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Abstract. Estimating groundwater recharge rates is important to understand and manage groundwater. Numerous studies have
used collated recharge datasets to understand and project regional or global-scale groundwater recharge rates. However,
recharge estimation methods each have distinct assumptions, quantify different recharge components, and operate over
different temporal scales. We use over 200,000 groundwater chloride measurements to estimate groundwater recharge rates
using an improved chloride mass balance (CMB) method across Australia. Groundwater recharge rates were produced
stochastically using gridded chloride deposition, runoff, and precipitation datasets. After filtering out groundwater recharge
rates where the assumptions of the method may have been compromised, 98,568 estimates of recharge were produced. The
resulting groundwater recharge rates and 17 spatial datasets were integrated into a random forest regression algorithm,
generating a high-resolution (0.05°) model of groundwater recharge rates across Australia. The regression reveals that climate-
related variables, including precipitation, rainfall seasonality, and potential evapotranspiration, exert the most significant
influence on groundwater recharge rates, with vegetation (NDVI) also contributing significantly. Importantly, both the mean
values of the recharge point dataset (43.5 mm y) and of the spatial recharge model (22.7 mm y1) are notably lower than those
reported in previous studies, underscoring the prolonged timescale of the CMB method, the potential disparities arising from
distinct recharge estimation methodologies and limited averaging across climate zones. This study presents a robust and
automated approach to estimate recharge using the CMB method, offering a unified model based on a single estimation method.
The resulting datasets, the Python script for recharge rate calculation, and the spatial recharge models collectively provide
valuable insights for water resources management across the Australian continent and similar approaches can be applied

globally.



30

35

40

45

50

55

60

1 Introduction

Groundwater is a critical component of the water cycle, providing baseflow to streams and supporting ecosystems and
livelihoods (Brunke and Gonser, 1997; Eamus, 2006; Shah, 2005). With impacts from climate change, population growth and
increased usage, groundwater resources are expected to become even more important in the future (D6ll, 2009; Famiglietti,
2014; Wada et al., 2010), requiring a detailed understanding of hydrogeological processes through desktop studies, numerical
modelling, and direct field measurements. Assessing groundwater resources not only requires understanding their distribution,
natural discharge and extraction rates, but also mechanisms and rates of resource replenishment.

Groundwater recharge is one of the most important, albeit challenging, components to quantify in groundwater assessments
due to its wide spatiotemporal variability, which is influenced by a range of geo-eco-climatic factors (de Vries and Simmers,
2002). Recharge estimation is further complicated by the conceptualisation of recharge mechanisms (e.g., diffuse versus
focused; Lerner et al., 1990). Similarly, the uncertainties of recharge estimation techniques provide further challenges (Scanlon
et al., 2002). Additional complexities need to be carefully considered in recharge studies, including understanding the
timescales associated with the technique(s) being used (e.g., Scanlon et al., 2002; Cartwright et al., 2017) and the component
of recharge being estimated (e.g., gross, potential, or net recharge; Crosbie et al., 2010a).

Large scale studies of groundwater recharge (e.g., global and continental scale) that are based on the compilation of recharge
estimates, typically utilise recharge estimates obtained from different techniques (e.g., Petheram et al., 2002; Scanlon et al.,
2006; Crosbie et al., 2010a; Mohan et al., 2018; Moeck et al., 2020; MacDonald et al., 2021; Berghuijs et al., 2022). These
combined datasets allow an assessment of the changes in recharge rates over time due to climate variability or land cover
change (e.g., Scanlon et al., 2006). However, such datasets add extra uncertainty to the predictive models that utilise them,
given that they include recharge estimates with different assumptions, temporal scales, and mechanisms (e.g., Crosbie et al.,
2010a; Mohan et al., 2018). Utilising different recharge estimation techniques may result in widely different recharge rates
(e.g., Croshie et al., 2010a; King et al., 2017; Walker et al., 2019; Cartwright et al., 2020).

Selecting recharge estimates from a single technique from these global studies could overcome the issues mentioned above,
but also lead to insufficient spatial coverage for meaningful continental-scale assessments. For example, the issue of spatial
coverage of recharge estimates is evident in Australia from the sparseness of recharge estimates in the interior of Australia
(e.g., Moeck et al., 2020; Berghuijs et al., 2022). Studies in Australia have addressed the issue of data sparsity through creation
of a series of empirical relationships between rainfall and recharge by investigating key factors such as vegetation and soil
types (e.g., Crosbie et al., 2010a; Leaney et al., 2011). More recent Australian studies have utilised statistical methods to
investigate the influence of environmental variables on groundwater recharge (e.g., Fu et al., 2019) or applied machine learning
techniques to predict future recharge (e.g., Huang et al., 2019, 2023). Others have focused on upscaling of point estimates from
a single technique (e.g., chloride mass balance) to a regular grid across regional study areas using regression kriging (e.g.,
Crosbie et al., 2018; Crosbie and Rachakonda, 2021; Crosbie et al., 2022).
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The chloride mass balance (CMB) method is one method that provides the opportunity for detailed studies of diffuse
groundwater recharge rates, given the wide availability of groundwater chloride concentration measurements. The CMB
method is also the most widely used recharge estimation technique globally (Moeck et al., 2020), in semi-arid and arid regions
(Scanlon et al., 2006), and in Australia (e.g., Crosbhie and Rachakonda, 2021; Crosbie et al., 2018, 2010a, b; Petheram et al.,
2002). The CMB method provides long-term estimates of diffuse recharge over the timescale required for chloride to
accumulate in the subsurface, which ranges from years to decades in temperate settings (Cartwright et al., 2020), and up to
thousands of years in semi-arid and arid areas (Scanlon et al., 2002, 2006). Spatially, the CMB method estimates diffuse
recharge over the areas upgradient from the measurement location, ranging from a few hundred metres to several kilometres
(Scanlon et al., 2002). The generation of chloride deposition maps (e.g., Davies and Crosbie, 2018; Wilkins et al., 2022) have
allowed for the large-scale (regional) use of the CMB method (e.g., Crosbie et al., 2018). Irvine and Cartwright (2022) utilised
the chloride deposition maps from Davies and Crosbie (2018) to automate the application of the CMB method in Python.
Automating the application of the CMB method provides opportunities for large datasets of recharge to be efficiently generated
from chloride measurements.

This study utilises recently developed chloride deposition maps from Wilkins et al. (2022) and approaches to automate analyses
to estimate long-term diffuse groundwater recharge rates based on the CMB method across the Australian continent. We collate
a large dataset of groundwater chloride and associated spatial datasets to facilitate the recharge estimates. We utilise these
datasets and the random forest algorithm to develop a regression model for long-term diffuse groundwater recharge rate
estimation for the Australian continent. Using the model, we explore the control of environmental variables on groundwater
recharge rates, quantify the uncertainty in recharge rate predictions and produce point datasets and high-resolution gridded

maps of diffuse recharge for Australia.

2 Methods
2.1 Collation of groundwater chloride dataset

Groundwater chloride measurements were collated from the following sources: the Geoscience Australia Portal (Geoscience
Australia, 2022); the CSIRO Hydrogeochemical Mapping of the Australian Continent series dataset (Gray et al., 2019; Gray
and Bardwell, 20164, b, c, d, e, f; Henne and Reid, 2021); a dataset collated for the state of South Australia (Broad, 2020);
Visualising Victoria’s Groundwater (FedUni, 2022); and a Northern Territory Government isotope dataset (Tickell, pers.
Comm., 12 April 2022). The preliminary collated dataset contained a total of 226,954 chloride measurements (including bores
with time series data and duplicate values). A breakdown of the individual counts of each dataset compiled is provided in
Table S1 of the supporting information.

Bore log information was downloaded from the Australian Groundwater Explorer (Bureau of Meteorology, 2022c¢) to provide

location, bore hole depths, drilled depths, and screened interval depths. The depth assigned for each chloride measurement was
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applied in the following order of preference: screen mid-point depth, sample depth, bore depth, and hole depth. Measurements
with no depth information were removed from the analyses.

Several preliminary measures were undertaken for quality assurance of the chloride data. All measurements without a latitude
and longitude were removed. Chloride measurements that were reported below the analytical detection limit (i.e., <1 mg L™)
were removed from the dataset. All duplicates with matching bore identifiers, latitude, and longitude (in decimal degrees),
sample date, and chloride concentration were presented as a single measurement, resulting in 192,300 measurements.
Measurements without a sample date were retained because excluding them would remove 99.8 % of measurements from the
state of Western Australia (n = 19,967).

Bores with repeat measurements from different sample dates were represented as the mean of the time series, producing a final
dataset with 115,630 bores each with a single chloride value for the analyses. Due to the size of the dataset, analysis of charge
balance errors was not undertaken in this study. The final chloride dataset is provided as a downloadable electronic data file

in the supporting information.

2.2 Collation of spatial datasets

To investigate factors that influence groundwater recharge, we identified 17 different spatial datasets — 16 of which are
available as gridded maps (Table 1). These variables were chosen based on their use in previous global groundwater recharge
studies (e.g., Mohan et al., 2018; Moeck et al., 2020) or in regional scale to continental-scale recharge studies in Australia
(e.g., Crosbie et al., 2010a; Leaney et al., 2011). All analyses in our study utilise the native resolution of the datasets shown in
Table 1.

Table 1. Spatial datasets of factors that are known to influence groundwater recharge. Variables are grouped into climatological-related,
surface process and hydrogeological-related, soil properties-related, and vegetation-related datasets. AHD denotes the Australian Height
Datum.

Variable (symbol) Unit Resolution Description Reference

Climatological

Precipitation (P) mmy? | 0.05°x 0.05° The mean annual P, PET and | Bureau of Meteorology
aridity index were calculated | (Bureau of
by averaging data from 21 Meteorology, 2023b)
Potential mmy? | 0.05°x 0.05° overlapping decadal periods Bureau of Meteorology
evapotranspiration (PET) spanning from 1911 to 2020. | (Bureau of
Meteorology, 2022d)
Avridity index (P/PET) - 0.05° x 0.05° Bureau of Meteorology
(Bureau of




Meteorology, 2023b;
Bureau of Meteorology,
2022d)

Koppen Geiger
classification

0.0833° x 0.0833°

Climate classification for the
present-day, from 1980 to
2016.

Beck et al. (2018)

Rainfall seasonality (all

zones)

0.25° x 0.25°

Based on median annual
rainfall and seasonal
incidence from 1900 to 1999.

Bureau of Meteorology
(Bureau of
Meteorology, 2022a)

Surface processes and

hydrogeological

Ground elevation m AHD | 0.0008° x 0.0008° Geoscience Australia SRTM Gallant et al. (2009)
3 sec DEM version 1.

Depth to water table m 0.008° x 0.008° Output of global numerical Fan et al. (2013)
groundwater model. Mean
simulated water table depth.

Regolith depth m 0.0008° x 0.0008° Soil and landscape grid Wilford et al. (2018)
national soil attribute maps —
depth of regolith (3 arc sec
resolution) version 6.

Slope % 0.0008° x 0.0008° CSIRO data published in Gallant and Austin
2016. Slope derived from 1 (2012)
sec SRTM DEM-S version 4.

Distance to coast km - Not a national gridded Geoscience Australia

dataset. Calculated using
GEODATA Coast 100K 2004
coastline and the Distance
Matrix tool in QGIS.

(2004)

Geology

0.001° x 0.001°

Surface Geology of Australia
1:1M scale categorised into

simpler groups.

Raymond et al. (2012)

Soil properties




115

120

125

Sand fraction % 0.0008° x 0.0008° CSIRO data published in Malone and Searle
2022 as release 1 version 6 (2022b)

Silt fraction % 0.0008° x 0.0008° (sand and silt) and release 2 Malone and Searle
version 4 (clay). 100 to 200 (2022c)

Clay fraction % 0.0008° x 0.0008° cm interval. Malone and Searle
(2022a)

Australian Soil

Classification

0.0025° x 0.0025°

Australian Soil Resource

Information System

Australian Soil Classification.

CSIRO (CSIRO, 2023)

Vegetation related

NDVI

0.05° x 0.05°

Indicator of vegetation
greenness. Values presented

as the mean of the 3-monthly

Bureau of Meteorology
(Bureau of
Meteorology, 2022¢)

averages from July 1992 to
January 2019.

Vegetation class (major) - 0.0009° x 0.0009° Present (extant) major Department of Climate

vegetation groups from the Change, Energy, the
National Vegetation Environment and Water
Information System. (Department of Climate
Categorised based on Eamus

et al. (2016).

Change, Energy, the
Environment and
Water, 2022)

The decadal rainfall maps from the Bureau of Meteorology (2023b) were chosen over the Australian Water Outlook
precipitation data (Bureau of Meteorology, 2022d) used in the Australian Water Resources Assessment Landscape (AWRA-
L) model (Frost and Shokri, 2021), due to missing and unreliable data in the Australian Water Outlook dataset for a large area
of north-central Western Australia and other smaller areas in South Australia and Northern Territory. Non-gridded spatial data
were also used, including the Australian coastline (Geoscience Australia, 2004; for the purposes of approximating the distance
from bore holes to the coast; Table 1) and a halite deposit dataset of Australia (Feitz et al., 2019).

Spatial maps of the variables from Table 1 and the halite deposit are provided as Figure S1 in the supporting information.

To assist with later assessments, all gridded spatial data collated in Sect. 2.2 (Table 1) were appended to the recharge output
produced later in Sect. 2.3. The Point Sampling Tool in QGIS was used to extract the corresponding value from the raster pixel

in which the groundwater recharge rate derived from CMB is located. The Distance Matrix tool in QGIS was used to measure
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the nearest distance to the Australian coastline. Some groundwater recharge rates were located outside of the extents of some
gridded spatial data.

To produce a continental scale recharge estimator, all spatial resolutions were converted to a 0.05-degree grid. For conversion,
the GDAL Warp (reproject) tool in QGIS was used, utilising the average resampling method. The average resampling method
was chosen as opposed to one of the more commonly used methods that take the value or aggregation of a limited number of
nearest pixels (e.g., nearest neighbour, bilinear interpolation or cubic convolution). The average method considers all pixels
that contribute to the output pixel in its calculation, preserving the overall statistical characteristics of the data, while producing
a smooth output (similar to cubic convolution), and covering areas of the coastline that were not observed when using other

resampling methods.

2.3 Chloride Mass Balance analysis

The CMB method produces estimates of long-term groundwater recharge by comparing groundwater (or soil water) chloride
concentration to that measured in rainfall (and dry deposition), provided various assumptions are met (Wood, 1999; Leaney et
al., 2011). The method assumes that chloride acts conservatively, is solely sourced from precipitation, and that groundwater
has returned to steady-state conditions following any land-use changes (e.g., vegetation clearing; Leaney et al., 2011).

Following Davies and Crosbie (2018), recharge (R, mm y*) from the CMB method can be calculated using Eq. 1:

_ 100D

1000 1)

Clgw '

where D is the chloride deposition rate due to rainfall (kg ha* y), Cl, is the chloride concentration in groundwater (mg L),

and a multiplier of 100 is applied for unit conversion.

While Eq. 1. assumes that no chloride is exported laterally, the input/output of chloride through runoff or run-on can be
accounted for by modifying Eq. 1 (e.g., Crosbie et al., 2018). Accounting for lateral export of chloride can be especially
important in upland areas with steep topography and high rainfall (Leaney et al., 2011). The uncertainty associated with run-
on is suggested to be negligible (e.g., Crosbie et al., 2018), while the uncertainty associated with chloride concentration in
runoff is small compared to that of chloride deposition (Leaney et al., 2011). However, due to the large number of bores, and
the continental scale of this study where a range of landscapes may be covered, runoff was accounted for to address this

uncertainty. Following Crosbie et al. (2018) and Crosbie and Rachakonda (2021), the modified Eq. 2 can be used:

__ 100 D(1—-a-RC)

R= ; )

Clgw

where RC (-) is the runoff coefficient determined by dividing the long-term average annual runoff by the long-term average
annual precipitation, and o is a scalar.

In this study, we used a modified version of the Chloride Mass Balance Estimator for Australian Recharge (CMBEAR; Irvine
and Cartwright, 2022). The modified version of CMBEAR utilises the Australian gridded dataset of chloride deposition (i.e.,
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Wilkins et al., 2022) to automate recharge estimation using the CMB method. The modified version also applies Eq. 2, where
the previous version applied Eq. 1. In this updated version of CMBEAR, when applying Eq. 2 uncertainty for each input
variable is quantified using a stochastic approach adopted from Crosbie et al. (2018).

Out of 115,630 bores in our dataset, 79 % only had one groundwater chloride measurement available. To estimate an
uncertainty in groundwater chloride, bores with more than 10 measurements (n = 1,516) were used to calculate a mean
coefficient of variation (CVy). As per Crosbie et al. (2018), the coefficient of variation was calculated for each bore, with the
resulting CVp being the mean of these values. The CVp of 0.37 was multiplied by the mean chloride value (Clgwt) for each
bore in our dataset to estimate the standard deviation (Clgwo). The Clgwp and Clgwo were then used to generate normal
distributions for each bore. A normal distribution was adopted because 52 % of bores with more than 10 measurements passed
a normality test (p-value >0.05). The approach to use the CV, rather than a standard deviation directly was made since the CV
scales with the mean chloride value, whereas applying the same standard deviation to all values could be problematic for small
values (i.e., values becoming negative).

For each bore, the mean, standard deviation, and skew of the chloride deposition (D, Do and Dskew, respectively) were
extracted from the chloride deposition map from Wilkins et al. (2022) from the pixel in which the bore was located and used
to generate a Pearson Type Il distribution, following the description from Wilkins et al. (2022).

While the RC extracted from the location of the bore is held constant, this value is scaled down by the o value (Eq. 2) which
is sampled from a uniform distribution between 0.33 and 0.66. This scaling approach is adopted from Crosbie et al. (2018) to
deal with uncertainty in the proportion of baseflow contributing to runoff, and the below average chloride concentration in
high intensity rainfall events that typically generates runoff. Long-term annual runoff was calculated by averaging annual
runoff data from 21 overlapping decadal periods spanning from 1911 to 2020 (Bureau of Meteorology, 2023b). As this runoff
data was an output from the AWRA-L model (Frost and Shokri, 2021) and reliant on precipitation inputs which contained
missing and unreliable values (see Sect. 2.2), the runoff data was therefore unreliable in certain areas. The problematic areas
were identified as those with long-term annual precipitation <100 mm y* (Bureau of Meteorology, 2022d). A mask for the RC
dataset was created using these areas and used to convert all RC values in problematic areas to 0.0018 (the minimum RC
calculated for an adjacent rectangular area covering similar latitudes compared to the problematic areas, from -29.5 to -20.5
degrees, and longitudes from 133.0 to 136.0 degrees). Long-term average annual precipitation was calculated from decadal
rainfall maps (Bureau of Meteorology, 2023b) as mentioned in Table 1. While further investigation into the range and
distribution type for the a value could be conducted, the range used has been used across multiple climate zones (e.g., Crosbie
et al., 2018; Croshie and Rachakonda, 2021; Crosbie et al., 2022).

A probability distribution was created for each bore by calculating recharge (R) 1,000 times using the 1,000 sampled replicates
from the distributions of Clgw, D and o. To quantify the uncertainty in recharge estimates, the median recharge (Rso), 95"
percentile recharge (Res) and 5" percentile recharge (Rs) values were calculated from each probability distribution and
provided as outputs for each bore. The median was chosen as it is unaffected by extreme outliers as is with the arithmetic

mean.
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2.4 Data filtering

The assessment of the suitability of input data for the application of the CMB method is a vital step to ensure that the
assumptions of the method are met (Irvine and Cartwright, 2022). In our study, this assessment (hereafter referred to as data
filtering process) involved six steps that were performed after obtaining the recharge estimates.
The data filtering process removed recharge estimates where the following conditions likely invalidate the CMB method, or
where unrealistic recharge estimates were produced using the following steps:
(1) bores where the screen mid-point is >150 m below ground surface (bgs) which are unlikely to be in an unconfined
aquifer (e.g., Crosbie and Rachakonda, 2021; Crosbie et al., 2022);
(2) bores with mean chloride concentrations <2 mg L are unlikely to be representative of groundwater where poor bore
construction allows rain water to rapidly reach the well screen (e.g., Crosbie and Rachakonda, 2021; Crosbie et al.,
2022);
(3) bores with both mean chloride concentration >2,000 mg L and where depth to the water table <1 m bgs are likely to
be in or downstream of discharge areas (criteria modified from Crosbie and Rachakonda (2021) and Crosbie et al.
(2022));
(4) bores located within the known area of the Amadeus Basin halite deposit which could be a potential additional source
of chloride;
(5) bores that are located <1 km from the coast may contain additional chloride from marine sources, and are in coastal
areas prone to large chloride deposition variability and uncertainty;
(6) cases where estimated recharge equals or exceeds mean annual rainfall were also removed (e.g., West et al., 2023).

The outcomes of the data filtering process are provided both in Sect. 3.2 and in more detail in the supporting information.

2.5 Random forest analyses

Random forest analyses have been utilised for a wide range of applications in hydrogeological studies, including predictive
modelling of groundwater pollutants (e.g., Rodriguez-Galiano et al., 2014; Ouedraogo et al., 2019), source aquifer attribution
of hydrogeochemical samples (e.g., Baudron et al., 2013), modelling groundwater levels (e.g., Koch et al., 2019), modelling
groundwater potential (e.g., Rahmati et al., 2016), and predicting groundwater recharge (e.g., Sihag et al., 2020; West et al.,
2023). In this study, we implemented the random forest regressor from the Scikit-learn Python library (Pedregosa et al., 2011)
to develop groundwater recharge prediction models.

Our dataset comprised groundwater recharge as the target variable and 17 influential factors (i.e., spatial variables from Table
1). These factors were utilised for feature importance analyses and to produce a model to predict recharge. The random forest
feature importance provides insight into how each input variable contributes to the predictive performance of the random forest
model. The feature importance for a variable is generated according to the mean decrease in variance produced by including

that variable at a split in the decision tree.
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Three models were produced, using Rso, Res, and Rs long-term annual recharge produced from the CMB analysis. The dataset
was split into a randomly selected training subset (70 %) and validation subset (remaining 30 %) following the train test split
procedure (e.g., West et al., 2023; Sihag et al., 2020; Rahmati et al., 2016). Each tree in the random forest model (the model)
was trained on n randomly selected observations, with replacement (i.e., bootstrapping) from the training subset, where n is
equal to the total number of observations in the training subset. The observations chosen to train the model are referred to as
‘in-the-bag’ samples whereas those not chosen are known as ‘out-of-bag” samples (Cutler et al., 2012). The random forest
algorithm introduces further randomness at each split in a tree by random selection of a subset of the total number of input
variables (Pedregosa et al., 2011). Once a model was trained, external validation was conducted by making predictions using
the reserved validation subset. The locations of bores used in the training and validation datasets are provided in Figure S3 of
the supporting information.

Multiple models were produced using Rsp as the target variable, and various combinations of the 17 input features to determine
the impact of the choice of input features on model performance. The grid search with cross validation method was used to
determine the best values to use for hyperparameters including maximum depth, maximum features, minimum samples in a
leaf, and minimum samples per split (Pedregosa et al., 2011). No limit was set for maximum leaf nodes as per the default
random forest regressor settings from the Scikit-learn Python library (Pedregosa et al., 2011). Each model was run using 50,
100, 150, 200, 250, 300, 350, and 400 trees. The performance of a model was assessed through goodness-of-fit using the
training score, i.e., the Pearson R? value obtained from comparing the point recharge training data value versus modelled
recharge value.

An external validation of the model was performed by running predictions on the 30 % of data that was reserved for testing
the model. A test score (R?) was obtained through comparing point versus modelled recharge. An internal validation of the
model was performed by running predictions for the ‘out-of-bag” samples in trees for which those samples were not used for
training. An ‘out-of-bag’ prediction score (R?) was obtained. The model with the highest test score was further evaluated
through its training score to assess whether the model was ‘over-fitting’. Hyperparameters were adjusted accordingly to reduce
the difference between the training score and test score to limit over-fitting. The optimal number of trees to use in the model
was determined as the point when increasing the number of trees did not increase the ‘out-of-bag’ score. Cross-validation was
also conducted on the training subset through a k-fold test with 10 folds to ensure the model was not biased by data selection.
The feature importance tool was used to determine the relative importance of each input feature in our random forest model.
Finally, three gridded recharge maps (Rs, Rso and Rgs) were produced using the optimal combination of spatial variables and

trees as initially explored using Rso.
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3 Results
3.1 Distribution of chloride measurements

The Clgy data collated in this study and its distribution are shown in Figure 1. Clgw varies widely across the Australian continent,
ranging from 1 mg L to >200,000 mg L (Figure 1a). Moderate to high Clg. concentrations predominantly occur in inland
Australia. High Clgw concentrations are particularly prominent in southern Australia, in areas including the Murray Darling
Basin near the South Australia-Victoria-New South Wales junction where dryland salinity issues have been reported (e.g.,
Cartwright et al., 2007). Other Clgw hotspots such as in southern Western Australia correspond with where salt lakes exist (e.g.,
Bowen and Benison, 2009). As expected, the lowest Clg, concentrations are mainly located in the monsoon-influenced tropical

north of Australia and along much of the temperate east coast of Australia where rainfall is typically high (>1,000 mm y*;

Figure 1a).
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Figure 1. Spatial distribution of groundwater chloride (Clgw) shown as (a) locations and concentrations of Clgw, with Australian states and
territories marked as NT (Northern Territory), Qld (Queensland), NSW (New South Wales), Vic (Victoria), Tas (Tasmania), SA (South
Australia) and WA (Western Australia); (b) box plots showing the depth distribution of Clgw. Box plots were binned by 150 m depth intervals
except for the last box which contains Clgw measurements sampled from a depth of >1,050 m. The blue box corresponds to the data used for
recharge estimation. The upper and lower extents of the boxes represent the 75 and 25™ percentiles of Clgw, respectively. The upper and
lower whiskers represent the 95t and 5t percentiles of Clgw, respectively. The medians are shown as black lines and outliers are shown as
hollow black circles; (c) cumulative distribution function (CDF) of Clgw for shallow wells (depth of sample from 0-150 m) and deep wells
(>150 m).

Figure 1b shows the variation of chloride with depth. Most of the data are within 150 m of the ground surface (n = 171,681;
median Clgw: 250 mg L™t). The median Clg,, decreases with depth between 0 and 900 m, followed by an increase between 1,050
and 3,902 m. This notably contrasts with other regions in the world (e.g., Ferguson et al., 2023) due to Australia’s unique

climatic and geologic conditions (see Figure S2 in supporting information for more details).
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The cumulative distribution function (CDF) plot (Figure 1c) shows the difference in Clgy distribution between shallow (<150
m) and deep (>150 m) bores in Australia, with the shallow bores spanning a much wider range of Clgy values compared to
deeper bores. The CDF plot also highlights the proportionally lower number of low Clgw values (47 % of deep bores have Clgw
<100 mg L1) and a lower median value of deeper bores (median Clgy = 110 mg L) compared to shallow bores (30 % of
shallow bores have Clgy <100 mg L%; median Clgw = 250 mg L),

3.2 Recharge estimates and data filtering

Figure 2 shows the data filtering process applied to remove values that do not meet the assumptions required to apply the CMB
method. It is important to note that the same bores that were excluded for Rso during each step of the data filtering process
(Figure 2) were also excluded for Rs and Rgs. The recharge dataset prior to data filtering is provided as an electronic data file
in the supporting information.
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respectively. The upper and lower whiskers represent the 95th and 5th percentiles of Rso, respectively. The medians are shown as orange
lines and outliers are shown as hollow black circles. The remaining number of measurements at each step is shown above the box plot. The
maps on the right show the location of data, the number of measurements removed, and cumulative number of measurements removed at
each step.

The boxplots in Figure 2 present the Rsy distribution binned by P in 200 mm y! intervals (except the >1,600 mm y* hin) at
each step after data filtering. P ranged from 109 mm y* to 4,231 mm y*. The 600-800 mm y! hin contained the greatest
number of Rso values (~33 %), followed by the 400-600 mm y* bin (~21 %). Throughout the data filtering process, each bin
was affected in different ways. Rso values in the 400-600 mm y* bin had the highest number of exclusions (n = 5,460 between
Figure 2a and 2g). While the number of exclusions from the 0-200 mm y* bin was low (n = 422), as a percentage this was a
substantial cut of ~20 % to the recharge estimates within this P range.

A map visualising the spatial locations of data being removed is shown for each step of the data filtering process in Figure 2
(Figure 2, right column). While clear spatial trends could be inferred for data removed in step 1 where deep bores were removed
from the dataset (e.g., mostly bores in the Great Artesian Basin), step 4 where known halite deposits were removed (e.g.,
Amadeus Basin halite deposit) and step 5 where bores near the coast were removed, without detailed analyses, no obvious
factors could be identified from most of the other steps. A visual assessment shows that bores that were removed in step 3
broadly align with areas likely to contain areas of high hazard or risk of dryland salinity (National Land and Water Resources
Audit, 2001).

At the end of the data filtering process (Figure 2g), ~12 % of the original dataset was removed, leaving 98,568 recharge values.
Overall, the change in mean Rso (Rso) was minimal with ~2 % decrease from an initial pRso of 44.3 mm y* to 43.5 mm y.
The largest change in pRso between steps was in the depth filtering step (i.e., sample depth >150 m bgs), with a 7 % increase
in URso (Figure 2b). Removing sample depths more than 150 m bgs, is crucial because most of the deep bores are located
within the Great Artesian Basin and similar deep confined aquifers. The recharge area of these deep systems is likely to be
hundreds of kilometres away from the bore location, whereas our analyses assume recharge occurs within the 0.05° x 0.05°
pixel from the chloride deposition map that contains the bore.

It is important to note that while the overall pRso did not change significantly at the end of the data filtering process, the
standard deviation of Rso (6Rso) decreased by ~ 40 %. The noticeable decrease in 6Rso is the result of the exclusion of high
recharge values generated from chloride concentrations <2 mg L in step 2 (Figure 2c), and recharge values with R/P >1 in
step 6 (Figure 2g). While step 6 (Figure 2g) did not remove a significant number of Rsq values (n = 118), it is likely that many
Rso values with R/P >1 had already been removed in previous steps of the data filtering process due to other factors.

The resulting recharge estimates for Rso, Rgs and Rs are shown in Figure 3a, b and ¢, respectively. The mean values of recharge

rates for Rso, Res, and Rs are 43.5 mm y1, 113.4 mm y, and 25.8 mm y?, respectively.
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Figure 3. Groundwater recharge rates (R; mm y1) estimated using CMB from 98,568 bores. Maps show: (a) median recharge (Rso), (b) 95t
percentile recharge (Res) and (c) 5™ percentile recharge (Rs) rates.

As expected, high recharge rates are mostly located in areas with high precipitation, i.e., in the tropical north, along the east
coast, and in north-western Tasmania (see Figure 3 and rainfall map in Figure Sla of the supporting information), while low
recharge rates are mostly located inland from the coast. However, there is variability in recharge rates, spanning 1-3 orders of
magnitude in inland areas that cannot be explained by rainfall variability alone.

The majority of Rso values in our dataset are either low or moderate, between 1-10 mm y* (35 %) or 10-100 mm y* (38 %),
respectively. Extremely low Rso values (i.e., <1 mm y) constitute 16 % of the dataset, while high Rso values (i.e., 100-1,000
mm y) constitute 11 % of the dataset. Only 0.01 % of Rso values are extremely high (i.e., >1,000 mm y). The point datasets

of Rso, Rs and Rgs before and after the data filtering process are available as electronic data files in the supporting information.

3.3 Random Forest models and feature importance

To explore the effects of the selection of variables in the random forest analyses (Table 1), different variable groupings were
investigated as input features to train different Rso random forest models. Table 2 outlines combinations of variables and their
impact on various fit metrics, showing the highest R? values, and lowest root mean square error (RMSE), mean absolute error
(MAE), and the number of trees used.

Table 2. Best results from random forest Rso models developed using different variable groupings, showing optimal number of trees in each
forest, training score (R?) external validation test score (R?), root mean square error (RMSE), and mean absolute error (MAE), where
P=precipitation, Al=aridity index, PET=potential evapotranspiration, KG=Kdppen-Geiger, RS=rainfall seasonality, DTC=distance to coast,
RD=regolith depth, WTD=water table depth, SP=slope percentage, E=elevation, G=geology, SC=soil class, CP=clay percentage, SiP=silt
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percentage, SaP=sand percentage, NDVI=normalised difference vegetation index, VC=vegetation category. * Denotes the model selected
for further analyses.

Model / groupings No. of | Training Out-of-bag External validation
trees score R? score R?
Testscore | RMSE MAE
R? (mmy?) | (mmy)
All variables 200 0.795 0.720 0.735 515 20.8
Categorical grouping
Climate (P, Al, PET, KG, RS) 150 0.718 0.688 0.705 54.4 22.9
Surface/hydrogeological (DTC, RD, WTD, | 250 0.621 0.520 0.528 68.8 31.9
SP, E, G)
Soil properties (SC, CP, SiP, SaP) 150 0.361 0.328 0.341 81.3 40.2
Vegetation (NDVI, VC) 350 0.571 0.519 0.524 69.1 32.3
Highest performing 4-8 variable grouping
P,RS, PET, E 150 0.745 0.700 0.716 534 22.3
P, RS, PET, E, DTC 300 0.758 0.707 0.720 53.0 21.9
P, RS, PET, E, DTC, NDVI 250 0.756 0.708 0.724 52.6 21.8
P, RS, PET, E, DTC, NDVI, CP 200 0.775 0.715 0.731 52.0 211
P, RS, PET, E, DTC, NDVI, CP, SC* 250 0.772 0.716 0.732 51.9 211

The results in Table 2 have also been influenced by the selection of optimal hyperparameters, such as the number of trees,
maximum depth of trees, and maximum features. Aside from grouping variables categorically by climate,
surface/hydrogeology, soil properties, and vegetation, various other groupings ranging from four variables to eight variables
were also explored. Exploring fewer input variables allows us to assess whether a model trained on less variables could achieve
similar model accuracy while being less computationally expensive. The strongest performing 4-8 variable groups are shown
in Table 2. The best performing 8-variable model trained with 250 trees achieves a training score R? of 0.772, an external
validation test score R? of 0.732, RMSE of 51.9 mm y, and MAE of 21.1 mm y* which are similar to the all-variable model
(Table 2). Model accuracy does not improve when a ninth variable (either regolith depth, water table depth, geology, sand
percentage, slope percentage, vegetation class, Koppen-Geiger, aridity index or silt percentage) was added (see Table S2 of

the supporting information); hence, the best performing 8-variable model was chosen.
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Table 2 demonstrates the importance of the climatological variables, for example, producing an external validation test score
R? value of 0.705, similar to the maximum external validation test score obtained across all parameter combinations (0.735).
The Rso random forest model selected for further analyses, (the best performing 8-variable model) consists of the variables
precipitation (P), rainfall seasonality (RS), potential evapotranspiration (PET), elevation (E), distance to coast (DTC),
normalised difference vegetation index (NDVI), clay percentage (CP), and soil class (SC) (bottom row, Table 2). This
observation highlights that while the climatological variables are strong controls on recharge, other variables related to surface
processes, hydrogeology, soil properties and vegetation are also important. The vegetation model (containing variables NDVI
and vegetation class) having the second highest score in the categorical groupings suggests that in Australia, vegetation could
be a more important control on recharge compared to surface/hydrogeological and soil properties variables.

Out of the 8 input variables used in our best performing Rso random forest model, P, RS, PET, and NDVI are ranked highest
as shown in the feature importance plot in Figure 4. The feature importance plots for the Rs and Rgs random forest models are
provided in Figure S4 and S5 of the supporting information, respectively. For comparison, the feature importance plot for the

Rso all-variable model is provided in Figure S6 of the supporting information.
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Figure 4. Mean feature importance through mean decrease in variance for the Rso best performing 8-variable model (250 trees). The features
are grouped according to climatological, surface processes/hydrogeological, soil properties and vegetation variable groups depicted in Table
1.

The Rso random forest model achieved a training score of R%: 0.772, ‘out-of-bag’ score of R% 0.716, external validation test
score of R?: 0.732 and 10-fold cross validation R?: 0.715, with 250 trees in the random forest (Figure 5). The relatively small
difference between the training score and external validation test score indicates that our model is not over-fitting the training
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data. The similar R? values across different model evaluation methods indicate that our model should perform relatively well
with unseen data. Figure 5a shows that our model tends to overestimate lower recharge values and underestimate higher values.
Figure 5b further demonstrates this point. For example, for CMB recharge values between 0.001 mm y* and 30 mm y, our
model tends to overestimate recharge, while at moderate to higher recharge rates (i.e., >30 mm y) our model tends to
underestimate recharge. At high to extremely high recharge rates (i.e., >470 mm y%) our model only produces underestimates,
which could be the result of underrepresentation of samples in extremely high recharge areas. The residuals at the higher end

of recharge in Figure 5b may appear seemingly large, but the majority represent errors of less than 40 %.
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Figure 5. Model validation results for the selected Rso model trained using 250 trees, showing: (a) CMB recharge rate (Rso) versus predicted
recharge rate, showing 1:1 line, and point density, and (b) CMB recharge rate (Rso) versus residuals (predicted recharge rate minus CMB
recharge rate) and point density.

Compared to the pRso of 43.5 mm y in Figure 2g, the RMSE of 51.9 mm y! from external validation of our model (Figure
5a) might suggest relatively high variability and overall inaccuracy in model predictions. However, Figure 5a shows that most
of the recharge rate estimates lie near the 1:1 line (as shown by the density of pixels in the colour map). When assessing only
Rso <1 mm y! for the validation results (Figure 5), we obtain an RMSE of 12.4 mm y* or >1,000 %; however, percentage
errors can be misleading when assessing errors of low values. This is similarly the case for Rsp from 1-10 mm y* (RMSE:
19.4 mm y?), 10-100 mm y? (RMSE: 29.8 mm y'), and 100-1,000 mm y* (RMSE: 140.7 mm y). Evaluating errors in
different recharge ranges reveals that some errors are not as severe as they may appear. Model validation results for Rs and
Rgs recharge models are provided in Figure S7 of the supporting information.

The random forest generated groundwater recharge rate (Rs, Rso, Ros) maps of Australia (utilising P, RS, PET, E, DTC, NDVI,
CP, and SC) are shown in Figure 6a, b and c.

18



395

400

1000

Py
[0}
5
100 3
«Q
(]
Py
Q
&
10 3
e <
L
1
(d) Rso/P 1
‘ 01 2
B g 0.01

Figure 6. Gridded groundwater recharge rate map of Australia generated using the highest performing random forest model, shown as (a)
median recharge rate (Rso), (b) 95" percentile recharge rate (Res) and (c) 51 percentile recharge rate (Rs) values, and gridded recharge ratio
(R/P) map of Australia, shown as (d) Rso/P, (e) Res/P and (f) Rs/P. Gridded datasets are available for download, see Code and data availability.

The CMB method provides recharge estimates that span the residence time of the groundwater (Crosbie et al., 2010a), hence
the recharge outputs produced in Figure 6 represent recharge that has occurred over the longer term (e.g., hundreds to thousands
of years). The variability in modelled recharge is highest within the arid Képpen-Geiger zones, which cover almost 80 % of
the Australian continent, with Rsp ranging between ~0.03 and 278 mm y, and a mean of 6.3 mm y* (n pixels = 220,947). In

the temperate Kdppen-Geiger zones, which cover almost 12 % of the Australian continent, Rso ranges between ~0.6 and 522
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mm y1, with a mean of ~60 mm y (n pixels = 33,177). In the tropical climates, which only cover 8 % of the Australian
continent, Rso ranges between and ~2.6 and 621 mm y%, with a mean of ~125 mm y* (n pixels = 22,897). As shown in Figure
6b and c, uncertainties in recharge estimates can range by orders of magnitude, regardless of climate zone. For example, the
town of Tully, Queensland (located in the Af tropical Koppen-Geiger zone with latitude: -17.934°, longitude: 145.925°), has
the highest average rainfall in Australia (>3,100 mm y?) and the highest modelled Rsp of ~621 mm y. However, the
uncertainty ranges from 393 mm y* to 1,759 mm y*. The town of Coober Pedy, South Australia (located in the BWh arid
Kdppen-Geiger zone with latitude: -29.012°, longitude: 134.753°), has one of the lowest average rainfalls in Australia (<150
mm y1), and a modelled Rsp of ~0.38 mm y1, with uncertainty ranging from 0.09 mm y* to 0.56 mm y.

The proportion of rainfall that becomes recharge, represented by the recharge ratios (Rs/P, Rso/P, and Rgs/P) are shown as
gridded maps in Figure 6d, e and f, respectively. Like recharge, the variability in modelled Rso/P is the highest in the arid
Kdppen-Geiger zones, ranging over 4 orders of magnitude, from ~0.0001 to 0.42 (mean: 0.02, n pixels = 220,947). In temperate
and tropical climates, Rso/P ranges are smaller, from ~0.002 to 0.36 (mean: 0.06, n pixels = 33,177) and ~0.003 to 0.35 (mean:
0.11, n pixels = 22,897), respectively. The ranges in R/P reduce significantly when assessing the 5 and 95™ percentiles (i.e.,
90 % of the values are in the following ranges for arid, temperate and tropical zones: ~0.002-0.06, ~0.01-0.15, and ~0.03-
0.20, respectively). It should be noted that some values of Rgs/P exceed a value of one due to the data filtering process only
focused on removing bores with R/P >1 from the Rso point recharge dataset. Therefore, both the Rgs gridded recharge and point
recharge datasets will contain some unrepresentative recharge values with R/P values more than one. However, the number of
values equates to <0.01 % of pixels in the Rqs/P gridded map.

Boxplots showing the distribution of modelled recharge values (Rso, Rs and Rgs) and modelled recharge ratios (Rs/P, Rso/P,
Ros/P) categorised by arid, temperate and tropical Képpen-Geiger zones are shown as Figure S8 of the supporting information.

The gridded maps of Rso, Rs and Rgs are available as electronic text files in the supporting information.

4 Discussion
4.1 Groundwater recharge rate predictors

Clearly, precipitation has a strong control on groundwater recharge rates. While studies have found long-term average
precipitation to be the key predictor of recharge (e.g., MacDonald et al., 2021; West et al., 2023), others have found other
precipitation-related factors such as aridity index (e.g., Berghuijs et al., 2022) or seasonal rainfall (e.g., Fu et al., 2019) to be
the most important. Some investigations highlighted the strong explanatory power of vegetation and soils in addition to
climate-related variables (e.g., Petheram et al., 2002; Crosbie et al., 2010a; Mohan et al., 2018; Moeck et al., 2020). Our Rsg
random forest model incorporated eight variables from climatological, surface processes/hydrogeological, soil properties and
vegetation categories. Using these eight variables in the feature importance analyses, our study revealed that the top four most
important variables influencing recharge in Australia were precipitation (P), rainfall seasonality (RS), potential

evapotranspiration (PET), and NDVI (Figure 4). These four variables highlight the importance of climatic factors on the
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prediction of recharge, which agrees with other studies (e.g., Mohan et al., 2018; Berghuijs et al., 2022; West et al., 2023;
Huang et al., 2023). Overall, the ranking of variables highlighted in our study is most aligned with the ranking of predictors in
Mohan et al. (2018), who found precipitation, PET and land use (vegetation) to be the top three important factors controlling
recharge globally.

The aforementioned studies cover vastly different spatial scales, ranging from regional areas (e.g., Fu et al., 2019; Huang et
al., 2023), the African continent (e.g., MacDonald et al., 2021; West et al., 2023), the Australian continent (e.g., Petheram et
al., 2002; Crosbie et al., 2010a), to all continents (e.g., Mohan et al., 2018; Moeck et al., 2020; Berghuijs et al., 2022), and
contain datasets with varying spatial distributions and resolutions. The spatial variability across these previous studies suggests
that some studies can have a climatic bias, depending on the climates included in the study area. For example, the chloride
data used in our study to produce recharge estimates was mainly biased towards temperate and arid Kdppen-Geiger zones
(comprising ~50 % and ~40 % of the recharge dataset, respectively) and less towards tropical (~10 % of recharge values). The
similarities and differences in climate types and recharge estimation techniques may influence the ultimate ranking of
important variables and be the reason for differences between studies.

It is important to highlight that while feature importance analyses can provide insight into important variables,
overinterpretation should be avoided. Ranking of features in the feature importance plot can be affected by the choice of
hyperparameters such as maximum features (e.g., limiting maximum features to a subset will avoid over-selection of the most
important feature, such as precipitation in our case, during training of the random forest model). Feature importance may be
influenced by factors such as variable cardinality (i.e., tendency to give higher importance to variables with many unique levels
as they offer more opportunities for splitting the data; Strobl et al., 2007). Low cardinality of categorical features such as
Kodppen-Geiger, geology, soil class and vegetation class could be the reason for their relatively lower feature importance as
shown in Figure S6 of the supporting information. Variables with lower importance can compete with more important
variables, such that having more input variables does not necessarily improve performance of the model. Correlated variables
can also out-compete each other, leading to unreliable feature importance rankings (Tolosi and Lengauer, 2011). Some highly
correlated variable pairs likely act as proxies for each other during the training process when the subset of features randomly
selected only contains one of the variable pairs. Such is likely the reason for the climate group being most important in the all-
variable model (Figure S6 of the supporting information). Similarly, the relationship between precipitation, distance to coast

and elevation could explain why these variables also rank highly.

4.2 Comparison of groundwater recharge rate estimates with previous studies

The average groundwater recharge rate estimates produced for the Australian continent differs from those found in other
studies, both for point recharge (Figure 3) and the modelled recharge (Figure 6). For example, the mean point recharge rate
for the Australian studies collated by Crosbie et al. (2010a) was 257.2 mm y* (n = 4,360), compared to 43.5 mm y* in our
study (n = 98,568). Similar mean recharge values of 246.5 mm y* from Australian studies collated by Moeck et al. (2020; n =
4,579) and 244 mm y* from Berghuijs et al. (2022) were not surprising given that the data from Crosbie et al. (2010a) was
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used in both studies. The mean recharge rate for the Australian studies collated by Mohan et al. (2018) was much closer to our

study at 46.2 mm yL. This is likely due to the much smaller dataset of Mohan et al. (2018; n = 217) and limited spatial coverage

— especially in tropical Northern Australia, compared to other studies.

The higher mean recharge values of the point data reported in other studies that cover Australia (e.g., Crosbie et al., 2010g;

Moeck et al., 2020; Berghuijs et al., 2022) compared to ours can be attributed to the difference in spatial distribution of recharge

point estimates, and the different recharge estimation methods used. Several differences in the method are important, including:

(1)

()

3)

(4)

®)

(6)

60 % of the estimates in Crosbie et al. (2010a) and Moeck et al. (2020) were from an earlier study (Crosbie et al.,
2009), which used a simpler CMB method and an older chloride deposition map to calculate recharge (see chloride
deposition maps in Figure S9b of the supporting information).

Our method incorporates the most recent improved chloride deposition map with enhanced data and spatial coverage
(Wilkins et al., 2022).

There are key differences in chloride deposition rates between the different chloride deposition maps, especially
within 50 kilometres of the coastline, that can significantly affect the resulting recharge rate (see chloride deposition
maps in Figure S9 of the supporting information).

The mean of the 2,722 CMB recharge estimates from Croshie et al. (2009) is 388 mm y*. The mean of the 1,620
estimates from Crosbie et al. (2010), which were estimated from 14 different methods (including 38 % from CMB,
25 % from transient soil CMB, and 9 % from water table fluctuation), is 40 mm y. The estimates from Croshie et al.
(2009) are likely overestimates and were flagged by Crosbie et al. (2010a) to have very little quality control.

Our approach accounts for chloride lost to runoff in the estimation of recharge, resulting in a reduction in our recharge
rates compared to the simpler method used in Crosbie et al. (2009) which does not consider this factor.

Following the approach used by Croshie et al. (2018) and Crosbie and Rachakonda (2021), our methodology is
stochastic, performing 1,000 recharge calculations to generate a probability distribution. We present the median and
an error range taken as the 5™ and 95™ percentiles of the distribution to provide a more robust interpretation of the

results.

The spatial distribution of the recharge estimates (in our study relative to previous investigations) is important because the

climate at the location of the recharge estimate strongly influences the annual recharge rate (Moeck et al., 2020). Figure 7

demonstrates this point by using Australian climate zones that are classified from different aridity index values (i.e., in order

of increasing aridity or decreasing recharge potential: humid, dry subhumid, semi-arid, arid, and hyper-arid, based on United

Nations Environment Programme, 1997).
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Figure 7. Histograms and maps showing the difference in spatial distribution and proportion (%) of the point recharge dataset of (a, d)

500 Crosbie et al. (2010a), (b, &) Moeck et al. (2020) and (c, f) our study that are located in various aridity classes (Hyper-arid, arid, semi-arid,
dry-subhumid and humid; United Nations Environment Programme, 1997). The proportion (%) and mean recharge (mm y) are shown in
the histograms above each bar.

The proportion of recharge estimates from Crosbie et al. (2010a) and Moeck et al. (2020) located in dry subhumid and humid

aridity classes is significantly higher than our dataset (Figure 7), with 46.43 % and 44.91 % for Crosbie et al. (2010a) and
505 Moeck et al. (2020), respectively, compared to 22.01 % in our study. The mean recharge rates in Crosbie et al. (2010a) and

Moeck et al. (2020) for each aridity category are all higher than our study — particularly dry subhumid and humid which are

3-4 times higher. The higher proportion of estimates in the dry subhumid and humid climate zones together with the

significantly higher mean recharge rates in these climates, results in a higher overall mean recharge rate for the Crosbie et al.

(2010a) and Moeck et al. (2020) datasets compared to our study. Further details including limitations in the comparisons with
510 Crosbie et al. (2010a) and Moeck et al. (2020) are provided in the supporting information.
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Studies that collated recharge estimates from other continents have also reported higher recharge rates than our point estimates.
For example, MacDonald et al. (2021) reported median decadal point recharge estimates from compiled studies for different
aridity zones in the African continent, with arid, semi-arid and humid areas equivalent to 6 mm y*, 20 mm y*, and 130 mm y-
! respectively. Point estimates of recharge from our study had median values of 1.1 mm y, 8.0 mm y%, and 45.8 mm y%, for
arid, semi-arid, and humid areas in Australia, respectively across these climate zones. This suggests that in the long term,
aquifer systems in Australia are replenished on average at a rate 2—4 times lower than those in Africa.

Regarding the methods used, the CMB method produces long-term average diffuse groundwater recharge rates that are lower,
compared to other methods, including the water table fluctuation method, that estimate modern recharge. For example, methods
such as the water table fluctuation method and tritium tend to estimate different recharge rates relative to those obtained via
the CMB method, particularly in Australia, where modern recharge rates have increased due to large scale land clearing
(Cartwright et al., 2007). Measurements using the water table fluctuation method will also be heavily influenced by focused
recharge in areas where indirect recharge processes are dominant (e.g., leakage from ephemeral streams in arid regions;
Cuthbert et al., 2016) as opposed to diffuse recharge measured by the CMB method. These observations likely highlight the
importance of considering recharge estimation type in the collation and use of large datasets. For example, recharge studies
that have compared recharge estimation techniques have found large differences across different methods (e.g., Cartwright et
al., 2007; King et al., 2017; Walker et al., 2019; Cartwright et al., 2020).

The mean modelled (Rso) recharge rate from our gridded recharge rate map was 22.7 mm y%, which is significantly lower than
modelled global estimates. For example, Mohan et al. (2018) reported a long-term, global average recharge of 134 mm y?,
whereas Muiller Schmied et al. (2021) reported a global mean diffuse recharge rate of 111 mm y*. The significant difference
between these modelled recharge values is likely due to the large proportion of arid and semi-arid areas in Australia. Our
gridded map contains 278,253 pixels of which ~80 % are in an arid Képpen-Geiger climate (see Figure S11 in the supporting
information), compared to ~26 % of the global land area that is classified as arid (Gaur and Squires, 2018). The mean modelled
recharge for the Australian continent was not reported in either Mohan et al. (2018) or in Berghuijs et al. (2022). However,
Berghuijs et al. (2022) highlight that their recharge estimates are higher than those presented in other global studies (e.g., Déll
and Fiedler, 2008; de Graaf et al., 2015; Mohan et al., 2018; Muller Schmied et al., 2021), and are therefore, on average, likely
to be higher than those presented here. We highlight that numerical outputs from these studies should be provided more
routinely. Sharing these numerical outputs could facilitate further comparisons and produce more useful outputs for potential

users.

4.3 Limitations and implications

In this study, the assumptions for estimating recharge using the CMB method were implemented through a data filtering
process (Sect. 2.4), which was crucial to improving the reliability of inputs to our model. While we assume that erroneous
recharge estimates have been removed during the data filtering process, some criteria that were assessed in other studies (e.g.,

Crosbie et al., 2022; Crosbie and Rachakonda, 2021) were not considered here due to the challenges of implementing them on
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a continental scale. For example, excluding measurements from bores screened within alluvium (e.g., Crosbie et al., 2022),
would require a thorough understanding of local conceptual models and hydrogeological processes (e.g., cross-aquifer
interaction) and existing recharge processes (e.g., flooding). By not excluding bores located in alluvium, point and modelled
recharge estimates for these bores can be underestimated if additional chloride not sourced directly from rainfall is present, for
example, through the application of irrigation water or chloride-based fertilisers (e.g., potassium chloride).

The tendency of our model to underestimate recharge where moderate to higher recharge rates (i.e., 30-1,000 mm y*) were
estimated from the CMB method, may be related to a skew in the distribution of our point recharge dataset towards lower
recharge rates. The tendency for overestimation could be due to the aggregation of random forest leaf node values and tree
predictions using the arithmetic mean which can be biased by large outlier values.

Large areas (e.g., inland Western Australia) had no chloride data and hence, the modelled recharge for these areas can be
subject to larger ranges of uncertainty. No geological dataset is available that provides detailed spatial information on the
permeability of bedrock; therefore, modelled recharge rates can be significantly overestimated in areas such as where low
permeability bedrock outcrops at the surface and underestimated in areas where highly fractured bedrock exists. Similarly, we
highlight that users should be aware of the range of uncertainty in the modelled recharge when using values from the analyses
presented here. The same message was emphasized by Leaney et al. (2011) and Crosbie et al. (2010a) for the ‘method of last
resort’. As is the case with all hydrogeological measurements and models, users of our modelled recharge rates should exercise
expert judgement and determine whether the estimates are reliable and fit-for-purpose. Preference should always be given to
the collection of field data to constrain recharge estimates where possible.

For groundwater practitioners in Australia, our study provides an extensive database of groundwater chloride measurements
and rigorously interpreted groundwater recharge rate estimates at high spatial resolution that holds potential for further use for
researchers and water resource managers. We present a more robust, stochastic recharge rate estimator, modified from
CMBEAR (Irvine and Cartwright, 2022) to include the runoff coefficient term utilised in recent regional Australian studies
(e.g., Crosbhie et al., 2018; Crosbie and Rachakonda, 2021). Our study produced long-term recharge maps of the Australian
continent. While Australian recharge maps have been produced previously (e.g., Leaney et al., 2011), this is the first time that
a model of such scale has been developed on recharge estimates derived from only a single recharge estimation technique.
Furthermore, by providing the Python code, point estimates and gridded map, we facilitate a transparent and reproducible

workflow that enables the broader community to utilise our methodology or further improve the approach.

5 Conclusions

We produce a groundwater recharge rate dataset for Australia with high resolution based on an improved chloride mass balance
(CMB). This combines more than 200,000 compiled chloride measurements, existing chloride deposition maps, 17 national
spatial gridded datasets, and a rigorous groundwater recharge rate estimation workflow. We enhance an open-source python

tool, CMBEAR and leverage existing methodologies (e.g., Croshie et al., 2018) to provide an efficient, reproducible, and
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transparent stochastic approach that can be applied to anywhere in Australia. This approach quantifies uncertainty by creating
groundwater recharge rate probability distributions, providing the 5% and 95" percentiles of point groundwater recharge rate
estimates (Rs and Rgs) using distributions of groundwater chloride, runoff and chloride deposition.

We utilise subsets of the CMB recharge datasets (Rs, Rso and Rgs) to train and test three random forest regression models for
the purpose of upscaling point recharge estimates and assessing relative importance of recharge predictors. We show that
climate-related variables (i.e., precipitation, rainfall seasonality and PET) have the strongest control on the groundwater
recharge rate, but vegetation (NDVI) is also important. Other geographic and soil properties variables ranked lower but are
still relatively important. The importance of climate and vegetation as recharge predictors are generally aligned with global
recharge studies. The use of only eight of the 17 variables demonstrates that similar prediction performance can be achieved
with less variables, while reducing computation time and ensuring adequate performance on unseen data.

We present a gridded map of groundwater recharge rate estimates and uncertainties that could be valuable where data required
to estimate groundwater recharge rates may be scarce or not available. Our groundwater recharge model utilises a data-driven
approach based on a single recharge estimation technique to provide long-term groundwater recharge rates. Our CMB-based
groundwater recharge rates are considerably lower than other studies including global water balance models (e.g., Déll and
Fiedler, 2008; de Graaf et al., 2015; Muiller Schmied et al., 2021). This is likely due to the fact that CMB operates on longer
timescales that span the residence time of the groundwater (e.g., chloride can take between 4,000 and 40,000 years to
accumulate in the Murray Basin, South Australia; Scanlon et al., 2006). Contrary to this, global water balance models estimate
modern recharge (i.e., over the last century where climate and soil data are available). Recharge estimation methods operating
over modern timescales tend to be impacted by land-use change. For example, Scanlon et al. (2006) demonstrate groundwater
recharge both pre-and post-clearing in an Australian context, showing significant change (increase) in recharge. We emphasise
that the appropriate recharge timescales (e.g., long-term, or modern) and mechanisms (e.g., diffuse or focused recharge) should
be taken into consideration when collating recharge values produced from different techniques for the purpose of modelling
recharge. We recommend that users exercise care and expert judgement when utilising the groundwater recharge rate estimates
from these large-scale groundwater recharge models.

By applying an improved version of the most widely used recharge estimation method (e.g., Moeck et al., 2020; Crosbie et al.,
2010b), we provide a robust approach to automate the estimation of long-term diffuse groundwater recharge rates including
uncertainties. With chloride data being amongst the most common of groundwater analytes, there are significant opportunities

to conduct similar analyses elsewhere.

Code and data availability. The code and output data presented in this paper is available as supporting information from
https://www.hydroshare.org/resource/088b1f35ee1b4c348a44a6chad21250d/. Data presented in this paper has been visualised
using scientific colour maps created by Crameri (2018). Gridded data inputs for the CMB recharge estimator Python code,
including precipitation, chloride deposition, runoff coefficient, PET and aridity index are provided with attribution in the

supporting information. Other gridded and non-gridded datasets used here can be downloaded from the references provided.
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