Supporting information (SI)

Comparison of water-soluble and insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions

Lu Zhang ^{1,2}, Jin Li¹, Yaojie Li¹, Xinlei Liu¹, Zhihan Luo¹, Guofeng Shen^{1,*}, and Shu Tao^{1,3}

- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- 2. Hong Kong Polytechnic University, Department of Civil & Environmental Engineering, Kowloon, Hong Kong, China
- 3. College of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China

* Corresponding author: Dr. Guofeng Shen, Peking University, Email: gfshen12@pku.edu.cn

S1. Data analysis.

ESI FT-ICR MS data processing

Custom software was used to determine possible formulas for ions with a signal-to-noise ratio higher than 5 in the m/z range of 150-800 using a mass tolerance of \pm 1.0 ppm. The maximum number of atoms for the formula calculator was set to: 60 ¹²C, 60 ¹H, 20 ¹⁶O, 3 ¹⁴N, 2 ³²S, 1 ¹³C, 1 ¹⁸O, and 2 ³⁴S. The identified formulas containing isotopomers (i.e. 13C, 18O, or 34S) were not included in the final discussion. The formulas identified were classified into four sorts including CHO, CHON, CHOS, and CHONS compounds. For the chemical formula C_cH_hO_oN_nS_s, where c, h, o, n, s represented the atom numbers of carbon, hydrogen, oxygen, nitrogen, and sulfur, respectively.

The double bonds equivalent (DBE) which indicate the unsaturated degree was calculated as:

$$DBE = (2c + 2 - h + n)/2$$

The modified aromaticity index (AI_{mod}) was calculated according to published studies (Bianco et al., 2018; Song et al., 2022):

$$AI_{mod} = (1 + c - 0.5o - s - 0.5h)/(c - 0.5o - s - n)$$

The formulae with a negative AI_{mod} value were considered as value of zero, and treated as aliphatic compounds. The AI_{mod} value of larger than 0 to less than 0.5 was identified as olefinic compounds, aromatic compounds were identified as $0.5 \le AI_{mod} < 0.67$ and $AI_{mod} \ge 0.67$ were condensed aromatic compounds.

In order to consider the intensity of each formula and its contribution to the overall property, the relative abundance weighted molecular weight, elemental ratios, DBE, and AI_{mod} were calculated based on the following equations

$$\begin{split} MW_w &= \Sigma (In_i^*MW_i) / \Sigma In_i \\ H/C_w &= \Sigma (In_i^*H/C_i) / \Sigma In_i \\ O/C_w &= \Sigma (In_i^*O/C_i) / \Sigma In_i \\ O/N_w &= \Sigma (In_i^*O/N_i) / \Sigma In_i \\ O/S_w &= \Sigma (In_i^*O/S_i) / \Sigma In_i \\ DBE_w &= \Sigma (In_i^*DBE_i) / \Sigma In_i \\ DBE/C_w &= \Sigma (In_i^*DBE/C_i) / \Sigma In_i \\ AI_{mod,w} &= \Sigma (In_i^*AI_{mod,i}) / \Sigma In_i \end{split}$$

Where Ini is the intensity for each individual molecular formula, i and the MW_i, H/C_i, O/C_i, O/N_i, O/S_i, DBE_i, DBE/C_i, and AI_i, and OS_i also indicate the MW, H/C, O/C, O/N, O/S, DBE, DBE/C, and AI_{mod} of the individual molecular formula.

S2. Tables.

Fuel types	C, %	Н, %	N, %	S, %	$M^a_{ad}, \%$	$V_{daf}^b, \%$	$A^c_{ad}, \%$	LHV, MJ/kg	g Rank ^d	Stove
Chunk coals										
Shanxi-1	82.7	2.89	0.915	0.527	2.46	4.49	5.97	30.6	AN	TS
Hebei-1	70.7	2.04	0.750	0.285	5.75	4.56	5.41	28.5	AN	TS
Shanxi-2	77.3	4.19	0.590	0.738	1.82	23.6	9.88	20.8	MVB	TS
Shanxi-3	71.7	4.49	0.680	0.315	7.73	27.8	1.24	26.8	MVB	TS
Shandong-1	71.2	4.68	0.610	0.303	6.91	29.4	1.68	27.0	MVB	TS
Shandong-2	56.6	4.25	0.545	1.36	12.4	29.8	11.4	36.1	MVB	TS
Inner Mongolia-	1 57.2	3.38	0.475	0.303	4.58	30.8	48.1	28.3	MVB	TS
Hebei-2	72.7	4.66	0.650	0.317	4.91	32.4	2.29	26.2	HVB	TS
Inner Mongolia-2	232.9	3.65	0.645	0.872	15.9	34.1	12.1	17.6	HVB	TS
Shandong-3	70.2	5.17	0.985	0.617	6.52	36.3	2.33	26.5	HVB	TS
Briquetting coals (round)										
Hebei-3	62.8	3.00	0.870	0.317	3.64	8.76	38.7	24.4	SA	TS
Shanxi-4	57.9	2.73	0.725	0.392	2.88	11.3	30.3	22.0	SA	TS
Briquetting coals (honeycomb)										
Shanxi-5	26.8	1.62	0.275	0.727	1.26	5.68	35.2	14.1	AN	TS
Shanxi-6	49.9	2.40	0.705	0.426	1.54	9.83	34.6	24.4	SA	TS
Wood fuel										
birch wood	45.6	6.45	0.105	0.217	7.40	81.8	0.396	16.2		TS
pine wood	46.8	6.40	0.0600	0.228	7.03	77.4	1.23	17.2		TS&IS
poplar wood	46.4	6.32	0.120	0.191	7.15	76.7	1.18	16.5		TS
Crop straws										
bean straw	40.6	6.15	1.07	0.284	11.3	71.6	5.89	12.4		TS
corn straw	42.3	6.31	1.03	0.219	8.68	88.1	4.69	13.9		TS&IS
peanut straw	39.0	6.00	1.27	0.419	10.9	67.1	8.61	16.4		TS
rice straw	40.8	6.12	0.605	0.247	9.79	68.9	6.13	15.3		TS
wheat straw	36.2	5.84	0.680	0.255	8.17	65.7	11.0	14.0		TS
rape straw	41.9	6.27	0.305	0.376	10.1	75.7	3.87	15.1		TS&IS
sesame straw	39.1	5.50	1.21	0.582	11.7	66.9	8.25	13.8		TS
Corn cob	43.9	6.32	0.465	0.240	6.98	75.1	1.02	13.9		TS
Bamboo	44.9	6.24	0.420	0.380	6.64	75.1	2.09	17.3		TS
Pellet fuels										
corn straw	40.1	5.76	0.725	0.233	6.24	66.2	13.0	11.5		IS
pine wood	46.4	6.53	0.155	0.0915	5.12	76.5	3.12	16.4		IS
fruit tree logs	45.9	6.33	0.270	0.309	4.39	77.4	4.24	16.5		IS
rice husk	39.3	5.43	0.455	0.104	4.44	67.8	15.5	12.9		IS
Red wood	42.3	5.39	0.367	0.206	4.96	72.3	10.1	17.4		IS

Table S1 Solid fuel properties and stoves used in this work.

Notes: ^aMoisture on air-dry basis (%); ^bVolatile matter on dry and ash-free basis (%); ^cAsh on air-dry basis (%); ^dRank by ASTM standard classification of coal [American Society for Testing and Material, 2004]. AN is for ordinary anthracite, SA is for semi-anthracite, MVB is for medium-volatile bituminous coal, HVB is for high-volatile bituminous coal. In addition, the 14 coals were produced in Shanxi province (Shanxi 1-6), Shandong province (Shandong 1-3), Inner Mongolia province (Inner Mongolia 1-2), and Hebei province (Hebei 1-3). The fuel written in red color were chosen for further FT-ICR MS analysis.

Table S2. Number of formulas in each compound category and the average values of elemental ratios, molecular weight (MW), and double-bond equivalents (DBE) in WSOC and WISOC of different samples.

			WSOC								WISOC							
	Sample	Elemental	Number	MWw	H/Cw	O/C _W	O/N _W	DBEw	DBE/Cw	AI _{mod,W}	Number	MWw	H/C _W	O/C _W	O/N _W	DBEw	DBE/Cw	AI _{mod,W}
	type	n	formulae								formulae							
		Total	3119	380	1.1	0.33		10	0.52	0.43	2746	640	1.0	0.36		20	0.57	0.46
	HVB	CHO	971	328	0.91	0.30	5 2	11	0.61	0.53	853	375	0.86	0.24	60	14	0.62	0.57
	IIVD	CHON	1222 550	377 428	1.1	0.35	5.5	10	0.54	0.46	854 473	649 670	0.73	$0.26 \\ 0.45$	0.8	20 14	0.69	0.65
		CHONS	376	518	1.6	0.36	5.0	7.5	0.30	0.17	566	707	1.1	0.44	9.7	19	0.52	0.38
		Total	2612	435	1.2	0.29		11	0.47	0.38	2968	552	0.89	0.24		20	0.61	0.55
Coal	MVB	CHO	892	320	1.0	0.31	5 2	10	0.54	0.45	997	396	0.89	0.23	50	14	0.60	0.55
		CHON	750 459	436	$1.1 \\ 1.4$	0.29	5.5	13	0.51	0.43	972 442	539 548	$0.88 \\ 1.4$	0.26	5.2	20	0.03	0.58
		CHONS	505	540	1.3	0.22	4.3	12	0.39	0.31	557	640	0.80	0.21	3.9	25	0.66	0.60
		Total	6383	384	1.1	0.34		11	0.52	0.41	6946	476	1.2	0.27		12	0.44	0.35
	Rice stray	CHO	1580	338	1.1	0.39	5 1	10	0.53	0.40	2142	431	1.2	0.24	60	11	0.42	0.35
	Rice Suuv	CHON	2338	393 418	1.2 1.0	0.34	3.1	14	0.52	0.40	1138	533	1.2 1.2	0.29	0.0	12	0.40	0.38
		CHONS	1201	481	1.3	0.32	4.2	12	0.42	0.33	1189	590	1.3	0.33	5.2	14	0.43	0.32
		Total	4291	413	1.1	0.33		12	0.53	0.43	3525	549	1.0	0.29		17	0.53	0.44
Raw	Pine wood	1 CHO	1978	374	1.0	0.32	62	12	0.56	0.47	1445	444 563	0.94	0.24	5 /	15	0.57	0.51
biomas	S me wood	CHON	922	486	1.1	0.37	0.2	15	0.47	0.30	884	613	1.2	0.20	5.4	14	0.39	0.33
		CHONS	628	570	1.3	0.40	5.7	11	0.41	0.25	506	642	1.1	0.35	5.6	18	0.50	0.38
	Dino	Total	3991	412	1.1	0.33		11	0.49	0.39	3270	566	1.1	0.32		15	0.49	0.38
	wood-	CHON	1587 911	383 402	1.0	0.31	58	12	0.54	0.45	1240 597	433 584	1.0	0.26	58	15	0.54	0.47
	improved	CHOS	929	446	1.1	0.28	5.0	14	0.51	0.42	727	584	1.3	0.39	5.0	13	0.40	0.40
	stove	CHONS	564	496	1.6	0.39	5.2	7.4	0.31	0.16	706	652	1.2	0.31	5.6	17	0.48	0.35
	Cron stray	Total	4371	403	1.2	0.39		10	0.49	0.36	2830	559	1.3	0.31		13	0.43	0.32
	pellet	CHON	1447	388	1.1 1 2	0.40	57	10	0.52	0.40 0.40	833 778	431 488	1.2	0.23	56	11	0.43	0.33
	1	CHOS	993	406	1.1	0.37	5.7	11	0.51	0.36	572	640	1.2	0.39	5.0	13	0.41	0.26
Biomas		CHONS	736	495	1.4	0.46	6.1	8.7	0.38	0.21	625	621	1.2	0.29	4.4	16	0.45	0.35
s pellet	Pine woo	Total	3964	416	1.1	0.35		11	0.50	0.39	2778	552	1.2	0.29		15	0.45	0.35
r	pellet	CHON	834	307 399	1.0	0.34	61	12	0.35	0.45	909 560	433 547	1.2 1.2	0.23 0.29	59	12	0.43	0.39
	1	CHOS	ĭĭ11	426	1.0	0.32	5.1	13	0.53	0.41	651	520	1.5	0.35	5.7	9.3	0.31	ŏ.21
		CHONS	620	509	1.4	0.42	5.7	9.4	0.38	0.24	598	639	1.2	0.30	5.1	17	0.48	0.36

Class	H/C	O/C				
Lipids-like	1.5 <h c≤2.0<="" td=""><td colspan="5">0≤O/C≤0.3</td></h>	0≤O/C≤0.3				
Aliphatic/peptides-like	1.5 <h c≤2.2<="" td=""><td colspan="5">0.3<o c≤0.67<="" td=""></o></td></h>	0.3 <o c≤0.67<="" td=""></o>				
Carboxylic-rich alicyclic molecules	0.67 <h c≤1.5<="" td=""><td colspan="5">0.1≤O/C<0.67</td></h>	0.1≤O/C<0.67				
Carbohydrates-like	1.5 <h c≤2.5<="" td=""><td colspan="4">0.67<o c<1.0<="" td=""></o></td></h>	0.67 <o c<1.0<="" td=""></o>				
Unsaturated hydrocarbons	0.67 <h c≤1.5<="" td=""><td colspan="4">O/C<0.1</td></h>	O/C<0.1				
Condensed aromatic structures	0.2 <h c≤0.67<="" td=""><td colspan="3">O/C<0.67</td></h>	O/C<0.67				
Highly oxygenated compounds	0.67 <h c≤1.5<="" td=""><td>0.67≤O/C≤1.0</td></h>	0.67≤O/C≤1.0				
(HOC)						

			WSOC								WISOC							
	Sample type	Elemental	AI=0	0 <ai<0.5< td=""><td>0.5≤AI<0.6 7</td><td>AI≥0.67</td><td>O/N≥3</td><td>O/S≥4</td><td>$O/S \ge 7$</td><td>AI=0</td><td>0<ai<0.5< td=""><td>0.5≤AI<0.6 7</td><td>AI≥0.67</td><td>O/N≥3</td><td>$O/S \ge 4$</td><td>$O/S \ge 7$</td></ai<0.5<></td></ai<0.5<>	0.5≤AI<0.6 7	AI≥0.67	O/N≥3	O/S≥4	$O/S \ge 7$	AI=0	0 <ai<0.5< td=""><td>0.5≤AI<0.6 7</td><td>AI≥0.67</td><td>O/N≥3</td><td>$O/S \ge 4$</td><td>$O/S \ge 7$</td></ai<0.5<>	0.5≤AI<0.6 7	AI≥0.67	O/N≥3	$O/S \ge 4$	$O/S \ge 7$		
	• <u></u>	Total	18%	28%	38%	17%				21%	18%	31%	29%					
		CHO	2.8%	26%	51%	20%				1.4%	21%	51%	27%					
		CHON	16%	28%	37%	19%	86%			4.0%	8.1%	35%	53%	95%				
Coal	HVB	CHOS	33%	34%	26%	7.0%		66%	32%	21%	62%	16%	1.2%		95%	69%		
		CHONS	58%	28%	6.9%	7.7%	72%	69%	42%	40%	6.6%	30%	24%	88%	88%	72%		
		Total	19%	47%	22%	11%				10%	20%	24%	46%					
		CHO	7.5%	39%	37%	16%				1.6%	27%	51%	20%					
	MVB	CHON	6.6%	61%	22%	10%	90%			7.2%	21%	23%	49%	86%				
	IVI V D	CHOS	40%	35%	20%	4.9%		70%	33%	37%	52%	8.3%	2.5%		78%	43%		
		CHONS	35%	47%	7.3%	10%	76%	37%	21%	11%	8.9%	13%	67%	48%	48%	30%		
		Total	13%	48%	23%	15%				19%	51%	20%	10%					
		CHO	10%	56%	25%	9.4%				16%	55%	24%	4.8%					
	Dice	CHON	4.3%	69%	16%	11%	71%			14%	57%	20%	10%	85%				
	strow	CHOS	23%	9.2%	35%	33%		42%	25%	28%	41%	11%	19%		45%	33%		
	Suaw	CHONS	42%	17%	17%	24%	60%	56%	42%	30%	34%	17%	19%	63%	64%	40%		
		Total	11%	45%	32%	12%				12%	36%	30%	22%					
		CHO	3.6%	49%	40%	7.5%				1.3%	37%	52%	10%					
	Dine	CHON	25%	42%	17%	16%	81%			8.1%	27%	27%	38%	86%				
Raw	wood	CHOS	23%	24%	22%	30%		52%	26%	21%	60%	10%	9.2%		72%	57%		
biomass	wood	CHONS	34%	45%	6.4%	15%	81%	78%	57%	24%	25%	18%	33%	76%	75%	47%		
	Pine	Total	16%	44%	28%	13%				17%	43%	23%	17%					
	wood-	CHO	5.4%	48%	35%	11%				3.2%	46%	43%	7.6%					
	improved	CHON	18%	51%	20%	11%	81%			14%	41%	13%	32%	91%				
	stove	CHOS	19%	30%	29%	22%		56%	31%	29%	54%	8.1%	8.5%		77%	32%		
	51010	CHONS	54%	33%	6.4%	6.8%	79%	79%	43%	27%	33%	25%	16%	62%	71%	43%		
		Total	20%	46%	22%	12%				18%	58%	14%	10%					
	a	CHO	13%	48%	28%	11%	-			11%	63%	21%	5.2%	0.50				
	Crop	CHON	12%	52%	24%	12%	79%	-	10.04	23%	49%	15%	14%	87%	0			
	straw	CHOS	18%	46%	22%	14%	0.501	71%	49%	15%	76%	7.1%	2.5%		87%	72%		
D ·	pellet	CHONS	53%	31%	5%	12%	85%	82%	54%	26%	33%	18%	23%	55%	63%	38%		
Biomas		Total	14%	49%	24%	13%				21%	42%	17%	20%					
S		CHO	6.3%	54%	28%	11%	0.001			6.0%	64%	26%	3.9%	0004				
Pellet	Pine	CHON	16%	53%	17%	14%	82%		4.407	21%	36%	13%	30%	89%	7 60/	100/		
	wood	CHOS	12%	46%	27%	15%	0.00/	67%	44%	43%	41%	9.2%	6.7%	700/	76%	42%		
	pellet	CHONS	46%	33%	8.1%	13%	80%	78%	48%	22%	32%	16%	29%	72%	/6%	47%		

Table S4. Relative percentage (%) of various types of compounds in total identified comp

S3. Figures

Fig. S1 Absorption Ångström exponent (AAE) calculation for average absorption spectrums in the wavelength of 300-400 nm in WSOC (A) and WISOC (B) extract from source samples.

Fig.S2 Correlation between the MCE values with MAE_{365, WSOC} values from coal combustion smokes (A), and biomass smokes(B); as well as with MAE_{365, WISOC} from coal combustion smokes (C), and biomass smokes (D)

Fig.S3 Number of molecular formulas in each source sample, the different colors present WSOC and WISOC extract, respectively.

Fig. S4 Correlation between fuel nitrogen contents and emission factors of NO_X (NO_X EFs).

Fig. S5 Van Krevelen diagrams of WSOC of the seven aerosol samples. Different color indicates different identified group of CHO, CHON, CHOS, and CHONS

Fig. S6 Van Krevelen diagrams of WISOC of the seven aerosol samples. Different color indicates different identified group of CHO, CHON, CHOS, and CHONS

Fig. S7 Venn diagrams for the relative distributions of all molecular formulas in WSOC from the seven source samples. The areas of overlap are the common elements in all samples. The areas with no overlap are unique to that individual sample.

Fig. S8 Van Krevelen diagrams of WSOC (a) and WISOC (b) from the source samples. Different color indicates unique formulas detected in each sample of solid fuel combustion.

Fig. S9 Van Krevelen diagrams of common formulas in all samples of CHO group (A: WSOC, F: WISOC) and CHON group (C: WSOC, H:WISOC), and DBE vs C number for common formulas of CHO group (B: WSOC, G:WISOC) and CHON group (D: WSOC, I:WISOC), as well as the pie charts showing the relative intensities of different formula groups in the commonly detected formulas (E: WSOC, J: WISOC)

Fig. S10 Van Krevelen plots of WSOC and associations between individual molecules and (A) Fuel moisture, (B) Fuel Vdaf, (C) MCE, and (D) EC/OC ratios. Significant Spearman correlations (p < 0.05) of individual molecules are presented. Color bar indicates direction and strength of the correlation (red, negative; cyan, negative). Circles indicate individual molecules. Black lines show class identification. The stoichiometric ranges set as boundaries of the classifications are reported in Table S3.

Fig. S11 Van Krevelen plots of WISOC and associations between individual molecules and (A) Fuel moisture, (B) Fuel Vdaf, (C) MCE, and (D) EC/OC ratios. Significant Spearman correlations (p < 0.05) of individual molecules are presented. Color bar indicates direction and strength of the correlation (red, negative; cyan, negative). Circles indicate individual molecules. Black lines show class identification. The stoichiometric ranges set as boundaries of the classifications are reported in Table S3.

Fig. S12 Correlations of MAE₃₆₅ with the MW values (A) and DBE (B) of the potential BrC molecules from the source aerosol samples, respectively.

S4. Reference

Bianco, A., Deguillaume, L., Vaitilingom, M., Nicol, E., Baray, J.-L., Chaumerliac, N., and Bridoux, M.: Molecular Characterization of Cloud Water Samples Collected at the Puy de Dome (France) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 52, 10275-10285, 10.1021/acs.est.8b01964, 2018.

Song, J. Z., Li, M. J., Zou, C. L., Cao, T., Fan, X. J., Jiang, B., Yu, Z. Q., Jia, W. L., and Peng, P. A.: Molecular Characterization of Nitrogen-Containing Compounds in Humic-like Substances Emitted from Biomass Burning and Coal Combustion, Environ. Sci. Technol., 56, 119-130, 10.1021/acs.est.1c04451, 2022.