
Focal-TSMP: Deep learning for vegetation health prediction and
agricultural drought assessment from a regional climate simulation
Mohamad Hakam Shams Eddin1 and Juergen Gall1,2

1Institute of Computer Science, University of Bonn, Friedrich-Hirzebruch-Allee 5, 53115 Bonn, Germany
2Lamarr Institute for Machine Learning and Artificial Intelligence, 53115 Bonn, Germany.

Correspondence: Mohamad Hakam Shams Eddin (shams@iai.uni-bonn.de)

Abstract. Satellite-derived agricultural drought indices can provide a complementary perspective of terrestrial vegetation

trends and their integration for drought assessments under future climates is beneficial for providing more comprehensive

assessments. However, satellite-derived drought indices are only available for observed periods. In this study, we investigate

aim to improve the agricultural drought assessments under future climate change by applying deep learning (DL) models on

to predict satellite-derived vegetation indices from a regional climate simulation. The simulation is produced by the Terrestrial5

Systems Modelling Platform (TSMP) and performed in a free evolution mode over Europe. TSMP simulations incorporate

variables from underground to the top of the atmosphere (Ground to Atmosphere G2A) for vegetation health modeling and

agricultural drought assessment. The TSMP simulation is performed in a free mode and the DL model is used in an intermediate

step to synthesize and are widely used for research studies related to water cycle and climate change. We leverage these simula-

tions for long-term forecasting and DL to map the forecast variables into Normalized Difference Vegetation Index (NDVI) and10

Brightness Temperature (BT) images from the TSMP simulation over Europethat are not part of the simulation model. These

predicted images are then used to derive different vegetation and drought indices like agricultural drought indices, namely

NDVI anomaly, BT anomaly, Vegetation Condition Index (VCI), Thermal Condition Index (TCI), and Vegetation Health Index

(VHI). The developed DL model could be integrated with data assimilation and used for down-stream tasks, i.e., for estimating

NDVI and BT for periods where no satellite data are available and for modelling the impact of extreme events on vegetation15

responses with different climate change scenarios. Moreover, our study could be used as a complimentary evaluation frame-

work for TSMP-based climate change simulations. To ensure reliability and to assess the modelapplicability with different

seasonality and spatial variability’s applicability to different seasons and regions, we provide an analysis of model biases and

uncertainties across different regions over the Pan-Europe domain. We further provide an analysis about the contribution of

the input variables from the TSMP model components to ensure a better understanding of the model prediction. A comprehen-20

sive evaluation on the long-term TSMP simulation using reference remote sensing data showed sufficiently good agreements

between the model predictions and observations. While model performance varies on the test set between different climate

regions, it achieves a mean absolute error (MAE) of 0.027 and 1.90 K ◦ with coefficient of determination (R2) scores of

0.88 and 0.92 for NDVI and BT, respectively, at 0.11◦ resolution for sub-seasonal predictions. Our study could be used as a

complimentary evaluation framework for climate change simulations with TSMP. Moreover, the developed DL model could25

be integrated with data assimilation and used for down-stream tasks, i.e., modelling the impact of extreme events on vegetation
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responses with different climate change scenarios. In summary, we demonstrate the feasibility of using DL on a TSMP simula-

tion to synthesize NDVI and BT satellite images, which can be used for agricultural drought forecasting. Our implementation

is publicly available at the project page (https://hakamshams.github.io/Focal-TSMP).

1 Introduction30

There is a growing consensus of the need to improve our state of knowledge on extreme events under a changing climate. Ac-

cording to recent studies on historical trends and current projections, different regions of the Earth would be under a changing

climate more vulnerable to extreme events such as flash droughts (Christian et al., 2021, 2023; Yuan et al., 2023), meteorolog-

ical and agricultural droughts (Essa et al., 2023), forest wildfires (Patacca et al., 2023), and water storage deficiency (Pokhrel

et al., 2021). The expected increase in concurrence of agricultural droughts would cause crop production losses and vegetation35

mortality. In particular, people in regions with fragile adaptation and mitigation strategies will be more effected. Forecasting

Therefore, forecasting the vegetation responses and their evolving patterns conditioned on climate scenarios is therefore a

requirement to form better mitigation and adaptation strategies.

Nowadays, satellite observations around the world provide a near real-time global monitoring of vegetation and drought

conditions. However, in order to prepare for long-term alleviation plans, it is desirable to forecast information about vegetation40

health and agricultural drought events in the future. While short-term forecasting, i.e., for a few weeks, on a large-scale is

very useful for short-term planning, a more significant contribution could be achieved with a much longer forecasting time

in the future (Marj and Meijerink, 2011). In relation to this, there has been a growing line of research over the past in im-

proving and deploying climate modelling modeling that attempt to simulate the underlying processes of the Earth system

(Shrestha et al., 2014; Lawrence et al., 2019)(Shrestha et al., 2014; Gasper et al., 2014; Lawrence et al., 2019). These modelling45

platforms are essential to understand changes in the water cycle and to realize and forecast climatic extreme events such as

droughts in a model simulation (Miralles et al., 2019). Meanwhile, many application and domain dependent drought indices

have been proposed to capture various drought signals for agricultural systems (Meza et al., 2020)For instance, the simu-

lated outputs of modeling systems can be used to derive agricultural drought indices based on a deficiency in precipitation

(McKee, 1995; Vicente-Serrano et al., 2010) or soil moisture (Martínez-Fernández et al., 2015). Nowadays, satellite observa-50

tions around the world provide a near real-time global monitoring of vegetation and drought conditions. Vegetation products

derived from satellite land surface reflectances are used in particular can be used as proxies for vegetation health and conse-

quently as agricultural drought indicators (Qin et al., 2021; Vreugdenhil et al., 2022). Based on these recent developments in

Earth modelling platforms and remote sensing vegetation indices, it is natural to ask the question of whether the systems of

agricultural drought forecasting could be further enhanced.55

In this study, we address the problem of predicting satellite-derived vegetation indices from a free evolving simulation

based on the Terrestrial Systems Modelling Platform (TSMP Ground to Atmosphere G2A) (Furusho-Percot et al., 2019). More

precisely, we predict from the simulation the Normalized Difference Vegetation Index (NDVI) and Brightness Temperature

(BT) as they would have been observed from AVHRR NOAA satellite systems. NDVI is computed from the reflectance in
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visible red (ρR) and near-infrared bands (ρNIR). It is a standard product that is extensively used in applications for vegetation60

health and crop yield (Tucker, 1979). While BT is a calibrated spectral radiation derived from the thermal band (ρIR) and can

be used for temperature-related vegetation stress monitoring (Kogan, 1995a). We assume that a climate simulation (i.e., TSMP

simulation) that is close to the true state of the Earth should be able to reproduce vegetation products (i.e., NDVI and BT)

regardless of the target satellite platform (in this study AVHRR NOAA). Radiative transfer models (RT) are normally used to

synthesis such spectral band information of specific satellite systems. Physically-based models benefit from the fact that they65

are built upon rich domain knowledge in physics. However, there are still many challenges related to these models. This includes

the constrained parametrization for specific bands under various surface-atmosphere conditions (i.e., different cloud schemes

and detailed representation of scattering processes) and satellite parameters (i.e., zenith and the scattering angles) as well as

assumptions about albedo/emissivity and the high computational resources to run the model (Geiss et al., 2021; Scheck, 2021)

. Besides, there exist climate-vegetation models which directly simulate the vegetation dynamic based on ecological processes70

and statistical modeling. Nevertheless, they are limited by the complexity of the processes and poor generalization (Chen et al., 2021)

. Recently, deep learning (DL) models have become popular to build a predictive model for tasks that include complex or

intractable cause and effect relations within the Earth system (Bergen et al., 2019; Tuia et al., 2023). In addition, DL can be

used to handle biases implicitly, thus simplifying the entire workflow (Schultz et al., 2021). For instance, DL was recently used

in climate modelling for bias correction and down-scaling to project extremes (Blanchard et al., 2022), weather forecasting75

(Lam et al., 2022; Chen et al., 2023; Bi et al., 2023; Ben-Bouallegue et al., 2023), and generalized multi-task learning (Nguyen et al., 2023; Lessig et al., 2023)

While historical trends in satellite-based droughts have been extensively studied, satellite-based agricultural drought assess-

ment and its relation to climate simulations under climate change remains not fully explored. In this work, we thus propose a

DL approach based on focal modulation networks (Yang et al., 2022) to simultaneously predict NDVI and BT from the model

simulation. In this way, we leverage a simulation model for long-term forecasting and DLfor mapping the forecast variables to80

vegetation related indices that are not part of the simulation model. study, we propose to use deep learning (DL) to improve

the agricultural drought analysis by predicting satellite-derived vegetation indices that can be combined with meteorological

or hydrological indices which are often used in studies for drought assessment to provide more comprehensive assessments.

In fact, some studies highlighted inconsistencies in the long-term drought trends (Sheffield et al., 2012; Kew et al., 2021;

Vicente-Serrano et al., 2022). Meanwhile others showed a different perspective of trends related to terrestrial vegetation from85

remote sensing products (Zhu et al., 2016; Kogan et al., 2020). This is usually explained as assessments are highly depen-

dent on drought definition (Satoh et al., 2021; Reyniers et al., 2023) and extreme event attribution (Van Oldenborgh et al.,

2021), i.e., the drought indicator that was chosen in the methodology and the variations in modelling platforms. In addition,

prescribed vegetation assumptions exist in climate simulations which limit the modeling of atmospheric carbon effects or soil

moisture deficiency on vegetation (Pirret et al., 2020; Pokhrel et al., 2021; Reyniers et al., 2023). If we add to this the complex90

spatio-temporal response of vegetation to climate variability (Seneviratne et al., 2021; Jin et al., 2023), i.e., regional responses

to climate have different dynamics and are more complicated than those at a global scale, we can conclude that predicting the

vegetation state in response to drought under climate conditions still poses a major challenge. More precisely, in this study

we predict satellite-based vegetation products from a free evolving simulation based on the Terrestrial Systems Modelling
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Platform (TSMP) (Furusho-Percot et al., 2019). TSMP simulations integrate variables from groundwater to the top of the at-95

mosphere (Ground to Atmosphere G2A) and are primarily employed in studies on the water cycle and climate change (Ma

et al., 2021; Furusho-Percot et al., 2022; Naz et al., 2023; Patakchi Yousefi and Kollet, 2023). In particular, we predict from

the TSMP simulation the Normalized Difference Vegetation Index (NDVI) and Brightness Temperature (BT) as they would

have been observed from Advanced Very High Resolution Radiometer (AVHRR) from the National Oceanic and Atmospheric

Administration (NOAA) satellite systems. NDVI is computed from the reflectance in visible red (ρR) and near-infrared bands100

(ρNIR). It is a standard product that is extensively used in applications for vegetation health and crop yield (Tucker, 1979).

BT is a calibrated spectral radiation derived from the thermal band (ρIR) and can be used for temperature-related vegetation

stress monitoring (Kogan, 1995a). We assume that a climate simulation (i.e., TSMP simulation) that is close to the true state

of the Earth should be able to model vegetation products (i.e., NDVI and BT) regardless of the target satellite platform (in this

study AVHRR NOAA). Recently, DL models have become popular to build a predictive model for tasks that include complex105

or intractable cause and effect relations within the Earth system (Bergen et al., 2019; Tuia et al., 2023; de Burgh-Day and

Leeuwenburg, 2023). In addition, DL can be used to handle biases implicitly, thus simplifying the entire workflow (Schultz

et al., 2021). For instance, DL was recently used in climate modelling for bias correction and down-scaling to project extremes

(Blanchard et al., 2022), weather forecasting (Lam et al., 2022; Chen et al., 2023; Bi et al., 2023; Ben-Bouallegue et al., 2023),

supporting data assimilation systems (Düben et al., 2021; Valmassoi et al., 2022; Yu et al., 2023), and generalized multi-task110

learning (Nguyen et al., 2023; Lessig et al., 2023). In this work, we thus propose a DL approach based on focal modulation

networks (Yang et al., 2022) to simultaneously predict NDVI and BT from the model simulation. In this way, we leverage a

climate simulation for long-term forecasting and DL for mapping the forecast variables to vegetation related indices that are

not part of the simulation model.

As an example of a down-stream application, we apply the predicted NDVI and BT for long-term agricultural drought115

forecasting, where we derive Vegetation Condition Index (VCI), Thermal Condition Index (TCI), and Vegetation Health

Index (VHI) (Yang et al., 2020) as agricultural drought indicators from the predicted NDVI and BT. As part of this, we

analyze whether a DL model trained on simulation produced by TSMP can be used for vegetation health forecasting at

a continental-scale by identifying regions and periods of uncertainty in the model prediction. Moreover, we analyze the

importance of the input explanatory variables with explainable artificial intelligence. We achieve an overall mean absolute120

error (MAE) of 0.027 and 1.90 K◦ with coefficient of determination (R2) scores of 0.88 and 0.92 in predicting NDVI and

BT, respectively for sub-seasonal predictions at 0.11◦ resolution. Our results indicate that a direct prediction of vegetation

products from TSMP with deep learning is an effective way to examine the overall predictive capability of TSMP to forecast

agricultural drought events. The results suggest that a model trained on TSMP to predict vegetation products could be valuable

for scenario-based assessmentsof vegetation response to climate change.125

The rest of this article is organized as follows. Section 2 reviews the related literature. Section 3 describes the datasets that

are used in the experiments. The methodology is described in Sect. 4. Section 5 and ?? include the experimental results. An

analysis about variable importance is given in Sect. ??. Finally, a discussion and conclusions are provided in Sect. ?? and ??,

respectively.
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2 Related works130

1.1 Radiative transfer models

Forward operators like radiative transfer (RT) solvers can synthesize solver are normally used to synthesize spectral band

satellite images from the output of a numerical weather prediction (NWP) model (Li et al., 2022). These synthetic images

can then be used to evaluate the representation capability of the model or for data assimilation purposes, i.e., to verify the

spatial structure of clouds in the atmospheric models. We briefly review some related works for synthetic satellite imagery.135

Zhang et al. (2015) applied the radiative transfer for TOVS (RTTOV) (Saunders et al., 2018) with input from the Weather

Research and Forecasting (WRF) model (Skamarock et al., 2019) to model BT of oxygen and water-vapor absorption bands

from geostationary satellites. Scheck et al. (2016) developed a method for fast satellite image synthesis (MFASIS), a fast 1D

RT for data assimilation based on a pre-computed look-up table with the discrete ordinate method (Stamnes et al., 1988)

. The reflectance at the top atmosphere is approximated by a mathematical function that takes into account the assumed140

relevant variables of simplified vertical profiles from the numerical weather forecasting COSMO-DE from the German Weather

Service (DWD) and satellite parameters. They tested their model for two visible satellite bands (ρ1: 0.6 µm and ρ2: 0.8

µm) from the spinning enhanced visible and infrared imager (SEVIRI). In Scheck et al. (2018), they extended their work

to include more 3D RT effects. Another work for developing a RT model for visible and near infrared radiances was presented

in (Wang et al., 2013). Furthermore, Geiss et al. (2021) analyzed the impact of cloud-related representations on visible and145

infrared image synthesis. They conduct a direct comparison between observed images from SEVIRI (ρ1: 0.6 µm, ρ2: 0.8 µm,

and ρ3: 10.8 µm) and their equivalent synthetic images computed based on Scheck et al. (2016) and Saunders et al. (2018)

from the icosahedral non-hydrostatic model (ICON-D2, Zängl et al. (2015)). More recently, machine learning (ML) methods

have being used to support data assimilation systems (Düben et al., 2021; Valmassoi et al., 2022). Such methods can be applied

directly to NWP with minimum design choice of predictor variables and are considered as promising to automate the processes,150

i.e., ML can be used as an emulator for some physical processes. Chevallier et al. (2000) used as one of the first works

neural networks for long-wave RT. Later, in a work by Lakshmanan et al. (2012), a multi-layer perceptron (MLP) was used

to generate satellite images in the visible bands for model visualization. To generate training data, they applied the successive

order of interaction RT solver (Heidinger et al., 2006) to compute synthetic satellite images for several days from the output

of the WRF model. Ahmad et al. (2019) relied on traditional ML to predict 6 independent passive microwave BT spectral155

differences over snow-covered land. They used assimilated input from Noah-multiparameterization (Yang et al., 2011) and

predicted satellite observations derived from the Advanced Microwave Scanning Radiometer for Earth Observing Systems

(Kelly, 2009). Shi et al. (2018) performed a short-term assimilation of infrared BT (ρ1: 11.2 µm, ρ2: 12.0 µm, ρ3: 6.7 µm and

ρ4: 3.9 µm) derived from radiometer FY-2D satellite data. A grid of atmospheric profiles was generated with the WRF model.

This grid with different cloud micro-physical schemes was used as input for the RTTOV to simulate BT. Scheck (2021)160

proposed to use MLP to emulate the theoretical reflectance calculation from the MFASIS operator, where the DL model was

used to replace the look-up table in Scheck et al. (2016). Similar approaches based on MLP were presented in (Stegmann et al., 2022)

. They were also used to emulate 3D effects on RT (Meyer et al., 2022) and to generate near-infrared satellite images (ρ1:
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1.6 µm) in (Baur et al., 2023). Recently, Liang et al. (2023) used ML to assimilate different bands of BT from Advanced

Microwave Sounding Unit-A. In their framework, the satellite observed radiance was assimilated using RTTOV and specific165

MLP models were trained for each band and satellite. Yu et al. (2023) proposed to use ML models as emulators to simulate a

subset of atmospheric radiation variables from a model simulation.

model (Scheck et al., 2016; Geiss et al., 2021; Li et al., 2022). In this paper, we investigate the use of DL to predict products

of atmospherically corrected observed albedo/emissivity on land (atmospherically corrected bottom of atmosphere) like NDVI

and BT simultaneously rather than training the neural network to serve as an emulator for a predefined physical-based RT170

radiative transfer model. In other words, our training data for DL are derived from real-world satellite observations (empir-

ical operator) without assimilating data or assumptions about radiations. Unlike aforementioned works, we use input data

from CLM (surface) and ParFlow (sub-surface) for the neural network to account for a more detailed representation of

the reflectance/emissivity on ground and for land-atmosphere coupling. In addition, we built our neural network on Vision

Transformers (Dosovitskiy et al., 2021) and Convolutional Neural Networks (CNN) models taking into account the spatial175

context around each input pixel and operating on the whole scene at once. This was motivated by previous studies that indicate

that an effective model of the environment should consider the spatial-correlation within the domain (see Sect. 2.2).

1.1 Vegetation health prediction

A plenitude of studies exist about vegetation health prediction and forecasting from Earth observations. Besides, there exist

climate-vegetation models which directly simulate the vegetation dynamic based on ecological processes and statistical mod-180

eling. Nevertheless, they are limited by the complexity of the processes and poor generalization (Chen et al., 2021). Unlike

hydro-meteorological variables that can be predicted or forecast using NWPnumerical weather model, vegetation products de-

mand an extended modeling representation of the surface and sub-surface (Lees et al., 2022). Recently, Salakpi et al. (2022a, b)

predicted short-term VCI vegetation products based on previous vegetation conditions and observational anomaly indices in

a Bayesian auto-regressive approach. However, the interaction between vegetation and climate variability exhibit exhibits a185

strong non-linear behavioursbehavior. In this respect, many studies explored the applicability of DL for vegetation health

monitoring prediction using climate models and remote sensing data (Ferchichi et al., 2022). In Wu et al. (2020), a MLP was

used to model the relation between NDVI and precipitation. Kraft et al. (2019) built a global model for NDVI dynamics using

variables from ERA-Interim (Dee et al., 2011) together with static variables as predictor variables. They built their models on

a recurrent network with long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and MLP. In a different study,190

Prodhan et al. (2021) predicted the soil moisture deficit index (SMDI) using MLP, random forests (RF), and a global land

data assimilation system (Rodell et al., 2004). Others aimed to forecast or synthesize vegetation products from past spectral

information (Nay et al., 2018; Yu et al., 2022) or vegetation statistics (Das and Ghosh, 2016; Adede et al., 2019). Furthermore,

Lees et al. (2022) used ERA5 data (Hersbach et al., 2020) and past vegetation (Das and Ghosh, 2016; Adede et al., 2019; Ferchichi et al., 2022; Wu et al., 2020; Kraft et al., 2019; Prodhan et al., 2021)

. A common approach is to use past vegetation conditions to predict the short-term VCI using an LSTM. Vo et al. (2023)195

proposed to use an LSTM for short-term forecasting of the natural drought index (NDI), using an ensemble of climate

model forecasts and observational data as input. Another approach was presented in (Hammad and Falchetta, 2022) to predict
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short-term VHI based on probabilistic random forests (Meinshausen and Ridgeway, 2006) and past Earth observations. Recentlyfuture

variations (Nay et al., 2018; Yu et al., 2022; Hammad and Falchetta, 2022; Lees et al., 2022; Vo et al., 2023). In a related work,

Requena-Mesa et al. (2021) addressed the problem of optical satellite imagery forecasting as a guided video prediction task.200

In their framework, vegetation dynamics approximated by NDVI is modeled at high resolution using past satellite images as

initial conditions and static and reanalysis data as a model guidance. Similar approaches with this framework were presented

in (Robin et al., 2022; Kladny et al., 2022; Diaconu et al., 2022) and on a continental-scale continental scale in (Benson

et al., 2023). While these works differ in their methodologies, i.e. in the predicted vegetation products, model architec-

tures, and spatio-temporal resolutions, they have overall a good performance for short-term forecasting. Nonetheless, only205

few studies address long-term vegetation conditions forecasting. Marj and Meijerink (2011) presented an approach based on

MLP and two climate signals to forecast vegetation conditions like NDVI and VCI in the next growing season.In a later study,

Miao et al. (2015) aimed to model the future change of GIMMS NDVI3g (Pinzon and Tucker, 2014) based on an ensemble

of climate scenarios CMIP5 (Taylor et al., 2012) on a decadal-scale from 2020 to 2100. They first used a linear regression

to learn the relation between climate observations and NDVI data and then used the learned relations along with climate210

scenarios to do the forecasting. A similar line of research was conducted by Patil et al. (2017). They employed a RF to model

NDVI images. In their work, Although short-term forecasting, i.e., for a few weeks, is very useful for short-term planning, a

more significant contribution could be achieved with a RF was trained with historical climate data from the WorldClim dataset

(Hijmans et al., 2005) to predict visible and near-infrared bands observed by Landsat 7. The trained model was then used to

forecast land cover response based on a climate change scenario for the period 2061-2080. More recently in (Chen et al., 2021)215

, an LSTM model was used to predict NDVI on a global-scale while Wei et al. (2023) proposed to forecast the leaf area index

(LAI) based on a climate projection using a RF model trained to predict LAI from historical data.

Most much longer forecasting time (Marj and Meijerink, 2011). Nonetheless, only few studies addressed long-term vegeta-

tion conditions forecasting (Marj and Meijerink, 2011; Miao et al., 2015; Patil et al., 2017; Chen et al., 2021; Wei et al., 2023)

. In addition, most studies focused only on a single indicatorlike NDVI excluding BT. The combination of different indicators220

like NDVI and BT with their corresponding drought indices provides complementary information on the vegetation state and

is beneficial for vegetation monitoring (Yang et al., 2020). In this studyAs mentioned before, we aim to use DL to predict

vegetation products like NDVI , BT, VCI, TCI, and VHI at a continental-scale and BT from a regional climate simulation at

a continental scale. We also focus on long-term forecasting without using an initial state, i.e., satellite images from previous

time steps. Unlike aforementioned works, we use more input data for the neural network from the surface and sub-surface to225

account for a more detailed representation of the reflectance/emissivity on ground. In addition, we built the neural network

on Vision Transformers (Dosovitskiy et al., 2021) and Convolutional Neural Networks (CNN) models taking into account the

spatial context around each input pixel and operating on the whole scene at once. This was motivated by previous studies

that indicate that an effective model of the environment should consider the spatial-correlation within the domain. Previous

works train and evaluate DL models on biased-corrected reanalysis data. In contrast, we evaluate the approach with real-world230

observations using a run of the simulation in the past. It is worth to note that this evaluation is more consistent with real-world

deployment schemes, since it is questionable how a model that has been trained and evaluated on reanalysis data will perform
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on a biased climate projection simulations. Thus, we opt for a simulation that mimics a climate projection of the past and train

and evaluate the model on it to internally correct biases and predict vegetation products.

To showcase the potential of our approach, we apply the predicted NDVI and BT for long-term agricultural drought forecast-235

ing, where we derive Vegetation Condition Index (VCI), Thermal Condition Index (TCI), and Vegetation Health Index (VHI)

(Yang et al., 2020) as agricultural drought indicators from the predicted NDVI and BT. As part of this, we analyze whether

a DL model trained on simulation produced by TSMP can be used for vegetation health forecasting at a continental-scale

by identifying regions and periods of uncertainty in the model prediction. Moreover, we analyze the importance of the input

explanatory variables. We achieve an overall mean absolute error (MAE) of 0.027 and 1.90 K with coefficient of determina-240

tion (R2) scores of 0.88 and 0.92 in predicting NDVI and BT, respectively for sub-seasonal predictions at 0.11◦ resolution.

Our results indicate that a direct prediction of vegetation products from a TSMP simulation with DL is an effective way for

scenario-based assessments of vegetation response to climate change.

The rest of this article is organized as follows. Section 2 describes the datasets that are used in the experiments. The method-

ology is described in Sect. 3. Experimental results and an analysis about variable importance are given in Sect. 4. Finally,245

conclusions are provided in Sect. 5.

2 Datasets and data preprocessing

In this section, we describe the datasets used in the experiments. The TSMP simulation is presented in Sect. 3.12.1, the obser-

vational remote sensing data for model training and evaluation are presented in Sect. 3.22.2, and the preprocessing framework

of the data is described in Sect. 3.3 2.3.250

2.1 Regional Earth system simulation

For this study, we use the simulation produced by Terrestrial System Modelling Platform version 1.1. (TerrSysMP or TSMP)

at the Research Centre Jülich (FZJ) at IBG-3 Institute and originally described in (Shrestha et al., 2014) and (Gasper et al.,

2014). The simulation used in this study is introduced in (Furusho-Percot et al., 2019). TSMP is a physics-based integrated

simulation representing a near-nature realization of the terrestrial hydrologic and energy cycles that cannot be directly obtained255

from measurements. Its setup consists of three main interconnected model components:

– The Consortium for Small Scale Modelling (COSMO) version 5.01 is a numerical weather model to simulate the diabatic

and adiabatic atmospheric processes (Baldauf et al., 2011).

– The Community Land Model (CLM) version 3.5 is used to simulate the bio-geophysical processes on the land surface

(Oleson et al., 2004, 2008).260

– ParFlow version 3.2. is a hydrological model to explicitly simulate the 3D dynamic processes of water in the land surface

and underground (Jones and Woodward, 2001; Kollet and Maxwell, 2006; Jefferson and Maxwell, 2015; Maxwell et al.,

2015; Kuffour et al., 2020).

8



ECMWF ERA-Interim data (Dee et al., 2011) were used to define the initial and boundary conditions for the simulation.

Based on this setup, a spinup of 10 years (1979-1988) was conducted to initialize the surface and subsurface hydrologic and265

energy conditions and to reach the dynamic equilibrium with the atmosphere before the actual run (1989-2019). We selected

variables available within the period applicable for the analysis. This results in 29 main variables from COSMO, 8 vari-

ables from CLM, and 2 main variables from ParFlow. Additionally, we used 3 static variables from the analysis (Poshyvailo-

Strube et al., 2022). An analysis about the explanatory variables is provided in Sect. ?? 4 and variable descriptions are listed

in Tables A1 and A2. The three model components were fully coupled via the OASIS3 coupler (Valcke, 2013) to form a270

unified soil–vegetation–atmosphere model. This scheme was built without nudging or any type of DA allowing the free-

running of the simulated variables. Thus, TSMP is ideal for representing the heterogeneity of the water cycle from the sub-

surface to the top atmosphere in a free evolution. In addition, the long-term simulation is performed for a historical time

period from January 1989 until summer in September 2019 with output variables aggregated on a daily basis and extended

extending over the Europe EURO-CORDEX EUR-11 domain (Giorgi et al., 2009; Gutowski Jr. et al., 2016; Jacob et al.,275

2020)with various vegetation types and climate conditions. The grid specification for TSMP is a standardized rotated coor-

dinate system (ϕmeta = 39.5◦ N, λmeta = 18◦ Eϕ(rotated pole) = 39.5◦ N, λ(rotated pole) = 18◦ E) with a spatial resolution

of ∼ 0.11◦ (∼ 12.5 km) and 412× 424 grid cells in the rotated latitudinal and longitudinal direction, respectively. These

spatio-temporal dimensions and the model setup make TSMP suitable for climatological studies at a continental-scale. For

recent evaluations of TSMP processes, please see (Furusho-Percot et al., 2022) and (Naz et al., 2023) and for recent studies of280

applying DL on TSMP simulations, please see (Patakchi Yousefi and Kollet, 2023) for bias correction and (Ma et al., 2021)

for drought analysis. continental scale.

2.2 Observational remote sensing data

Satellite-based vegetation health products were obtained from the National Oceanic and Atmospheric Administration (NOAA),

Center for Satellite Applications and Research (STAR) ()NOAA1. The blended version (Yang et al., 2020) is composed of285

long-term remote sensing data derived from two systems of satellites: Advanced Very High Resolution Radiometer (AVHRR

) AVHRR from 1981 to 2012 and its successor Visible Infrared Imaging Radiometer Suite (VIIRS) from 2013 onward. The

dataset includes two essential products, namely NDVI and BT (Table A3). NDVI is computed from the red (ρR) and near-

infrared (ρNIR) bands:

NDVI =
(ρNIR − ρR)

(ρNIR + ρR)
. (1)290

The NDVI is unitless and given in the range [-0.1, 1]. Same NDVI values should not be interpreted similarly for different

ecosystems. In other words, the interpretation is highly dependant on the location and ecosystem productivity (Kogan, 1995b).

BT is derived from the infrared (ρIR) band and given in Kelvin (K◦K) within the range [0, 400]. To handle high frequency

noise caused by clouds, aerosol, and atmospheric variation along with different random error sources, NDVI and BT were

temporally aggregated into smoothed noise reduced weekly products. In addition, post-launch calibration coefficients and295

1Center for Satellite Applications and Research (STAR) https://www.star.nesdis.noaa.gov/star/index.php
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solar/sensor zenith angles are applied to account for sensor degradation and orbital drift. The outlier removal is essential to

exclude invalid measurements. Additionally, this weekly temporal resolution is enough to capture the phenological phases of

vegetation and adequate for satellite data application (Kogan et al., 2011; Yang et al., 2020). Based on NDVI, BT and their

long-term climatologies, the upper and lower bounds of the ecosystem (minimum and maximum values for NDVI and BT)

can be estimated. ConsequentlyHence, VCI, TCI, and VHI can be derived pixel-wise (Kogan, 1995a, 1990). The vegetation300

condition index is given by:

VCI = 100
(NDVI−NDVImin)

(NDVImax −NDVImin)
, with VCI ∈ [0,100] , (2)

where NDVI is the weekly noise reduced NDVI, and NDVImin and NDVImax the multi-year weekly absolute minimum and

maximum NDVI values, respectively. The thermal condition index is given by:

TCI = 100
(BTmax −BT)

(BTmax −BTmin)
, with TCI ∈ [0,100] , (3)305

where BT is the weekly noise reduced BT, and BTmin and BTmax the multi-year weekly absolute minimum and maximum

BT values, respectively. The vegetation health index is given by:

VHI = (α)VCI+(1−α)TCI, with VHI ∈ [0,100] , (4)

where α is a weighting coefficient. While VCI is a proxy for the moisture condition and its lower values reflect a water-related

stress, TCI is a proxy for the thermal condition and its lower values indicate a temperature and wetness-related stress. The310

composite index VHI is a linear combination of the former two indices to approximate the vegetation health. VHI fluctuates

annually between 0 (unfavourable condition) to 100 (favourable condition). The values of these indices above 100 and below

0 are clipped. Moreover, the The dataset is provided globally with ∼ 0.05◦ (∼ 4 km) spatial resolution mapped into the Plate

Carrée projection. NOAA VP have been broadly used for research and real-world applications. For a summary on the validation

and studies that use this dataset for agricultural droughts monitoring, we refer to Yang et al. (2020).315

2.3 Preprocessing

In this section we describe the data preprocessing that is needed prior to apply DL. Overall the TSMP has 30 years of data

(1989-2019). We reserved the years 1989-2009 (AVHRR era) and 2013-2016 (VIIRS era) for training, 2010-2011 (AVHRR

era) and 2017 (VIIRS era) for validation, and 2012 (AVHRR era), 2018-2019 (VIIRS era) for testing. For TSMP, we excluded

the lateral boundary relaxation zone by removing invalid grid points from the boundaries. This results in a final grid with320

397× 409 grid cells in the latitudinal and longitudinal direction, respectively. In order to connect local-related characteristics

to climate conditions, we computed 3 additional static variables from the static variables described in Table A2. We computed

slope (Horn, 1981) and roughness (Wilson et al., 2007) from orography and distance to water from the land/sea mask. Due to

the fact that the remote sensing data were obtained from two different satellite systems, the data derived from VIIRS have to

be first adjusted to insure continuity and consistency with the data derived from AVHRR. Yang et al. (2018, 2021b) showed325

that the discrepancy between sensors are mainly due to the differences in spectral response ranges and calibration parameters.
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This has a larger effect Compared to BT/TCI, this has a greater impact on NDVI/VCI than on BT/TCI (Kogan et al., 2015)

. (Kogan et al., 2015). Considering this issue, we followed the same re-compositing approach as described in Yang et al.

(2021b). The re-compositing approach can be used to generate cross-sensor vegetation products for the time period from 2013

to 2019. In fact NDVI/BT from different sensors can be decomposed into climatologies and VCI/TCI. The climatology provides330

information about the Ecosystem and it is sensor-specific. While VCI/TCI for the same ecosystem location are cross-sensor.

Thus, using climatology from AVHRR and VCI from VIIRS, Eq. (2) can be reformulated to re-compose NDVI for VIIRS

re-composite NDVI for AVHRR as following:

NDVI′(AVHRR) =

(
VCI(V IIRS)

100

)
(NDVI(max,AV HRR) −NDVI(min,AV HRR))+NDVI(min,AV HRR) , (5)

where NDVI′(AVHRR) is the converted weekly noise reduced NDVI from VIIRS to AVHRR, VCI(V IRRS) is the Vegetation335

Condition Index derived from VIIRS, NDVI(min,AV HRR) and NDVI(max,AV HRR) are the multi-year weekly absolute mini-

mum and maximum NDVI values (climatology) derived from AVHRR, respectively. Similarly from Eq. (3) we have:

BT′
(AVHRR) = BT(max,AV HRR)−

(
TCI(V IIRS)

100

)
(BT(max,AV HRR) −BT(min,AV HRR)) , (6)

where BT′
(AVHRR) is the converted weekly noise reduced BT from VIIRS to AVHRR, TCI(V IRRS) is the Thermal Condition

Index derived from VIIRS, BT(min,AV HRR) and BT(max,AV HRR) are the multi-year weekly absolute minimum and maximum340

BT values (climatology) derived from AVHRR, respectively. Please note that VCI(V IIRS) and TCI(V IIRS) were based on a

pseudo long-term VIIRS climatology (for more details on this, please see Yang et al. (2018)). In addition, the TSMP simulation

and target remote sensing data have to be spatially aligned in the same domain. After the continuity at NDVI and BT level has

been realized, we mapped these two products into the TSMP rotated coordinate system over the EURO-CORDEX EUR-11

domain. For the mapping, we up-scaled the data from 0.05◦ to 0.11◦ resolution based on a first-order conservative mapping345

(Jones, 1999) using the package from Zhuang et al. (2020). For calculating the spatial mean, we excluded invalid, water, and

coastal lines pixels. Afterwards, we computed VCI, TCI and VHI based on Eq. (2)-(4). We note that the weighted coefficient α

in Eq. (4) can be empirically calibrated as a spatially variant factor (Zeng et al., 2022, 2023). Following previous works, we set

α to its standard value 0.5 in all experiments as in Yang et al. (2020). Furthermore, masks over desert and very cold areas were

extracted from the quality assurance (QA) metadata provided with the data. Eventually, the preprocessed data are aggregated350

into data cubes ({variable, lat, lon}) on a weekly basis and stored as netCDF files. This observed remote sensing dataset can

serve as a reference to train and evaluate the DL model performance. Overall, this includes 1263, 156, and 139 samples (weeks)

for training, validation, and testing, respectively. To avoid overfitting or the domination of few input variables, we normalized

the input of TSMP by subtracting the mean and dividing by the standard deviation corresponding to each input variable. These

statistics were computed only from the years that are used for training. The invalid values of pixels were replaced with zeros355

zero values as input to the DL model.
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3 Methodology

Problem formulation. Given TSMP ∈ RV×T×W×H as a climate change simulation, where V is the number of output variables

from the COSMO, CLM, and ParFlow models and the static forcing variables, T is the temporal dimension and W and H are

the spatial extensions, our objective is to construct a mapping function f to predict NDVI ∈ RI×W×H and BT ∈ RI×W×H on360

a weekly basis:

f : (TSMP;θ)→ (NDVI,BT),

, where I is the number of weeksand θ are the weights of the model. To accomplish this, we propose to approximate this

function as a function f using a DL model based on a U-Net (Ronneberger et al., 2015) with focal modulations (Yang et al.,

2022) as building blocks:365

f : (TSMP;θ)→ (NDVI,BT), (7)

where θ are the weights of the model.

The input for DL is a data cube representing a specific week i of TSMP data and the output are NDVI and BT corresponding

to the same week i. We denote the weekly averaged input data cube produced by TSMP as Xi ∈ RV×W×H . Where we obtain

Xi by taking the mean of the days corresponding to the week i. For simplicity, we will drop the notation i in the following370

sections. First, the network architecture is introduced in Sect. ??Sect. 3.1 and the focal modulation is then described in Sect. 4.1.

Finally, we discuss the loss functions 3.2. Section 3.3 discusses the loss function and Sect. 3.1 outlines the baselines approaches.

Implementation and technical details are given in Sect. 4.1. 3.2. Finally, the evaluation metrics are described Sect. 3.3.

3.1 Model architectures

The model recent applications of Vision Transformers (ViT) have covered many tasks in the field of computer vision. The375

network design of ViT along with the multi-head self-attention mechanism (Vaswani et al., 2017) allow ViT to stand as the

state-of-the-art backbone in recent DL models. In contrast to CNNs, ViTs with self-attention modules can handle long-range

interactions across tokens (pixels) more efficiently. In a nutshell, the self-attention module aims to transfer pixel representations

of a given image into a new feature representation based on a weighted aggregation of interactions between every individual

pixel and its surrounding. This mechanism allows the model to focus on more relevant regions of the input images. Despite380

this powerful transforming process, the computational requirement of a standard ViT has been a limitation when applying it

to vision tasks. More recently, the Focal Modulation Network (Yang et al., 2022) has been introduced to substitute the self-

attention mechanism with a lightweight focal module. In contrast to self-attention, focal modulation starts with contextual

aggregation and ends with interactions. Based on this recently introduced mechanism, DL models were developed for medical

image segmentation (Naderi et al., 2022; Rasoulian et al., 2023), change detection for remote sensing data (Fazry et al., 2023)385

, and video action recognition (Wasim et al., 2023). We build our model on focal modulation networks and extend their appli-

cations in Geoscience. Figure 1 provides an overview of the model architecture. The model design follows the U-Net shape
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Figure 1. An overview of the proposed model to predict NDVI and BT from a TSMP climate simulation. The model follows the U-Net

shape with encoder and decoder layers. We use focal modulation as the basic building block for the model. The input TSMP simulation is

first encoded into a latent representation via encoder layers. In a subsequent step, the decoder constructs new features to be given as input to

two separated regression heads that output NDVI and BT simultaneously. The predicted NDVI and BT can then be used to derive different

agricultural drought indices such as VCI, TCI, and VHI.

with encoder and decoder layers connected via skip connections and followed by two regression heads. Figure. 1 provides an

overview of the model architecture. The model consists of the followingmain partsThis allows the model to extract features in

a hierarchical way and predict NDVI/BT with customized heads. In the following, we describe the main parts of the model:390

Patch embedding. The patch embedding is implemented as a single 1D convolution, where one patch is equivalent to one

pixel. The role of this embedding is to project the input X from V dimension into a channel dimension that matches the

channel dimension C(en,1) of the first encoder block. In contrast to related works with transformers, we do not reduce the

spatial resolution at this step. This is important to mitigate blurring effects for regression tasks. An analysis of the impact of

the patch size for embedding is provided in Appendix E.395

Encoder. The encoder consists of 3 encoding layers. Each layer has 2 consecutive focal modulation blocks that have the

same number of channel dimensionchannels. We use focal modulation to capture local to global dependencies in the domain

(Sect. 4.13.2). We apply down-sampling on the output of the first two encoder layers to reduce the spatial resolution by a

factor of 2 and double the number of channels. The down-sampling is implemented as a 2D convolution with 2× 2 kernel

size and stride of 2. We set C(en,1) = 96 as the number of channels of the first encoder layer. Consequently, the encoder has400

the dimensionality {C(en,1) = 96,C(en,2) = 192,C(en,3) = 384}, where C(en,2) is the dimensionality for the second encoder

layer and C(en,3) is the dimensionality for the third encoder layer. The encoder allows the network to extract low to high level

13



features in a hierarchical way. Note that focal modulation allows an additional hierarchical feature extraction at each level

(Sect. 4.13.2).

Skip connections. These connections copy outputs from each encoder layer into its corresponding decoder layer. The purpose405

of this is to enhance the gradient flow in the network and preventing vanishing gradient issues.

Decoder. The decoder has a similar design to the encoder. It consists of 3 decoder layers with 2 consecutive focal modulation

blocks for each decoder layer. The input for the first decoder layer is the output of the last encoder layer copied via a skip

connection. While the The input for the second and third decoder layers is a concatenation of the output from the previous

decoder layer with the output of the corresponding encoder layer. The outputs of the first and second decoder layers are up-410

sampled to double the image size and reduce the dimensionality by a factor of 2. The up-sampling is implemented as a bilinear

interpolation followed by a 2D convolution with 1× 1 kernel size and stride of 1. The decoder layers has the dimensionality

{C(de,1) = C(en,3) = 384,C(de,2) = C(en,2) +C(de,1) = 384,C(de,3) = C(en,1) +C(de,2) = 288}, where C(de,1), C(de,2), and

C(de,3) are the dimensionality for the first, second, and third decoder layers, respectively. The purpose of the decoder is to

gradually construct the input for the regression heads from the encoded features.415

Regression heads. The ouput of the last decoder layer is then given as input to two separated regression heads to predict

NDVI and BT. Each head has two 2D convolutions with 3× 3 kernel size and stride of 1 with a LeakyReLU activation in

between. The regression head reduces the dimensionality from C(de,3) = 288 to 128, and then to 1.

3.2 Focal Modulations

Figure 2. An illustration of the focal modulation block. It follows the typical transformer block with a focal modulation instead of self-

attention. Xk represents the input to the k-th block.

The recent applications of Vision Transformers (ViT) have covered many tasks in the field of computer vision. The network420

design of ViT along with the multi-head self-attention mechanism (Vaswani et al., 2017) allow ViT to stand as the state-of-the-art

backbone in recent DL models. In contrast to CNNs, ViTs with self-attention modules can handle long-range interactions

across tokens (pixels) more efficiently In a nutshell, the self-attention module aims to transfer pixels representation of a

given image into a new feature representation based on a weighted aggregation of interactions between every individual

pixel and its surrounding. This mechanism allows the model to focus on more relevant regions of the input images. Despite425
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this powerful transforming process, the computational requirement of a standard ViT has limited its applications. More

recently, the Focal Modulation Network (Yang et al., 2022) has been introduced to substitute the self-attention mechanism

with a lightweight focal module. In contrast to self-attention, focal modulation starts with contextual aggregation and ends

with interactions. Based on this recently introduced mechanism, DL models were developed for medical image segmentation

(Naderi et al., 2022; Rasoulian et al., 2023), change detection for remote sensing data (Fazry et al., 2023), and video action430

recognition (Wasim et al., 2023). We build our model on focal modulation networks and extend their applications in Geoscience.

We We first describe how the block is implemented and then describe the main focal modulation module denoted as FocalModulationFM.

Fig. 2 illustrates the architecture of the focal modulation block used in both the encoder and decoder layers. The design follows

a typical transformer block. Let Xk ∈ RN×Ck×Wk×Hk

be the input at the k-th block, where N is the batch size (number

of input tensors), Ck is the number of input channelchannels, and W k and Hk are the spatial resolution. First, the input is435

normalized across N via a layer normalization (Ba et al., 2016) denoted as LayerNorm. Using the indices n ∈ {1, . . . ,N},

ck ∈ {1, . . . ,Ck}, wk ∈ {1, . . . ,W k}, and hk ∈ {1, . . . ,Hk}, the LayerNorm can be written as:

LayerNorm(Xk; (γk
l ,β

k
l )) =

(
Xk

n(ck,wk,hk) −µk
n

σk
n

)
. γk

l (ck,wk,hk)(ck) +βk
l (ck,wk,hk)(ck) , (8)

µk
n =

1

CkW kHk

Ck∑
ck=1

Wk∑
wk=1

Hk∑
hk=1

Xk
n(ck,wk,hk) , (9)

σk
n =

√√√√ 1

CkW kHk

Ck∑
ck=1

Wk∑
wk=1

Hk∑
hk=1

(Xk
n(ck,wk,hk)−µk

n)
2
, (10)440

where Xk
n(ck,wk,hk) is the input tensor of order n in the batch, µk

l and σk
l are the computed mean and standard deviation of

the corresponding input Xk
n(ck,wk,hk), and γk

l (ck,wk,hk) ∈ RCk×Wk×Hk

and βk
l (ck,wk,hk) ∈ RCk×Wk×Hk

γk
l (ck) ∈ RCk

and

βk
l (ck) ∈ RCk

are per-element learnable parameters.

These learnable parameters are shared across input tensors. The output of LayerNorm is then passed into the function

FocalModulationFM. After that, the output of the first part is normalized by a second LayerNorm and passed into a feed-445

forward layer . The feed-forward layer consists of a (FFL). The FFL consists of one linear layer that maps the dimentionality to

rmlp×Ck followed by a GELU activation (Hendrycks and Gimpel, 2016) and a second linear layer to bring the dimensionality

back to Ck, where rmlp is the MLP ratio parameter. We set rmlp to 4 for the encoder and decrease it to 2 for the decoder to

reduce model parameterizationthe number of model parameters. The output of each block can be formulated as follows:

FocalModulationBlock(Xk)≜ γk
2 (Feed-ForwardLayer(LayerNorm(γk

1 FocalModulation(LayerNorm(Xk))+Xk)))450

+(γk
1 FocalModulation(LayerNorm(Xk))+Xk)) ,

FocalModulationBlock(Xk)≜ γk
2

(
FFL

(
LayerNorm(γk

1 FM(LayerNorm(Xk))+Xk)
))

+

(
γk
1 FM(LayerNorm(Xk))+Xk)

)
, (11)455
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where γk
1 ∈ RCk

and γk
2 ∈ RCk

are learnable scaling parameters.

An illustration of the function FocalModulation at k-th block. It consists of 3 main parts: focal contextualization, gated

aggregation, and interaction. First, the query, value and gates are obtained by projecting Xk with linear layers. Then, a stack

of depth-wise 2D convolutions followed by a global pooling is used on the value to derive contextual features around pixels.

Gates are used to adaptive aggregate contextual features into a modulator. Finally, the interaction between queried pixels and460

the modulator is performed and projected by a final linear layer to compute the output. The shown are examples of learned

gates along with the pixel-wise magnitude of corresponding modulator at the first block encoder.

The heart The main component of each focal modulation block is the FocalModulationFM function. As seen in Fig. 3, it

consists of three main steps: hierarchical contextualization, gated aggregation, and interactions.

Figure 3. An illustration of the function FM at k-th block. It consists of 3 main parts: focal contextualization, gated aggregation, and

interaction. First, the query, value and gates are obtained by projecting Xk with linear layers. Then, a stack of depth-wise 2D convolutions

followed by a global pooling is used on the value to derive contextual features around pixels. Gates are used to adaptive aggregate contextual

features into a modulator. Finally, the interaction between queried pixels and the modulator is performed and projected by a final linear layer

to compute the output. The shown images are examples of learned gates along with the pixel-wise magnitude of corresponding modulator

at the first block encoder. The bright colors (i.e., green to yellow) for specific regions represent higher values which correspond to higher

attentions of the model to that regions.

Hierarchical contextualization. The objective of this part is to encode local to global range dependencies for every pixel. It465

is based on focal transformer (Yang et al., 2021a) and aims to extract features at 4 different levels. Let Xk be the input for

FocalModulation FM and L= 4 be the number of levels. First, Xk is projected by a linear layer into a new representation

Lk
0 = Linear(Xk) ∈ RN×Ck×Wk×Hk

. Afterwards, the contexts are obtained in a recursive manner using a sequence of 3
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depth-wise 2D convolutions (DWConv2D) with GeLU activation and with increased receptive fields. In DWConv2D, each

output channel corresponds to a convolution on one input channel. We denote rl as the kernel size at level l and start with470

r1 = 3. Thereby, the kernel sizes at the focal levels have the values r1=3, r2=5, r3=7. To obtain a global feature representation,

a global average pooling (GAP) followed by a GeLU activation is applied at level l = 4. Using the index l ∈ {1, . . . ,L}, the

hierarchical contextualization can be formulated as follows:

Lk
l ≜

GeLU(DWConv2D(Lk
l−1)), if 1≤ l < L,

GeLU(GAP(Lk
l−1)) , otherwise.

(12)

Gated aggregation. The gated aggregation adaptively summarizes the extracted hierarchical contexts Lk
l into a modulator.475

First, Xk is projected by a linear layer into 4 gates Gk = Linear(Xk) ∈ RN×L×Wk×Hk

. As can be seen from the example in

Fig. 3, the third gate focuses on the water area while other gates focus on different segmented regions. This allows each pixel to

adaptively aggregate features from different semantic regions conditioned on its context. Pixels in a less dynamic environment

may depend on more distant pixels while pixels in a more dynamic environment may depend more on the local context. The

aggregation is performed over different focal levels and followed by a linear layer:480

Xk
L ≜ Linear(

L∑
l=1

Gk
l ⊙Lk

l ) , (13)

where Xk
L ∈ RN×Ck×Wk×Hk

is are the contextual aggregated features for each pixel called the modulator, Gk
l is the gate

corresponding to level l, and ⊙ is the Hadamard operator (element-wise multiplication).

Interaction. Finally, the interactions interaction between the queried pixels and the modulator is given with the following

formula:485

FocalModulationFM(Xk)≜Xk
L ⊙Linear(Xk) ∈ RN×Ck×Wk×Hk

. (14)

3.3 Loss function

For training we use the Mean Absolute Error (MAE) as a loss function, since it is less sensitive to outliers than the Mean

Squared Error (MSE):

LMAE =
1

NWH

N∑
n=1

W∑
w=1

H∑
h=1

|Y(n,w,h) − Ŷ(n,w,h)| , (15)490

where N is the batch size, and Y(n,w,h) and Ŷ(n,w,h) are the predicted and observed images, respectively.

In addition, to increase local variability and balance the blurring effects from Eq. (15), we use a perceptual loss (Ledig

et al., 2017; Johnson et al., 2016) based on a pre-trained VGG-19 network (Simonyan and Zisserman, 2014) on ImageNet

(Deng et al., 2009). This additional loss constrains the generated images to have a similar structure and spatial variability to

the target observed images by comparing multi-level features extracted by a VGG classifier network from both the predicted495
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and observed images:

LV GG = 8L1
V GG +

J∑
j=2

Lj
V GG , (16)

Lj
V GG =

1

NCjW jHj

N∑
n=1

Cj∑
c=1

W j∑
w=1

Hj∑
h=1

|ϕj(Y(n,j,c,w,h,))−ϕj(Ŷ(n,j,c,w,h))| , (17)

where J is the number of levels from which the VGG features are extracted, W j and Hj are the spatial extensions of the

respective level within the VGG classifier, Cj is the number of channel dimension of the respective level, and ϕj(Y(n,j,c,w,h,))500

and ϕj(Ŷ(n,j,c,w,h,)) are the extracted features at level j from the predicted and observed images, respectively. In contrast to

classification problems where high level features play a more important role, we multiply the low level features by a weighting

factor of 8 to preserve the local features and give them more importance since these are more relevant to our regression task.

The VGG network was originally trained with RGB images and giving NDVI and BT as input is not directly possible. To solve

this issue, we replicate NDVI and BT along the channel dimension and feed each of them separately to the VGG network.505

The impact of using this perceptual loss is evaluated in Appendix D. The entire loss function to be minimized is thus given as

follows:

L= LNDV I
MAE +0.1LNDV I

V GG +LBT
MAE +0.1LBT

V GG , (18)

where LNDV I
MAE and LNDV I

V GG are the MAE and VGG losses on NDVI and LBT
MAE and LBT

V GG are the MAE and VGG losses on

BT, respectively. The weighting factor 0.1 is set to balance the losses. The model is trained with a stochastic gradient descent.510

More technical details regarding the training are provided in Sect. 5. Sect. 3.2.

4 Experimental results and analysis

Performance Metrics. To measure the model performance, we use the Mean Absolute Error (MAE), Root Mean Square Error

(RMSE), coefficient of determination (R2), Pearson Correlation Coefficient (Rp), and Spearman Correlation Coefficient (Rs).

In addition, we compute the Bias as (predicted− observed = Y(w,h) − Ŷ(w,h)). We compute the metrics for each sample and515

then average the values to obtain the last metrics. MAE is computed from Eq. (15). While RMSE can be calculated as follows:

RMSE(Y(w,h), Ŷ(w,h)) =

√√√√ 1

WH

W∑
w=1

H∑
h=1

(Y(w,h) − Ŷ(w,h))
2
.

R2 measures the variation of the perdition from the regression fitted line and it is calculated as follows:

R2(Y(w,h), Ŷ(w,h)) = 1−
∑W

w=1

∑H
h=1 (Y(w,h) − Ŷ(w,h))

2

∑W
w=1

∑H
h=1 (Y(w,h) − ˆ̄Y(w,h))

2 ,
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where ˆ̄Y(w,h) is the overall mean observed value. The highest value for R2 is 1 which represents a perfect fit. Please note that520

R2 measures the variability in Ŷ(w,h) predicted by the model thus it is by definition inversely proportional to the variance and

noise in the observations and should be interpreted carefully.

Pearson correlation (Rp) is a parametric correlation that measures the linear correlation between the predicted and observed

values:

Rp(Y(w,h), Ŷ(w,h)) =

∑W
w=1

∑H
h=1 (Y(w,h) − Ȳ(w,h))(Ŷ(w,h) − ˆ̄Y(w,h))√∑W

w=1

∑H
h=1 (Y(w,h) − Ȳ(w,h))

2
√∑W

w=1

∑H
h=1 (Ŷ(w,h) − ˆ̄Y(w,h))

2
,525

where Ȳ(w,h) is the mean predicted value. The best value for Rp is 1 which represents a perfect positive correlation.

Spearman correlation (Rs) is a non-parametric measure of relationship between predicted and observed values that can be

calculated as follows:

Rs(Y(w,h), Ŷ(w,h)) = Rp(R(Y(w,h)),R(Ŷ(w,h))) ,

where R(Y(w,h)) and R(Ŷ(w,h)) are ranks obtained from the predicted and observed values, respectively. A perfect positive530

correlation occurs when Rs is 1.

Comparison with state-of-the-art algorithms. We

3.1 Baseline approaches

We study the performance of recently developed vision transformers on our task. We achieve this by sharing the overall model

architecture and implementing the main building block inside the encoder and decoder according to different algorithms. The535

implemented models are as follows:

U-Net. We implemented this model as a variation model with 2D CNN instead of Focal Modulation blocks, where we follow

the same model of Focal Modulation design but replace the main building blocks with residual Convolutional blocks. It serves

as a baseline of typical U-Net models. U-Net (Ronneberger et al., 2015) serves as a baseline of typical U-Net models. We

implemented this model based on a 2D CNN with residual convolutional blocks. The U-Net model does not use an attention540

mechanism.

Swin Transformer V1 (Liu et al., 2021) performs self-attention in shifted windows to reduce the computational complexity

compared to the original ViT. Transformers based on this model have been commonly applied for variety of tasks in remote

sensing and computer vision . (Wang et al., 2022a; Gao et al., 2021; Wang et al., 2022b; Aleissaee et al., 2023).

Swin Transformer V2 (Liu et al., 2022) is an improved model of Swin V1. The attention mechanism is replaced with a545

scaled cosine attention to measure pixel feature similarities. Swin V2 utilizes post normalization layers inside the main block

thus making the optimization of large models more stable. In addition, it proposes to replace the positional encoding inside the

windows with a log-spaced continuous one to ease downstream tasks with pre-trained models.
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Wave-MLP (Tang et al., 2022) is a MLP-Mixer-based transformer model. The basic block is built on a stack of MLPs.

Wave-MLP represents each pixel as a wave function with amplitude features representing pixel contents and phase to measure550

the relations with other pixels.

A part of these models, we report the results for two climatology baselines. The climatology is based on multi-year mean

values computed for each pixel and week separately. The first is a climatology (1981-1988) which represents a climatology

computed before the beginning of the simulation. The second is a climatology (1989-2016) which represents a strong climatology

baseline computed over the training years during the simulation. Please note that the later climatology is unrealistic, since it555

computes statistic in the futures. However, it represents a function that models the annual cycles and it can be used to check

if the models only converges to the mean values of the predicted variables. We also note that to the best of our knowledge,

currently there is no complete physically-based model that approximates the function in Eq. (7) to be compared with. Apart

of these models, we report the results for two NDVI/BT climatology baselines. The climatology is based on multi-year mean

values computed from remote sensing observations pixel-wise and on a weekly basis. The first is a climatology-I computed560

from the years 1981-1988 which represents a prescribed satellite phenology before the beginning of the simulation. The second

is a climatology-II computed from the training years 1989-2016 in an overlap with the simulation period. The later climatol-

ogy represents a function that models the annual cycles and it can be used to check if the models generalize beyond the mean

annual cycles of the predicted NDVI/BT.

Implementation Details.565

3.2 Implementation details

We re-implemented all aforementioned DL models in our framework and trained them with a fixed random seed, this insures

reproducibility and fair comparison. with 3 different random seeds, this ensures a fair comparison and better estimation. All

models have almost the same capacity with ∼ 12 million parameters. The encoders for the transformer models were pre-trained

on ImageNet-1K (Deng et al., 2009) while the weights in the decoders and regression heads were initialized randomly from570

N (0,I=0.02). a standard normal distribution. To increase generalization and robustness of the models, we use 3 4 augmentation

techniques. This includes flipping and rotating of the input with a probability of 0.5 and randomly perturb perturbing the input

variables by adding noise ϵ∼N (0,I=0.02) from a normal distribution with zero mean and a standard deviation of 0.02 with

a probability of 0.5. In addition, to generate the input corresponding to week i during training, we randomly average two days

corresponding to the week i . as an additional augmentation technique. All models were trained with the L loss Eq. (18) using575

the Pytorch framework (Paszke et al., 2019) with a learning rate 0.0003 and a scheduler to decay the learning rate by a factor of

0.9 every 16 epochs. AdamW optimizer (Loshchilov and Hutter, 2019) was used for the gradient descent with (β1 = 0.9, β2 =

0.999) and a weight decay 0.05. We use dropout probability of 0.2 and a stochastic depth rate of 0.3. We train with a batch size

of N = 2 for 100 epochs. For Swin Transformers, we set the window size to 8 and use the following number of heads {3,6,12}
for the encoder and the same order for the decoder. The down sampling in the encoder followed the original implementation in580

Swin Transformer. Wave-MLP was trained with the dimensionality {C(en,1) = 64,C(en,2) = 128,C(en,3) = 320} and rmlp = 4

for both the encoder and the decoder. Wave-MLP and Swin V2 use a dropout probability of 0.1 and a stochastic depth rate
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of 0.2. In addition, we follow the official implementation of Wave-MLP and uses use GroupNorm (Wu and He, 2018) with a

group of 1 instead of LayerNorm. FinnalyFinally, all models were trained on individual NVIDIA RTX A6000 GPUs with 48

GB. For the Focal Modulation model , the training took 37 hours on a single NVIDIA RTX A6000 GPU with 4 cores. The585

estimated inference time to generate one sample for NDVI and BT containing 397× 409× 2 grid points is 0.25± 0.01 seconds

on one NVIDIA GeForce RTX 3090 GPU and 16± 0.06 seconds on one AMD Ryzen 9 3900X 12-Core CPU.

3.3 Evaluation metrics

To measure the model performance, we use the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), coefficient of

determination (R2), Pearson Correlation Coefficient (Rp), and Spearman Correlation Coefficient (Rs). In addition, we compute590

the Bias as (predicted− observed = Y(w,h) − Ŷ(w,h)). We compute the metrics for each sample and then average the values to

obtain the final metrics. MAE is computed from Eq. (15). While RMSE can be calculated as follows:

RMSE(Y(w,h), Ŷ(w,h)) =

√√√√ 1

WH

W∑
w=1

H∑
h=1

(Y(w,h) − Ŷ(w,h))
2
. (19)

R2 measures the variation of the perdition from the regression fitted line and it is calculated as follows:

R2(Y(w,h), Ŷ(w,h)) = 1−
∑W

w=1

∑H
h=1 (Y(w,h) − Ŷ(w,h))

2

∑W
w=1

∑H
h=1 (Y(w,h) − ˆ̄Y(w,h))

2 , (20)595

where ˆ̄Y(w,h) is the overall mean observed value. The highest value for R2 is 1 which represents a perfect fit. Please note that

R2 measures the variability in Ŷ(w,h) predicted by the model thus it is by definition inversely proportional to the variance and

noise in the observations and should be interpreted carefully.

Comparing the performance of different DL models. The metrics are shown for the validation and test sets. Pearson correla-

tion (Rp) is a parametric correlation that measures the linear correlation between the predicted and observed values:600

Rp(Y(w,h), Ŷ(w,h)) =

∑W
w=1

∑H
h=1 (Y(w,h) − Ȳ(w,h))(Ŷ(w,h) − ˆ̄Y(w,h))√∑W

w=1

∑H
h=1 (Y(w,h) − Ȳ(w,h))

2
√∑W

w=1

∑H
h=1 (Ŷ(w,h) − ˆ̄Y(w,h))

2
, (21)

where Ȳ(w,h) is the mean predicted value. The best value for Rp is 1 which represents a perfect positive correlation.

Spearman correlation (Rs) is a non-parametric measure of relationship between predicted and observed values that can be

calculated as follows:

Rs(Y(w,h), Ŷ(w,h)) = Rp(R(Y(w,h)),R(Ŷ(w,h))) , (22)605

where R(Y(w,h)) and R(Ŷ(w,h)) are ranks obtained from the predicted and observed values, respectively. A perfect positive

correlation occurs when Rs is 1.
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4 Experimental results and analysis

4.1 NDVI and BT prediction

Examples predictions for weekly NDVI from the test set. (a) Predicted NDVI. (b) Bias computed as prediction minus observed.610

(c) Distribution of biases. (d) Regression results as predicted versus observed. (e) Distribution of NDVI values for NOAA

observation and model prediction. The metrics are computed over all pixels with vegetation cover.

Examples predictions for weekly BT from the test set. (a) Predicted BT. (b) Bias computed as prediction minus observed. (c)

Distribution of biases. (d) Regression results as predicted versus observed. (e) Distribution of BT values for NOAA observation

and model prediction. The metrics are computed over all pixels with vegetation cover.615

An analysis of uncertainty and model generalization for different times of the year. The analysis was performed on the

validation and test sets as one set. (a) NDVI mean bias. (b) NDVI mean Pearson Correlation. (c) BT mean bias. (d) BT mean

Pearson Correlation.

An analysis of uncertainty and model generalization for different time of the year over each PRUDENCE region. The

analysis was performed on the validation and test sets as one set. (a) NDVI bias distribution. (b) BT bias distribution. Shown620

are the probability density functions. (c) NDVI MAE. (d) BT MAE.

The quantitative results of the models are shown in Table 1Tables 1 and 2. Pixels without a vegetation cover (i.e., pixels

over desert) were excluded from the results. Including these pixels , will overestimate the model performance since they have

small variations throughout the years. For the masking, we use NOAA quality assurance (QA) metadata. As can be seen from

Table 1Tables 1 and 2, all DL models outperform the first climatology (1981-1988) climatology-I baseline with a huge margin.625

Table 1. Comparing the performance of different DL models. The metrics are shown for the validation set.

Validation - Years (2010, 2011, 2017) - 156 weeks

NDVI

Algorithm MAE(↓) RMSE(↓) R2 (↑) Rp (↑) Rs (↑) MAE(↓) RMSE(↓) R2 (↑) Rp (↑) Rs (↑)

Climatology 1981-1988 Climatology-I 0.0550 0.0680 0.5763 0.8939 0.8669 2.9130 3.7302 0.8454 0.9466 0.9408

Climatology 1989-2016 Climatology-II 0.0326 0.0416 0.8372 0.9353 0.9113 2.3017 3.0020 0.8963 0.9601 0.9539

2D CNN U-Net 0.0278 0.0277 ±0.0001 0.0365 ±0.0002 0.8746 0.8743 ±0.0008 0.9405 0.9406 ±0.0005 0.9171 1.9484 2.6067 0.9252 0.9671 0.9606 0.9172 ±0.0005

Wave-MLP 0.0274 0.0272 ±0.0003 0.0361 0.0358 ±0.0003 0.8765 0.8784 ±0.0018 0.9403 0.9422 ±0.0018 0.9166 1.9755 2.6395 0.9208 0.9662 0.9596 0.9183 ±0.0021

Swin Transformer V1 0.0276 0.0273 ±0.0003 0.0364 0.0362 ±0.0003 0.8743 0.8759 ±0.0022 0.9396 0.9411 ±0.0013 0.9136 1.9599 2.6369 0.9221 0.9658 0.9589 0.9161 ±0.0023

Swin Transformer V2 0.0274 0.0277 ±0.0003 0.0366 0.0369 ±0.0003 0.8727 0.8703 ±0.0021 0.9413 0.9415 ±0.0010 0.9173 1.9755 2.6282 0.9235 0.9663 0.95970.9167 ±0.0008

Focal Modulation 0.02700.0269 ±0.0001 0.03590.0358 ±0.0002 0.87810.8790 ±0.0017 0.94330.9432 ±0.0001 0.91840.9194 ±0.0009 1.8981 2.5433 0.9266 0.9679 0.9613

BT (K)

Algorithm MAE(↓) RMSE(↓) R2 (↑) Rp (↑) Rs (↑) MAE(↓) RMSE(↓) R2 (↑) Rp (↑) Rs (↑)

Climatology 1981-1988 Climatology-I 0.0567 2.9130 0.0697 3.7302 0.5529 0.8454 0.8933 0.9466 0.8704 2.8806 3.6864 0.8447 0.9485 0.9470 0.9408

Climatology 1989-2016 Climatology-II 0.0314 2.3017 0.0400 3.0020 0.8507 0.8963 0.9433 0.9601 0.9254 2.2024 2.8880 0.9036 0.9623 0.9606 0.9539

2D CNN U-Net 0.0278 1.9377 ±0.0093 0.0363 2.6067 ±0.0057 0.8754 0.9243 ±0.0014 0.9434 0.9667 ±0.0004 0.9231 1.9782 2.6363 0.9187 0.9650 0.9616 0.9603 ±0.0007

Wave-MLP 0.0267 1.9200 ±0.0491 0.0351 2.5834 ±0.0486 0.8812 0.9248 ±0.0035 0.9444 0.9668 ±0.0006 0.9241 1.9576 2.6425 0.9162 0.9646 0.9620 0.9603 ±0.0007

Swin Transformer V1 0.0273 1.9642 ±0.0246 0.0359 2.6341 ±0.0303 0.8762 0.9221 ±0.0012 0.9431 0.9661 ±0.0005 0.9223 1.9525 2.6265 0.9183 0.9642 0.9620 0.9590 ±0.0006

Swin Transformer V2 0.0266 1.9741 ±0.0191 0.0355 2.6420 ±0.0258 0.8795 0.9225 ±0.0013 0.9452 0.9659 ±0.0011 0.9272 1.9048 2.5782 0.9213 0.9651 0.96290.9590 ±0.0014

Focal Modulation 0.0268 1.9010 ±0.0071 0.0353 2.5364 ±0.0073 0.8795 0.9280 ±0.0012 0.94520.9679 ±0.0001 0.9243 1.87300.9614 2.5277 0.9227 0.9672 0.9642±0.0007
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This is because the climatology was calculated before the simulation run. This climatology can not capture the dynamic after

3 decades. The second climatology climatology-II baseline is stronger. It uses information from multiple years within the

simulation run. All DL models still achieve better results indicating that the models have learned the seasonal dynamic beyond

climatology. In addition, these non-ML climatologies baselines can not be used to derive drought indices (Sect. ??) since they

only predict the average values. (Sect. 4.1) since the inter-annual variability in NDVI/BT is neglected as average cycles are630

used. Furthermore, comparing the correlation and results of BT with NDVI, we can observe that all models achieve higher

correlation metrics (R2, Rp, and Rs) on BT than NDVI. This can be explained by the fact that NDVI is a composition of two

bands while BT is only derived from the infrared band, thus it is harder for the models to estimate NDVI than BT. This is also the

case for radiative transfer models where reflectance in visible lights is effected more by scattering effects (Geiss et al., 2021).

In general, all DL models provide close results and are considered suitable for the task. Focal Modulation clearly outperformed635

other DL models on the validation set for both NDVI and BT predictions. For the test set on NDVI, it comes slightly after

Swin V2 and Wave-MLP transformersthe Wave-MLP model. However, Focal Modulation can generalize better for BT thus

providing a balanced prediction between NDVI and BT and consequently it is capable to generate an overall better prediction.

In Table 3, we report the estimated inference time for the DL models. For the Focal Modulation model, the estimated

inference time to generate one sample for NDVI and BT containing 397× 409× 2 grid points is 0.24± 0.01 seconds on one640

NVIDIA GeForce RTX 3090 GPU and 12± 0.1 seconds on one AMD Ryzen 9 3900X 12-Core CPU. U-Net with 2D CNN

dose not include operations for the attention mechanism thus it is the fastest but the performance is lower.

Qualitative results for the model prediction with Focal Modulation are shown in Figs. 4 and 5. We take weeks from different

seasons through the years and remove pixels over desert for the calculations of bias distribution and regression line. Positive

bias values mean that the model overestimates NDVI (BT) while negative ones indicate that the model underestimates NDVI645

(BT). As it shown in Figs. 4 and 5, the biases vary across the weeks and locations. For week 7 in 2012, the biases for both NDVI

and BT are relatively high. Week 26 in 2019 exhibits similar high biases in both NDVI and BT over high latitudes regions. The

respective distribution of biases is also shown in Figs. 4 and 5. Overall, the results show that the dynamics over the years are

well captured. The biases for both NDVI and BT are closely centered around zero with a shift for the center of bias distribution

from zeros. This shift is however in the same direction for both NDVI and BT. We can also observe that the model fits the650

regression lines better for weeks 14, 26, and 39 than for week 7 in winter 2012. The comparison between the distributions of

predicted and observed NDVI/BT confirms also the observation that the model captured the dynamic throughout the years.

While this provides examples of the performance for individual samples, in Fig. 6 we provide an additional experiment where

we analyze biases of model predictions within different seasons of the year and over PRUDENCE regions (see Appendix

Fig. C1 for the definition of PRUDENCE regions). This allows us to assess the model weakness weaknesses and strengths655

with different seasonality and spatial variability. The mean biases were computed pixel-wise from both the validation and test

years time-series where we computed the biases for each pixels from the weeks that belong to a specific season and averaged

the results to obtain the last metric. In addition, we computed Pearson Correlation Rp pixel-wise in a similar way. As seen

in Fig. 6, there are clusters of positive/negative biases that vary with seasons over specific regions. For instance, for NDVI

prediction, the eastern part of British Isles exhibits positive biases for all seasons while Iceland and north Africa show constant660
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Table 2. Comparing the performance of different DL models. The metrics are shown for the test set.

Test - Years (2012, 2018, 2019) - 139 weeks

NDVI

Algorithm MAE(↓) RMSE(↓) R2(↑) Rp(↑) Rs(↑)

Climatology-I 0.0567 0.0697 0.5529 0.8933 0.8704

Climatology-II 0.0314 0.0400 0.8507 0.9433 0.9254

U-Net 0.0274 ±0.0004 0.0359 ±0.0005 0.8772 ±0.0006 0.9435 ±0.0006 0.9237 ±0.0009

Wave-MLP 0.0261 ±0.0006 0.0343 ±0.0008 0.8861 ±0.0043 0.9467 ±0.0024 0.9252 ±0.0011

Swin Transformer V1 0.0269 ±0.0003 0.0355 ±0.0004 0.8795 ±0.0029 0.9442 ±0.0010 0.9239 ±0.0014

Swin Transformer V2 0.0270 ±0.0005 0.0359 ±0.0005 0.8766 ±0.0038 0.9447 ±0.0012 0.9251 ±0.0020

Focal Modulation 0.0266 ±0.0003 0.0350 ±0.0004 0.8808 ±0.0014 0.9454 ±0.0009 0.9253 ±0.0016

BT (K)

Algorithm MAE(↓) RMSE(↓) R2(↑) Rp(↑) Rs(↑)

Climatology-I 2.8806 3.6864 0.8447 0.9485 0.9470

Climatology-II 2.2024 2.8880 0.9036 0.9623 0.9606

U-Net 1.9920 ±0.0148 2.6652 ±0.0262 0.9164 ±0.0021 0.9644 ±0.0009 0.9616 ±0.0005

Wave-MLP 1.9376 ±0.0184 2.6221 ±0.0177 0.9172 ±0.0005 0.9647 ±0.0005 0.9619 ±0.0008

Swin Transformer V1 1.9563 ±0.0329 2.6381 ±0.0397 0.9169 ±0.0038 0.9649 ±0.0009 0.9627 ±0.0008

Swin Transformer V2 1.9516 ±0.0639 2.6277 ±0.0874 0.9183 ±0.0060 0.9641 ±0.0025 0.9619 ±0.0020

Focal Modulation 1.9179 ±0.0458 2.5745 ±0.0470 0.9204 ±0.0030 0.9664 ±0.0007 0.9636 ±0.0006

Table 3. Inference time in seconds for different DL models.

Algorithm GPU1 CPU2

U-Net 0.09 ±0.02 5 ±0.2

Wave-MLP 0.28 ±0.00 10 ±0.3

Swin Transformer V1 0.18 ±0.00 11 ±0.2

Swin Transformer V2 0.19 ±0.00 11 ±0.2

Focal Modulation 0.24 ±0.01 12 ±0.1

1NVIDIA GeForce RTX 3090 GPU
2AMD Ryzen 9 3900X 12-Core CPU
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Figure 4. Examples predictions for weekly NDVI from the test set. (a) Predicted NDVI. (b) Bias computed as prediction minus observed.

(c) Distribution of biases. (d) Regression results as predicted versus observed. (e) Distribution of NDVI values for NOAA observation and

model prediction. The metrics are computed over all pixels with vegetation cover.

negative biases. For BT, Southeastern Europe has persistent positive biases with larger errors during winter. Pixels over desert,

i.e., north Africa, show less variability in NDVI where only little seasonality is shown as in Fig. 4. Thus, such regions are

easier to predict with relatively small biases. However any fluctuation in NDVI prediction over these pixels will lead to lower

correlation compared to other regions since the time series primarily represent small variations around the mean NDVI value.

In comparison to other seasons, the winter season has relatively poor predictions especially in the high latitudes regions.665

One possible explanation for these errors is the lack of enough and adequate training data in Scandinavian regions during

winter. It was also shown by Yang et al. (2020) that high latitude regions are less reliable to derive vegetation products due

to snow cover and its effects on the albedo and larger sensor zenith angles. Eisfelder et al. (2023) showed that this reliability

of AVHRR time-series retrieval varies with years and across different seasons. Furthermore, this is consistent with previous

studies on ParFlow-CLM models that showed that hydrological modeling performs worse in northeastern Europe due to errors670
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Figure 5. Examples predictions for weekly BT from the test set. (a) Predicted BT. (b) Bias computed as prediction minus observed. (c)

Distribution of biases. (d) Regression results as predicted versus observed. (e) Distribution of BT values for NOAA observation and model

prediction. The metrics are computed over all pixels with vegetation cover.

in snow dynamics and regional forces (Naz et al., 2023; Furusho-Percot et al., 2019). One possible explanation for these errors

is the lack of accurate training data in Scandinavian regions during winter. For instance, previous studies on ParFlow-CLM

models showed that hydrological modeling performs worse in northeastern Europe due to errors in snow dynamics and regional

forces (Naz et al., 2023; Furusho-Percot et al., 2019). It was also shown by Yang et al. (2020) and Eisfelder et al. (2023) that

high latitude regions are less reliable to derive vegetation products due to snow cover and its effects on the albedo and larger675

sensor zenith angles. Another source of model errors is that NOAA vegetation products depend on temporal compositing to

handle high frequency and atmosphere transmittance (Yang et al., 2020). The absence of a generalized physical-based model

to enhance accuracy over various surfaces and for all conditions generates difficulties for satellite products (Kogan, 1995b).

Nagol et al. (2009) assessed the uncertainty of NDVI in this regards. These issues add some uncertainties to the model training
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Figure 6. An analysis of uncertainty and model generalization for different times of the year. The analysis was performed on the validation

and test sets as one set. (a) NDVI mean bias. (b) NDVI mean Pearson Correlation. (c) BT mean bias. (d) BT mean Pearson Correlation.

and evaluation. Using more recent atmospheric correction methods such as in (Moravec et al., 2021) could also enhance the680

results. Furthermore, as mentioned in Sect. 2.1, the TSMP simulation was performed in a free mode and had no modelling

of anthropogenic-related influences. Given that agricultural systems and human activities which are interlinked with drought

events could change and follow adaptation strategies (Van Loon et al., 2016), this certainly contributes to the error budget of the

model. Developing realistic land use and water management scenarios within a probabilistic TSMP could reduce these errors.
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Figure 7. An analysis of uncertainty and model generalization for different time of the year over each PRUDENCE region. The analysis was

performed on the validation and test sets as one set. (a) NDVI bias distribution. (b) BT bias distribution. Shown are the probability density

functions. (c) NDVI MAE. (d) BT MAE.

In addition, the uncertainty in TSMP is highly linked to potential errors in the driving forces and spin-up initialization. While685

these errors are common limitations of simulations and remote sensing data, it should be noted that the prediction of a DL

model has its own uncertainty. Therefore, more efforts are needed to recognize the sources of uncertainty in model prediction

(Sect. 4.1).

Pixels over desert, i.e., north Africa, show less variability in NDVI where only little seasonality is shown as in Fig. 4. Thus,

such regions are easier to predict with relatively small biases. However any fluctuation in NDVI prediction over these pixels690

will lead to lower correlation compared to other regions since the time-series primarily represent noises around the mean NDVI

value.

In Fig. 7, we visualize the computations over each PRUDENCE region separately. For Figs. 7a and 7b, we fit a normal

distribution over the normalized histogram of biases for each season and over all PRUDENCE regions. For instance, positive

shifts of the estimated means are shown in NDVI for both FR and AL regions during autumn. The same pattern is shown695

fro for SC and BI during summer. As can also be seen in Fig. 7b, a positive shift for BT is shown for all regions during
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autumn. Furthermore, the shape of the distribution gives an overview of the prediction homogeneity within the region, i.e.,

the prediction is highly uncertain over EA during winter and consequently has a relatively high standard deviation. The mean

values in Figs. 7c and 7d represent the expected MAE for all seasons combined. Fig. 7c indicates that in general the model

predictions for NDVI are less certain during autumn in comparison to other periods and over BI within the PRUDENCE700

regions. For BT, it can be seen from Fig. 7d that the prediction is less certain during winter and over ME and EA regions.

5 Agricultural drought assessment

4.1 Agricultural drought assessment

Comparison between the seasonal predicted Vegetation Health Index (VHI) and NOAA observations over Pan-Europe domain.

Comparison between the predicted drought frequency and NOAA observations over Pan-Europe domain. Frequency represents705

the percent of weeks with Severe-to-Exceptional drought events (VHI < 26).

An evaluation of seasonally predicted agricultural drought indices with ground truth NOAA observations at the resolution

0.88◦. (a) Bottom is mean absolute errors (MAE) and top is Pearson Correlations (Rp) for different seasons. (b) Comparison

of the cumulative distribution functions between prediction and observations.

In this section, we assess the model capability to predict different agricultural droughts indices on a high temporal resolution710

(weekly basis). More specifically, we use the predicted NDVI and BT along with their multi-year climatology to derive NDVI

anomaly, BT anomaly, VCI, TCI, and VHI drought indices. NDVI and BT anomalies were computed by subtracting the mean

value of the respective pixel and week from the predictions (observations). VCI, TCI, and VHI were computed from Eq. (2)-

(4). Figs. 8 and 9 compare the predicted agricultural drought indices VCI, TCI and VHI by the focal modulation model with

the observed ones from NOAA remote sensing data for the years 2010-2012 (Fig. 8) and 2017-2019 (Fig. 9). We spatially715

average the values inside each PRUDENCE region and plot their respective time-series on a weekly basis. Generally, values

below 40 are identified as abnormally dry conditions (Kogan et al., 2015; Yang et al., 2020). Overall, the prediction resembles

the seasonal wetness and dryness at the regional scale. The agreements between predictions and observations vary across

regions and time with satisfactory Rp values ranging from 0.50 to 0.77, 0.38 to 0.70, and 0.50 to 0.75 for VCI, TCI, and VHI,

respectively. MAE values fluctuate in the range 9.99-6.81, 13.88-10.24, and 5.80-2.69 for VCI, TCI, and VHI, respectively.720

While there is a satisfactory agreement with observations, there are some obvious discrepancies, i.e., in TCI over the Iberian

Peninsula (IP) during summer 2018. More interestingly, we show the bounded results of an ensemble of DL models. This

ensemble is the results of all DL modelsfrom Table 1. As can be seen, all DL models which are based on different algorithms

yield close predictions with small standard deviations. This supports that errors in model prediction are probably to be more

attributed to biases in the TSMP model and remote sensing reference data. In this respect, Yang et al. (2021b) showed that725

vegetation products over regions with extreme little seasonality, i.e., desert and high mountains have higher errors. This can be

seen from Eq. (2)-(4), where small differences between maximum and minimum values could lead to higher deviation in the

vegetation indices.
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Figure 8. Comparison of spatially averaged weekly agricultural drought indices between the model prediction and NOAA observation over

each PRUDENCE region. Drought indices were computed from the long-term climatology (1989-2016) pixel-wise and on a weekly basis.

All results are obtained with the Focal Modulation Network. The ensemble model is the result of all DL models described in SectSect. 3.1.

5 and Table 1. NDVI and BT anomalies are provided in Appendix Fig. F1.

Finally, as observed from the plots, the thermal surface condition represented by TCI contributes more to the agricultural

drought events over Europe than the deficiency in vegetation moisture condition approximated as VCI. This is in agreement730

with (Zeng et al., 2023), which who showed that drought effecting affecting vegetation is more likely to be associated with
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Figure 9. Comparison of spatially averaged weekly agricultural drought indices between the model prediction and NOAA observations over

each PRUDENCE region. Drought indices were computed based on the long-term climatology (1989-2016) pixel-wise and on a weekly basis.

All results are obtained with the Focal Modulation Network. The ensemble model is the result of all DL models described in SectSect. 3.1.

5 and Table 1. NDVI and BT anomalies are provided in Appendix Fig. F2.

high abnormal temperatures in Europe. This is critical for studies that rely on NDVI as the solely vegetation product to identify

drought events over Europe (Sect. 2.2). (Sect. 1). In the Appendix, we show the time-series for NDVI and BT anomalies in

Figs. F1 and F2. We also show vegetation health maps for different seasons from the validation and test years. These predicted
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Figure 10. Comparison between the seasonal predicted Vegetation Health Index (VHI) and NOAA observations over Pan-Europe domain.

Figure 11. Comparison between the predicted drought frequency and NOAA observations over Pan-Europe domain. Frequency represents

the percent of weeks with Severe-to-Exceptional drought events (VHI < 26).

maps are depicted in Fig. 10. As shown, i.e., the model predicts an increasing increase of agricultural droughts in the summer735

of 2018 in the Mid Europe and France regions. Xoplaki et al. (2023) associated this extremely dry summer with compound

extreme events.

Furthermore, in Fig. 11, we provide an analysis about the frequency of extreme droughts for the two periods 2010-2012 and

2017-2019. Frequency represents the percent of weeks with Severe-to-Exceptional drought events where VHI < 26 (Kogan

et al., 2020). While Figs. 8 and 9 provide overviews of the averaged values over the regions, the analysis in Fig. 11 provides a740

spatial comparison between the model prediction and observations. The major hotspots for the highest extremes are found out-

side the Prudence regions (North of the Black Sea, Northwest Africa, Egypt and Northwest of the Middle East). In Comparison
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Figure 12. An evaluation of seasonally predicted agricultural drought indices with ground truth NOAA observations at the resolution 0.88◦.

(a) Bottom is mean absolute errors (MAE) and top is Pearson Correlations (Rp) for different seasons. (b) Comparison of the cumulative

distribution functions between prediction and observations.

comparison to the Prudence regions, the Iberian Peninsula and France exhibit more extreme droughts. The model predicts more

extreme droughts in those regions and agrees with observations. For the period 2010-2012, the model predicts less extreme

droughts in the Mediterranean and Eastern Europe. While for the 2017-2019 period, the model underestimates the frequency745

of extremes in the Mid Europe region.

Moreover, Fig. 12 evaluates the model capability to capture seasonal dynamic in drought indices. As seen in Fig.12a, the

mean Rp values are greater than 0.5 and around 0.6 for all seasons. MAE values show the highest error in VCI for the winter

season. One notable observation is that the error bars have relatively large values indicating a variation in prediction accuracy

across the years within the same seasons. This is can be attributed to the seasonality shift in the long-term trends. Klimavičius750

et al. (2023) showed that meteorological forces like air temperature have strong impact on growing seasons and phenological

trends of NDVI (VCI). The cumulative distribution functions (CDF) in Fig. 12b expresses the main difference in CDF for VCI

during winter. While the model prediction overestimates TCI over the seasons.

5 Variable importance

4.1 Variable importance755

To analyze the impact of each TSMP model components on the model prediction, we present in Table 4 the prediction results

obtained with COSMO, CLM, and ParFlow. For this experiment, we train 3 models based on focal modulation with the
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dimensionality {C(en,1) = 64,C(en,2) = 128,C(en,3) = 256}. As seen in Table 4, compared to CLM and ParFlow, COSMO

achieves the best results for the validation set while CLM outperforms both for the test set. COSMO has important variables

related to water contents and clouds along with other variables related to the atmospheric effects on the reflected signal on760

the ground. CLM has complementary variables related to heat fluxes and evapotranspiration. ParFlow can approximate the

hydrology and serve as a proxy for the soil conditions. The results show that all model components are useful and the best

result is obtained when all these models are used.

Table 4. Impact of TSMP model components on the model performance. The metrics are shown for the validation and test sets. All models

were trained with Focal Modulation Network.

Validation - Years (2010, 2011, 2017) - 156 weeks

NDVI BT (K)

Model MAE(↓) RMSE(↓) R2(↑) Rp(↑) Rs(↑) MAE(↓) RMSE(↓) R2(↑) Rp(↑) Rs(↑)

COSMO 0.0281 0.0372 0.8696 0.9403 0.9160 1.9975 2.6389 0.9227 0.9667 0.9615

CLM 0.0289 0.0382 0.8586 0.9369 0.9115 2.0187 2.7080 0.9160 0.9653 0.9600

ParFlow 0.0303 0.0396 0.8500 0.9314 0.9042 2.2029 2.9254 0.9052 0.9617 0.9545

COSMO + CLM + ParFlow 0.0270 0.0359 0.8781 0.9433 0.9184 1.8981 2.5433 0.9266 0.9679 0.9613

Test - Years (2012, 2018, 2019) - 139 weeks

NDVI BT (K)

Model MAE(↓) RMSE(↓) R2(↑) Rp(↑) Rs(↑) MAE(↓) RMSE(↓) R2(↑) Rp(↑) Rs(↑)

COSMO 0.0285 0.0372 0.8619 0.9437 0.9238 2.0847 2.7549 0.9060 0.9633 0.9612

CLM 0.0269 0.0355 0.8782 0.9443 0.9238 1.9362 2.6303 0.9185 0.9650 0.9637

ParFlow 0.0291 0.0379 0.8648 0.9396 0.9175 2.2663 2.9481 0.8962 0.9635 0.9604

COSMO + CLM + ParFlow 0.0268 0.0353 0.8795 0.9452 0.9243 1.8730 2.5277 0.9227 0.9672 0.9642

Channel attention for TSMP input variables. The activations are shown for both NDVI (top) and BT (bottom) with respect

to all weeks in the validation and test sets.765

To analyze the impact of each TSMP model components on the model prediction, we present in Table 3 the prediction

results obtained with COSMO, CLM, and ParFlow. For this experiment, we train 3 models based on focal modulation with the

dimensionality {C(en,1) = 64,C(en,2) = 128,C(en,3) = 256}. As seen in Table 3, compared to CLM and ParFlow, COSMO

achieves the best results for the validation set while CLM outperforms both for the test set. COSMO has important variables

related to water contents and clouds along with other variables related to the atmospheric effects on the reflected signal on770

the ground. CLM has complementary variables related to heat fluxes and evapotranspiration. ParFlow can approximate the

hydrology and serve as a proxy for the soil conditions. The results show that all model components are useful and the best

result is obtained when all these models are used.
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Figure 13. Channel attention for TSMP input variables. The activations are shown for both NDVI (top) and BT (bottom) with respect to all

weeks in the validation and test sets.

While Table 3 While Table 4 provides an overview on the importance of model components, apriori choice of proper

input variables from each of these model components to predict NDVI and BT requires substantive efforts and assumptions.775

Especially, when the underlying physical process to construct albedo/emissivity from TSMP and tracing the atmospheric effects

with satellite and solar geometry is very complex. Channel attention (Woo et al., 2018; Hu et al., 2018) was commonly used

in the field of computer vision and remote sensing to enhance feature representations inside DL models. A channel attention

module aims to calibrate the input variables/channels by learning an input-dependent scale for each channel. Thus, it can

model the inter-correlation across variables adaptively. In this work, we propose to use channel attention to determine the780

relative importance of TSMP input variables. Implementation details about the module is are provided in Sect. B and Fig. B1.

We used channel attention directly before the patch embedding for the U-Net model. To disentangle the correlation between

NDVI and BT, we trained two separated models. One to predict NDVI and another one to predict BT. Note that we only used

channel attention for this experiment. Fig. 13 provides example attentions induced for each input variable from COSMO, CLM,

and ParFlow with respect to all weeks in the test and validation sets. The attention value is the mean value and it represents the785

variable importance to predict NDVI (BT). Error bars show how the attention changes across the weeks and input samples. We

observe that the distributions of attention values for NDVI and BT is close. This indicates that the importance of highly relevant

input variables are probably shared for both NDVI and BT. In addition, the standard deviations (error bars) suggest that the

choice of prior explanatory variables is not trivial since the relative importance can change with time and input samples.
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Overall, not all variables are relevant for the model. For COSMO, atmosphere water divergence (hudiv), humidity-related790

variables (hus, hur), precipitation variables (pr, prc, prg), surface air pressure (ps), drag coefficient of heat (tch) and geo-

potential height (zg200) receive the highest attention from the DL model. For CLM, all variables are considered important

with snowfall flux (prsn) and precipitation on ground (prso) being less important. Regarding ParFlow variables, it can be seen

that the model considers most underground water-related variables as relatively important. This is intuitive since water and

the amount of underground water storage are important factors for the vegetation growth. The availability of groundwater795

supply can reduce vulnerability to agricultural drought (Meza et al., 2020; Ma et al., 2021). Some previous studies showed that

precipitation and temperature are strong predictors of NDVI (Miao et al., 2015; Wu et al., 2020; Gao et al., 2023). In addition,

the climatology of long-term NDVI is highly correlated with precipitation and the biome classification (Yang et al., 2021b).

The relatively high value for zg200 in BT prediction can be explained as the decrease in zg200 increases the likelihood of

heatwave occurrence (Miralles et al., 2019). The attention values for COSMO can be interpreted as Nagol et al. (2009) showed800

that scattering and absorption in the atmosphere affect the visible and near infrared radiance considerably. Shi et al. (2018) and

Geiss et al. (2021) analyzed the influence of clouds related parametrization on visible and infrared satellite images and found

that the accuracy is closely related to the cloud representation. A further study about the impact of surface and air pressure and

water and ice clouds on visible and near-infrared bands can be found in Baur et al. (2023). It needs to be emphasized that the

correlations shown in Fig. 13 must not be interpreted as a causal reasoning. One main reason is that data in Earth science are805

subject to complicated interactions and inherently inter-dependent. There may be hidden confounding variables that influence

the explanatory variables as well as the evolution of the climate and vegetation variability. It is also worth noting that the

learned variable importance by machine learning models is dependent on how the variables are represented in the training

data (Betancourt et al., 2022). Furthermore, some variables have larger biases than others since TSMP was run in a free mode

simulation. This may drive the model to rely less on such variables even if they are considered important in scientific literature.810

The same thing applies to highly correlated variables where changing the model architecture may alter dependencies as well

(Betancourt et al., 2022).

5 Discussion

The evaluation confirms that a model that was trained directly on observations and based on DL has the capacity to predict

NDVI and BT from a TSMP climate simulation. However, there are some limitations.815

First our results are primarily related to remote sensing based agricultural drought events. In fact, some studies highlighted

inconsistencies in the long-term drought trends from climate simulations (Sheffield et al., 2012; Kew et al., 2021; Vicente-Serrano et al., 2022)

. Meanwhile others showed positive trends in terrestrial vegetation from remote sensing products (Zhu et al., 2016; Kogan et al., 2020; Eisfelder et al., 2023)

. This is usually explained as assessments are highly dependent on drought definition (Satoh et al., 2021; Reyniers et al., 2023)

and extreme event attribution (Van Oldenborgh et al., 2021), i.e., the drought indicator that was chosen in the methodology and820

the variations in modelling platforms. In addition, as mentioned in (Pirret et al., 2020; Reyniers et al., 2023) and (Pokhrel et al., 2021)

, prescribed vegetation assumptions exist in climate simulations which limit the modeling of atmospheric carbon effects or soil
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moisture deficiency on vegetation. If we add to this the complex spatio-temporal response of vegetation to climate variability

(Jin et al., 2023), i.e., regional responses to climate have different dynamics and are more complicated than those at a global

scale, we can conclude that predicting the vegetation state in response to drought under climate conditions still poses a major825

challenge. Please see Chapter 11.6 in IPCC AR6 (Seneviratne et al., 2021) for a summary of the complexity related to current

drought characterization. Thus, we propose to use DL to improve the drought analysis by predicting satellite-derived vegetation

indices under future climate change that can be combined with meteorological indices which are often used in studies for

drought assessment to provide more comprehensive assessments. Moreover, our approach to assess agricultural drought could

be extended to incorporate additional remote sensing-derived indices since no drought index is suitable for all regions. This is830

also reflected in the literature such as in (Qin et al., 2021). The various set of developed drought indicators implies that a more

reliable drought assessment should rely on multiple indicators.

Second, the TSMP simulation was performed in a free mode and had no modelling of anthropogenic-related influences.

Given that agricultural systems and human activities which are interlinked with drought events could change and follow

adaptation strategies (Van Loon et al., 2016), this certainly contributes to the error budget of the model. Developing realistic835

land use and water management scenarios within a probabilistic TSMP could reduce these errors. Furthermore, the uncertainty

in TSMP is highly linked to potential errors in the driving forces and spin-up initialization.

Third, long-term remote sensing products such as vegetation health products are derived from different sensors and their

quality varies across regions. Data availability is subject to cloud cover and geographic location, i.e., high latitude regions are

subject to occlusion and snow effects on albedo. In addition, the NOAA vegetation products depend on temporal compositing to840

handle high frequency and atmosphere transmittance (Yang et al., 2020). The absence of a generalized physical-based model

to enhance accuracy over various surfaces and for all conditions generates difficulties for satellite products (Kogan, 1995b)

. Nagol et al. (2009) assessed the uncertainty of NDVI in this regards. Indeed, these causes add some uncertainties to the

model training and evaluation. Using more recent atmospheric correction methods such as in (Moravec et al., 2021) could

also enhance the results. Furthermore, zenith/solar angles were not used in our study. However, these information with other845

correction parameters would also be valuable to enhance the accuracy (see Sect. 2.1). Yang et al. (2020) suggested that the roles

of different vegetation health products to recognize drought events should be weighted in a location-aware methodology. This is

also supported by studies in (Zeng et al., 2022, 2023). In this respect, Yang et al. (2021b) showed that vegetation products over

regions with extreme little seasonality, i.e., desert and high mountains have higher errors. This can be seen from Eq. (2)-(4),

where small differences between maximum and minimum values could lead to higher deviation in the vegetation indices.850

Fourth, our model is trained to predict vegetation products as they would be observed from the AVHRR platform. It could

be appealing to predict target variables from different platforms or following different atmospheric corrections. This could be

done by training multiple DL models or by providing a satellite- or model-related guidance as input to the model. In the field

of computer vision, guidance is normally used to drive the DL model to generate a target output that belongs to a specific

category, i.e., a specific class in the case of image generation (Ho and Salimans, 2021). This could be addressed as a future855

research direction.
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Fifth, as seen in Sect. 5 and ??, errors/biases produced by DL models are unpreventable. Since a tuning of trained DL

model parameters is not trivial, some experts argued that an online evaluation and continual learning are required otherwise a

heuristic tuning of parameterization within the physical-based framework still has an advantage over data-driven in this regard

(Rasp et al., 2018).860

The results imply that by improving the modeling of NDVI and BT in TSMP, it could be possible to reduce biases in the

model simulation. DL models gain more transparency when they are combined with explanations. Identifying the importance

of input variables can also be used as a starting point for related tasks, i.e., detecting anomalous events in the simulation.

Nonetheless, the correlations shown in Section ?? must not be interpreted as a causal reasoning. One main reason is that data

in Earth science are subject to complicated interactions and inherently inter-dependent. There may be hidden confounding865

variables that influence the explanatory variables as well as the evolution of the climate and vegetation variability. It is also

worth noting that the learned variable importance by machine learning models is dependent on how the variables are represented

in the training data (Betancourt et al., 2022). Furthermore, since TSMP was run in a free mode simulation some variables

inherited larger biases than others. This may drive the model to rely less on such variables even if they are considered important

in scientific literature. The same thing applies to highly correlated variables where changing the model architecture may alter870

dependencies as well (Betancourt et al., 2022).

5 Conclusions and outlook

In this paper, we presented a new deep learning based approach for vegetation health prediction from a regional climate sim-

ulation. The developed model enabled the prediction of variables which are not part of the input simulation. In particular, we

developed a vision transformer model with focal modulation to predict NDVI and BT images from a long-term TSMP-G2A875

TSMP (Ground to Atmosphere G2A) simulation at 0.11◦ resolution and on a weekly basis. We further validated the approach

with NOAA remote sensing satellite observations and identified regions of uncertainty in the model predictions. We As part of

this, agricultural drought assessment was performed based on vegetation health products, namely VCI, TCI and VHI, which

were derived from the predicted NDVI and BT, as well as long-term climatology. In this regard, the applicability of the model

was spatially and temporally analyzed at a continental scale. Additionally, we extended the commonly used explanatory vari-880

ables by using a plenty of TSMP variables and analyzed their relative importance for the task with channel attention as an

explainable AI method. Our The evaluation confirms that a DL model that was trained on observations has the capacity to pre-

dict NDVI and BT from a TSMP climate simulation with a sufficiently good agreement with real-world satellite observations.

Although our model is trained to predict vegetation products as they would be observed from the AVHRR platform, it would885

be possible to predict target variables from different platforms or following different atmospheric corrections. This could be

done as future work by training multiple DL models. Moreover, our work can be extended to predict other vegetation products

from different satellite platforms depending on requirements.
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Apart of this, agricultural drought assessment was performed based on vegetation health products, namely VCI, TCI and

VHI, which were derived from the predicted NDVI and BT and long-term climatology. In this regard, the applicability of the890

model was spatially and temporally analyzed at a continental scale. Overall, the results showed that the model performance has

a sufficiently good agreement with real-world satellite observations. The main application of this study is to predict the future

trends in the vegetation dynamic based on climate scenarios. The proposed approach can be used to predict future trends in the

vegetation dynamic based on climate scenarios. Providing this information, the model can help to recognize regions that are

expected to be more vulnerable to agricultural drought risks. The predicted satellite-based indices can be also combined with895

different meteorological drought indices to provide more comprehensive drought assessments under future climate change.

We believe that our study could be also useful to integrate approach could also be useful to combine deep learning with data

assimilation, i.e., to simulate remote sensing products from down-scaled simulations and to be used as a supportive evaluation

framework to further investigate the predictive capability of the simulation to reproduce drought events and consequently to

improve the TSMP model development.900

Code and data availability. The source code and the pretrained models to reproduce the results are published at https://zenodo.org/records/

10015049 (Shams Eddin and Gall, 2023a). The source code is also available on GitHub at https://github.com/HakamShams/Focal_TSMP.

The pre-processed data used in this study are available at https://doi.org/10.5281/zenodo.10008815 (Shams Eddin and Gall, 2023b). The

original TSMP data are stored at Jülich Research Centre at https://datapub.fz-juelich.de/slts/cordex/index.html (Furusho-Percot et al., 2019a),

as well as at PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.901823 (Furusho-Percot et al., 2019b). The raw vegetation health905

products can be downloaded from the National Oceanic and Atmospheric Administration (NOAA), Center for Satellite Applications and

Research (STAR) at https://www.star.nesdis.noaa.gov/star/index.php (Yang et al., 2020).
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Appendix A: Datasets

Table A1. Technical details on the output variables in the TSMP EUR-11 simulation. For more information on the data, we refer to Furusho-

Percot et al. (2019).

Model Variable name Long name Unit Level

COSMO awt Atmosphere total water content kg m−2 1
capec Specific convectively available potential energy j kg−1 1
capeml Cape of mean surface layer parcel j kg−1 1
ceiling Cloud ceiling height (above mean sea level) m 1
cli Vertical integrated cloud ice kg m−2 1
clt Total cloud fraction 1 1
clw Vertical integrated cloud water kg m−2 1
hudiv Atmosphere water divergence kg m−2 1
hur2 2m relative humidity % 1
hur(200, 500, 850) Relative humidity (at 200, 500 and 850 hpa) % 3
hus2 2m specific humidity 1 1
hur(200, 500, 850) Relative humidity (at 200, 500 and 850 hpa) 1 3
incml Convective inhibition of mean surface layer parcel j kg−1 1
pr Precipitation kg m−2 1
prc Convective precipitation kg m−2 1
prg Large scale precipitation kg m−2 1
prt Total rain water content vertically integrated kg m−2 1
ps Surface air pressure pa 1
psl Sea level pressure pa 1
snt Total snow content vertically integrated kg m−2 1
ta(200, 500, 850) Air temperature (at 200, 500 and 850 hpa) K ◦ 3
tch Drag coefficient of heat 1 1
td2 2m dew point temperature K ◦ 1
ua(200, 500, 850) Eastward wind (at 200, 500 and 850 hpa) m s−1 3
uas Eastward near-surface wind velocity m s−1 1
va(200, 500, 850) Northward wind (at 200, 500 and 850 hpa) m s−1 3
vas Northward near-surface wind velocity m s−1 1
zg(200, 500, 850) Geopotential height (at 200, 500 and 850 hpa) m 3
zmla Height of boundary layer m 1

CLM evspsbl Evapotranspiration mm s−1 1
hfls Surface upward sensible heat flux w m−2 1
hfss Surface upward sensible heat flux w m−2 1
prsn Snowfall flux kg m−2 s−2 1
prso Precipitation on ground kg m−2 s−2 1
rlds Incoming shortwave radiation w m−2 1
tas Near-surface air temperature K ◦ 1
trspsbl Transpiration w m−2 1

ParFlow sgw Groundwater saturation 1 15
wtd Water table depth m 1
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Table A2. Technical details on the static variables from CLM in the TSMP EUR-11 simulation and the computed static variables.

Model Variable name Long name Unit Level

CLM orog Surface height or digital elevation model (DEM) m 1
sftlf Land-sea fraction % 1
zbot Atmospheric reference height (from COSMO to CLM) m 1

Computed from Land-sea fraction - Distance to water km 1
Computed from Orography - Roughness 1 1
Computed from Orography - Slope ◦ 1

Table A3. Technical details on the spectral channel characteristics for Advanced Very High Resolution Radiometer (AVHRR) and Visible

Infrared Imaging Radiometer Suite (VIIRS).

Satellite system Spectral band Spectral range (µm)

AVHRR ρR 0.58 - 0.68
ρNIR 0.725 - 1.1
ρIR 10.3 - 11.3

VIIRS ρR 0.600 - 0.680
ρNIR 0.846 - 0.885
ρIR 10.500 - 12.400

Appendix B: Channel Attention

Channel attention aims to condense the input channels into a lower dimensionality and then construct channel scales with910

a sigmoid activation function (Sigmoid(x) = 1
1+e−x ∈ [0,1]). In this manner, the neural network learns to calibrate the input

channels with the learned scaling depending on the input channels. Given X ∈ RV×W×H as input TSMP simulation, where

V is the number of output variables from COSMO, CLM, and ParFlow models, and W and H are the spatial extensions, the

channel attention is computed as follows:

ChannelAttention(X)≜ Sigmoid(
(

MLP(
(
GAP(X))

)
+MLP(

(
GSD(X)))

))
∈ RV×1×1 , (B1)915

where Sigmoid is the sigmoid function, MLP consists of two linear layers with a ReLU activation in between. The first

decreases the dimension to V
ratt

and the subsequent layer maps it back to V . GAP is global average pooling, and GSD is the

global standard deviation. For the experiments in Section ??Sect. 4.1, we trained four separated models with two separated

models for NDVI and BT independently with (ratt = 3, and ratt = 5) and with the dimensionality {C(en,1) = 64,C(en,2) =

128,C(en,3) = 256}, and averaged the results.920
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Figure B1. Illustration of the channel attention implementation. The output of channel attention is multiplied with the input TSMP to scale

the channels from COSMO, CLM, and ParFlow according to their activation values.

Appendix C: PRUDENCE scientific regions

Figure C1. Orography over the EURO-CORDEX domain. The white boundaries with the labeled names inside define the PRUDENCE

regions. The time series for validating and testing agricultural drought indices were computed over these regions.
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Appendix D: Ablation Study

In Table D1, we provide an additional analysis about the impact of the perceptual VGG loss described in Eq. (16). When adding

a perceptual loss for training, we observe a consistent improvement for all metrics while residuals are slightly bigger for the

test set. As shown in Figs. D1 and D2, adding the loss LV GG reduces the blurring effect and increases variability.925

Table D1. Ablation study on the perceptual VGG loss described in Eq. (16). The metrics are shown for the validation and test sets as one set.

The used model is a U-Net based on focal modulation.

NDVI BT (K)

Loss function MAE(↓) RMSE(↓) R2(↑) Rp(↑) Rs(↑) MAE(↓) RMSE(↓) R2(↑) Rp(↑) Rs(↑)

V
al LMAE 0.0274 0.0364 0.8744 0.9400 0.9139 1.9562 2.5945 0.9255 0.9664 0.9597

LMAE + LV GG 0.0270 0.0359 0.8781 0.9433 0.9184 1.8981 2.5433 0.9266 0.9679 0.9613

Te
st LMAE 0.0266 0.0350 0.8819 0.9443 0.9219 1.9642 2.6329 0.9181 0.9639 0.9610

LMAE + LV GG 0.0268 0.0353 0.8795 0.9452 0.9243 1.8730 2.5277 0.9227 0.9672 0.9642

Figure D1. Impact of the perceptual VGG loss on NDVI predictions and image sharpness. The shown example is for the week 30 in the year

2018. Best seen in digital formats with colors.
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Figure D2. Impact of the perceptual VGG loss on BT predictions and image sharpness. The shown example is for the week 30 in the year

2018. Best seen in digital formats with colors.

Appendix E: Patch embedding

Patch embedding with a patch size > 1 is commonly used in vision transformer architectures. The main aim of this embedding

is to increase the channel dimension and reduce the computational demands of the self-attention modules. This can be done by

merging and embedding neighborhood pixels/tokens thus reducing the spatial or temporal resolution. In Table E1, we show that

decreasing the spatial dimension of the raw input for the encoder has negative effects on our image-to-image regression task930

in both quantitative and qualitative terms. This can be understood as the information was lost and the model had a hardness

struggles to output the original resolutionwithout relying on additional conditions (i. e., skip connection from the original

resolution, static features or time step). . Note that for all experiments we keep using the down- and up-sampling with a factor

of 2 in both encoder and decoder while we only change the patch size before the first encoder layer. To match the original

spatial resolution, we used an additional bilinear up-sampling after the last decoder layer.935
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Table E1. Impact of patch size for patch embedding before the first encoder layer. The metrics are shown for the validation and test sets. The

used model is a U-Net based on focal modulation model.

NDVI BT (K)

Patch size MAE(↓) RMSE(↓) R2(↑) Rp(↑) Rs(↑) MAE(↓) RMSE(↓) R2(↑) Rp(↑) Rs(↑)
V

al

1× 1 0.0270 0.0359 0.8781 0.9433 0.9184 1.8981 2.5433 0.9266 0.9679 0.9613

2× 2 0.0280 0.0369 0.8707 0.9374 0.9116 1.9372 2.6108 0.9243 0.9664 0.9604

4× 4 0.0291 0.0383 0.8625 0.9345 0.9075 2.0033 2.6957 0.9184 0.9633 0.9570

Te
st

1× 1 0.0268 0.0353 0.8795 0.9452 0.9243 1.8730 2.5277 0.9227 0.9672 0.9642

2× 2 0.0271 0.0355 0.8786 0.9422 0.9185 1.9638 2.6669 0.9157 0.9645 0.9618

4× 4 0.0286 0.0375 0.8644 0.9363 0.9141 2.1741 2.9132 0.8977 0.9594 0.9580
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Figure F1. Supplementary results to Fig. 8. Comparison of spatially averaged weekly NDVI anomalies between the model prediction and

NOAA observation over each PRUDENCE region. Anomaly was computed by subtracting the mean values from predictions (observations).

The mean values were computed from the long-term climatology (1989-2016) pixel-wise and on a weekly basis. All results are obtained with

a DL model based on Focal Modulation Network. The ensemble model is the result of all DL models described in Sect. 5 and Table 1.
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Figure F2. Supplementary results to Fig. 8. Comparison of spatially averaged weekly BT anomalies between the model prediction and

NOAA observation over each PRUDENCE region. Anomaly was computed by subtracting the mean values from predictions (observations).

The mean values were computed from the long-term climatology (1989-2016) pixel-wise and on a weekly basis. All results are obtained with

a DL model based on Focal Modulation Network. The ensemble model is the result of all DL models described in Sect. 5 and Table 1.
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