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Abstract: Data from satellite, aircraft, drone, and ground-based measurements have already shown that canopy 

scale sun-induced chlorophyll fluorescence (SIF) is tightly related to photosynthesis, which is linked to vegetation 

carbon assimilation. However, our ability to effectively use those findings are hindered by confounding factors, 

including canopy structure, fluctuations in solar radiation and in sun-canopy-geometry that highly affect the SIF 15 

signal. Thus, disentangling these factors has become paramount in order to use SIF for monitoring vegetation 

functioning at canopy scale and beyond. Active chlorophyll fluorescence measurements (FyieldLIF), which directly 

measures the apparent fluorescence yield, have been widely used to detect physiological variation of the vegetation 

at leaf scale. Recently, the measurement of FyieldLIF has become feasible at the canopy scale, opening up new 

opportunities to decouple structural, biophysical, and physiological components of SIF at the canopy scale.  In this 20 

study, based on top-of-canopy measurements above a mature deciduous forest, reflectance (R), SIF, SIF 

normalized by incoming photosynthetically active radiation (SIFy), FyieldLIF, and the ratio between SIFy and FyieldLIF 

(named Φk) were used to investigate the effects of canopy structure and shadows on the diurnal and seasonal 

dynamics of SIF. Further, random forest (RF) models were also used to not only predict FyieldLIF and Φk, but also 

provide an interpretation framework by considering additional variables, including the R in the blue, red, green, 25 

red-edge, and near-infrared bands, SIF, SIFy, and sun zenith (SZA) and azimuth (SAA) angles. Results revealed 

that the SIF signal is highly affected by the canopy structure and sun-canopy geometry effects compared to FyieldLIF. 

This was evidenced by the weak correlations obtained between SIFy and FyieldLIF at the diurnal timescale. 

Furthermore, the daily mean 𝑆𝐼𝐹𝑦 captured the seasonal dynamics of daily mean 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹 and explained 58% of 

its variability. The findings also revealed that reflectance in the near-infrared (R-NIR) and the NIRv (the product 30 

of R-NIR and normalized difference vegetation index (NDVI)) are good proxies of Φk at the diurnal timescale, 

while their correlations with Φk decrease at the seasonal timescale. With FyieldLIF and Φk as outputs and the 

abovementioned variables as predictors, this study also showed that the RF models can explain between 86% and 

90% of FyieldLIF, and 60% and 70% of Φk variations under clear sky conditions. In addition, the predictor importance 

estimates for FyieldLIF RF models revealed that R at 410, 665, 740, and 830 nm, SIF, SIFy, SZA, and SAA emerged 35 

as the most useful and influential factors for predicting FyieldLIF, while R at 410, 665, 705, and 740 nm, SZA, and 

SAA are crucial for predicting Φk. This study highlighted the complexity of interpreting diurnal and seasonal 

dynamics of SIF in forest canopies. These dynamics are highly dependent on the complex interactions between the 
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structure of the canopy, the vegetation biochemical properties, the illumination angles (SZA and SAA) and the 

light conditions (ratio of diffuse to direct solar radiation). However, such measurements are necessary to better 40 

separate the variability in SIF attributable to radiation and measurement conditions from the subtler variability 

attributable to plant physiological processes. 

1. Introduction 

Spatial and temporal information on vegetation status are crucial to gain a better understanding of vegetation 

functioning and productivity. Remotely sensed data mostly from satellite and airborne platforms have provided 45 

such information for decades now (Ustin and Middleton, 2021). However, most of the remote sensing methods 

used for detecting and monitoring the dynamics of vegetation properties were exclusively based on vegetation 

greenness derived from optical vegetation indices (VIs), such as the normalized difference vegetation index 

(NDVI), and more recently the near-infrared reflectance of vegetation index (NIRv), which have been broadly and 

successfully used to estimate some biophysical and biochemical attributes, including leaf area index (LAI), fraction 50 

of absorbed photosynthetically active radiation (fAPAR), and leaf chlorophyll content (Campbell et al., 2019; Zeng 

et al., 2022b).  

Sun-induced chlorophyll fluorescence (SIF) is a direct indicator of the vegetation photosynthetic activity that 

responds to abiotic stresses, such as heatwaves and droughts, earlier than VIs (Frankenberg et al., 2011; Guanter 

et al., 2014; Rascher et al., 2015; Jonard et al., 2020). Further, SIF is not directly impacted by soil background as 55 

green vegetation is the only source of chlorophyll fluorescence in the red and far-red. The potential carried by SIF 

is currently used for estimating and monitoring terrestrial gross primary productivity (GPP) across different 

vegetation types, including, crops, deciduous forests, evergreen forests, tropical forests, wetlands, etc. (Li and 

Xiao, 2022; Verma et al., 2017; Wood et al., 2017; Balde et al., 2023), for assessing vegetation structural changes, 

and estimating crop productivity (He et al., 2020; Liu et al., 2022).  60 

However, because of the coarse spatial scale of the satellite products used in these above mentioned studies, the 

results are inconclusive and it is still questioned whether SIF can provide reliable estimates of GPP at different 

spatial scales and temporal resolutions across different vegetation types, and more particularly under various 

abiotic stress conditions (Paul-Limoges et al., 2018; Yazbeck et al., 2021; Lin et al., 2022; Balde et al., 2023; Sun 

et al., 2023b). Further, satellite SIF signals are also subject to the effects of the interactions between the roughness 65 

of upper canopy layers (tree forms, gaps), and the solar zenith (SZA) and azimuth (SAA) angles. These interactions 

modulate the spatial and temporal distributions of sunlit and shaded leaves, the light distribution within the canopy 

and the main physiological processes, such as photosynthesis, evapotranspiration, and stomatal conductance (Gao 

et al., 2022; Morozumi et al., 2023). 

The recent increased availability of diurnal and seasonal time series of SIF data from airborne, drone, and ground-70 

based measurements was crucial for gaining a better understanding of what drives SIF at various spatial and 

temporal scales and across biomes (Damm et al., 2015; Rascher et al., 2015; Yang et al., 2017; Goulas et al., 2017; 

Wang et al., 2021; Zhang et al., 2021; Wang et al., 2022; Xu et al., 2021; De Cannière et al., 2022). However, 

interpretation of locally measured SIF data should be cautiously carried out. In fact, rapid variations in fluorescence 

may be due to local effects linked to the conditions of illumination and to the light absorption by the canopy. These 75 

effects may lead to significant variations in SIF without substantial variations in photosynthesis of the entire 
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canopy. Therefore, distinguishing the effects of endogenous factors related to canopy structure from the effects of 

photosynthesis changes on SIF signal is warranted. 

At the top-of-canopy, the radiative transfer of SIF can be resumed within Eq. (1): 

𝑆𝐼𝐹 = 𝑃𝐴𝑅 × 𝑓𝐴𝑃𝐴𝑅 × Φ𝐹 × 𝑓𝑒𝑠𝑐                                                                                                                                                (1)   80 

where PAR is the incoming photosynthetically active radiation (400-700 nm), which is the first driver of canopy 

SIF signal (Miao et al., 2020). fAPAR is the fraction of absorbed PAR by the vegetation, and fesc is the fraction of 

all chlorophyll fluorescence photons emitted from all leaves and escaped from the canopy, also known as 

fluorescence escape probability fraction, which is dependent on the biophysical and biochemical properties of the 

canopy and on the sun and view geometry. ΦF is the chlorophyll fluorescence quantum yield (the ratio of the total 85 

amount of photons emitted to the total amount of photons absorbed by the chlorophyll pigments) and hence it is a 

direct indicator of the photosynthetic efficiency. From Eq. (1), it is explicit that in order to interpret top-of-canopy 

SIF and use it as a proxy of ΦF and photosynthesis, it is necessary to understand and disentangle ΦF from the SIF 

canopy structure dependent variations (due to the spatiotemporal effect’s variations in sunlit and shaded leaves 

and to the light distribution and attenuation within the canopy) that are contained in fAPAR and fesc.  90 

Disentangling the photosynthetically dependent variations from the canopy dependent ones in SIF signal is critical 

to use SIF as a proxy of vegetation response to changing environmental conditions and to abiotic stresses at large 

scales. It is especially needed for the upcoming Fluorescence Explorer (FLEX) satellite mission that aims at 

providing measurements of SIF at its full spectral emission (670-780 nm) and with unprecedented spatial resolution 

(300 m) and repeated global coverage (Drusch et al., 2017). Therefore, the top-of-canopy SIF measured together 95 

with GPP at the carbon flux sites can play a substantial role for calibrating and validating FLEX products and 

airborne campaigns measurements.  

Recent studies have developed novel approaches based on theoretical insights to correct SIF signal for multiple 

scattering and reabsorption effects (Zeng et al., 2019; Yang and van der Tol, 2018; Yang et al., 2020) by 

determining the fesc and allowing the downscaling of SIF emission from canopy to fluorescence emission yield (Lu 100 

et al., 2020). This assumes that the entire canopy acts like a big leaf, with unique absorption, fluorescence, and 

photosynthetic properties. In this situation, fesc is the ratio of top-of-canopy SIF  to SIF total and it is closely related 

to canopy structural variations, including LAI, leaf angle distribution, reabsorption, and sun-canopy geometry, and 

varies across time and space (Zeng et al., 2019). Recently, fesc has been estimated using NIRv or the fluorescence 

correction vegetation index (FCVI). The former considers soil background effects and is the product of NDVI and 105 

the reflectance in the near-infrared (NIR) (Badgley et al., 2017) and it has successfully been used to assess 

photosynthesis productivity (Mengistu et al., 2021). The latter, FCVI, is framed as the difference between the NIR 

and the broadband visible reflectance (400-700 nm), considering that the reflectance is measured in the same 

direction as the SIF observations (Yang et al., 2020). Both approaches have shortcomings, as they cannot be 

universally applied, because some steps in the estimation of fesc using NIRv are inconsistent with the radiative 110 

transfer theory (Yang et al., 2020) and their effectiveness might be greatly compromised for SIF at the red band 

where the scattering is much weaker than in the near-infrared. The use of FCVI is also limited as it is not suitable 

in sparse vegetation canopies and its computation requires hyperspectral data in the visible spectral range. 

If one would like to disentangle the radiation and vegetation structure dependent SIF variations from the 

physiological information in the SIF signal, determining ΦF is required. ΦF can be defined at the leaf scale, or even 115 

at lower scales (chloroplasts) where the absorbed light energy is dissipated following three pathways: 
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photosynthesis, fluorescence, and heat dissipation. Estimating leaf-scale ΦF from canopy SIF measurements is an 

ongoing work that is under exploration. In addition, the computation of total absorbed photosynthetically active 

radiation (APAR) requires measurements of the incident, transmitted, and reflected PAR, which cannot be 

measured at satellite and airborne platforms, and are not always available for all ground sites even those belonging 120 

to major carbon flux observation networks, such as the Integrated Carbon Observation System (ICOS). This is the 

reason why for decades the apparent ΦF was estimated by normalizing the top-of-canopy SIF signal converted in 

quanta energy by the incident PAR (Daumard et al., 2012; Goulas et al., 2017). Recently, two promising 

approaches have been used by Zeng et al. (2022a) and Loayza et al. (2023) to estimate ΦF. To determine ΦF over 

cropped fields, including, rapeseed, barley, corn, wheat, and sugar beet,  Zeng et al. (2022a) normalized canopy 125 

SIF by the near-infrared radiance of vegetation index (rNIRv, the product of NDVI and the reflected vegetation 

radiance in the near-infrared), while Loayza et al. (2023) used the integrated vegetation reflected radiance between 

500 and 700 nm on potato crop. These approaches have advantages because the effects of canopy structure and 

sun-canopy geometry on ΦF estimates may be fully cancelled out, the PAR is not needed as an input, and their 

applicability at the satellite scale is highly feasible. However, how much these methods are reliable and effective 130 

on estimating ΦF under varying environmental conditions and across diverse spatiotemporal scales and vegetation 

types is not well explored yet.  

Luckily, chlorophyll fluorescence can be measured using active methods that allow direct evaluation of the 

physiological status of the vegetation at the leaf and canopy scales (Porcar-Castell et al., 2014; Moya et al., 2019; 

Loayza et al., 2023). In active techniques, a modulated source of light is used to excite the chlorophyll that 135 

fluoresces in the spectral range between 650 and 800 nm. For instance, the pulse amplitude-modulated techniques, 

which use a measuring pulsed light and an actinic continuous light, has been widely used at the leaf scale to provide 

direct chlorophyll fluorescence yield measurements, allowing the evaluation of photosynthesis and vegetation 

responses to abiotic factors for decades (Baker, 2008; Magney et al., 2017). But, its applicability at canopy and 

ecosystem scales were hindered by the techniques limitations (Ounis et al., 2001). In the last decades, this gap was 140 

filled based on the use of either lasers (or laser diodes), or light emitting diodes (LED) providing short pulses of 

light (microsecond to even picosecond), together with a synchronized detection to measure chlorophyll 

fluorescence under daylight conditions at the canopy scale with in-situ or airborne remote sensing instruments 

(Moya et al., 2019; Ounis et al., 2016; Loayza et al., 2023). Therefore, the fluorescence efficiency can be directly 

observed at the canopy and landscape scales, which is useful to gain a better understanding of terrestrial vegetation 145 

functioning. Indeed, LED induced chlorophyll fluorescence (FyieldLIF) is less affected by the temporal and spatial 

(horizontal and vertical) distribution of sunlit and shaded leaves on the upper surface and within the canopy 

compared to SIF, but it may be highly sensitive to environmental conditions, such as heavy wind speeds (Lopez 

Gonzalez, 2015). 

In forest stands, such as temperate deciduous forests, when the vegetation green-up and senescence phases are 150 

excluded, LAI is merely constant. However, the spatial dynamics in LAI may be large from one plot to another. 

Thus, the canopy structural effect correction on SIF signal is all the more crucial from a spatial view point. Further, 

SIF signal is subject to diurnal variations due to the complex interactions between lighting conditions (diffuse/total 

radiation, solar and viewing angles) and canopy structure (Aasen et al., 2019; Xu et al., 2021). Therefore, correcting 

SIF from these effects, which are very local, is warranted for (i) interpreting and upscaling SIF signal spatially and 155 

temporally across diverse vegetation types, (ii) disentangling the physiological response from variations due to 
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exogenous effects on SIF, (iii) assessing how SIF responds to extreme environmental conditions (heatwaves, 

drought, etc.), and ultimately (iv) gaining a better understanding of the relationships between SIF and GPP. 

Nevertheless, to the best of our knowledge, an attempt to use active fluorescence measurements at the canopy scale 

to correct SIF from canopy structure, incident sunlight, and sun-canopy geometry effects has not been addressed 160 

yet. 

The main objective of this work is to use active chlorophyll fluorescence (FyieldLIF) as a reference measurement and 

to compare it to SIF yield (SIFy = SIF/PAR) in order to analyse and correct the effects of canopy structure and sun-

canopy geometry on top-of-canopy SIF at diurnal and seasonal timescales in a temperate deciduous forest, 

considering diverse environmental conditions. More specifically, this study intended to (i) evaluate the relationship 165 

between FyieldLIF and SIFy and evidence the effects of canopy structure and sun-canopy geometry on top-of-canopy 

SIF through their influence over this relationship; (ii) examine these effects with the aim of developing a correction 

method based on reflectance measurements and lightning conditions (solar angles, ratio of diffuse to total radiation, 

etc.). 

2. Materials and Methods 170 

2.1. Study site description 

This study was conducted at the Fontainebleau-Barbeau forest site (FR-Fon), which is an Eddy Covariance (EC) 

flux observation site belonging to the ICOS network (Delpierre et al., 2016). The site is located 53 km southeast 

of Paris, France. It is occupied by a temperate deciduous broad-leaf forest type. The dominant forest overstory 

consisted of mature sessile oak trees (Quercus petraea (Matt.) Liebl), accounting for 79% of the basal area 175 

(Maysonnave et al., 2022), with an understory of hornbeam (Carpinus betulus L.) (for more details: 

http://www.barbeau.universite-paris-saclay.fr/). The stand height is around 25 m. The soil is an endostagnic 

luvisol, covered by an oligo-mull humus (Maysonnave et al., 2022). The climate is temperate and characterized by 

an annual average rainfall of approximately 680 mm and an average air temperature of approximately 11°C 

(Soudani et al., 2014). The LAI is approximately 5.8 m2.m-2 using the litter collection method over the 2012-2018 180 

period (Soudani et al., 2021). At the Fontainebleau-Barbeau site, carbon and water fluxes have been continuously 

monitored at 35 m height using the EC method. The main micrometeorological variables, including incident and 

reflected radiations, are measured at high frequency (1 min), while vapor pressure deficit, precipitation, air and 

soil temperature, water table depth, soil moisture, and wind speed are either recorded or estimated at a half-hourly 

timescale. 185 

2.2.  Sun-induced and light-emitting diode induced chlorophyll fluorescence, and reflectance 

measurements of the canopy 

2.2.1. Sun-induced chlorophyll fluorescence measurement system 

In the framework of the ECOFLUO project, a passive in-situ spectral measurement automated instrument (named 

SIF3) was developed based on a collaboration between the “Laboratoire de Météorologie Dynamique (LMD), 190 

École Polytechnique, France et Laboratoire Écologie, Systématique et Évolution (ESE), Université Paris-Saclay, 

France”. SIF3 acquires continuous measurements of incident and reflected radiation above the canopy. It was 

installed at the top of the 35 m height tower of Fontainebleau-Barbeau site above the canopy in July 2021 

http://www.barbeau.universite-paris-saclay.fr/
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(Supplementary materials Figure S1).  To avoid artificial shading of the measured area, SIF3 was set to the southern 

part of the tower. 195 

The SIF3 measurement system includes a control computer (LattePanda V1, LattePanda Shanghai, China and two 

Arduino microcontrollers), two spectrometers with coolers, shutter controllers, a general cooler with temperature 

controller inside the box, two optical fibers, a reference panel, a servo motor, a PAR sensor, a GPS, temperature 

and relative humidity sensors, and a camera. The two spectrometers are a high-resolution spectrometer (ASEQ 

instruments, Vancouver, Canada, HR1-T model with thermoelectric cooling) and a broad band spectrometer 200 

(ASEQ, LR1-T model with thermoelectric cooling). The high-resolution spectrometer (HR1-T) has a spectral 

range between 650 and 800 nm, a high spectral resolution with full width at half maximum (FWHM) of 

approximately 0.3 nm. The HR1-T was used to determine sun-induced chlorophyll fluorescence. The broad band 

spectrometer (LR1-T) has a spectral range between 400 and 1000 nm and a FWHM of approximately 1.5 nm. It 

was used to measure canopy reflectance and the optical vegetation indices (VIs). 205 

In order to reduce the noise and dark current, both spectrometers were contained within a dry and thermoregulated 

box system that maintained the temperature at 19 ± 0.61 °C. SIF3 performs sequential vegetation reflected radiance 

measurements and irradiance measurements on a polytetrafluoroethylene (PTFE) reference panel (PMR10P1, 

Thorlabs, Maisons-Laffitte, France). The sequential measurements of SIF3 were: first to measure the reference 

PTFE with LR1-T and HR1-T spectrometers, and second to measure vegetation reflected radiance with both 210 

spectrometers. Within one measurement of the target canopy or the reference, each spectrometer performed the 

following steps: (i) optimizing the integration time (IT) for measurement, (ii) measurement, and (iii) measurement 

of the dark current. The date and time at the start and end of each measurement were recorded. Two 15 m long 

optical fibers (FT1000EMT and FT1000UMT, Thorlabs, Maison-Laffitte, France, for HR1-T and LR1-T 

spectrometers, respectively) with a 1000 µm core diameter and a numerical aperture of 0.39 NA were used to 215 

measure the irradiance of the reference and the radiance of the canopy, at the nadir position. The field-of-view 

(FOV) of each measuring channel is adjusted to 25° with the use of a Gershun tube to ensure a flatter spatial 

response and covered approximately 6 m2 of the canopy area. Long-pass optical filters (5CGA-550, cut-off 

wavelength 550 nm and 5CGA-375, cut-off wavelength 375 nm, Newport, Irvine, CA, USA, for the HR1-T and 

LR1-T channels, respectively) were placed in front of each tube to avoid second order detection and to protect 220 

fiber ends. The dark current measurements were subtracted from the reference and canopy measurements before 

SIF retrieval. The IT of each spectra was automatically optimized to achieve values that are as high as possible, 

but unsaturated to improve as much as possible the signal-to-noise ratio (SNR). Note that SIF3 integrates a 

quantum sensor to measure the PAR at high frequency and a camera that allows taking RGB images of the canopy 

in the FOV. Before the installation of SIF3 in the field, we performed lens alignment, radiometric and spectral 225 

calibrations of the instrument using a calibrated light source (4P-GPS-060-SF and EHLS-100-075R, Labsphere, 

North Sutton, NH, USA). 

2.2.2. Light-emitting diode induced chlorophyll fluorescence measurement system 

FyieldLIF measurements were acquired with an active fluorometer instrument, named LIF, developed in the LMD 

laboratory, which was installed at the top of the 35 m height tower next to SIF3 above the canopy. This instrument 230 

is very similar to the one described by Moya et al. (2019). It uses a blue LED array (ENFIS Ltd, Swansea, UK; 

peak wavelength 455 nm, FWHM 21 nm, radiant power 6 W) as an excitation source. To separate the chlorophyll 
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fluorescence emission induced by the LED from that induced by daylight and from the reflected sunlight in the 

filter bandwidth, the LED light is pulsed at a variable frequency with a pulse duration of about 5 µs. Note that the 

instrument uses a bimodal excitation conditioned by the PAR: for PAR < 90 µmol m-2 s-1 (night time), the frequency 235 

is set at 30 Hz, while it is set at 200 Hz (daytime) for PAR > 100 µmol m-2 s-1.  This bimodal excitation scheme 

helps to avoid variable fluorescence induction during night and to increase SNR during daytime. The instrument 

optical head consisted of two main parts: (i) the source module that includes the blue LED array, its electronic 

driver, a heat dissipation module and a Fresnel lens (diameter 180 mm) to collimate the excitation light, and (ii) a 

detection module that includes a second Fresnel lens of the same diameter, a set of optical filters, a large area PIN 240 

photodiode (10x10 mm2, S3590, Hamamatsu Photonic, Japan) and a laboratory designed amplifier that selects the 

LED induced fluorescence signal (FyieldLIF) from the reflected sunlight in the same wavelengths band (LNIR). This 

amplifier uses a sample and hold circuit (AD585, Analog Devices, Wilmington, MA, USA) to deliver the peak 

value of the fluorescence signal to the digital analog (AD) conversion card (USB 6212, NI, Austin, Texas, USA) 

and a lowpass electronic filter to deliver LNIR to the same card. The set of optical filters includes a highpass 245 

interferential filter with a cut-off wavelength at 400 nm to reject UV light, a second highpass interferential filter 

with a cut-off wavelength at 650 nm to reject the excitation light and a 3 mm thick RG9 filter (Schott, Germany) 

to select the far-red fluorescence emission over 725 nm. The FOV can be controlled thanks to an onboard camera 

(RLC-520A, Reolink, Hong-Kong). We selected a top of the canopy area in the FOV of the SIF instrument, 

resulting in a 9 m measuring distance with a viewing zenith angle of 30°. However, as the FOV of the instrument 250 

is about 100 mrad, the measured area was about 0.4 m2, which is much smaller than the FOV of SIF3 

(approximately 6 m2). Power supplies as well as synchronization and acquisition electronics are enclosed in a 

separate box, connected to the optical head by a 5 meters long cable. FyieldLIF and LNIR are stored on disk with an 

acquisition and control program written in LabVIEW (NI, Austin, Texas, USA) that runs on a LattePanda V1 

microcomputer. Other variables such as PAR and LED, photodiode and box temperatures are also continuously 255 

monitored. 

2.3. Canopy sun-induced chlorophyll fluorescence retrieval 

As spectral measurements are recorded in digital counts, they were converted into radiometric units before SIF 

retrieval. SIF was retrieved at the far-red oxygen observation band (O2-A) from the HR1-T canopy reflectance 

measurements. Data quality control is performed prior to SIF retrieval following the protocol proposed by Cogliati 260 

et al. (2015) to put aside abnormal data caused by abrupt changes in incident radiation. SIF retrieval was performed 

using the classical three-band Fraunhofer line discrimination (3FLD) method at O2-A band (Meroni et al., 2009; 

Daumard et al., 2012).  

The 3FLD approach is rooted in the FLD principle, which requires measurements in two channels, one inside and 

one outside a Fraunhofer or absorption line (Meroni et al., 2009). The FLD hypothesis is based on the consistency 265 

of reflectance and SIF at both bands. However, studies have found evidence that the two variables are not constant 

(Meroni et al. 2009). The 3FLD method rather assumes that reflectance and SIF vary linearly around the absorption 

band considered, which solves the limitation given by the FLD hypothesis, and uses three spectral bands per 

absorption line to retrieve SIF (Zhang et al., 2021). The 3FLD SIF retrieval at 760 nm (O2-A band) can be derived 

as follows: 270 

𝑆𝐼𝐹760 =
(𝐸𝑙× 𝑤𝑙+ 𝐸𝑟×𝑤𝑟)×𝐿𝑖𝑛−(𝐿𝑙×𝑤𝑙+ 𝐿𝑟×𝐸𝑟)×𝐸𝑖𝑛

(𝐸𝑙×𝑤𝑙+ 𝐸𝑟×𝑤𝑟)−𝐸𝑖𝑛
                                                                                                                              (2) 
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𝑤𝑙 =
𝜆𝑟−𝜆𝑖𝑛

𝜆𝑟−𝜆𝑙
,  𝑤𝑟 =

𝜆𝑖𝑛−𝜆𝑙

𝜆𝑟−𝜆𝑙
 

where L is the upwelling radiance. E is the downwelling irradiance measured on the reference panel. Indices ‘r’, 

‘l’ and ‘in’ represent the reference bands at the left, right, and inside the absorption band, respectively. wl and wr 

denote the weighting factors depending on the wavelength λ on the left, inside, and on the right of the absorption 275 

band. Within this study, the left, inside and right bands were set at 757.86, 760.51, and 770.46 nm, respectively. 

2.4. Theoretical derivations of Φk, vegetation indices, and SIF yield 

NIRv has been used to isolate vegetation signal properties from soil background and to correct canopy-scale far-

red SIF for scattering effects (Badgley et al., 2017). NIRv can be computed according to (Badgley et al., 2017) and 

(Zeng et al., 2019) using the following Eq.:  280 

𝑁𝐷𝑉𝐼 =
𝑅[780−800]−𝑅[670−680]

𝑅[780−800]+𝑅[670−680]
                                                                                                                                                           (3) 

𝑁𝐼𝑅𝑣 = R − NIR × 𝑁𝐷𝑉𝐼                                                                                                                                                                      (4) 

where R represents the spectral reflectance and the index number denotes the wavelength range or wavelength at 

which the reflectance was measured. In Eq. (4), NIRv is largely dependent on the LAI, the leaf angle distribution, 

and the geometry of the sun-canopy, as well as on the influence of fluctuations in incident radiation at the diurnal 285 

and seasonal timescales. R-NIR calculated at 850 nm central wavelength. 

 FyieldLIF is an active measurement and is not directly dependent on the ambient light conditions. Thus, it is not 

impacted by ambient radiation changes, because the measured LED induced chlorophyll fluorescence is directly 

and only emitted by the leaves targeted by the LED. Variations in FyieldLIF are then presumably only induced by 

changes in the photosynthetic pigment concentrations, in the leaf area inside the FOV, and in the vegetation 290 

functioning that modulates the chlorophyll fluorescence quantum yield. As no significant phenological changes 

occurred during the study period, we assumed that the FyieldLIF is free from the vegetation structure and sun-canopy 

geometry effects and can be used as a reference measurement in this respect. The blue LED light can be considered 

as constant and therefore, from Eq. (1) we can assume that ΦF is equal to FyieldLIF and then Eq. (1) becomes: 

 𝑆𝐼𝐹 = 𝑃𝐴𝑅 × 𝑓𝐴𝑃𝐴𝑅 × 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹 × 𝑓𝑒𝑠𝑐                                                                                                                                      (5)   295 

𝑆𝐼𝐹

(𝑃𝐴𝑅×F𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹)
= 𝑓𝐴𝑃𝐴𝑅 × 𝑓𝑒𝑠𝑐                                                                                                                                                          (6) 

From Eq. (6), we defined Φk as following: 

 Φ𝑘 =
𝑆𝐼𝐹

(𝑃𝐴𝑅×𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹)
=

𝑆𝐼𝐹𝑦

𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹
                                                                                                                                                      (7) 

Note that this is a simplification of the complex relation that does exist between SIFy and FyieldLIF, as SIF yield and 

FyieldLIF respond differently to canopy structure effects. At the diurnal timescale, Φk is subjective to variations in 300 

leaf angle distribution, incident sunlight or atmosphere conditions (clear or cloudy sky conditions), and to the 

effects of sun-canopy geometry (including SZA and SAA). 

In remote sensing, the total amount of light absorbed by the canopy cannot be directly measured. This quantity is 

highly dependent on the solar angle and canopy structure (distribution of light and shaded areas at the top and 

inside the canopy). Hence, by normalizing the canopy emitted SIF by the incident PAR, it is possible, as a first 305 

approximation and empirically, to partially disentangle the SIF signal from its dependence to incident radiation 

and thus to detect some changes in the vegetation properties or the plant physiological responses to abiotic factors. 
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Therefore, the SIFy was calculated using the PAR measured at the top of the EC tower site. Note that the SIF fluxes 

were converted into quanta units following (Daumard et al., 2012) prior to SIFy calculation. 

 𝑆𝐼𝐹𝑦 =  𝑆𝐼𝐹 𝑃𝐴𝑅⁄                                                                                                                                                                            (8)                               310 

2.5. Data analysis 

In this study, we used data measurements from June to August 2022. As radiation-limited photosynthesis is 

expected in early morning and late afternoon, due to lower incoming irradiance, only the data recorded between 

9:00 am and 16:00 pm (UTC) were considered in this study. The negative SIF values, the SIFy values higher than 

mean ± 3 standard deviation, and the PAR data less than 200 µmol m-2 s-1 were excluded in the analysis. First, we 315 

applied a linear model to analyse at the daily and seasonal timescales the strength of the relationships: i) between 

SIFy and FyieldLIF, and ii) between NIRv and Φk. Note that daily means of SIFy, FyieldLIF, NIRv, and Φk are hereafter 

noted  𝑆𝐼𝐹𝑦 and 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹, 𝑁𝐼𝑅𝑣 and 𝛷𝑘. The coefficient of determination (R2) and the p-value are used to assess 

the strength of the correlations. These relations are examined at instantaneous (seconds to minutes) and daily 

(averaged data from 9 am to 16 pm) timescales. Second, we used random forest (RF) models as a tool to understand 320 

FyieldLIF and Φk dynamics by comparing their predictions based on a combination of remote sensing metrics. We 

chose RF models because they are non-parametric models and are well adapted for predicting nonlinear and multi-

parameters relationships in complex situations and foremostly highly interpretable by using metrics, such as the 

importance of predictor variables and partial dependence (Breiman, 2001). Several types of RF models were 

designed for estimating FyieldLIF and Φk. The expression of each model and its purpose are given in Table 1. We 325 

used the clear sky condition (the fraction of diffuse PAR over total PAR < 0.3) data to train the models. It is worth 

noting that for FyieldLIF predictions using all data (clear sky and cloudy conditions) or clear sky condition data alone 

yielded the same results (data not shown), while for Φk, which was defined to represent the effects of canopy 

structure and sun-canopy geometry, only clear sky conditions were used with respect to satellite conditions of data 

acquisition. To avoid the impact of correlations of predictors on the RF models’ predictions, the correlations matrix 330 

between predictors was computed (Supplementary Materials Figure S2 and S3) and then the least correlated 

predictors were selected to train our models. All RF models were established using 200 trees and sampled with 

replacement based on bag fraction of 80% (80% of the data for training and 20% for testing). The out-of-bag 

(OOB) predictor importance estimates were determined to evaluate the contribution of each predictor. Model 

performance was evaluated using the OOB coefficient of determination (OOB R2) score and the adjusted 335 

coefficient of determination (adj. R2) of the correlations between the test dataset and the predictions, as well as the 

root mean squared error (RMSE). The closest the OOB R2 and adj. R2 are, the better the model is able to be 

generalized. All RF models were run using instantaneous measurements. For SIF and reflectance data extraction, 

MATLAB R2021a (MathWorks, Inc., USA) was used, and Python version 3.9.1 was used for data analysis and 

visualization (Sklearn, Scipy, Seaborn, Matplotlib, Pandas, and Numpy libraries). 340 

Table 1. Random forest models for FyieldLIF and Φk predictions. R denotes spectral reflectance in blue (410 nm), red (530 nm 

and 560 nm), green (665 nm), red-edge (705 and  740 nm), and near-infrared (830 nm). SIF is the far-red sun-induced 

chlorophyll fluorescence at 760 nm, SIFy is the ratio of SIF over PAR, SA stands for  solar angles, including solar zenith (SZA) 

and azimuth (SAA) angles. FyieldLIF is the LED induced chlorophyll fluorescence, and Φk is the ratio between SIFy and FyieldLIF.  

Model 
name Inputs Outputs Purpose 
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FY-R 

R410, R530, R560, 
R665, R705, R740, 
R830 FyieldLIF 

To test the ability of reflectances 
to predict FyieldLIF. 

FY-R-SIF 

R410, R530, R560, 
R665, R705, R740, 
R830, SIF FyieldLIF 

To test the ability of reflectances 
and SIF to predict FyieldLIF. 

FY-R-
SIFy 

R410, R530, R560, 
R665, R705, R740, 
R830, SIFy FyieldLIF 

To test the effect of apparent SIF 
yield (SIF normalized by PAR) to 
predict FyieldLIF. 

FY-R-SA 

R410, R530, R560, 
R665, R705, R740, 
R830, SZA, SAA FyieldLIF 

To test the ability of reflectances 
and solar angles to predict 
FyieldLIF. 

FY-R-
SIFy-SA 

R410, R530, R560, 
R665, R705, R740, 
R830, SIFy, SZA, 
SAA FyieldLIF 

To test the ability of reflectances, 
SIF yield, and solar angles to 
predict FyieldLIF. 

Φk-R 

R410, R530, R560, 
R665, R705, R740, 
R830. Φk 

To test the ability of reflectances 
to predict Φk. 

Φk-R-SA 

R410, R530, R560, 
R665, R705, R740, 
R830, SZA, SAA Φk 

To test the synergy between 
reflectances and solar angles to 
predict Φk. 

3. Results 345 

3.1. Relationships between canopy SIFy and FyieldLIF and their seasonal variations  

The results, in Figure 1a, show that the coefficients of determination of the relationships between SIFy and FyieldLIF 

were low and varied highly across the season and that the ratio between diffuse PAR and total PAR cannot entirely 

explain this inter-daily variability. This indicates that at the diurnal scale SIFy was weakly correlated to FyieldLIF. 

Note that relations between SIFy and FyieldLIF analysed at hourly timescale (hourly averages) relatively improved 350 

their correlation (Supplementary materials Figure S4). At the seasonal scale (daily averages), in Figure 1b and 1c, 

the results show that the R2 between SIFy and FyieldLIF was 0.58, indicating that SIFy and FyieldLIF were better 

correlated at the seasonal timescale. The fraction of diffuse to total PAR cannot explain this correlation and their 

agreements tend to diverge at some period of the season. Additionally, note that, overall, the magnitude of both 

variables has considerably decreased from the starting to the end of the given period.  355 
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Figure 1. Figure 1a shows the inter-daily variations in the coefficient of determination (R2) of the relationship between SIFy 

and FyieldLIF and Figure 1b the relationship between daily mean 𝑆𝐼𝐹𝑦 and 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹 . In Figures 1a and 1b the colour of the 

points shows the fraction of diffuse to total PAR with the colour scale on the left of Figure 1b. While Figure 1c depicts seasonal 

dynamics of  𝑆𝐼𝐹𝑦 and 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹 . The shading around the lines indicates the 95% confidence interval. The asterisks stand for 360 
the statistical significance level (*** = P ≤ 0.001). 

3.2. Diurnal variations in PAR, NIRv, Reflectance NIR, Φk, SIF, SIFy, and FyieldLIF 

Figure 2 shows the diurnal cycles (from 9 am to 16 pm) of PAR, NIRv, R-NIR, Φk, SIF, SIFy, and FyieldLIF. 

It shows three sunny and steady weather days and so the PAR constantly increased in the morning to a maximum 

around noon and decreased in the afternoon for all days. Its values were between 1000 and almost 2000 µmol m-2 365 

s-1. 

The diurnal variations in NIRv and R-NIR exhibited similar patterns, with the lowest values recorded at noon. The 

depression observed in NIRv and R-NIR patterns from 10 am to around 12 pm is attributed to shadows observed 

within the FOV of the SIF3 instrument as has shown by the sunlit leaves fraction determined from RGB images 

(Supplementary materials Figure S5 and S6). 370 

Φk surged in the early morning hours (not shown) and then declined from 10 am up to around 12 pm, afterwards, 

it increased in the afternoon for all days. The depression observed in Φk between 10 am and 12 pm is simultaneous 

to the decline in NIRv and in R-NIR. This implies that diurnal dynamics in Φk may be due to the intra-daily pattern 

in the distribution of sunlit and shaded leaf fraction caused by the geometric relationships between canopy structure 

and sun’s geometry. 375 
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It is well-known that diurnal SIF cycles are tightly linked with dynamics in PAR. Conversely, on Figure 2 SIF 

exhibited different diurnal dynamics for all days than the incident PAR ones. The pattern in SIF declined from 10 

am to around 12 pm and was afterwards dominated by dynamics in PAR. It can also be observed that the magnitude 

of SIF markedly decreased from July, 10th to August, 6th, being from 2.06 to 1.33 mWm-2 sr-1nm-1 (approximately 

35% relative decrease in SIF emission). 380 

The diurnal variations in SIFy surged in the early morning (not shown) and then decreased from 10 am to noon and 

afterwards increased in the afternoon for the three considered days. Similarly, to SIF, the magnitude of SIFy also 

shows an overall decreased from July, 10th to August, 6th. In contrast, the diurnal pattern in FyieldLIF shows a 

continuous and significant decrease during the day, with a 10% loss. Note that the range of FyieldLIF have also 

decreased over the given period. FyieldLIF appears insensitive to the canopy structure and sun-canopy geometry 385 

changes, compared to the dynamics in SIF and SIFy, which showed a significant decline in the morning. Besides, 

it is worth noting that FyieldLIF measurements are continuously recorded (day and night), the full diurnal cycles are 

presented in Supplementary materials Figure S7. 

      

Figure 2. Presents the diurnal patterns acquired during three clear sky days of: the diurnal pattern of the photosynthetically 390 
active radiation (PAR, in black ), the near infrared reflectance of vegetation index (NIRv, in blue), the reflectance in the near 

infrared (R-NIR, in cyan), the ratio between SIFy and FyieldLIF (Φk, in yellow), the SIF (SIF-760, in red), the ratio of SIF over 

PAR (SIFy, in green), and the active chlorophyll fluorescence (FyieldLIF, in magenta). The data correspond to June 17th, July 

10th, and August 6th, 2022. The noisy signals observed on July 10th and August 6th, 2022 are due to high wind speed with an 

average value of 2.39 and 3.27 m s-1, respectively. 395 

3.3. Relationship between Φk and NIRv and its seasonal variations 
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Figure 3a shows the R2 of the relationship between NIRv and Φk at instantaneous scale (acquisition time-step) as a 

function of the fraction between diffuse and total PAR, while Figure 3b depicts the relationships between Φk and 

NIRv at seasonal scale, and Figure 3c underlines their seasonal dynamics. 

Conversely, to the weak correlation found between SIFy and FyieldLIF seen in Figure 1a, the results in Figure 3a 400 

show that there are relatively moderate and substantially good relationships between NIRv and Φk over the season. 

Thus, for most of the clear sky condition (ratio diffuse PAR to total PAR < 0.3), NIRv may explain more than 50% 

of the instantaneous variations in Φk at the diurnal scale, but the strength of the relationship between these two 

variables under clear skies remains variable. The lowest values of R2 are mostly related to diffuse sky conditions. 

The results in Figure 3b show a weak, but statistically significant relationship between the daily mean 𝑁𝐼𝑅𝑣 and 405 

𝛷𝑘 with an R2 of 0.16 at the seasonal scale. This indicates that 𝑁𝐼𝑅𝑣 is a weak proxy of 𝛷𝑘 at the seasonal scale. 

Furthermore, we can also infer that the fraction of diffuse to total PAR explains this correlation, as lower correlation 

values of  𝑁𝐼𝑅𝑣 and 𝛷𝑘 are closely related to clear sky conditions and high correlation values to diffuse sky 

conditions. In addition, the seasonal dynamics in 𝑁𝐼𝑅𝑣 and 𝛷𝑘 (Figure 3c) exhibited a good match for some days 

at the seasonal scale. The magnitude of 𝑁𝐼𝑅𝑣 and 𝛷𝑘 also varied significantly over the season, which can be caused 410 

by rapid changes in ambient environmental conditions and in leaf and canopy biochemical and structural 

properties. Note that an independent analysis, identical to the one presented here on the relationship between NIRv 

and Φk, was realised on the relationships between R-NIR and Φk. The results shown in Supplementary materials 

Figure S8 suggest that the R-NIR reflectance alone can also be a good proxy of Φk at diurnal timescale. This is 

paramount for implementing this approach at the satellite scale. 415 
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Figure 3. Figure 3a exhibits the inter-daily variations of the coefficient of determination (R2) of the relationships between the 

near-infrared reflectance of vegetation index (NIRv) and the canopy Φk at instantaneous scale, as a function of the fraction 

between diffuse and total PAR. Figure 3b presents the seasonal relationship between the daily means 𝑁𝐼𝑅𝑣 and 𝛷𝑘 , as a 

function of the fraction between diffuse and total PAR.  And Figure 3c shows the seasonal dynamics in 𝑁𝐼𝑅𝑣 and 𝛷𝑘. The 420 
shaded area indicates the 95% confidence interval. The asterisks stand for the statistical significance level (** = P ≤ 0.01). 

3.4 Random forest models for predicting FyieldLIF and Φk in a temperate deciduous forest 

We tested the potential of RF modelling approach to predict FyieldLIF and Φk based on remotely sensed products. 

We intended to show FY-R-SIFy-SA and FY-R-SA models’ results for FyieldLIF, and Φk-R and Φk-R-SA for Φk 

estimates. The other RF models’ results for FyieldLIF are given in Supplementary materials Figure S9. 425 

The results show that all random forest models had a strong performance on the prediction of FyieldLIF (Table 2), 

with OOB R2 varying between 0.86 and 0.90 and adj. R2 between 0.87 and 0.90. In figure 4, the RF models’ 

residuals between observed and predicted FyieldLIF are randomly distributed and FyieldLIF is not over-or under-

estimated. Note that adding SIF (FY-R-SIF, OOB R2 = 0.87 and adj. R2 = 0.88) or SIFy (FY-R-SIFy, OOB R2 = 

0.88 and adj. R2 = 0.89) relatively increases the model performance compared to the FY-R model (FY-R, OOB R2 430 

= 0.86 and adj. R2 = 0.87), but the difference between R2 is not statistically significant. Thus, the use of reflectance 

bands only allows to predict FyieldLIF and SIF or SIFy did not provide an additional improvement for predicting 

FyieldLIF at the acquisition-time step. Substituting SIF for SZA and SAA also showed good model performance (FY-

R-SA, OOB R2 = 0.90 and adj. R2 = 0.90). The FY-R-SIFy-SA model revealed a performance similar to the FY-

R-SA model’s one (FY-R-SIFy-SA, OOB R2 = 0.90 and adj. R2 = 0.90). The predictor importance estimates for 435 

FY-R-SA model showed that SZA, SAA, and R410 contribute the most in determining FyieldLIF (Figure 4d), while 

for FY-R-SIFy-SA model, SZA, R830, SAA, R410, and R740 (Figure 4b) provide the most useful information for 

FyieldLIF predictions. 

Table 2. Random forest (RF) model’s statistical results for predicting FyieldLIF. N denotes the number of data points used for the 

RF model’s testing, adj. R2 represents the adjusted coefficient of determination of the relationship between the test dataset 440 
FyieldLIF and the predicted FyieldLIF, OOB R2 is the model accuracy on the validation data set (1/3 of the training set), and the 

RMSE is the root mean square error between observed FyieldLIF and RF model predicted FyieldLIF. 

Model OOB R2 adj. R2 RMSE N 

FY-R 0.86 0.87 0.016 1802 

FY-R-SIF 0.87 0.88 0.016 1802 

FY-R-SIFy 0.88 0.89 0.015 1802 

FY-R-SA 0.90 0.90 0.014 1802 

FY-R-SA-SIFy 0.90 0.90 0.014 1802 
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Figure 4. Random forest (RF) model outputs: Figure 4a depicts the FY-R-SIFy-SA model performance between observed and 445 
predicted FyieldLIF, Figure 4b represents the predictor importance estimates for FY-R-SIFy-SA model, Figure 4c represents the 

FY-R-SA model performance between observed and predicted FyieldLIF, and Figure 4d represents the predictor importance 

estimates for FY-R-SA model. N denotes the number of data points used for the RF model’s testing, adj. R2 represents the 

adjusted coefficient of determination of the relationship between the test dataset FyieldLIF and the predicted FyieldLIF, OOB R2 is 

the model accuracy on the validation data set (1/3 of the training set), and the RMSE is the root mean square error between 450 
observed FyieldLIF and RF model predicted FyieldLIF. The dashed diagonal line depicts the 1:1 line. FY-R-SIFy-SA denotes FyieldLIF 

prediction using R, SIFy and solar angles as inputs; and FY-R-SA includes R, SZA, and SAA to predict FyieldLIF. 

The results reveal that RF models had good performance in predicting Φk (Figure 5). The best performing model 

was achieved using R and sun angles as inputs (Φk-R-SA, OOB R2 = 0.69 and adj. R2 = 0.70), while R alone 

explained 58% of Φk on the validation dataset and 62% on the test dataset (Φk-R, OOB R2 = 0.58 and adj. R2 = 455 

0.62). The predictor importance estimates (Figures 5b & 5d) show that R410, R740, R665, R705, SZA, and SAA 

are the main predictors for estimating Φk, underlining the dependency of Φk to shadow effects. 
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Figure 5. Random forest (RF) model outputs: Figure 5a depicts the Φk-R model performance between observed and predicted 

Φk, Figure 5b presents the predictor importance estimates for Φk-R model, Figure 5c represents the Φk-R-SA model 460 
performance between observed and predicted Φk, and Figure 5d presents the predictor importance estimates for Φk-R-SA model. 

N denotes the number of data points used for the RF model’s testing, adj. R2 represents the adjusted coefficient of determination 

of the relationship between observed and predicted Φk, OOB R2 is the model accuracy on the validation dataset (1/3 of the 

training set), and the RMSE is the root mean square error between observed and RF model predicted Φk. The dashed diagonal 

line depicts the 1:1 line.  Φk-R denotes Φk prediction using only R; and Φk-R-SA integrates R, SZA, and SAA to estimate Φk. 465 

4. Discussion 

4.1. Relationships between SIFy and FyieldLIF at instantaneous and daily timescales 

The first objective of this study was to show the effects of canopy structure on SIF signal. The relationship between 

SIFy and FyieldLIF was investigated at the daily and seasonal timescales during the growing season from June to 

August. The results demonstrated that SIFy and FyieldLIF were more correlated at the seasonal timescale than at the 470 

diurnal timescale. Passive SIF is highly dependent on both the structural and physiological properties of the leaf 

and canopy (Biriukova et al., 2021; Dechant et al., 2022). At the diurnal timescale, far-red SIF is strongly affected 

by canopy scattering and by the distribution of sunlit and shaded areas at the top and within the canopy (Dechant 

et al., 2020; Zhang and Zhang, 2023). This study showed that those factors strongly affected SIFy (SIF normalized 

by PAR). Further, as SIFy was estimated using PAR, but not absorbed radiations, SIFy estimation did not consider 475 

the conditions of radiation extinction within the canopy. Therefore, the canopy structural effects can strongly blur 

the information on the physiological functioning of the vegetation provided by SIFy, and hence lead to low 
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correlations between SIFy and FyieldLIF. Thus, interpreting SIFy signal for inferring vegetation physiology at the 

diurnal scale should be carried out with great care, considering the effects of canopy structure and the complex 

interactions between structure and illumination geometry. The development of new methods and models are 480 

warranted to better explore the possibility to use SIF as a proxy for vegetation functioning at high frequency 

(seconds to minutes), especially when the vegetation structure is complex and heterogenous, such as in forest 

stands. On the other hand, the better correlation found at the seasonal timescale can be explained by a potential 

removal of short-term changes in illumination conditions, canopy structure, and sun-canopy geometry. Note that 

the seasonal variability of  𝑆𝐼𝐹𝑦 is also driven by the seasonal changes in leaf biochemical properties and solar 485 

zenith and azimuth angles. The leaf biochemical properties can also drive the seasonal dynamics in  𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹 , 

leading to a better correlation. This may explain why the fraction of the diffuse to total PAR could not entirely 

explain the relation between 𝑆𝐼𝐹𝑦 and 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹   (Figure 1b). In summary, our results underlined that it is difficult 

to decouple vegetation structural and physiological effects in SIF, owing to fluctuations of sun-canopy geometry 

throughout the day at the diurnal timescale and the difficulties link to the accurate estimation of total SIF and the 490 

fraction of absorbed PAR at the canopy scale (Chang et al., 2021). 

4.2. Effects of canopy structure and sun-canopy geometry on diurnal dynamics in SIF, NIRv, R-NIR, 

Φk, SIFy, and FyieldLIF 

The fraction of sun absorbed radiation by the canopy (fAPAR) and the fraction of emitted chlorophyll fluorescence 

that reach the sensor heavily impact SIF. The results obtained during clear sky days revealed that NIRv, R-NIR, 495 

and Φk exhibited similar diurnal patterns. This suggests that the diurnal variations in NIRv that is the product of 

NDVI and R-NIR,  and Φk that represent the product of fAPAR and fesc, were dominated by the bidirectional NIR 

reflectance effect as it has been shown in (Chang et al., 2021). These authors pointed out that the diurnal dynamics 

in NIRv was determined by the diurnal pattern of the reflectance in the NIR within maize crop rows that were under 

shadow conditions at midday. Sun et al. (Sun et al., 2023a) clearly stated that the dynamics of the fluorescence 500 

escape fraction (fesc) in homogeneous C3 crop canopy appears to exhibit a diurnal pattern similar to directional 

reflectance. Further, at intra-daily timescale, Φk is likely to be driven by canopy structure (shadow, leaf angle 

distribution, etc.) and sun-canopy geometry (SZA and SAA) effects, in particular the distribution of fractions of 

sunlit and shaded leaves. This situation can lead to large variability of the diurnal patterns in NIRv and Φk as has 

been shown in Figure 2. 505 

The results also highlighted that, at diurnal timescale, the peaks in SIF and PAR do not match (Figure 2), which is 

probably due to the effects of sun-canopy geometry. Indeed, directionality effects can induce variations in the 

fraction of sunlit and shaded leaves within the FOV, modulating the actual amount of radiation reaching the leaves 

(different from the incident radiation measured at the sensor, unaffected by shading) and therefore affecting canopy 

total SIF emission. This finding is in contradiction with several studies that showed that the diurnal patterns in SIF 510 

is mainly dominated by PAR  (Campbell et al., 2019; Wang et al., 2021), but in agreement with (Nichol et al., 

2019), who showed that the peaks of PAR and SIF did not match in a Boreal Scots pine canopy. Further, note that 

at high incident PAR, the light energy might exceed the capacity of photosynthesis. In this case, the plant 

photoprotective mechanism known as non-photochemical heat dissipation is activated, leading first to stomatal 

closure, and hence to SIF emission reduction (Jonard et al., 2020; De Cannière et al., 2022). 515 
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The results also showed that the diurnal dynamics in SIFy and FyieldLIF did not match (Figure 2). This is probably 

due to both physiological and canopy structure effects. The early decline of SIFy before noon could be likely due 

not only to shadow effects, but also to the fact that the PAR was high.  These findings corroborate with previous 

studies (Loayza et al., 2023; Li et al., 2020; Moya et al., 2019). For instance, Loayza et al. (2023) found that under 

clear sky conditions, at the diurnal timescale, within potato plants, firstly the chlorophyll fluorescence yield 520 

declined drastically when the PAR reached values higher than 1000 µmol m-2 s-1, and secondly FyieldLIF 

continuously decreased for PAR > 600 µmol m-2 s-1. Thus, the continuous decline of FyieldLIF observed here (Figure 

2) is likely caused by the fact that the PAR was higher than 1250 µmol photon m-2 s-1 for the chosen days. Within 

this situation, the vegetation photosynthetic capacity could be overwhelmed and the energy-dependent and non-

energy-dependent non-photochemical heat dissipation can be triggered. Note that energy-dependent heat 525 

dissipation can last from a few seconds to a few minutes, while non-energy-dependent heat dissipation can lead to 

photoinhibition or photobleaching and can last longer (hours to weeks) (Porcar-Castell et al., 2014). Both 

mechanisms can induce a decrease in SIFy and FyieldLIF at the diurnal timescale. 

4.3. Relationships between NIRv and Φk at daily and seasonal timescales 

Strong correlations were found between NIRv and Φk at the diurnal timescale. However, their correlations varied 530 

largely depending on the ratio of diffuse to total PAR, with high correlation corresponding to clear sky conditions 

and low correlation to diffuse sky conditions. This result suggests that under clear sky conditions NIRv is relatively 

a good proxy of Φk and hence can be used to take canopy structure and sun-canopy geometry (i.e. crown shadow, 

reabsorption, and scattering within leaves and canopies) effects on SIF at the diurnal timescale into account. 

Indeed, with diffuse sky conditions, canopy structure, shadows and sun-canopy geometry play a minor role in the 535 

variations in NIRv and Φk, even though there are still strong fluctuations in incident light; justifying the low 

correlations observed between NIRv and Φk during diffuse sky conditions. On the other hand, the positive weak 

but statistically significant correlation found between daily mean 𝑁𝐼𝑅𝑣 and daily mean 𝛷𝑘 at the seasonal timescale 

indicates that 𝑁𝐼𝑅𝑣 and 𝛷𝑘 relations were driven by the fraction between diffuse and total PAR. Indeed, this 

underlined well NIRv usage because it was meant to correct reabsorption and scattering effects on SIF at daily and 540 

seasonal timescales (Badgley et al., 2017). 

4.4. Random forest models for FyieldLIF and Φk predictions 

How we can determine and properly disentangle the confounding factors, including structural, biophysical, and 

physiological canopy components that all contribute to remotely sensed SIF remains a challenging task. SIF has 

emerged as a promising tool for determining and characterizing structural and physiological vegetation traits. 545 

However, the relationships between these confounding factors and SIF are often complex and site-specific and 

thus require a model with a set of parameters incorporating these complexities. Therefore, in this study, we 

examined the potential of RF modelling approaches to predict FyieldLIF and Φk based on different remotely sensed 

input variables under clear sky conditions. 

For FyieldLIF, the RF models can explain between 86 and 90% of the variability in FyieldLIF (see Table 2 and Figure 550 

4), sustaining that directional reflectance, chlorophyll fluorescence, and sun-canopy geometry (SZA and SAA) can 

effectively capture relevant variations in FyieldLIF. For instance, FY-R-SA and FY-R-SIFy-SA models’ predictor 

importance estimates showed that SZA, SAA, R410, R740, and R830 provide the most useful information for 
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FyieldLIF predictions (Figure 4). The reflectance in the blue spectral band (R410) is largely affected by the strong 

blue light absorption by the chlorophyll pigments and it is highly subjective to leaves or canopy shadow conditions, 555 

while reflectance in the red-edge (R740) and near-infrared bands characterize the leaf area index and the 

chlorophyll content of the entire forest (Zeng et al., 2022b). The red-edge region is mainly used to determine leaf 

and canopy chlorophyll contents. Because of these abovementioned characteristics of R, it is not surprising that 

the combination of reflectance at specific spectral bands can be used to infer effective and relevant information 

that allow capturing FyieldLIF variations. The data also revealed that adding SIF or SIFy as predictors did not 560 

significantly improve the model performance estimates as it has been shown in (Balde et al., 2023). This result 

indicates that even at high temporal resolution the contribution of SIF or SIFy is important compared to each 

reflectance band individually, but the combined effect of reflectance bands could mitigate or hide the use of SIF 

as vegetation physiological proxy. The results showed that SZA and SAA significantly improved the model 

prediction for FyieldLIF (FY-R-SA). First, the contribution of SZA can be attributed to the illumination conditions 565 

because incoming radiations are tightly related to SZA. Second, the effect of SAA is attributable to the anisotropy 

in reflectance and canopy structure in the azimuthal plane. 

For Φk, results indicate that RF models can explain between 60 and 70% of the variability in Φk (Figure 5a and 

5b). The unexplained 30 or 40% in Φk variance evidenced that the ratio SIFy over FyieldLIF strongly varies and 

depends on several factors, including canopy structure, sun geometry, and illumination conditions. Therefore, this 570 

suggests that mechanistic models that used NIRv to approximate the product of fAPAR and fesc are simplistic and 

do no fully account for the complex interactions between incident radiation and canopy structure, notably due to 

the distribution of light and shaded leaves at the top and inside of the forest canopy. 

5. Conclusion 

In this work, the simultaneous and continuous active and passive measurements of chlorophyll fluorescence at the 575 

canopy scale in a sessile oak mature forest allowed to analyse the diurnal cycles of key variables, including SIF, 

SIFy, NIRv, and FyieldLIF. A novel remote sensing indicator, Φk, the ratio between SIFy and FyieldLIF, which is also 

theoretically the product of fAPAR and fesc, was introduced. On one hand, the relationship between SIFy and FyieldLIF 

was evaluated, and on the other hand, the relation between NIRv and Φk was examined at daily and seasonal scales. 

Further, several random forest models with reflectances, SIF, and sun angles as inputs were also used to not only 580 

predict FyieldLIF and Φk, but also to provide sensitivity analysis and interpretation of the model outputs. 

The results showed that SIF signal is highly impacted by the canopy structure and the sun-canopy geometry effects, 

as evidenced by the weak correlations found between SIFy and FyieldLIF at diurnal timescale using instantaneous 

measurements. However, SIFy captured the seasonal dynamics of FyieldLIF by explaining 58% of the variations in 

FyieldLIF. The results also revealed that NIRv and reflectance at near-infrared (R-NIR) are good proxies of Φk at the 585 

diurnal timescale, while their correlations diverged at the seasonal scale. 

 Based on random forest models, the combination of reflectance, chlorophyll fluorescence, and sun geometry (SZA 

and SAA) allow to predict FyieldLIF and Φk at the diurnal timescale under clear sky conditions. For instance, the RF 

models were able to explain 86-90% of FyieldLIF variability, and 60-70% of Φk variations were explained. 

Furthermore, the data also revealed that adding SIF or SIFy as predictors did not improve much the model 590 

performance compared to the reflectance-based model. But the predictor importance estimates showed that SIF 
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and SIFy provide useful and impactful information in determining FyieldLIF. This result indicates that even at high 

temporal resolution the contribution of SIF or SIFy is important compared to each reflectance band individually, 

but the combined effect of reflectance bands could mitigate or hide the use of SIF as vegetation functioning proxy. 

 Overall, this study provides insights into understanding the complex and difficult relationship that exists between 595 

passive SIF and active chlorophyll fluorescence, and into the use of remote sensing data that are readily accessible 

at satellite scale (spectral reflectance at 10 nm resolution, sun geometry, and chlorophyll fluorescence) to predict 

FyieldLIF and Φk at canopy scale. 
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