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Abstract. Satellite-derived agricultural drought indices can provide a complementary perspective of terrestrial vegetation
trends and their integration for drought assessments under future climates is beneficial for providing more comprehensive
assessments. However, satellite-derived drought indices are only available for observed periods. In this study, we investigate
aim to improve the agricultural drought assessments under future climate change by applying deep learning (DL) medels-on
to predict satellite-derived vegetation indices from a regional climate simulation. The simulation is produced by the Terrestrial
Systems Modelling Platform (TSMP) and performed in a free evolution mode over Europe. TSMP simulations incorporate

variables from underground to the top of the atmosphere (Ground to Atmosphere G2A) for-vegetation-health-modeling-and

ha NMP_cima on narfarmad in o feaa e da nd tha T

step-to-synthesize-and are widely used for research studies related to water cycle and climate change. We leverage these simula-
tions for long-term forecasting and DL to map the forecast variables into Normalized Difference Vegetation Index (NDVI) and
Brightness Temperature (BT) images from-the- TSMP-simulation-overEurepethat are not part of the simulation model. These
predicted images are then used to derive different vegetation and drought-indieestike-agricultural drought indices, namely
NDVI anomaly, BT anomaly, Vegetation Condition Index (VCI), Thermal Condition Index (TCI), and Vegetation Health Index
(VHI). The developed DL model could be integrated with data assimilation and used for down-stream tasks, i.e., for estimating
NDVI and BT for periods where no satellite data are available and for modelling the impact of extreme events on vegetation
responses with different climate change scenarios. Moreover, our study could be used as a complimentary evaluation frame-

work for TSMP-based climate change simulations. To ensure reliability and to assess the modelapplieability—with-different

’s applicability to different seasons and regions, we provide an analysis of model biases and
uncertainties across different regions over the Pan-Europe domain. We further provide an analysis about the contribution of
the input variables from the TSMP model components to ensure a better understanding of the model prediction. A comprehen-
sive evaluation on the long-term TSMP simulation using reference remote sensing data showed sufficiently good agreements
between the model predictions and observations. While model performance varies on the test set between different climate
regions, it achieves a mean absolute error (MAE) of 0.027 and 1.90 K °-with coefficient of determination (R?) scores of

0.88 and 0.92 for NDVI and BT, respectively, at 0.11° resolution for sub-seasonal predictions. Our-study-could-be-used-as=a
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responses-with-differentclimate-change-seenarios—In summary, we demonstrate the feasibility of using DL on a TSMP simula-

tion to synthesize NDVI and BT satellite images, which can be used for agricultural drought forecasting. Our implementation

is publicly available at the project page (https://hakamshams.github.io/Focal-TSMP).

1 Introduction

cording to recent studies on historical trends and current projections, different regions of the Earth would be under a changing

climate more vulnerable to extreme events such as flash droughts (Christian et al., 2021, 2023; Yuan et al., 2023), meteorolog-
ical and agricultural droughts (Essa et al., 2023), forest wildfires (Patacca et al., 2023), and water storage deficiency (Pokhrel
etal., 2021). The expected increase in concurrence of agricultural droughts would cause crop production losses and vegetation
mortality. In particular, people in regions with fragile adaptation and mitigation strategies will be more effected. Fereeasting
Therefore, forecasting the vegetation responses and their evolving patterns conditioned on climate scenarios is therefere-a

requirement to form better mitigation and adaptation strategies.

in-the-future-Marj-and-Meijerink;204H—In relation to this, there has been a growing line of research over the past in im-

proving and deploying climate medeHing-modeling that attempt to simulate the underlying processes of the Earth system
{Shresthaetal;2044; Lawreneeet-al52049)(Shrestha et al., 2014; Gasper et al., 2014; Lawrence et al., 2019). These modelling
platforms are essential to uﬂdef%&ﬂekehaﬂge%ﬂ%ewva{e%eye}eﬂﬂd%reahze and forecast climatic extreme events such as

droughts in a model simulation (Miralles et al., 2019).

lated outputs of modeling systems can be used to derive agricultural drought indices based on a deficiency in precipitation

(McKee, 1995; Vicente-Serrano et al., 2010) or soil moisture (Martinez-Ferndndez et al., 2015). Nowadays, satellite observa-

tions around the world provide a near real-time global monitoring of vegetation and drought conditions. Vegetation products

derived from satellite land surface reflectances are-used-in-particular-can be used as proxies for vegetation health and conse-
quently as agrlcultural drought indicators (Qm et al., 2021; Vreugdenhll et al., 2022). Ba%eée&ﬁe%&reem%éeve}epmemﬁﬁ
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While historical trends in satellite-based droughts have been extensively studied, satellite-based agricultural drought assess-

ment and its relation to climate simulations under climate change remains not fully explored. In this werk;—we-thus-propese-a

D NPV 2 RT from-themade

—study, we propose to use deep learning (DL) to improve
the agricultural drought analysis by predicting satellite-derived vegetation indices that can be combined with meteorological
or hydrological indices which are often used in studies for drought assessment to provide more comprehensive assessments.
In fact, some studies highlighted inconsistencies in the long-term drought trends (Sheffield et al., 2012; Kew et al., 2021;
Vicente-Serrano et al., 2022). Meanwhile others showed a different perspective of trends related to terrestrial vegetation from
remote sensing products (Zhu et al., 2016; Kogan et al., 2020). This is usually explained as assessments are highly depen-
dent on drought definition (Satoh et al., 2021; Reyniers et al., 2023) and extreme event attribution (Van Oldenborgh et al.,
2021), i.e., the drought indicator that was chosen in the methodology and the variations in modelling platforms. In addition,
prescribed vegetation assumptions exist in climate simulations which limit the modeling of atmospheric carbon effects or soil
moisture deficiency on vegetation (Pirret et al., 2020; Pokhrel et al., 2021; Reyniers et al., 2023). If we add to this the complex
spatio-temporal response of vegetation to climate variability (Seneviratne et al., 2021; Jin et al., 2023), i.e., regional responses
to climate have different dynamics and are more complicated than those at a global scale, we can conclude that predicting the
vegetation state in response to drought under climate conditions still poses a major challenge. More precisely, in this study

we predict satellite-based vegetation products from a free evolving simulation based on the Terrestrial Systems Modelling
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Platform (TSMP) (Furusho-Percot et al., 2019). TSMP simulations integrate variables from groundwater to the top of the at-
mosphere (Ground to Atmosphere G2A) and are primarily employed in studies on the water cycle and climate change (Ma
et al., 2021; Furusho-Percot et al., 2022; Naz et al., 2023; Patakchi Yousefi and Kollet, 2023). In particular, we predict from
the TSMP simulation the Normalized Difference Vegetation Index (NDVI) and Brightness Temperature (BT) as they would
have been observed from Advanced Very High Resolution Radiometer (AVHRR) from the National Oceanic and Atmospheric
Administration (NOAA) satellite systems. NDVI is computed from the reflectance in visible red (pr) and near-infrared bands
(pn1r)- It is a standard product that is extensively used in applications for vegetation health and crop yield (Tucker, 1979).
BT is a calibrated spectral radiation derived from the thermal band (p; ) and can be used for temperature-related vegetation
stress monitoring (Kogan, 1995a). We assume that a climate simulation (i.e., TSMP simulation) that is close to the true state
of the Earth should be able to model vegetation products (i.e., NDVI and BT) regardless of the target satellite platform (in this
study AVHRR NOAA). Recently, DL models have become popular to build a predictive model for tasks that include complex
or intractable cause and effect relations within the Earth system (Bergen et al., 2019; Tuia et al., 2023; de Burgh-Day and
Leeuwenburg, 2023). In addition, DL can be used to handle biases implicitly, thus simplifying the entire workflow (Schultz
et al., 2021). For instance, DL was recently used in climate modelling for bias correction and down-scaling to project extremes
(Blanchard et al., 2022), weather forecasting (Lam et al., 2022; Chen et al., 2023; Bi et al., 2023; Ben-Bouallegue et al., 2023),
supporting data assimilation systems (Diiben et al., 2021; Valmassoi et al., 2022; Yu et al., 2023), and generalized multi-task
learning (Nguyen et al., 2023; Lessig et al., 2023). In this work, we thus propose a DL approach based on focal modulation
networks (Yang et al., 2022) to simultaneously predict NDVI and BT from the model simulation. In this way, we leverage a

climate simulation for long-term forecasting and DL for mapping the forecast variables to vegetation related indices that are

not part of the simulation model.
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1.1 Radiative transfer models

Forward operators like radiative transfer (RF)-selvers—ean—synthesize-solver are normally used to synthesize spectral band
satellite images from the output of a numerical weather predietionINWP)-model{iet-al2022)—Thesesyntheticimages
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model (Scheck et al., 2016; Geiss et al., 2021; Li et al., 2022). In this paper, we investigate the use of DL to predict products

of atmospherically corrected ebserved-albedo/emissivity on land (atmospherically corrected bottom of atmosphere) like NDVI

170 and BT simultaneously rather than training the neural network to serve as an emulator for a predefined physical-based RTF

radiative transfer model. In other words, our training data for DL are derived from real-world satellite observations (empir-

ical operator) without assimilating data or assumptions about radiations. Uﬁ}ﬂeeﬂtfefemefmeﬂedwveﬂes—weﬂs&mpu{—da&t

175

iorrs—Besides, there exist

180 climate-vegetation models which directly simulate the vegetation dynamic based on ecological processes and statistical mod-
eling. Nevertheless, they are limited by the complexity of the processes and poor generalization (Chen et al., 2021). Unlike
hydro-meteorological variables that can be predicted or forecast using N'WPnumerical weather model, vegetation products de-
mand an extended modeling representation of the surface and sub-surface (Lees et al., 2022). Recently, Salakpi et al. (2022a, b)
predicted short-term VCl-vegetation products based on previous vegetation conditions and observational anomaly indices in

185 a Bayesian auto-regressive approach. However, the interaction between vegetation and climate variability exhibit-exhibits a

strong non-linear behavieursbehavior. In this respect, many studies explored the applicability of DL for vegetation health

menitering-prediction using climate models and remote sensing data (Ferchichi-et-al52022)yIn-Wua-etal(2020)-aMEP-was
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195 . A common approach is to use past vegetation conditions to predict the short-term %ﬁﬁgﬁflrs%‘l—%ehﬂ—@@%%
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variations (Nay et al., 2018; Yu et al., 2022; Hammad and Falchetta, 2022; Lees et al., 2022; Vo et al., 2023). In a related work,
Requena-Mesa et al. (2021) addressed the problem of optical satellite imagery forecasting as a guided video prediction task.
In their framework, vegetation dynamics approximated by NDVI is modeled at high resolution using past satellite images as
initial conditions and static and reanalysis data as a model guidance. Similar approaches with this framework were presented
in (Robin et al., 2022; Kladny et al., 2022; Diaconu et al., 2022) and on a eentinental-seale—continental scale in (Benson
et al., 2023). While these works differ in their methodologies, i.e.— in the predicted vegetation products, model architec-

tures, and spatio-temporal resolutions, they have overall a good performance for short-term forecasting. Nenetheless;—only

on<forecactinoe— N« and NMaizarin 0 nroacanted—an

Mest-much longer forecasting time (Marj and Meijerink, 2011). Nonetheless, only few studies addressed long-term vegeta-
tion conditions forecasting (Marj and Meijerink, 2011; Miao et al., 2015; Patil et al., 2017; Chen et al., 2021; Wei et al., 2023)
. In addition, most studies focused only on a single indicatorlike NDVI-exeluding BT. The combination of different indicators

like NDVI and BT with their corresponding drought indices provides complementary information on the vegetation state and

is beneficial for vegetation monitoring (Yang et al., 2020). fa—this—studyAs mentioned before, we aim to use DL to predict
vegetation products like NDVI ;- BE-VCL-TCHand-VHI-at-a-continental-seale-and BT from a regional climate simulation at
a continental scale. We also focus on long-term forecasting without using an initial state, i.e., satellite images from previous
time steps. Unlike aforementioned works, we use more input data for the neural network from the surface and sub-surface to
account for a more detailed representation of the reflectance/emissivity on ground. In addition, we built the neural network
on Vision Transformers (Dosovitskiy et al., 2021) and Convolutional Neural Networks (CNN) models taking into account the
spatial context around each input pixel and operating on the whole scene at once. This was motivated by previous studies
that indicate that an effective model of the environment should consider the spatial-correlation within the domain. Previous
works train and evaluate DL models on biased-corrected reanalysis data. In contrast, we evaluate the approach with real-world
observations using a run of the simulation in the past. It is worth to note that this evaluation is more consistent with real-world

deployment schemes, since it is questionable how a model that has been trained and evaluated on reanalysis data will perform
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on a biased climate projection simulations. Thus, we opt for a simulation that mimics a climate projection of the past and train
and evaluate the model on it to internally correct biases and predict vegetation products.

To showcase the potential of our approach, we apply the predicted NDVI and BT for long-term agricultural drought forecast-
ing, where we derive Vegetation Condition Index (VCI), Thermal Condition Index (TCI), and Vegetation Health Index (VHI)
(Yang et al., 2020) as agricultural drought indicators from the predicted NDVI and BT. As part of this, we analyze whether
a DL model trained on simulation produced by TSMP can be used for vegetation health forecasting at a continental-scale
by identifying regions and periods of uncertainty in the model prediction. Moreover, we analyze the importance of the input
explanatory variables. We achieve an overall mean absolute error (MAE) of 0.027 and 1.90 K with coefficient of determina-
tion (R?) scores of 0.88 and 0.92 in predicting NDVI and BT, respectively for sub-seasonal predictions at 0.11° resolution.
Our results indicate that a direct prediction of vegetation products from a TSMP simulation with DL is an effective way for
scenario-based assessments of vegetation response to climate change.

The rest of this article is organized as follows. Section 2 describes the datasets that are used in the experiments. The method-
ology is described in Sect. 3. Experimental results and an analysis about variable importance are given in Sect. 4. Finally,

conclusions are provided in Sect. 5.

2 Datasets and data preprocessing

In this section, we describe the datasets used in the experiments. The TSMP simulation is presented in Sect. 3-12.1, the obser-
vational remote sensing data for model training and evaluation are presented in Sect. 3:22.2, and the preprocessing framework

of the data is described in Sect. 3:3-2.3.
2.1 Regional Earth system simulation

For this study, we use the simulation produced by Terrestrial System Modelling Platform version 1.1. (FerrSysMP-e+-"TSMP)
at the Research Centre Jiilich (FZJ) at-IBG-3 Institute and originally described in (Shrestha et al., 2014) and (Gasper et al.,
2014). The simulation used in this study is introduced in (Furusho-Percot et al., 2019). TSMP is a physics-based integrated
simulation representing a near-natarerealization of the terrestrial hydrologic and energy cycles that cannot be directly obtained

from measurements. Its setup consists of three main interconnected model components:

— The Consortium for Small Scale Modelling (COSMO) version 5.01 is a numerical weather model to simulate the diabatic

and adiabatic atmospheric processes (Baldauf et al., 2011).

— The Community Land Model (CLM) version 3.5 is used to simulate the bio-geophysical processes on the land surface

(Oleson et al., 2004, 2008).

— ParFlow version 3.2. is a hydrological model to explicitly simulate the 3D dynamic processes of water in the land surface
and underground (Jones and Woodward, 2001; Kollet and Maxwell, 2006; Jefferson and Maxwell, 2015; Maxwell et al.,
2015; Kuffour et al., 2020).
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ECMWF ERA-Interim data (Dee et al., 2011) were used to define the initial and boundary conditions for the simulation.
Based on this setup, a spinup of 10 years (1979-1988) was conducted to initialize the surface and subsurface hydrologic and
energy conditions and to reach the dynamic equilibrium with the atmosphere before the actual run (1989-2019). We selected
variables available within the period applicable for the analysis. This results in 29 main variables from COSMO, 8 vari-
ables from CLM, and 2 main variables from ParFlow. Additionally, we used 3 static variables from the analysis (Poshyvailo-
Strube et al., 2022). An analysis about the explanatory variables is provided in Sect. 224 and variable descriptions are listed
in Tables Al and A2. The three model components were fully coupled via the OASIS3 coupler (Valcke, 2013) to form a
unified soil-vegetation—atmosphere model. This scheme was built without nudging er—any—type-of DA-allowing the free-
running of the simulated variables. Thus, TSMP is ideal for representing the heterogeneity of the water cycle from the sub-
surface to the top atmosphere in a free evolution. In addition, the long-term simulation is performed for a historical time
period from January 1989 until summer in September 2019 with output variables aggregated on a daily basis and extended
extending over the Europe EURO-CORDEX EUR-11 domain (Giorgi et al., 2009; Gutowski Jr. et al., 2016; Jacob et al.,
2020)wi . . "

dinate system (¢mera=

s. The grid specification for TSMP is a standardized rotated coor-

G(rotated pole) = 39:5° Ny Aotated potey = 18° E) with a spatial resolution

meta

of ~0.11° (~12.5 km) and 412 x 424 grid cells in the rotated latitudinal and longitudinal direction, respectively. These

spatio-temporal dimensions and the model setup make TSMP suitable for climatological studies at a eentinental-seale—Fer

fefdfet}ghﬁma}ysrs—contmental scale.

2.2 Observational remote sensing data

Satellite-based vegetation health products were obtained from the-National-Oceanic-and-Atmospheric-Administration(INOAA);
Centerfor-SateHite-Applications-andResearch(STAR»ONOAA'. The blended version (Yang et al., 2020) is composed of

long-term remote sensing data derived from two systems of satellites: Advanced-VeryHigh-Resolution Radiometer(AVHRR
>AVHRR from 1981 to 2012 and its successor Visible Infrared Imaging Radiometer Suite (VIIRS) from 2013 onward. The

dataset includes two essential products, namely NDVI and BT (Table A3). NDVI is computed from the red (pr) and near-

infrared (pnr) bands:

NDVI = M (1)

(PNIR+PR)
The NDVI is unitless and given in the range [-0.1, 1]. Same NDVI values should not be interpreted similarly for different
ecosystems. In other words, the interpretation is highly dependant on the location and ecosystem productivity (Kogan, 1995b).
BT is derived from the infrared (p;g) band and given in Kelvin (X2K) within the range [0, 400]. To handle high frequency
noise caused by clouds, aerosol, and atmospheric variation along with different random error sources, NDVI and BT were

temporally aggregated into smoothed noise reduced weekly products. In addition, post-launch calibration coefficients and

I Center for Satellite Applications and Research (STAR) https://www.star.nesdis.noaa.gov/star/index.php
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solar/sensor zenith angles are applied to account for sensor degradation and orbital drift. The outlier removal is essential to
exclude invalid measurements. Additionally, this weekly temporal resolution is enough to capture the phenological phases of
vegetation and adequate for satellite data application (Kogan et al., 2011; Yang et al., 2020). Based on NDVI, BT and their
long-term climatologies, the upper and lower bounds of the ecosystem (minimum and maximum values for NDVI and BT)
can be estimated. CoensequentlyHence, VCI, TCI, and VHI can be derived pixel-wise (Kogan, 1995a, 1990). The vegetation
condition index is given by:

(NDVI — NDVI,,;,,)

VCI = 100
(NDVI,,00 — NDVl,;)°

with VCI € [0,100], (2)

where NDVI is the weekly noise reduced NDVI, and NDVI,,;,, and NDVI,,, ., the multi-year weekly absolute minimum and

maximum NDVI values, respectively. The thermal condition index is given by:

(BT 40 — BT)

TCI =100
(BTmaz - BTmzn)

, with TCI € [0,100], 3)

where BT is the weekly noise reduced BT, and BT,,;,, and BT,,,, the multi-year weekly absolute minimum and maximum

BT values, respectively. The vegetation health index is given by:
VHI = (a)VCI+ (1 — «)TCI, with VHI € [0,100], (€))

where « is a weighting coefficient. While VCI is a proxy for the moisture condition and its lower values reflect a water-related
stress, TCI is a proxy for the thermal condition and its lower values indicate a temperature and wetness-related stress. The
composite index VHI is a linear combination of the former two indices to approximate the vegetation health. VHI fluctuates
annually between 0 (unfavourable condition) to 100 (favourable condition). The values of these indices above 100 and below
0 are clipped. Mereover-the-The dataset is provided globally with ~ 0.05° (~ 4 km) spatial resolution mapped into the Plate
Carrée projection. NOAA VP have been broadly used for research and real-world applications. For a summary on the validation

and studies that use this dataset for agricultural droughts monitoring, we refer to Yang et al. (2020).
2.3 Preprocessing

In this section we describe the data preprocessing that is needed prior to apply DL. Overall the TSMP has 30 years of data
(1989-2019). We reserved the years 1989-2009 (AVHRR era) and 2013-2016 (VIIRS era) for training, 2010-2011 (AVHRR
era) and 2017 (VIIRS era) for validation, and 2012 (AVHRR era), 2018-2019 (VIIRS era) for testing. For TSMP, we excluded
the lateral boundary relaxation zone by removing invalid grid points from the boundaries. This results in a final grid with
397 x 409 grid cells in the latitudinal and longitudinal direction, respectively. In order to connect local-related characteristics
to climate conditions, we computed 3 additional static variables from the static variables described in Table A2. We computed
slope (Horn, 1981) and roughness (Wilson et al., 2007) from orography and distance to water from the land/sea mask. Due to
the fact that the remote sensing data were obtained from two different satellite systems, the data derived from VIIRS have to
be first adjusted to insure continuity and consistency with the data derived from AVHRR. Yang et al. (2018, 2021b) showed

that the discrepancy between sensors are mainly due to the differences in spectral response ranges and calibration parameters.

10
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This-has-atargereffeet-Compared to BT/TCI, this has a greater impact on NDVI/VCI than-en BT/ FCHHKeogan-et-al;2015)

—(Kogan et al., 2015). Considering this issue, we followed the same re-compositing approach as described in Yang et al.
(2021b). The re-compositing approach can be used to generate cross-sensor vegetation products for the time period from 2013
to 2019. In fact NDVI/BT from different sensors can be decomposed into climatologies and VCI/TCI. The climatology provides
information about the Ecosystem and it is sensor-specific. While VCI/TCI for the same ecosystem location are cross-sensor.
Thus, using climatology from AVHRR and VCI from VIIRS, Eq. (2) can be reformulated to re-compose NDVI-for VHRS
re-composite NDVI for AVHRR as following:

NDVT, _(YClwiirs)  (\pyy NDVI NDVI 5
(AVHRR) = 100 ( (maz,AVHRR) — (min,AVHRR)) + (min,AVHRR) (5)
where NDVI'( AVHRR) is the converted weekly noise reduced NDVI from VIIRS to AVHRR, VCl(y;rRrs) is the Vegetation
Condition Index derived from VIIRS, NDVI ;.50 avrrR) and NDVI (00 avrRR) are the multi-year weekly absolute mini-

mum and maximum NDVI values (climatology) derived from AVHRR, respectively. Similarly from Eq. (3) we have:

BT sv i rr) = BT (maz,AVHRR)— (TCI({&;RS)> (BT (mmax,AvEHRR) — BT (min,AVHRR)) ; (6)
where BT'( AVHRR) is the converted weekly noise reduced BT from VIIRS to AVHRR, TCl(y 1rRs) is the Thermal Condition
Index derived from VIIRS, BT (,in, av 5 RR) a0d BT (1,42, Av 5 RR) are the multi-year weekly absolute minimum and maximum
BT values (climatology) derived from AVHRR, respectively. Please note that VCI(vrrrs) and TCl(yr7rs) were based on a
pseudo long-term VIIRS climatology (for more details on this, please see Yang et al. (2018)). In addition, the TSMP simulation
and target remote sensing data have to be spatially aligned in the same domain. After the continuity at NDVI and BT level has
been realized, we mapped these two products into the TSMP rotated coordinate system over the EURO-CORDEX EUR-11
domain. For the mapping, we up-scaled the data from 0.05° to 0.11° resolution based on a first-order conservative mapping
(Jones, 1999) using the package from Zhuang et al. (2020). For calculating the spatial mean, we excluded invalid, water, and
coastal lines pixels. Afterwards, we computed VCI, TCI and VHI based on Eq. (2)-(4). We note that the weighted coefficient o
in Eq. (4) can be empirically calibrated as a spatially variant factor (Zeng et al., 2022, 2023). Following previous works, we set
« to its standard value 0.5 in all experiments as in Yang et al. (2020). Furthermore, masks over desert and very cold areas were
extracted from the quality assurance (QA) metadata provided with the data. Eventually, the preprocessed data are aggregated
into data cubes ({variable, lat, lon}) on a weekly basis and stored as netCDF files. This ebserved-remote sensing dataset can
serve as a reference to train and evaluate the DL model performance. Overall, this includes 1263, 156, and 139 samples (weeks)
for training, validation, and testing, respectively. To avoid overfitting or the domination of few input variables, we normalized
the input of TSMP by subtracting the mean and dividing by the standard deviation corresponding to each input variable. These
statistics were computed only from the years that are used for training. The invalid values of pixels were replaced with zeres

zero values as input to the DL model.

11
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3 Methodology

Problem formulation. Given TSMP € RV *T>*WxH a4 3 climate change simulation, where V' is the number of output variables
from the COSMO, CLM, and ParFlow models and the static forcing variables, T is the temporal dimension and W and H are
the spatial extensions, our objective is to construct a mapping function #-to predict NDVI € R/*WxH and BT € RIXWxH op

a weekly basis:-

f: (TSMP;#) — (NDVI,BT),

, where I is the number of weeksand-6-are-the-weights-ofthe-medel. To accomplish this, we propose to approximate this
function as a function f using a DL model based on a U-Net (Ronneberger et al., 2015) with focal modulations (Yang et al.,

2022) as building blocks:
f: (TSMP;6) — (NDVI,BT), (7

where 6 are the weights of the model.

The input for DL is a data cube representing a specific week ¢ of TSMP data and the output are NDVI and BT corresponding
to the same week i. We denote the weekly averaged input data cube produced by TSMP as X* € RV*W>H ‘Where we obtain
X' by taking the mean of the days corresponding to the week i. For simplicity, we will drop the notation 7 in the following
sections. First, the network architecture is introduced in Seet—22Sect. 3.1 and the focal modulation is then described in Sect. 41~
Finallywe-diseuss-thelossfunetions-3.2. Section 3.3 discusses the loss function and Sect. 3.1 outlines the baselines approaches.

Implementation and technical details are given in Sect. 4-1-3.2. Finally, the evaluation metrics are described Sect. 3.3.
3.1 Model architectures

The medel-recent applications of Vision Transformers (ViT) have covered many tasks in the field of computer vision. The
network design of ViT along with the multi-head self-attention mechanism (Vaswani et al., 2017) allow ViT to stand as the
state-of-the-art backbone in recent DL. models. In contrast to CNNs, ViTs with self-attention modules can handle long-range
interactions across tokens (pixels) more efficiently. In a nutshell, the self-attention module aims to transfer pixel representations
of a given image into a new feature representation based on a weighted aggregation of interactions between every individual
pixel and its surrounding. This mechanism allows the model to focus on more relevant regions of the input images. Despite
this powerful transforming process, the computational requirement of a standard ViT has been a limitation when applying it
to vision tasks. More recently, the Focal Modulation Network (Yang et al., 2022) has been introduced to substitute the self-
attention mechanism with a lightweight focal module. In contrast to self-attention, focal modulation starts with contextual
aggregation and ends with interactions. Based on this recently introduced mechanism, DL models were developed for medical
image segmentation (Naderi et al., 2022; Rasoulian et al., 2023), change detection for remote sensing data (Fazry et al., 2023)
, and video action recognition (Wasim et al., 2023). We build our model on focal modulation networks and extend their appli-

cations in Geoscience. Figure 1 provides an overview of the model architecture. The model design follows the U-Net shape
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Figure 1. An overview of the proposed model to predict NDVI and BT from a TSMP climate simulation. The model follows the U-Net
shape with encoder and decoder layers. We use focal modulation as the basic building block for the model. The input TSMP simulation is
first encoded into a latent representation via encoder layers. In a subsequent step, the decoder constructs new features to be given as input to
two separated regression heads that output NDVI and BT simultaneously. The predicted NDVI and BT can then be used to derive different
agricultural drought indices such as VCI, TCIL, and VHI.

with encoder and decoder layers connected via skip connections and followed by two regression heads. Figure—-provides-an

verview-of-the-modelarchitecture—The-model-consists-of-the-folowinemain-partsThis allows the model to extract features in

a hierarchical way and predict NDVI/BT with customized heads. In the following, we describe the main parts of the model:

Patch embedding. The patch embedding is implemented as a single 1D convolution, where one patch is equivalent to one
pixel. The role of this embedding is to project the input X from V dimension into a channel dimension that matches the
channel dimension C'.,, 1) of the first encoder block. In contrast to related works with transformers, we do not reduce the
spatial resolution at this step. This is important to mitigate blurring effects for regression tasks. An analysis of the impact of
the patch size for embedding is provided in Appendix E.

Encoder. The encoder consists of 3 encoding layers. Each layer has 2 consecutive focal modulation blocks that have the
same number of ehannel-dimensionchannels. We use focal modulation to capture local to global dependencies in the domain
(Sect. 443.2). We apply down-sampling on the output of the first two encoder layers to reduce the spatial resolution by a
factor of 2 and double the number of channels. The down-sampling is implemented as a 2D convolution with 2 x 2 kernel
size and stride of 2. We set C,,, 1) = 96 as the number of channels of the first encoder layer. Consequently, the encoder has
the dimensionality {C(cy, 1) = 96,Ccpn 2) = 192,C ¢y 3) = 384}, where C(,,, 2) is the dimensionality for the second encoder

layer and C|.,, 3) is the dimensionality for the third encoder layer. The encoder allows the network to extract low to high level
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features in a hierarchical way. Note that focal modulation allows an additional hierarchical feature extraction at each level
(Sect. 4143.2).

Skip connections. These connections copy outputs from each encoder layer into its corresponding decoder layer. The purpose
of this is to enhance the gradient flow in the network and preventing vanishing gradient issues.

Decoder. The decoder has a similar design to the encoder. It consists of 3 decoder layers with 2 consecutive focal modulation
blocks for each decoder layer. The input for the first decoder layer is the output of the last encoder layer copied via a skip
connection. While-the-The input for the second and third decoder layers is a concatenation of the output from the previous
decoder layer with the output of the corresponding encoder layer. The outputs of the first and second decoder layers are up-
sampled to double the image size and reduce the dimensionality by a factor of 2. The up-sampling is implemented as a bilinear
interpolation followed by a 2D convolution with 1 x 1 kernel size and stride of 1. The decoder layers has the dimensionality
{Clae,1) = Clen,3) = 384,Cde,2) = Cen,2) T Clde,1) = 384, Cde,3) = Clen,1) + Clae,2) = 288}, where Cge 1), C(ge,2), and
Clde,3) are the dimensionality for the first, second, and third decoder layers, respectively. The purpose of the decoder is to
gradually construct the input for the regression heads from the encoded features.

Regression heads. The ouput of the last decoder layer is then given as input to two separated regression heads to predict
NDVI and BT. Each head has two 2D convolutions with 3 x 3 kernel size and stride of 1 with a LeakyReLU activation in

between. The regression head reduces the dimensionality from C'4. 3y = 288 to 128, and then to 1.

. ~@J O
Input XK Output

D LayerNorm l Focal Modulation Feed-Forward Layer @ Element-wise Addition

3.2 Focal Modulations

| Skip Connection

Figure 2. An illustration of the focal modulation block. It follows the typical transformer block with a focal modulation instead of self-

attention. X* represents the input to the k-th block.




We-We first describe how the block is implemented and then describe the main focal modulation module denoted as FeealModulationFM.
Fig. 2 illustrates the architecture of the focal modulation block used in both the encoder and decoder layers. The design follows
a typical transformer block. Let X € RNV*XC*xW"xH" pe the input at the k-th block, where N is the batch size (number

435 of input tensors), C* is the number of input ehannelchannels, and Wk and H* are the spatial resolution. First, the input is
normalized across N via a layer normalization (Ba et al., 2016) denoted as LayerNorm. Using the indices n € {1,..., N},

e{1,...,Ck}, wF e {1,...,WF}, and h* € {1,..., H*}, the LayerNorm can be written as:

k
n(ck,wk hk) — Hn

k.( k gk X ( ,
LayerNorrn(X 3(71 76[ )) = L Vl (ck,wk hF) (k) +Bl (ck,wk hF) (k) (8)

On

ck wr HF

= Ckwka Z Z Z X”(C FLwk hk) ©)

ck=1wk=1hk=1

Cck Wk HFE

440 0',5 = CkaHk Z Z Z n(ck wk ,hk) Mﬁ)Q, (10)

ck=1wk=1hk=1
where Xﬁ(ck wk pky 18 the input tensor of order n in the batch, (¥ and of are the computed mean and standard deviation of

SR k k CFxWExHF |1 nk CFxWFxHF ck
the corresponding input Xn(ck,wk,hk)’ and =y, RN R and—5; GRSy R 'y 1 (ek) € R*" and

Blk () € RC" are per-element learnable parameters.
These learnable parameters are shared across input tensors. The output of LayerNorm is then passed into the function
445 FeocalModulationFM. After that, the output of the first part is normalized by a second LayerNorm and passed into a feed-
forward layer —Fhe-feed-forwardtayereonsists-of-a(FFL). The FFL consists of one linear layer that maps the dimentionality to
Trip X C ¥ followed by a GELU activation (Hendrycks and Gimpel, 2016) and a second linear layer to bring the dimensionality
back to C*, where Tmip 18 the MLP ratio parameter. We set r,,;,, to 4 for the encoder and decrease it to 2 for the decoder to

reduce medel-parameterizationthe number of model parameters. The output of each block can be formulated as follows:

450 FocalModulationBlock(X*) £ ~% (Feed-ForwardLayer(LayerNorm(~}FocalModulation(LayerNorm(X*)) + X*)))

+(¥¥FocalModulation(LayerNorm (X)) + X*))

FocalModulationBlock (X*) £ ~% <FFL (LayerNorm(~v{FM(LayerNorm(X*)) + Xk))>

. + <’yfFM(LayerNorm(Xk)) + Xk)) , (D)
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where v¥ € RC" and 44 € RC" are learnable scaling parameters.

460
The-heart- The main component of each focal modulation block is the FeealMeodulationFM function. As seen in Fig. 3, it
consists of three main steps: hierarchical contextualization, gated aggregation, and interactions.
Input X¥ Query
| e
- i
Value Level 1 Level 2 Level 3 Level 4 ks %
K 1 E E IEa
L £3
]
L, §
5]
< Interaction
— T
&
Xk Output
— O —
Modulator
D Linear Layer I Depth-wise Conv2d |:| Global Average Pooling @ Element-wise Addition @ Element-wise Multiplication
Figure 3. An illustration of the function FM at k-th block. It consists of 3 main parts: focal contextualization, gated aggregation, and
interaction. First, the query, value and gates are obtained by projecting X* with linear layers. Then, a stack of depth-wise 2D convolutions
followed by a global pooling is used on the value to derive contextual features around pixels. Gates are used to adaptive aggregate contextual
features into a modulator. Finally, the interaction between queried pixels and the modulator is performed and projected by a final linear layer
to compute the output. The shown images are examples of learned gates along with the pixel-wise magnitude of corresponding modulator
at the first block encoder. The bright colors (i.e., green to yellow) for specific regions represent higher values which correspond to higher
attentions of the model to that regions.
465 Hierarchical contextualization. The objective of this part is to encode local to global range dependencies for every pixel. It

is based on focal transformer (Yang et al., 2021a) and aims to extract features at 4 different levels. Let X% be the input for

FoealModulation FM and L = 4 be the number of levels. First, X* is projected by a linear layer into a new representation

L% = Linear(X*) € RVXC" W xH" " Afterwards, the contexts are obtained in a recursive manner using a sequence of 3
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depth-wise 2D convolutions (DWConv2D) with GeLU activation and with increased receptive fields. In DWConv2D, each
output channel corresponds to a convolution on one input channel. We denote r; as the kernel size at level [ and start with
r1 = 3. Thereby, the kernel sizes at the focal levels have the values r1=3, r5=5, r3=7. To obtain a global feature representation,
a global average pooling (GAP) followed by a GeLU activation is applied at level [ = 4. Using the index [ € {1,..., L}, the
hierarchical contextualization can be formulated as follows:

GeLU(DWConv2D(LF ,)), if1<I<L,

L} s (12)
GeLU(GAP(L} ))), otherwise.

Gated aggregation. The gated aggregation adaptively summarizes the extracted hierarchical contexts Lf into a modulator.
First, X* is projected by a linear layer into 4 gates G* = Linear(X*) € R XLxW*xH" A can be seen from the example in
Fig. 3, the third gate focuses on the water area while other gates focus on different segmented regions. This allows each pixel to
adaptively aggregate features from different semantic regions conditioned on its context. Pixels in a less dynamic environment
may depend on more distant pixels while pixels in a more dynamic environment may depend more on the local context. The

aggregation is performed over different focal levels and followed by a linear layer:

L
X} £ Linear(} " Gf o Lj), (13)
1=1
where X% € RY xCEXWEXH" iq are the contextual aggregated features for each pixel called the modulator, Gf is the gate
corresponding to level [, and ® is the Hadamard operator (element-wise multiplication).
Interaction. Finally, the interactions-interaction between the queried pixels and the modulator is given with the following

formula:
FocalModulationFM(X*) 2 X* & Linear(X¥) € RV*C* xW*xH" (14)
3.3 Loss function

For training we use the Mean Absolute Error (MAE) as a loss function, since it is less sensitive to outliers than the Mean

Squared Error (MSE):

N W H

1 N
LMAE = m nz::lwz::lhz::l D/(n,w,h) - Y(n,w,h) ‘ ’ (15)

where N is the batch size, and Y(;, ,,1,) and Y(n’w, r) are the predicted and observed images, respectively.

In addition, to increase local variability and balance the blurring effects from Eq. (15), we use a perceptual loss (Ledig
et al., 2017; Johnson et al., 2016) based on a pre-trained VGG-19 network (Simonyan and Zisserman, 2014) on ImageNet
(Deng et al., 2009). This additional loss constrains the generated images to have a similar structure and spatial variability to

the target-observed images by comparing multi-level features extracted by a VGG classifier network from both the predicted

17



500

505

510

515

and observed images:

J
Lvae =8Lygq + Zﬁi/aca (10
=2
_ 1 N ¢ Wl oH '
‘C{/GG = NCIiWiHi Z Z Z Z |¢] (Y(n,j,c,w,h,)) - (bj (}/(n,j,c,w,h)” P (17)

n=1c=1w=1h=1

where J is the number of levels from which the VGG features are extracted, W7 and H7 are the spatial extensions of the
respective level within the VGG classifier, C7 is the number of channel dimension of the respective level, and ¢’ (Yonjieow,n))
and ¢’ (Y(n j,e.w,h,)) are the extracted features at level j from the predicted and observed images, respectively. In contrast to
classification problems where high level features play a more important role, we multiply the low level features by a weighting
factor of 8 to preserve the local features and give them more importance since these are more relevant to our regression task.
The VGG network was originally trained with RGB images and giving NDVI and BT as input is not directly possible. To solve
this issue, we replicate NDVI and BT along the channel dimension and feed each of them separately to the VGG network.
The impact of using this perceptual loss is evaluated in Appendix D. The entire loss function to be minimized is thus given as

follows:
L=Lyan +01LY55 + L3 s +0.1L3 ¢, (18)

where LYQV!1 and LY ZY T are the MAE and VGG losses on NDVI and L5,  and £BZ , are the MAE and VGG losses on
BT, respectively. The weighting factor 0.1 is set to balance the losses. The model is trained with a stochastic gradient descent.

More technical details regarding the training are provided in Seet—5-Sect. 3.2.

w H >
Zm:l h=1 (}/(w,h) - i/(’u/',h))

R2 (Yv(u,v,h,)vff(’u;h,)) =1—- '
w H
Ew:l Zh:l (Yv(w,,h) — Yv(w’h))
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3.1 Baseline approaches

We study the performance of recently developed vision transformers on our task. We achieve this by sharing the overall model
architecture and implementing the main building block inside the encoder and decoder according to different algorithms. The

implemented models are as follows:

as—arbasehﬂ&ef—%yptea}%-NeHnede}s‘U -Net (Ronneberger et al. 2015) serves as a baseline of typical U-Net models. We

implemented this model based on a 2D CNN with residual convolutional blocks. The U-Net model does not use an attention

mechanism.

Swin Transformer V1 (Liu et al., 2021) performs self-attention in shifted windows to reduce the computational complexity
compared to the original ViT. Transformers based on this model have been commonly applied for variety of tasks in remote
sensing and computer vision —(Wang et al., 2022a; Gao et al., 2021; Wang et al., 2022b; Aleissaee et al., 2023).

Swin Transformer V2 (Liu et al., 2022) is an improved model of Swin V1. The attention mechanism is replaced with a
scaled cosine attention to measure pixel feature similarities. Swin V2 utilizes post normalization layers inside the main block
thus making the optimization of large models more stable. In addition, it proposes to replace the positional encoding inside the

windows with a log-spaced continuous one to ease downstream tasks with pre-trained models.
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Wave-MLP (Tang et al., 2022) is a MLP-Mixer-based transformer model. The basic block is built on a stack of MLPs.

Wave-MLP represents each pixel as a wave function with amplitude features representing pixel contents and phase to measure

the relations with other pixels.

tth—Apart
of these models, we report the results for two NDVI/BT climatology baselines. The climatology is based on multi-year mean
values computed from remote sensing observations pixel-wise and on a weekly basis. The first is a climatology-I computed
from the years 1981-1988 which represents a prescribed satellite phenology before the beginning of the simulation. The second
is a climatology-II computed from the training years 1989-2016 in an overlap with the simulation period. The later climatol-
ogy represents a function that models the annual cycles and it can be used to check if the models generalize beyond the mean

annual cycles of the predicted NDVI/BT.

3.2 Implementation details

We re-implemented all aforementioned DL models in our framework and trained them with-a-fixed-random-seed;-this-insures
reprodueibility-and-fair comparisen—with 3 different random seeds, this ensures a fair comparison and better estimation. All
models have almost the same capacity with ~ 12 million parameters. The encoders for the transformer models were pre-trained
on ImageNet-1K (Deng et al., 2009) while the weights in the decoders and regression heads were initialized randomly from
AH0:F=0:02)-a standard normal distribution. To increase generalization and robustness of the models, we use 3-4 augmentation
techniques. This includes flipping and rotating of the input with a probability of 0.5 and randomly pertarb-perturbing the input
variables by adding noise €~A{0:F=0.02)from a normal distribution with zero mean and a standard deviation of 0.02 with
a probability of 0.5. In addition, to generate the input corresponding to week ¢ during training, we randomly average two days
corresponding to the week ¢ —as an additional augmentation technique. All models were trained with the £ loss Eq. (18) using
the Pytorch framework (Paszke et al., 2019) with a learning rate 0.0003 and a scheduler to decay the learning rate by a factor of
0.9 every 16 epochs. AdamW optimizer (Loshchilov and Hutter, 2019) was used for the gradient descent with (5, = 0.9, B =
0.999) and a weight decay 0.05. We use dropout probability of 0.2 and a stochastic depth rate of 0.3. We train with a batch size
of N = 2 for 100 epochs. For Swin Transformers, we set the window size to 8 and use the following number of heads {3,6,12}
for the encoder and the same order for the decoder. The down sampling in the encoder followed the original implementation in
Swin Transformer. Wave-MLP was trained with the dimensionality {C'(cy,, 1) = 64, C(ep 2) = 128,C ¢y 3) = 320} and 7 = 4
for both the encoder and the decoder. Wave-MLP and Swin V2 use a dropout probability of 0.1 and a stochastic depth rate
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of 0.2. In addition, we follow the official implementation of Wave-MLP and ases-use GroupNorm (Wu and He, 2018) with a
group of 1 instead of LayerNorm FmﬂalyFmally, all models were trained on individual NVIDIA RTX A6000 GPUs with 48

3.3 Evaluation metrics

To measure the model performance, we use the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), coefficient of
determination (R?), Pearson Correlation Coefficient (R;), and Spearman Correlation Coefficient (R;). In addition, we compute
the Bias as (predicted — observed = Y/, 1) — Y(w, r))- We compute the metrics for each sample and then average the values to

obtain the final metrics. MAE is computed from Eq. (15). While RMSE can be calculated as follows:

W H
- 1 2
RMSE(Y (1) Yw.)) = \| 77777 ZZ Yiwn) - (19)

R? measures the variation of the perdition from the regression fitted line and it is calculated as follows:

2

Yoot Xy Vwn) = Yiw,n)
27
Zw 1Zh 1(Y(wh) Y(wh))

R%(Yewn)s Ywny) =1 — (20)

where )i/(u“ n) 1s the overall mean observed value. The highest value for R? is 1 which represents a perfect fit. Please note that
R? measures the variability in Y(“,J,) predicted by the model thus it is by definition inversely proportional to the variance and
noise in the observations and should be interpreted carefully.

ets: Pearson correla-

tion (R,) is a parametric correlation that measures the linear correlation between the predicted and observed values:

>t Ziet V) = Yowo) V) = Yews)
\/E Ly (Yo — (w,h)) \/szl S (Vi) = Yewn)

where 17(w, r) is the mean predicted value. The best value for R, is 1 which represents a perfect positive correlation.

Ry (Yew i) Yo ) 1)

2 )

Spearman correlation (Ry) is a non-parametric measure of relationship between predicted and observed values that can be

calculated as follows:

Ry (Ywn)s Yewn) = Rp(R(Yewn))s RV o)) » (22)

where R(Y(,,5)) and R(Y(w’ »)) are ranks obtained from the predicted and observed values, respectively. A perfect positive

correlation occurs when Ry is 1.
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4 Experimental results and analysis

4.1 NDVI and BT prediction
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The quantitative results of the models are shown in Fable—+Tables 1 and 2. Pixels without a vegetation cover (i.e., pixels

over desert) were excluded from the results. Including these pixels ;-will overestimate the model performance since they have

small variations throughout the years. For the masking, we use NOAA quality assurance (QA) metadata. As can be seen from

625

Table-tTables 1 and 2, all DL models outperform the first elimatelogy-(1981-1988)-climatology-I baseline with a huge margin.

Table 1. Comparing the performance of different DL models. The metrics are shown for the validation set.

Validation - Years (2010, 2011, 2017) - 156 weeks

- NDVI
Algorithm MAE(l) RMSE({) RZ(1) Rp(M) Rg (T%Wﬁﬁ#%w
Ehimatotogy—+98++988-Climatology-1 0.0550 0.0680 0.5763 0.8939 0.8669 —2:94360-3-7302-0-8454-0:9466-0-94
Ehimatotogy—+989-26+6-Climatology-11 0.0326 0.0416 0.8372 0.9353 0.9113 —23647-3-0026-0-8963-0:966+-0-9539-
2D-ENN-U-Net 6:6278-0.0277 £0.0001 0.0365 +0.0002 6:8746-0.8743 £0.0008 6:9465-0.9406 £0.0005 194842+ H:9252-0:967-6:9606-0.9172 £0.0005
‘Wave-MLP 6:6274-0.0272 £0.0003 6:036+0.0358 £0.0003 6:8765-0.8784 £0.0018 6:9463-0.9422 £0.0018 -9+ H9755-2:6395-0:9208-0:9662-0-9596-0.9183 +0.0021
Swin Transformer V1 6:6276:0.0273 £0.0003 6:63640.0362 £0.0003 9:8743-0.8759 £0.0022 6939609411 £0.0013 B:9436—+9599-2.6369-0:9224-0-9658-0:9589-0.9161 +0.0023

Swin Transformer V2

6:6274-0.0277 £0.0003

6:6366-0.0369 +0.0003

6:8727-0.8703 +0.0021

£:9443-0.9415 £0.0010

3-6:95970.9167 +0.0008

H94T3—-07552-6282-0-9235-0-O

Focal Modulation 9:62700.0269 +-0.0001 9:03590.0358 +0.0002 9:87810.8790 +0.0017 9:94330.9432 +0.0001 6:91840.9194 £ 0.0009 —1-8981+ 2:5433 0:9266 0:9679 0:9613
BT (K)
~Algorithm  MAE(}) RMSE(]) RZ(1) Rp(1) Rs (1)MABRRMS R 2R Rt
Ehimatotogy+98++988-Climatology-1 8656729130 8:6697-3.7302 8:5520-0.8454 9:8933-0.9466 {42 3-6864-05447-0:-9485-0-9476-0.9408
Ehimatotogy+989-26+6-Climatology-11 6:63+4-2.3017 6:6466-3.0020 B:8567-0.8963 9:9433-0.9601 9:9254—2-2024-2-8880-0-9936-0-9623-0-9606-0.9539
2B-ENN-U-Net 0:0278-1.9377 +£0.0093 6:0363-2.6067 +0.0057 6:8754-0.9243 +0.0014 £:9434-0.9667 +=0.0004 -9234—1-9782-2:6363-0:9487-0:9650-0:96+6-0.9603 £0.0007
Wave-MLP 0:0267-1.9200 +0.0491 9:03512.5834 +£0.0486 9:8842 0.9248 +0.0035 6:9444-0.9668 +0.0006 0:9244—+-9: 2.6425-0:9+62-0:9646-0-9620-0.9603 0.0007

Swin Transformer V1
Swin Transformer V2
Focal Modulation

6:6273-1.9642 £0.0246
96266 1.9741 +£0.0191
6:6268-1.9010 £0.0071

6035926341 £0.0303
8035526420 £0.0258
6035325364 £0.0073

9:8762-0.9221 £0.0012
6:8795-0.9225 £0.0013
6:8795-0.9280 +0.0012

9:943+0.9661 +0.0005
9:94520.9659 +0.0011
9:94520.9679 £0.0001

09223105252 62650.0183.0.06420.0620-0.9590 +0.0006
09272 —1-9048-2.5782.0.9213-0.9651-0-96290.9590 40.0014

0:9243—1:87300.9614 2:5277 9:9227 0:9672 6:9642+0.0007
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This is because the climatology was calculated before the simulation run. This climatology can not capture the dynamic after
3 decades. The second elimatetegy—climatology-II baseline is stronger. It uses information from multiple years within the
simulation run. All DL models still achieve better results indicating that the models have learned the seasonal dynamic beyond
climatology. In addition, these non-Ml=—climatologies baselines can not be used to derive drought indices (Seet—2?)since-they
onlyprediet-the-average—valaes—(Sect. 4.1) since the inter-annual variability in NDVI/BT is neglected as average cycles are

used. Furthermore, comparing the correlation and results of BT with NDVI, we can observe that all models achieve higher

correlation metrics (R?, R, and R,) on BT than NDVI. This can be explained by the fact that NDVI is a composition of two
bands while BT is only derived from the infrared band, thus it is harder for the models to estimate NDVI than BT. This-is-alse-the

In general, all DL models provide close results and are considered suitable for the task. Focal Modulation clearly outperformed
other DL models on the validation set for both NDVI and BT predictions. For the test set on NDVI, it comes slightly after
SwinV2-and-Wave-MEP-transfermersthe Wave-MLP model. However, Focal Modulation can generalize better for BT thus
providing a balanced prediction between NDVI and BT and consequently it is capable to generate an overall better prediction.

In Table 3, we report the estimated inference time for the DL models. For the Focal Modulation model, the estimated
inference time to generate one sample for NDVI and BT containing 397 x 409 x 2 grid points is 0.24 4 0.01 seconds on one
NVIDIA GeForce RTX 3090 GPU and 12+ 0.1 seconds on one AMD Ryzen 9 3900X 12-Core CPU. U-Net with 2D CNN
dose not include operations for the attention mechanism thus it is the fastest but the performance is lower.

Qualitative results for the model prediction with Focal Modulation are shown in Figs. 4 and 5. We take weeks from different
seasons through the years and remove pixels over desert for the calculations of bias distribution and regression line. Positive
bias values mean that the model overestimates NDVI (BT) while negative ones indicate that the model underestimates NDVI
(BT). As itshown in Figs. 4 and 5, the biases vary across the weeks and locations. For week 7 in 2012, the biases for both NDVI
and BT are relatively high. Week 26 in 2019 exhibits similar high biases in both NDVI and BT over high latitudes regions. The
respective distribution of biases is also shown in Figs. 4 and 5. Overall, the results show that the dynamics over the years are
well captured. The biases for both NDVI and BT are closely centered around zero with a shift for the center of bias distribution
from zeros. This shift is however in the same direction for both NDVI and BT. We can also observe that the model fits the
regression lines better for weeks 14, 26, and 39 than for week 7 in winter 2012. The comparison between the distributions of
predicted and observed NDVI/BT confirms also the observation that the model captured the dynamic throughout the years.

While this provides examples of the performance for individual samples, in Fig. 6 we provide an additional experiment where
we analyze biases of model predictions within different seasons of the year and over PRUDENCE regions (see Appendix
Fig. C1 for the definition of PRUDENCE regions). This allows us to assess the model weakness-weaknesses and strengths
with different seasonality and spatial variability. The mean biases were computed pixel-wise from both the validation and test
years time-series where we computed the biases for each pixels from the weeks that belong to a specific season and averaged
the results to obtain the last metric. In addition, we computed Pearson Correlation R, pixel-wise in a similar way. As seen
in Fig. 6, there are clusters of positive/negative biases that vary with seasons over specific regions. For instance, for NDVI

prediction, the eastern part of British Isles exhibits positive biases for all seasons while Iceland and north Africa show constant
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Table 2. Comparing the performance of different DL models. The metrics are shown for the test set.

Test - Years (2012, 2018, 2019) - 139 weeks

NDVI
Algorithm  MAE(() RMSE() R*(1) R,(1) R (1)
Climatology-1 ~ 0.0567 0.0697 0.5529 0.8933 0.8704
Climatology-II 0.0314 0.0400 0.8507 0.9433 0.9254

U-Net

Wave-MLP

Swin Transformer V1
Swin Transformer V2

Focal Modulation

0.0274 £0.0004
0.0261 +0.0006
0.0269 £0.0003
0.0270 £0.0005
0.0266 +0.0003

0.0359 £0.0005
0.0343 £0.0008
0.0355 £0.0004
0.0359 £0.0005
0.0350 £+0.0004

0.8772 £0.0006
0.8861 +£0.0043
0.8795 £0.0029
0.8766 £0.0038
0.8808 4-0.0014

0.9435 £0.0006
0.9467 +0.0024
0.9442 £0.0010
0.9447 £0.0012
0.9454 £0.0009

0.9237 +0.0009
0.9252 +0.0011
0.9239 +0.0014
0.9251 +0.0020
0.9253 +0.0016

BT (K)

Algorithm  MAE({) RMSE() R*(M) Rp(1) Rs(1)
Climatology-I ~ 2.8806 3.6864 0.8447 0.9485 0.9470
Climatology-IT ~ 2.2024 2.8880 0.9036 0.9623 0.9606

U-Net

Wave-MLP

Swin Transformer V1
Swin Transformer V2

Focal Modulation

1.9920 £0.0148
1.9376 £0.0184
1.9563 £0.0329
1.9516 £0.0639
1.9179 £0.0458

2.6652 £0.0262
2.6221 £0.0177
2.6381 £0.0397
2.6277 £0.0874
2.5745 £0.0470

0.9164 +0.0021
0.9172 £+0.0005
0.9169 +0.0038
0.9183 -£0.0060
0.9204 +0.0030

0.9644 +0.0009
0.9647 +0.0005
0.9649 -£0.0009
0.9641 +0.0025
0.9664 +0.0007

0.9616 £0.0005
0.9619 +0.0008
0.9627 +0.0008
0.9619 +0.0020
0.9636 +0.0006

Table 3. Inference time in seconds for different DL models.

Algorithm GPU! CPU?

U-Net 0.09 +0.02 5£0.2
Wave-MLP 0.28 £0.00  10+0.3
Swin Transformer V1 0.18 £0.00 11 0.2
Swin Transformer V2 0.19 £0.00 11 0.2
Focal Modulation 0.24 £0.01  12+0.1

INVIDIA GeForce RTX 3090 GPU

2AMD Ryzen 9 3900X 12-Core CPU
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Figure 4. Examples predictions for weekly NDVI from the test set. (a) Predicted NDVI. (b) Bias computed as prediction minus observed.
(c) Distribution of biases. (d) Regression results as predicted versus observed. (e) Distribution of NDVI values for NOAA observation and

model prediction. The metrics are computed over all pixels with vegetation cover.

negative biases. For BT, Southeastern Europe has persistent positive biases with larger errors during winter. Pixels over desert,
i.e., north Africa, show less variability in NDVI where only little seasonality is shown as in Fig. 4. Thus, such regions are
easier to predict with relatively small biases. However any fluctuation in NDVI prediction over these pixels will lead to lower
correlation compared to other regions since the time series primarily represent small variations around the mean NDVT value.

In comparison to other seasons, the winter season has relatively poor predictions especially in the high latitudes regions.
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Figure 5. Examples predictions for weekly BT from the test set. (a) Predicted BT. (b) Bias computed as prediction minus observed. (c)
Distribution of biases. (d) Regression results as predicted versus observed. (e) Distribution of BT values for NOAA observation and model

prediction. The metrics are computed over all pixels with vegetation cover.

~One possible explanation for these errors
is the lack of accurate training data in Scandinavian regions during winter. For instance, previous studies on ParFlow-CLM
models showed that hydrological modeling performs worse in northeastern Europe due to errors in snow dynamics and regional
forces (Naz et al., 2023; Furusho-Percot et al., 2019). It was also shown by Yang et al. (2020) and Eisfelder et al. (2023) that
high latitude regions are less reliable to derive vegetation products due to snow cover and its effects on the albedo and larger
sensor zenith angles. Another source of model errors is that NOAA vegetation products depend on temporal compositing to
handle high frequency and atmosphere transmittance (Yang et al., 2020). The absence of a generalized physical-based model
to enhance accuracy over various surfaces and for all conditions generates difficulties for satellite products (Kogan, 1995b).

Nagol et al. (2009) assessed the uncertainty of NDVI in this regards. These issues add some uncertainties to the model training
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Figure 6. An analysis of uncertainty and model generalization for different times of the year. The analysis was performed on the validation

and test sets as one set. (a) NDVI mean bias. (b) NDVI mean Pearson Correlation. (¢) BT mean bias. (d) BT mean Pearson Correlation.

and evaluation. Using more recent atmospheric correction methods such as in (Moravec et al., 2021) could also enhance the
results. Furthermore, as mentioned in Sect. 2.1, the TSMP simulation was performed in a free mode and had no modelling
of anthropogenic-related influences. Given that agricultural systems and human activities which are interlinked with drought
events could change and follow adaptation strategies (Van Loon et al., 2016), this certainly contributes to the error budget of the

model. Developing realistic land use and water management scenarios within a probabilistic TSMP could reduce these errors.
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(a) NDVI bias distribution over PRUDENCE regions
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Figure 7. An analysis of uncertainty and model generalization for different time of the year over each PRUDENCE region. The analysis was
performed on the validation and test sets as one set. (a) NDVI bias distribution. (b) BT bias distribution. Shown are the probability density
functions. (¢) NDVI MAE. (d) BT MAE.

In addition, the uncertainty in TSMP is highly linked to potential errors in the driving forces and spin-up initialization. While
these errors are common limitations of simulations and remote sensing data, it should be noted that the prediction of a DL
model has its own uncertainty. Therefore, more efforts are needed to recognize the sources of uncertainty in model prediction

(Sect. 4.1).

In Fig. 7, we visualize the computations over each PRUDENCE region separately. For Figs. 7a and 7b, we fit a normal

distribution over the normalized histogram of biases for each season and over all PRUDENCE regions. For instance, positive
shifts of the estimated means are shown in NDVI for both FR and AL regions during autumn. The same pattern is shown

fre—for SC and BI during summer. As can also be seen in Fig. 7b, a positive shift for BT is shown for all regions during
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autumn. Furthermore, the shape of the distribution gives an overview of the prediction homogeneity within the region, i.e.,
the prediction is highly uncertain over EA during winter and consequently has a relatively high standard deviation. The mean
values in Figs. 7c and 7d represent the expected MAE for all seasons combined. Fig. 7c indicates that in general the model
predictions for NDVI are less certain during autumn in comparison to other periods and over BI within the PRUDENCE

regions. For BT, it can be seen from Fig. 7d that the prediction is less certain during winter and over ME and EA regions.

5 Agrieultural-drought-assessment

4.1 Agricultural drought assessment

In this section, we assess the model capability to predict different agricultural droughts indices on a high temporal resolution

(weekly basis). More specifically, we use the predicted NDVI and BT along with their multi-year climatology to derive NDVI
anomaly, BT anomaly, VCI, TCI, and VHI drought indices. NDVI and BT anomalies were computed by subtracting the mean
value of the respective pixel and week from the predictions (observations). VCI, TCI, and VHI were computed from Eq. (2)-
(4). Figs. 8 and 9 compare the predicted agricultural drought indices VCI, TCI and VHI by the focal modulation model with
the observed ones from NOAA remote sensing data for the years 2010-2012 (Fig. 8) and 2017-2019 (Fig. 9). We spatially
average the values inside each PRUDENCE region and plot their respective time-series on a weekly basis. Generally, values
below 40 are identified as abnormally dry conditions (Kogan et al., 2015; Yang et al., 2020). Overall, the prediction resembles
the seasonal wetness and dryness at the regional scale. The agreements between predictions and observations vary across
regions and time with satisfactory R,, values ranging from 0.50 to 0.77, 0.38 to 0.70, and 0.50 to 0.75 for VCI, TCI, and VHI,
respectively. MAE values fluctuate in the range 9.99-6.81, 13.88-10.24, and 5.80-2.69 for VCI, TCI, and VHI, respectively.
While there is a satisfactory agreement with observations, there are some obvious discrepancies, i.e., in TCI over the Iberian
Peninsula (IP) during summer 2018. More interestingly, we show the bounded results of an ensemble of DL models. This
ensemble is the results of all DL modelsfrem-Table+. As can be seen, all DL. models which are based on different algorithms
yield close predictions with small standard deviations. This supports that errors in model prediction are probably to be more
attributed to biases in the TSMP model and remote sensing reference data. In this respect, Yang et al. (2021b) showed that
vegetation products over regions with extreme little seasonality, i.e., desert and high mountains have higher errors. This can be
seen from Eq. (2)-(4), where small differences between maximum and minimum values could lead to higher deviation in the

vegetation indices.
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Figure 8. Comparison of spatially averaged weekly agricultural drought indices between the model prediction and NOAA observation over
each PRUDENCE region. Drought indices were computed from the long-term climatology (1989-2016) pixel-wise and on a weekly basis.
All results are obtained with the Focal Modulation Network. The ensemble model is the result of all DL models described in SeetSect. 3.1.
-5-and-Table-+-NDVI and BT anomalies are provided in Appendix Fig. F1.

Finally, as observed from the plots, the thermal surface condition represented by TCI contributes more to the agricultural

730 drought events over Europe than the deficiency in vegetation moisture condition approximated as VCI. This is in agreement

with (Zeng et al., 2023), which-who showed that drought effeeting-affecting vegetation is more likely to be associated with
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Figure 9. Comparison of spatially averaged weekly agricultural drought indices between the model prediction and NOAA observations over
each PRUDENCE region. Drought indices were computed based on the long-term climatology (1989-2016) pixel-wise and on a weekly basis.
All results are obtained with the Focal Modulation Network. The ensemble model is the result of all DL models described in SeetSect. 3.1.

DL(ensembie) predicted VHI (TSMP)

Observed VHI (NOAA)

-5-and-Table-+-NDVI and BT anomalies are provided in Appendix Fig. F2.

high abnormal temperatures in Europe. This is critical for studies that rely on NDVI as the solely vegetation product to identify
drought events over Europe (Seet—22)—(Sect. 1). In the Appendix, we show the time-series for NDVI and BT anomalies in

Figs. F1 and F2. We also show vegetation health maps for different seasons from the validation and test years. These predicted
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Figure 10. Comparison between the seasonal predicted Vegetation Health Index (VHI) and NOAA observations over Pan-Europe domain.
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Figure 11. Comparison between the predicted drought frequency and NOAA observations over Pan-Europe domain. Frequency represents

the percent of weeks with Severe-to-Exceptional drought events (VHI < 26).

maps are depicted in Fig. 10. As shown, +-e--the model predicts an inereasing-increase of agricultural droughts in the summer
of 2018 in the Mid Europe and France regions. Xoplaki et al. (2023) associated this extremely dry summer with compound
extreme events.

Furthermore, in Fig. 11, we provide an analysis about the frequency of extreme droughts for the two periods 2010-2012 and
2017-2019. Frequency represents the percent of weeks with Severe-to-Exceptional drought events where VHI < 26 (Kogan
et al., 2020). While Figs. 8 and 9 provide overviews of the averaged values over the regions, the analysis in Fig. 11 provides a
spatial comparison between the model prediction and observations. The major hotspots for the highest extremes are found out-

side the Prudence regions (North of the Black Sea, Northwest Africa, Egypt and Northwest of the Middle East). In Comparison
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Figure 12. An evaluation of seasonally predicted agricultural drought indices with ground truth NOAA observations at the resolution 0.88°.
(a) Bottom is mean absolute errors (MAE) and top is Pearson Correlations (R),) for different seasons. (b) Comparison of the cumulative

distribution functions between prediction and observations.

comparison to the Prudence regions, the Iberian Peninsula and France exhibit more extreme droughts. The model predicts more
extreme droughts in those regions and agrees with observations. For the period 2010-2012, the model predicts less extreme
droughts in the Mediterranean and Eastern Europe. While for the 2017-2019 period, the model underestimates the frequency
of extremes in the Mid Europe region.

Moreover, Fig. 12 evaluates the model capability to capture seasonal dynamic in drought indices. As seen in Fig.12a, the
mean R, values are greater than 0.5 and around 0.6 for all seasons. MAE values show the highest error in VCI for the winter
season. One notable observation is that the error bars have relatively large values indicating a variation in prediction accuracy
across the years within the same seasons. This is-can be attributed to the seasonality shift in the long-term trends. Klimavicius
et al. (2023) showed that meteorological forces like air temperature have strong impact on growing seasons and phenological
trends of NDVI (VCI). The cumulative distribution functions (CDF) in Fig. 12b expresses the main difference in CDF for VCI

during winter. While the model prediction overestimates TCI over the seasons.

5 Variableimpeortanee
4.1 Variable importance

To analyze the impact of each TSMP model components on the model prediction, we present in Table 4 the prediction results

obtained with COSMO, CLM, and ParFlow. For this experiment, we train 3 models based on focal modulation with the
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dimensionality {Ccp,1) = 64,Ccp,2) = 128,C(cp 3) = 256}. As seen in Table 4, compared to CLM and ParFlow, COSMO
achieves the best results for the validation set while CLM outperforms both for the test set. COSMO has important variables
760 related to water contents and clouds along with other variables related to the atmospheric effects on the reflected signal on
the ground. CLM has complementary variables related to heat fluxes and evapotranspiration. ParFlow can approximate the
hydrology and serve as a proxy for the soil conditions. The results show that all model components are useful and the best

result is obtained when all these models are used.

Table 4. Impact of TSMP model components on the model performance. The metrics are shown for the validation and test sets. All models

were trained with Focal Modulation Network.

Validation - Years (2010, 2011, 2017) - 156 weeks

NDVI BT (K)
Model MAE(l) RMSE(}) R*(1) Ry(1) R.(1) MAE(l) RMSE(}) R*1) Ry(1) R
COSMO 0.0281  0.0372 0.8696 0.9403 0.9160 1.9975  2.6389 0.9227 0.9667 0.9615
CLM 0.0289 0.0382 0.8586 0.9369 0.9115 20187 27080 0.9160 0.9653 0.9600
ParFlow 0.0303  0.0396 0.8500 0.9314 0.9042 22029 29254  0.9052 0.9617 0.9545
COSMO + CLM + ParFlow  0.0270  0.0359  0.8781 0.9433 0.9184 1.8981 25433  0.9266 0.9679 0.9613

Test - Years (2012, 2018, 2019) - 139 weeks

NDVI BT (K)
Model MAE(l) RMSE(l) R*1) Rp(1) R« MAE(l) RMSE() R*1) R,(1) R
COSMO 0.0285  0.0372 0.8619 0.9437 0.9238 2.0847 27549  0.9060 0.9633 0.9612
CLM 0.0269 0.0355 0.8782 0.9443 0.9238 19362 2.6303 09185 0.9650 0.9637
ParFlow 0.0291  0.0379 0.8648 0.9396 0.9175 22663 29481 0.8962 0.9635 0.9604
COSMO + CLM + ParFlow 0.0268  0.0353  0.8795 0.9452 0.9243 1.8730 25277  0.9227 0.9672 0.9642
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Figure 13. Channel attention for TSMP input variables. The activations are shown for both NDVI (top) and BT (bottom) with respect to all

weeks in the validation and test sets.

While-Table-3-While Table 4 provides an overview on the importance of model components, apriori choice of proper
input variables from each of these model components to predict NDVI and BT requires substantive efforts and assumptions.
Especially, when the underlying physical process to construct albedo/emissivity from TSMP and tracing the atmospheric effects
with satellite and solar geometry is very complex. Channel attention (Woo et al., 2018; Hu et al., 2018) was commonly used
in the field of computer vision and remote sensing to enhance feature representations inside DL models. A channel attention
module aims to calibrate the input variables/channels by learning an input-dependent scale for each channel. Thus, it can
model the inter-correlation across variables adaptively. In this work, we propose to use channel attention to determine the
relative importance of TSMP input variables. Implementation details about the module is-are provided in Sect. B and Fig. B1.
We used channel attention directly before the patch embedding for the U-Net model. To disentangle the correlation between
NDVI and BT, we trained two separated models. One to predict NDVI and another one to predict BT. Note that we only used
channel attention for this experiment. Fig. 13 provides example attentions induced for each input variable from COSMO, CLM,
and ParFlow with respect to all weeks in the test and validation sets. The attention value is the mean value and it represents the
variable importance to predict NDVI (BT). Error bars show how the attention changes across the weeks and input samples. We
observe that the distributions of attention values for NDVI and BT is close. This indicates that the importance of highly relevant
input variables are probably shared for both NDVI and BT. In addition, the standard deviations (error bars) suggest that the

choice of prior explanatory variables is not trivial since the relative importance can change with time and input samples.
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Overall, not all variables are relevant for the model. For COSMO, atmosphere water divergence (hudiv), humidity-related
variables (hus, hur), precipitation variables (pr, prc, prg), surface air pressure (ps), drag coefficient of heat (tch) and geo-
potential height (zg200) receive the highest attention from the DL model. For CLM, all variables are considered important
with snowfall flux (prsn) and precipitation on ground (prso) being less important. Regarding ParFlow variables, it can be seen
that the model considers most underground water-related variables as relatively important. This is intuitive since water and
the amount of underground water storage are important factors for the vegetation growth. The availability of groundwater
supply can reduce vulnerability to agricultural drought (Meza et al., 2020; Ma et al., 2021). Some previous studies showed that
precipitation and temperature are strong predictors of NDVI (Miao et al., 2015; Wu et al., 2020; Gao et al., 2023). In addition,
the climatology of long-term NDVI is highly correlated with precipitation and the biome classification (Yang et al., 2021b).
The relatively high value for zg200 in BT prediction can be explained as the decrease in zg200 increases the likelihood of
heatwave occurrence (Miralles et al., 2019). The attention values for COSMO can be interpreted as Nagol et al. (2009) showed
that scattering and absorption in the atmosphere affect the visible and near infrared radiance considerably. Shi et al. (2018) and
Geiss et al. (2021) analyzed the influence of clouds related parametrization on visible and infrared satellite images and found
that the accuracy is closely related to the cloud representation. A further study about the impact of surface and air pressure and
water and ice clouds on visible and near-infrared bands can be found in Baur et al. (2023). It needs to be emphasized that the
correlations shown in Fig. 13 must not be interpreted as a causal reasoning. One main reason is that data in Earth science are
subject to complicated interactions and inherently inter-dependent. There may be hidden confounding variables that influence
the explanatory variables as well as the evolution of the climate and vegetation variability. It is also worth noting that the
learned variable importance by machine learning models is dependent on how the variables are represented in the training
data (Betancourt et al., 2022). Furthermore, some variables have larger biases than others since TSMP was run in a free mode
simulation. This may drive the model to rely less on such variables even if they are considered important in scientific literature.

The same thing applies to highly correlated variables where changing the model architecture may alter dependencies as well

(Betancourt et al., 2022).
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5 Conclusions and outlook

In this paper, we presented a new deep learning based approach for vegetation health prediction from a regional climate sim-
ulation. The developed model enabled the prediction of variables which are not part of the input simulation. In particular, we
developed a vision transformer model with focal modulation to predict NDVI and BT images from a long-term FSMP-G2A
TSMP (Ground to Atmosphere G2A) simulation at 0.11° resolution and on a weekly basis. We further validated the approach
with NOAA remote sensing satellite observations and identified regions of uncertainty in the model predictions. We-As part of
this, agricultural drought assessment was performed based on vegetation health products, namely VCI, TCI and VHI, which
were derived from the predicted NDVI and BT, as well as long-term climatology. In this regard, the applicability of the model
was spatially and temporally analyzed at a continental scale. Additionally, we extended the commonly used explanatory vari-
ables by using a-plenty of TSMP variables and analyzed their relative importance for the task with channel attention as an
explainable Al method. Our-The evaluation confirms that a DL model that was trained on observations has the capacity to pre-

dict NDVI and BT from a TSMP climate simulation with a sufficiently good agreement with real-world satellite observations.

Although our model is trained to predict vegetation products as they would be observed from the AVHRR platform, it would
be possible to predict target variables from different platforms or following different atmospheric corrections. This could be
done as future work by training multiple DL models. Moreover, our work can be extended to predict other vegetation products

from different satellite platforms depending on requirements.
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s—The proposed approach can be used to predict future trends in the
vegetation dynamic based on climate scenarios. Providing this information, the model can help to recognize regions that are
expected to be more vulnerable to agricultural drought risks. The predicted satellite-based indices can be alse-combined with
different meteorological drought indices to provide more comprehensive drought assessments under future climate change.
We believe that our study-could-be-alse-useful-te-integrate-approach could also be useful to combine deep learning with data
assimilation, i.e., to simulate remote sensing products from down-scaled simulations and to be used as a supportive evaluation
framework to further investigate the predictive capability of the simulation to reproduce drought events and consequently to

improve the TSMP model development.

Code and data availability. The source code and the pretrained models to reproduce the results are published at https://zenodo.org/records/
10015049 (Shams Eddin and Gall, 2023a). The source code is also available on GitHub at https://github.com/HakamShams/Focal_TSMP.
The pre-processed data used in this study are available at https://doi.org/10.5281/zenodo.10008815 (Shams Eddin and Gall, 2023b). The
original TSMP data are stored at Jiilich Research Centre at https://datapub.fz-juelich.de/slts/cordex/index.html (Furusho-Percot et al., 2019a),
as well as at PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.901823 (Furusho-Percot et al., 2019b). The raw vegetation health
products can be downloaded from the National Oceanic and Atmospheric Administration (NOAA), Center for Satellite Applications and

Research (STAR) at https://www.star.nesdis.noaa.gov/star/index.php (Yang et al., 2020).
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Appendix A: Datasets

Table A1. Technical details on the output variables in the TSMP EUR-11 simulation. For more information on the data, we refer to Furusho-

Percot et al. (2019).

Model Variable name Long name Unit Level
COSMO  awt Atmosphere total water content kg m~2 1
capec Specific convectively available potential energy jkg! 1
capeml Cape of mean surface layer parcel jkg™t 1
ceiling Cloud ceiling height (above mean sea level) m 1
cli Vertical integrated cloud ice kg m~? 1
clt Total cloud fraction 1 1
clw Vertical integrated cloud water kg m~? 1
hudiv Atmosphere water divergence kgm™?2 1
hur2 2m relative humidity % 1
hur(200, 500, 850)  Relative humidity (at 200, 500 and 850 hpa) % 3
hus2 2m specific humidity 1 1
hur(200, 500, 850)  Relative humidity (at 200, 500 and 850 hpa) 1 3
incml Convective inhibition of mean surface layer parcel jkg™! 1
pr Precipitation kg m~2 1
prc Convective precipitation kgm™?2 1
prg Large scale precipitation kgm~? 1
prt Total rain water content vertically integrated kgm ™2 1
ps Surface air pressure pa 1
psl Sea level pressure pa 1
snt Total snow content vertically integrated kg m~? 1
ta(200, 500, 850) Air temperature (at 200, 500 and 850 hpa) K= 3
tch Drag coefficient of heat 1 1
td2 2m dew point temperature K= 1
ua(200, 500, 850) Eastward wind (at 200, 500 and 850 hpa) ms~! 3
uas Eastward near-surface wind velocity ms~? 1
va(200, 500, 850) Northward wind (at 200, 500 and 850 hpa) ms~! 3
vas Northward near-surface wind velocity ms~! 1
zg(200, 500, 850)  Geopotential height (at 200, 500 and 850 hpa) m 3
zmla Height of boundary layer m 1
CLM evspsbl Evapotranspiration mms~! 1
hfls Surface upward sensible heat flux wm 2 1
hfss Surface upward sensible heat flux wm 2 1
prsn Snowfall flux kgm 2572 1
prso Precipitation on ground kgm 2572 1
rlds Incoming shortwave radiation wm™ 2 1
tas Near-surface air temperature K= 1
trspsbl Transpiration wm™ 2 1
ParFlow  sgw Groundwater saturation 1 15
wtd Water table depth m 1
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Table A2. Technical details on the static variables from CLM in the TSMP EUR-11 simulation and the computed static variables.

Model Variable name  Long name Unit Level
CLM orog Surface height or digital elevation model (DEM) m 1
sftlf Land-sea fraction % 1
zbot Atmospheric reference height (from COSMO to CLM) m 1
Computed from Land-sea fraction - Distance to water km 1
Computed from Orography - Roughness 1 1
Computed from Orography - Slope o 1

Table A3. Technical details on the spectral channel characteristics for Advanced Very High Resolution Radiometer (AVHRR) and Visible
Infrared Imaging Radiometer Suite (VIIRS).

Satellite system  Spectral band  Spectral range (um)

AVHRR PR 0.58 - 0.68
PNIR 0.725 - 1.1
PIR 10.3-11.3
VIIRS PR 0.600 - 0.680
PONIR 0.846 - 0.885
PIR 10.500 - 12.400

Appendix B: Channel Attention

Channel attention aims to condense the input channels into a lower dimensionality and then construct channel scales with
a sigmoid activation function (Sigmoid(z) = H-% € [0,1)). In this manner, the neural network learns to calibrate the input
channels with the learned scaling depending on the input channels. Given X € RV*W*xH a5 input TSMP simulation, where
V' is the number of output variables from COSMO, CLM, and ParFlow models, and W and H are the spatial extensions, the

channel attention is computed as follows:

ChannelAttention(X) £ Sigmoid( (MLP( (GAP(X)))+MLP( (GSD(X))))> e RVXIx1 (B1)

where Sigmoid is the sigmoid function, MLP consists of two linear layers with a ReLU activation in between. The first
decreases the dimension to % and the subsequent layer maps it back to V. GAP is global average pooling, and GSD is the
global standard deviation. For the experiments in Seetion-22Sect. 4.1, we trained four-separated-models—with-two separated
models for NDVI and BT independently with (rq¢¢ = 3, and-r,y = 5) and with the dimensionality {C'(cy, 1) = 64,Cep 2) =
128,Ccpn,3) = 256}, and averaged the results.
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Figure B1. Illustration of the channel attention implementation. The output of channel attention is multiplied with the input TSMP to scale

the channels from COSMO, CLM, and ParFlow according to their activation values.

Appendix C: PRUDENCE scientific regions

Figure C1. Orography over the EURO-CORDEX domain. The white boundaries with the labeled names inside define the PRUDENCE

regions. The time series for validating and testing agricultural drought indices were computed over these regions.
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Appendix D: Ablation Study

In Table D1, we provide an additional analysis about the impact of the perceptual VGG loss described in Eq. (16). When adding

a perceptual loss for training, we observe a consistent improvement for all metrics while residuals are slightly bigger for the

test set. As shown in Figs. D1 and D2, adding the loss Ly ¢ reduces the blurring effect and increases variability.

Table D1. Ablation study on the perceptual VGG loss described in Eq. (16). The metrics are shown for the validation and test sets as one set.

The used model is a U-Net based on focal modulation.

NDVI BT (K)
Loss function MAE(]) RMSE(}) R*(1) R,() Rs(1) MAE(}) RMSE() R’(1) Ry R
3 Loiar 0.0274  0.0364 0.8744 0.9400 0.9139 1.9562  2.5945  0.9255 0.9664 0.9597
Lrae +Lvee 00270 0.0359  0.8781 0.9433 0.9184 1.8981 25433  0.9266 0.9679 0.9613
7 Lriae 0.0266  0.0350 0.8819 0.9443 0.9219 19642  2.6329 0.9181 0.9639 0.9610
C Laiam+Lvea 00268 00353 08795 09452 0.9243 1.8730 25277  0.9227 0.9672 0.9642

Predicted NDVI (£mag)

Predicted NDVI (Lmae + Lvse)

Observed NDVI

¥

v

¥y

Figure D1. Impact of the perceptual VGG loss on NDVI predictions and image sharpness. The shown example is for the week 30 in the year

2018. Best seen in digital formats with colors.
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Predicted BT (Lmag) Predicted BT (£mae + Lvse) Observed BT

Figure D2. Impact of the perceptual VGG loss on BT predictions and image sharpness. The shown example is for the week 30 in the year

2018. Best seen in digital formats with colors.

Appendix E: Patch embedding

Patch embedding with a patch size > 1 is commonly used in vision transformer architectures. The main aim of this embedding
is to increase the channel dimension and reduce the computational demands of the self-attention modules. This can be done by
merging and embedding neighborhood pixels/tokens thus reducing the spatial or temporal resolution. In Table E1, we show that
decreasing the spatial dimension of the raw input for the encoder has negative effects on our image-to-image regression task
in both quantitative and qualitative terms. This can be understood as the information was lost and the model had-a-hardness
struggles to output the original resolutionwi
resolution;-staticfeatures-or-time-step)—. Note that for all experiments we keep using the down- and up-sampling with a factor

of 2 in both encoder and decoder while we only change the patch size before the first encoder layer. To match the original

spatial resolution, we used an additional bilinear up-sampling after the last decoder layer.
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Table E1. Impact of patch size for patch embedding before the first encoder layer. The metrics are shown for the validation and test sets. The

used model is a U-Net based on focal modulation model.

NDVI BT (K)

Patchsize MAE(]) RMSE() R*(1) Ry(1) Ru(1) MAE(})) RMSE(l) R*®) Ry(1) R

1x1 0.0270  0.0359 0.8781 0.9433 0.9184 1.8981  2.5433 0.9266 0.9679 0.9613

S 2x2 0.0280  0.0369 0.8707 0.9374 0.9116 19372 2.6108 0.9243 0.9664 0.9604
4x4 0.0291 0.0383  0.8625 0.9345 0.9075 2.0033 2.6957 09184 0.9633 0.9570
1x1 0.0268  0.0353  0.8795 0.9452 0.9243 1.8730  2.5277 09227 0.9672 0.9642
é 2x2 0.0271 0.0355 0.8786 0.9422 0.9185 1.9638  2.6669  0.9157 0.9645 0.9618

4x4 0.0286  0.0375 0.8644 0.9363 0.9141 2.1741 29132 0.8977 0.9594 0.9580
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Figure F1. Supplementary results to Fig. 8. Comparison of spatially averaged weekly NDVI anomalies between the model prediction and

NOAA observation over each PRUDENCE region. Anomaly was computed by subtracting the mean values from predictions (observations).

The mean values were computed from the long-term climatology (1989-2016) pixel-wise and on a weekly basis. All results are obtained with

a DL model based on Focal Modulation Network. The ensemble model is the result of all DL models described in Sect. 5 and Table 1.
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Figure F2. Supplementary results to Fig. 8. Comparison of spatially averaged weekly BT anomalies between the model prediction and
NOAA observation over each PRUDENCE region. Anomaly was computed by subtracting the mean values from predictions (observations).
The mean values were computed from the long-term climatology (1989-2016) pixel-wise and on a weekly basis. All results are obtained with

a DL model based on Focal Modulation Network. The ensemble model is the result of all DL models described in Sect. 5 and Table 1.
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