 4.3, we trained two separate
models for the NDVI and BT independently with (ratt = 3,
ratt = 5) and with the dimensionality {C(en,1) = 64,C(en,2) =

128,C(en,3) = 256} and averaged the results.

Figure B1. Illustration of the channel attention implementation. The output of channel attention is multiplied by the input TSMP to scale the
channels from COSMO, the CLM, and ParFlow according to their activation values.

20
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Appendix C: PRUDENCE scientific regions

Figure C1. Orography over the EURO-CORDEX domain. The white boundaries with the labeled names inside define the PRUDENCE
regions. The time series for validating and testing agricultural drought indices were computed over these regions.
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Appendix D: Ablation study

In Table D1, we provide an additional analysis of the im-
pact of the perceptual VGG loss described in Eq. (16). When
adding a perceptual loss for training, we observe a consistent
improvement for all metrics while residuals are slightly big-5

ger for the test set. As shown in Figs. D1 and D2, adding the
loss LVGG reduces the blurring effect and increases variabil-
ity.

Table D1. Ablation study on the perceptual VGG loss described in Eq. (16). The metrics are shown for the validation and test sets as one set.
The model used is a U-Net based on focal modulation. The best result of each metric is highlighted in bold text.

NDVI BT (K)

Loss function MAE (↓) RMSE (↓) R2 (↑) Rp (↑) Rs (↑) MAE (↓) RMSE (↓) R2 (↑) Rp (↑) Rs (↑)

V
al LMAE 0.0274 0.0364 0.8744 0.9400 0.9139 1.9562 2.5945 0.9255 0.9664 0.9597

LMAE+LVGG 0.0270 0.0359 0.8781 0.9433 0.9184 1.8981 2.5433 0.9266 0.9679 0.9613

Te
st LMAE 0.0266 0.0350 0.8819 0.9443 0.9219 1.9642 2.6329 0.9181 0.9639 0.9610

LMAE+LVGG 0.0268 0.0353 0.8795 0.9452 0.9243 1.8730 2.5277 0.9227 0.9672 0.9642

Figure D1. Impact of the perceptual VGG loss on NDVI predictions and image sharpness. The example shown is for week 30 in the year
2018. Best seen in digital formats with colors.
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Figure D2. Impact of the perceptual VGG loss on BT predictions and image sharpness. The example shown is for week 30 in the year 2018.
Best seen in digital formats with colors.

Appendix E: Patch embedding

Patch embedding with a patch size > 1 is commonly used in
vision transformer architectures. The main aim of this em-
bedding is to increase the channel dimension and reduce the
computational demands of the self-attention modules. This5

can be done by merging and embedding neighborhood pix-
els/tokens, thus reducing the spatial or temporal resolution.
In Table E1, we show that decreasing the spatial dimension
of the raw input for the encoder has negative effects on our
image-to-image regression task in both quantitative and qual-10

itative terms. This can be understood as the information was
lost and the model struggles to output the original resolution.
Note that for all experiments we keep using the down- and
up-sampling with a factor of 2 in both the encoder and the
decoder, while we only change the patch size before the first15

encoder layer. To match the original spatial resolution, we
use an additional bilinear up-sampling after the last decoder
layer.
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Table E1. Impact of patch size on patch embedding before the first encoder layer. The metrics are shown for the validation and test sets. The
used model is a U-Net based on the Focal Modulation model. The best result of each metric is highlighted in bold text.

NDVI BT (K)

Patch size MAE (↓) RMSE (↓) R2 (↑) Rp (↑) Rs (↑) MAE (↓) RMSE (↓) R2 (↑) Rp (↑) Rs (↑)

V
al

1× 1 0.0270 0.0359 0.8781 0.9433 0.9184 1.8981 2.5433 0.9266 0.9679 0.9613
2× 2 0.0280 0.0369 0.8707 0.9374 0.9116 1.9372 2.6108 0.9243 0.9664 0.9604
4× 4 0.0291 0.0383 0.8625 0.9345 0.9075 2.0033 2.6957 0.9184 0.9633 0.9570

Te
st

1× 1 0.0268 0.0353 0.8795 0.9452 0.9243 1.8730 2.5277 0.9227 0.9672 0.9642
2× 2 0.0271 0.0355 0.8786 0.9422 0.9185 1.9638 2.6669 0.9157 0.9645 0.9618
4× 4 0.0286 0.0375 0.8644 0.9363 0.9141 2.1741 2.9132 0.8977 0.9594 0.9580

Appendix F: Additional results

Figure F1. Supplementary results to Fig. 8. Comparison of spatially averaged weekly NDVI anomalies between the model prediction and
NOAA observation over each PRUDENCE region. The anomaly was computed by subtracting the mean values from predictions (obser-
vations). The mean values were computed from the long-term climatology (1989-2016) pixel-wise and on a weekly basis. All results are
obtained with a DL model based on the focal modulation network. The ensemble model is the result of all DL models described in Sect. 3.
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Figure F2. Supplementary results to Fig. 9. Comparison of spatially averaged weekly BT anomalies between the model prediction and NOAA
observation over each PRUDENCE region. The anomaly was computed by subtracting the mean values from predictions (observations). The
mean values were computed from the long-term climatology (1989–2016) pixel-wise and on a weekly basis. All results are obtained with a
DL model based on the focal modulation network. The ensemble model is the result of all DL models described in Sect. 3.

Code and data availability. The source code and the pre-
trained models to reproduce the results are published at
https://doi.org/10.5281/zenodo.10015048 (Shams Eddin and
Gall, 2023a). The source code is also available on GitHub
at https://github.com/HakamShams/Focal_TSMP (last access:5

4 April 2024). The preprocessed data used in this study
are available at https://doi.org/10.5281/zenodo.10008814
(Shams Eddin and Gall, 2023b). The original TSMP
data are stored at the Jülich Research Centre at https:
//datapub.fz-juelich.de/slts/cordex/index.html (last access:10

4 April 2024) (Furusho-Percot et al., 2019b) and at PANGAEA at
https://doi.org/10.1594/PANGAEA.901823 (Furusho-Percot et al.,
2019c). The raw vegetation health products can be downloaded
from the National Oceanic and Atmospheric Administration
(NOAA) Center for Satellite Applications and Research (STAR)15

at https://www.star.nesdis.noaa.gov/star/index.php (last access:
4 April 2024) (Yang et al., 2020).

Author contributions. This research was coordinated and super- 20

vised by JG. MHSE developed the software, performed the exper-
iments, developed the method, and wrote the initial article. JG re-
viewed and edited the article. Both authors read and approved the
final article.

Competing interests. The contact author has declared that neither 25

of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev- 30

ery effort to include appropriate place names, the final responsibility
lies with the authors.

https://doi.org/10.5281/zenodo.10015048
https://github.com/HakamShams/Focal_TSMP
https://doi.org/10.5281/zenodo.10008814
https://datapub.fz-juelich.de/slts/cordex/index.html
https://datapub.fz-juelich.de/slts/cordex/index.html
https://datapub.fz-juelich.de/slts/cordex/index.html
https://doi.org/10.1594/PANGAEA.901823
https://www.star.nesdis.noaa.gov/star/index.php


M. H. Shams Eddin and J. Gall: Focal-TSMP 31

Acknowledgements. We thank the Jülich Research Centre for pro-
viding the TSMP dataset to the community and Klaus Goergen for
the technical discussion related to the TSMP simulation. We would
also like to thank Leonhard Scheck for the helpful discussions on
radiative transfer models and Petra Friederichs for the thoughtful5

discussions on detection and attribution of weather and climate ex-
tremes. Finally, we thank the two anonymous reviewers for their
comments to improve this work.

Financial support. This work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) –10

SFB 1502/1–2022 – project no. 450058266 within the Collaborative
Research Center (CRC) for the project Regional Climate Change:
Disentangling the Role of Land Use and Water Management
(DETECT) and under Germany’s Excellence Strategy – EXC 2070
– project no. 390732324.15

This open-access publication was funded
by the University of Bonn.

Review statement. This paper was edited by Di Tian and reviewed
by two anonymous referees.20

References

Adede, C., Oboko, R., Wagacha, P. W., and Atzberger, C.: A
Mixed Model Approach to Vegetation Condition Prediction
Using Artificial Neural Networks (ANN): Case of Kenya’s
Operational Drought Monitoring, Remote Sens., 11, 1099,25

https://doi.org/10.3390/rs11091099, 2019.
Aleissaee, A. A., Kumar, A., Anwer, R. M., Khan, S.,

Cholakkal, H., Xia, G.-S., and Khan, F. S.: Transformers
in Remote Sensing: A Survey, Remote Sens., 15, 1860,
https://doi.org/10.3390/rs15071860, 2023.30

Ba, J. L., Kiros, J. R., and Hinton, G. E.: Layer normalization, arXiv
[preprint], https://doi.org/10.48550/arXiv.1607.06450, 2016.

Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendor-
fer, M., and Reinhardt, T.: Operational Convective-Scale Nu-
merical Weather Prediction with the COSMO Model: Descrip-35

tion and Sensitivities, Mon. Weather Rev., 139, 3887–3905,
https://doi.org/10.1175/MWR-D-10-05013.1, 2011.

Baur, F., Scheck, L., Stumpf, C., Köpken-Watts, C., and Potthast,
R.: A neural-network-based method for generating synthetic 1.6
µm near-infrared satellite images, Atmos. Meas. Tech., 16, 5305–40

5326, https://doi.org/10.5194/amt-16-5305-2023, 2023.
Ben-Bouallegue, Z., Clare, M. C. A., Magnusson, L., Gascon, E.,

Maier-Gerber, M., Janousek, M., Rodwell, M., Pinault, F., Dram-
sch, J. S., Lang, S. T. K., Raoult, B., Rabier, F., Chevallier,
M., Sandu, I., Dueben, P., Chantry, M., and Pappenberger, F.:45

The rise of data-driven weather forecasting, arXiv [preprint],
https://doi.org/10.48550/arXiv.2307.10128, 2023.

Benson, V., Requena-Mesa, C., Robin, C., Alonso, L., Cortés,
J., Gao, Z., Linscheid, N., Weynants, M., and Reichstein, M.:
Forecasting localized weather impacts on vegetation as seen50

from space with meteo-guided video prediction, arXiv [preprint],
https://doi.org/10.48550/arXiv.2303.16198 2023.

Bergen, K. J., Johnson, P. A., de Hoop, M. V., and
Beroza, G. C.: Machine learning for data-driven discov-
ery in solid Earth geoscience, Science, 363, eaau0323, 55

https://doi.org/10.1126/science.aau0323, 2019.
Betancourt, C., Stomberg, T. T., Edrich, A.-K., Patnala, A., Schultz,

M. G., Roscher, R., Kowalski, J., and Stadtler, S.: Global, high-
resolution mapping of tropospheric ozone – explainable machine
learning and impact of uncertainties, Geosci. Model Dev., 15, 60

4331–4354, https://doi.org/10.5194/gmd-15-4331-2022, 2022.
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate

medium-range global weather forecasting with 3D neural net-
works, Nature, 619, 533–538, https://doi.org/10.1038/s41586-
023-06185-3, 2023. 65

Blanchard, A., Parashar, N., Dodov, B., Lessig, C., and Sapsis, T.:
A Multi-Scale Deep Learning Framework for Projecting Weather
Extremes, in: NeurIPS 2022 Workshop on Tackling Climate
Change with Machine Learning, https://www.climatechange.ai/
papers/neurips2022/65 (last access: 4 April 2024), 2022. 70

Chen, K., Han, T., Gong, J., Bai, L., Ling, F., Luo, J.-J., Chen,
X., Ma, L., Zhang, T., Su, R., Ci, Y., Li, B., Yang, X., and
Ouyang, W.: FengWu: Pushing the Skillful Global Medium-
range Weather Forecast beyond 10 Days Lead, arXiv [preprint],
https://doi.org/10.48550/arXiv.2304.02948, 2023. 75

Chen, Z., Liu, H., Xu, C., Wu, X., Liang, B., Cao, J., and Chen,
D.: Modeling vegetation greenness and its climate sensitiv-
ity with deep-learning technology, Ecol. Evol., 11, 7335–7345,
https://doi.org/10.1002/ece3.7564, 2021.

Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., Furtado, J. C., 80

Mishra, V., Xiao, X., and Randall, R. M.: Global distribution,
trends, and drivers of flash drought occurrence, Nat. Commun.,
12, 6330, https://doi.org/10.1038/s41467-021-26692-z, 2021.

Christian, J. I., Martin, E. R., Basara, J. B., Furtado, J. C.,
Otkin, J. A., Lowman, L. E., Hunt, E. D., Mishra, V., and 85

Xiao, X.: Global projections of flash drought show increased
risk in a warming climate, Commun. Earth Environ., 4, 165,
https://doi.org/10.1038/s43247-023-00826-1, 2023.

Das, M. and Ghosh, S. K.: Deep-STEP: A Deep Learning
Approach for Spatiotemporal Prediction of Remote Sens- 90

ing Data, IEEE Geosci. Remote Sens. Lett., 13, 1984–1988,
https://doi.org/10.1109/LGRS.2016.2619984, 2016.

de Burgh-Day, C. O. and Leeuwenburg, T.: Machine learning for
numerical weather and climate modelling: a review, Geosci.
Model Dev., 16, 6433–6477, https://doi.org/10.5194/gmd-16- 95

6433-2023, 2023.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,

P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, 100

A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the 105

data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L.: ImageNet: A large-scale hierarchical image
database, in: 2009 IEEE Conference on Computer Vi- 110

https://doi.org/10.3390/rs11091099
https://doi.org/10.3390/rs15071860
https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.1175/MWR-D-10-05013.1
https://doi.org/10.5194/amt-16-5305-2023
https://doi.org/10.48550/arXiv.2307.10128
https://doi.org/10.48550/arXiv.2303.16198
https://doi.org/10.1126/science.aau0323
https://doi.org/10.5194/gmd-15-4331-2022
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://www.climatechange.ai/papers/neurips2022/65
https://www.climatechange.ai/papers/neurips2022/65
https://www.climatechange.ai/papers/neurips2022/65
https://doi.org/10.48550/arXiv.2304.02948
https://doi.org/10.1002/ece3.7564
https://doi.org/10.1038/s41467-021-26692-z
https://doi.org/10.1038/s43247-023-00826-1
https://doi.org/10.1109/LGRS.2016.2619984
https://doi.org/10.5194/gmd-16-6433-2023
https://doi.org/10.5194/gmd-16-6433-2023
https://doi.org/10.5194/gmd-16-6433-2023
https://doi.org/10.1002/qj.828


32 M. H. Shams Eddin and J. Gall: Focal-TSMP

sion and Pattern Recognition, Miami, FL, USA, 248–255,
https://doi.org/10.1109/CVPR.2009.5206848, 2009.

Diaconu, C.-A., Saha, S., Günnemann, S., and Xiang Zhu,
X.: Understanding the Role of Weather Data for Earth Sur-
face Forecasting using a ConvLSTM-based Model, in: 20225

IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), New Orleans, LA, USA, 1361–
1370, https://doi.org/10.1109/CVPRW56347.2022.00142, 2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai,
X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold,10

G., Gelly, S., Uszkoreit, J., and Houlsby, N.: An Image is
Worth 16x16 Words: Transformers for Image Recognition at
Scale, in: International Conference on Learning Represen-
tations, https://openreview.net/forum?id=YicbFdNTTy (last ac-
cess: 4 April 2024), 2021.15

Düben, P., Modigliani, U., Geer, A., Siemen, S., Pappen-
berger, F., Bauer, P., Brown, A., Palkovic, M., Raoult, B.,
Wedi, N., and Baousis, V.: Machine learning at ECMWF: A
roadmap for the next 10 years, ECMWF Technical Memoranda,
https://doi.org/10.21957/ge7ckgm, 2021.20

Eisfelder, C., Asam, S., Hirner, A., Reiners, P., Holzwarth, S., Bach-
mann, M., Gessner, U., Dietz, A., Huth, J., Bachofer, F., and
Kuenzer, C.: Seasonal Vegetation Trends for Europe over 30
Years from a Novel Normalised Difference Vegetation Index
(NDVI) Time-Series-The TIMELINE NDVI Product, Remote25

Sens. 15, 3616, https://doi.org/10.3390/rs15143616, 2023.
Essa, Y. H., Hirschi, M., Thiery, W., El-Kenawy, A. M.,

and Yang, C.: Drought characteristics in Mediterranean un-
der future climate change, npj Clim. Atmos. Sci., 6, 133,
https://doi.org/10.1038/s41612-023-00458-4, 2023.30

Fazry, L., Ramadhan, M. M. L., and Jatmiko, W.: Change
Detection of High-Resolution Remote Sensing Im-
ages Through Adaptive Focal Modulation on Hierar-
chical Feature Maps, IEEE Access, 11, 69072–69090,
https://doi.org/10.1109/ACCESS.2023.3292531, 2023.35

Ferchichi, A., Abbes, A. B., Barra, V., and Farah, I. R.:
Forecasting vegetation indices from spatio-temporal re-
motely sensed data using deep learning-based approaches:
A systematic literature review, Ecol. Inf., 68, 101552,
https://doi.org/10.1016/j.ecoinf.2022.101552, 2022.40

Furusho-Percot, C., Goergen, K., Hartick, C., Kulkarni, K., Keune,
J., and Kollet, S.: Pan-European groundwater to atmosphere ter-
restrial systems climatology from a physically consistent simula-
tion, Sci. Data, 6, 320, https://doi.org/10.1038/s41597-019-0328-
7, 2019a.45

Furusho-Percot, C., Goergen, K., Keune, J., Kulkarni, K., and Kol-
let, S.: Pan-european, physically consistent simulations from
groundwater to the atmosphere with the Terrestrial Systems
Modeling Platform, TerrSysMP (1989–2018 daily time-series),
Data Publication Server Forschungszentrum Jülich [data set],50

https://doi.org/10.17616/R31NJMGR, 2019b.
Furusho-Percot, C., Goergen, K., Keune, J., Kulkarni, K.,

and Kollet, S.: Pan-european, physically consistent sim-
ulations from groundwater to the atmosphere with the
Terrestrial Systems Modeling Platform, TerrSysMP55

(1989–2018 daily time-series), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.901823, 2019c.

Furusho-Percot, C., Goergen, K., Hartick, C., Poshyvailo-Strube,
L., and Kollet, S.: Groundwater Model Impacts Multian-

nual Simulations of Heat Waves, Geophys. Res. Lett., 49, 60

e2021GL096781, https://doi.org/10.1029/2021GL096781, 2022.
Gao, L., Liu, H., Yang, M., Chen, L., Wan, Y., Xiao, Z., and Qian,

Y.: STransFuse: Fusing Swin Transformer and Convolutional
Neural Network for Remote Sensing Image Semantic Segmen-
tation, IEEE J. Sel. Top. Appl. Earth Obs., 14, 10990–11003, 65

https://doi.org/10.1109/JSTARS.2021.3119654, 2021.
Gao, P., Du, W., Lei, Q., Li, J., Zhang, S., and Li, N.: NDVI Fore-

casting Model Based on the Combination of Time Series Decom-
position and CNN – LSTM, Water Resour. Manage., 37, 1481–
1497, https://doi.org/10.1007/s11269-022-03419-3, 2023. 70

Gasper, F., Goergen, K., Shrestha, P., Sulis, M., Rihani, J., Geimer,
M., and Kollet, S.: Implementation and scaling of the fully cou-
pled Terrestrial Systems Modeling Platform (TerrSysMP v1.0)
in a massively parallel supercomputing environment – a case
study on JUQUEEN (IBM Blue Gene/Q), Geosci. Model Dev., 75

7, 2531–2543, https://doi.org/10.5194/gmd-7-2531-2014, 2014.
Geiss, S., Scheck, L., de Lozar, A., and Weissmann, M.: Under-

standing the model representation of clouds based on visible and
infrared satellite observations, Atmos. Chem. Phys., 21, 12273–
12290, https://doi.org/10.5194/acp-21-12273-2021, 2021. 80

Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate informa-
tion needs at the regional level: the CORDEX framework., Bul-
letin – World Meteorological Organization, 58, 175–183, 2009.

Gutowski Jr., W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D.,
Kang, H.-S., Raghavan, K., Lee, B., Lennard, C., Nikulin, G., 85

O’Rourke, E., Rixen, M., Solman, S., Stephenson, T., and Tan-
gang, F.: WCRP COordinated Regional Downscaling EXperi-
ment (CORDEX): a diagnostic MIP for CMIP6, Geosci. Model
Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016,
2016. 90

Hammad, A. T. and Falchetta, G.: Probabilistic forecasting
of remotely sensed cropland vegetation health and its rele-
vance for food security, Sci. Total Environ., 838, 156157,
https://doi.org/10.1016/j.scitotenv.2022.156157, 2022.

Hendrycks, D. and Gimpel, K.: Gaussian error linear units (gelus), 95

arXiv [preprint], https://doi.org/10.48550/arXiv.1606.08415,
2016.

Horn, B.: Hill shading and the reflectance map, P. IEEE, 69, 14–47,
https://doi.org/10.1109/PROC.1981.11918, 1981.

Hu, J., Shen, L., and Sun, G.: Squeeze-and-Excitation Net- 100

works, in: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 7132–7141,
https://doi.org/10.1109/CVPR.2018.00745, 2018.

Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders,
I., Belda, M., Benestad, R., Boberg, F., Buonomo, E., Cardoso, 105

R. M., Casanueva, A., Christensen, O. B., Christensen, J. H.,
Coppola, E., De Cruz, L., Davin, E. L., Dobler, A., Domínguez,
M., Fealy, R., Fernandez, J., Gaertner, M. A., García-Díez,
M., Giorgi, F., Gobiet, A., Goergen, K., Gómez-Navarro, J. J.,
Alemán, J. J. G., Gutiérrez, C., Gutiérrez, J. M., Güttler, I., 110

Haensler, A., Halenka, T., Jerez, S., Jiménez-Guerrero, P., Jones,
R. G., Keuler, K., Kjellström, E., Knist, S., Kotlarski, S., Ma-
raun, D., van Meijgaard, E., Mercogliano, P., Montávez, J. P.,
Navarra, A., Nikulin, G., de Noblet-Ducoudré, N., Panitz, H.-J.,
Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen, J.-P., Prein, A. F., 115

Preuschmann, S., Rechid, D., Rockel, B., Romera, R., Sánchez,
E., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L., Sørland,
S. L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K.,

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPRW56347.2022.00142
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.21957/ge7ckgm
https://doi.org/10.3390/rs15143616
https://doi.org/10.1038/s41612-023-00458-4
https://doi.org/10.1109/ACCESS.2023.3292531
https://doi.org/10.1016/j.ecoinf.2022.101552
https://doi.org/10.1038/s41597-019-0328-7
https://doi.org/10.1038/s41597-019-0328-7
https://doi.org/10.1038/s41597-019-0328-7
https://doi.org/10.17616/R31NJMGR
https://doi.org/10.1594/PANGAEA.901823
https://doi.org/10.1029/2021GL096781
https://doi.org/10.1109/JSTARS.2021.3119654
https://doi.org/10.1007/s11269-022-03419-3
https://doi.org/10.5194/gmd-7-2531-2014
https://doi.org/10.5194/acp-21-12273-2021
https://doi.org/10.5194/gmd-9-4087-2016
https://doi.org/10.1016/j.scitotenv.2022.156157
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.1109/PROC.1981.11918
https://doi.org/10.1109/CVPR.2018.00745


M. H. Shams Eddin and J. Gall: Focal-TSMP 33

and Wulfmeyer, V.: Regional climate downscaling over Europe:
perspectives from the EURO-CORDEX community, Reg. Envi-
ron. Change, 20, 51, https://doi.org/10.1007/s10113-020-01606-
9, 2020.

Jefferson, J. L. and Maxwell, R. M.: Evaluation of sim-5

ple to complex parameterizations of bare ground evap-
oration, J. Adv. Model. Earth Sy., 7, 1075–1092,
https://doi.org/10.1002/2014MS000398, 2015.

Jin, H., Vicente-Serrano, S. M., Tian, F., Cai, Z., Conradt,
T., Boincean, B., Murphy, C., Farizo, B. A., Grainger, S.,10

López-Moreno, J. I., and Eklundh, L.: Higher vegetation
sensitivity to meteorological drought in autumn than spring
across European biomes, Commun. Earth Environ., 4, 299,
https://doi.org/10.1038/s43247-023-00960-w, 2023.

Johnson, J., Alahi, A., and Fei-Fei, L.: Perceptual Losses for Real-15

Time Style Transfer and Super-Resolution, in: Computer Vision
– ECCV 2016, edited by: Leibe, B., Matas, J., Sebe, N., and
Welling, M., Springer International Publishing, Cham, 694–711,
https://doi.org/10.1007/978-3-319-46475-6_43, 2016.

Jones, J. E. and Woodward, C. S.: Newton–Krylov-multigrid20

solvers for large-scale, highly heterogeneous, variably sat-
urated flow problems, Adv. Water Resour., 24, 763–774,
https://doi.org/10.1016/S0309-1708(00)00075-0, 2001.

Jones, P. W.: First- and Second-Order Conservative Remap-
ping Schemes for Grids in Spherical Coordinates, Mon.25

Weather Rev., 127, 2204–2210, https://doi.org/10.1175/1520-
0493(1999)127<2204:FASOCR>2.0.CO;2, 1999.

Kew, S. F., Philip, S. Y., Hauser, M., Hobbins, M., Wanders, N.,
van Oldenborgh, G. J., van der Wiel, K., Veldkamp, T. I. E.,
Kimutai, J., Funk, C., and Otto, F. E. L.: Impact of precipitation30

and increasing temperatures on drought trends in eastern Africa,
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-
17-2021, 2021.

Kladny, K.-R., Milanta, M., Mraz, O., Hufkens, K., and
Stocker, B. D.: Deep learning for satellite image fore-35

casting of vegetation greenness, bioRxiv [preprint],
https://doi.org/10.1101/2022.08.16.504173, 2022.
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