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Abstract. Estimating groundwater recharge rates is important to understand and manage groundwater. Numerous studies have 10 

used collated recharge datasets to understand and project regional or global-scale recharge rategroundwater recharge rates. 

However, Rrecharge estimation methods each have distinct assumptions, quantify different recharge components, and operate 

over different temporal scales. To address these challenges, wWe use over 200,000 groundwater chloride measurements to 

estimate groundwater recharge rates using the an improved chloride mass balance (CMB) method across Australia. 

Groundwater Rrecharge rates were produced stochastically using gridded chloride deposition, runoff, and precipitation 15 

datasets. After filtering out recharge rategroundwater recharge rates where the assumptions of the method may have been 

compromised, 98,568 estimates of recharge were produced. The resulting recharge rategroundwater recharge rates and 17 

spatial datasets were integrated into a random forest regression algorithm, generating a high-resolution (0.05°) model of 

recharge rategroundwater recharge rates across Australia. The regression reveals that climate-related variables, including 

precipitation, rainfall seasonality, and potential evapotranspiration, exert the most significant influence on recharge 20 

rategroundwater recharge rates, with vegetation (NDVI) also contributing significantly. Importantly, both the mean values of 

the recharge point dataset (43.5 mm y-1) and of the spatial recharge model (22.7 mm y-1) are notably lower than those reported 

in previous studies, underscoring the prolonged timescale of the CMB method,  and the potential disparities arising from 

distinct recharge estimation methodologies and limited averaging across climate zones. This study presents a robust and 

automated approach to estimate recharge using the CMB method, offering a unified model based on a single estimation method. 25 

The resulting datasets, the Python script for recharge rate calculation, and the spatial recharge models collectively provide 

valuable insights for water resources management across the Australian continent and similar approaches can be applied 

globally. 

 

 30 
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1 Introduction 

Groundwater is a critical component of the water cycle, providing baseflow to streams and supporting ecosystems and 

livelihoods (Brunke and Gonser, 1997; Eamus, 2006; Shah, 2005). With impacts from climate change, population growth and 

increased usage, groundwater resources are expected to become even more important in the future (Döll, 2009; Famiglietti, 

2014; Wada et al., 2010), requiring a detailed understanding of hydrogeological processes through desktop studies, numerical 35 

modelling, and direct field measurements. Assessing groundwater resources not only requires understanding their distribution, 

natural discharge and extraction rates, but also mechanisms and rates of resource replenishment.  

Groundwater recharge is one of the most important, albeit challenging, components to quantify in groundwater assessments 

due to its wide spatiotemporal variability, which is influenced by a range of geo-eco-climatic factors (de Vries and Simmers, 

2002). Recharge estimation is further complicated by the conceptualisation of recharge mechanisms (e.g., diffuse versus 40 

focused; Lerner et al., 1990). Similarly, the uncertainties of recharge estimation techniques provide further challenges (Scanlon 

et al., 2002). Additional complexities need to be carefully considered in recharge studies, including understanding the 

timescales associated with the technique(s) being used (e.g., Scanlon et al., 2002; Cartwright et al., 2017) and the component 

of recharge being estimated (e.g., gross, potential, or net recharge; Crosbie et al., 2010a). 

Large scale studies of groundwater recharge (e.g., global and continental scale) that are based on the compilation of recharge 45 

estimates, typically utilise recharge estimates obtained from different techniques (e.g., Petheram et al., 2002; Scanlon et al., 

2006; Crosbie et al., 2010a; Mohan et al., 2018; Moeck et al., 2020; MacDonald et al., 2021; Berghuijs et al., 2022). These 

combined datasets allow an assessment of the changes in recharge rates over time due to climate variability or land cover 

change (e.g., Scanlon et al., 2006). However, such datasets add extra uncertainty to the predictive models that utilise them, 

given that they include recharge estimates with different assumptions, temporal scales, and mechanisms (e.g., Crosbie et al., 50 

2010a; Mohan et al., 2018). Utilising different recharge estimation techniques may result in widely different recharge rates 

(e.g., Crosbie et al., 2010a; King et al., 2017; Walker et al., 2019; Cartwright et al., 2020). 

Selecting recharge estimates from a single technique from these global studies could overcome the issues mentioned above, 

but also lead to insufficient spatial coverage for meaningful continental-scale assessments. For example, the issue of spatial 

coverage of recharge estimates is evident in Australia from the sparseness of recharge estimates in the interior of Australia 55 

(e.g., Moeck et al., 2020; Berghuijs et al., 2022). Studies in Australia have addressed the issue of data sparsity through creation 

of a series of empirical relationships between rainfall and recharge by investigating key factors such as vegetation and soil 

types (e.g., Crosbie et al., 2010a; Leaney et al., 2011). More recent Australian studies have utilised statistical methods to 

investigate the influence of environmental variables on groundwater recharge (e.g., Fu et al., 2019) or applied machine learning 

techniques to predict future recharge (e.g., Huang et al., 2019, 2023). Others have focused on upscaling of point estimates from 60 

a single technique (e.g., chloride mass balance) to a regular grid across regional study areas using regression kriging (e.g., 

Crosbie et al., 2018; Crosbie and Rachakonda, 2021; Crosbie et al., 2022). 
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The chloride mass balance (CMB) method is one method that provides the opportunity for detailed studies of diffuse 

groundwater recharge rates, given the wide availability of groundwater chloride concentration measurements. The CMB 

method is also the most widely used recharge estimation technique globally (Moeck et al., 2020), in semi-arid and arid regions 65 

(Scanlon et al., 2006), and in Australia (e.g., Crosbie and Rachakonda, 2021; Crosbie et al., 2018, 2010a, b; Petheram et al., 

2002). The CMB method provides long-term estimates of diffuse recharge over the timescale required for chloride to 

accumulate in the subsurface, which ranges from years to decades in temperate settings (Cartwright et al., 2020), and up to 

thousands of years in semi-arid and arid areas (Scanlon et al., 2002, 2006). Spatially, the CMB method estimates diffuse 

recharge over the areas upgradient from the measurement location, ranging from a few hundred metres to several kilometres 70 

(Scanlon et al., 2002). The generation of chloride deposition maps (e.g., Davies and Crosbie, 2018; Wilkins et al., 2022) have 

allowed for the large-scale (regional) use of the CMB method (e.g., Crosbie et al., 2018). Irvine and Cartwright (2022) utilised 

the chloride deposition maps from Davies and Crosbie (2018) to automate the application of the CMB method in Python. 

Automating the application of the CMB method provides opportunities for large datasets of recharge to be efficiently generated 

from chloride measurements. 75 

This study utilises recently developed chloride deposition maps from Wilkins et al. (2022) and approaches to automate analyses 

to estimate long-term diffuse groundwater recharge rates based on the CMB method across the Australian continent. We collate 

a large dataset of groundwater chloride and associated spatial datasets to facilitate the recharge estimates. We utilise these 

datasets and the random forest algorithm to develop a regression model for long-term diffuse groundwater recharge rate 

estimation for the Australian continent. Using the model, we explore the control of environmental variables on groundwater 80 

recharge rates, quantify the uncertainty in recharge rate predictions and produce point datasets and high-resolution gridded 

maps of diffuse recharge for Australia. 

2 Methods 

2.1 Collation of groundwater chloride dataset 

Groundwater chloride measurements were collated from the following sources: the Geoscience Australia Portal (Geoscience 85 

Australia, 2022); the CSIRO Hydrogeochemical Mapping of the Australian Continent series dataset (Gray et al., 2019; Gray 

and Bardwell, 2016a, b, c, d, e, f; Henne and Reid, 2021); a dataset collated for the state of South Australia (Broad, 2020); 

Visualising Victoria’s Groundwater (FedUni, 2022); and a Northern Territory Government isotope dataset (Tickell, pers. 

Comm., 12 April 2022). The preliminary collated dataset contained a total of 226,954 chloride measurements (including bores 

with time series data and duplicate values). A breakdown of the individual counts of each dataset compiled is provided in 90 

Table S1 of the supporting information. 

Bore log information was downloaded from the Australian Groundwater Explorer (Bureau of Meteorology, 2022c) to provide 

location, bore hole depths, drilled depths, and screened interval depths. The depth assigned for each chloride measurement was 
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applied in the following order of preference: screen mid-point depth, sample depth, bore depth, and hole depth. Measurements 

with no depth information were removed from the analyses. 95 

Several preliminary measures were undertaken for quality assurance of the chloride data. All measurements without a latitude 

and longitude were removed. Chloride measurements that were reported below the analytical detection limit (i.e., <1 mg L-1) 

were removed from the dataset. All duplicates with matching bore identifiers, latitude, and longitude (in decimal degrees), 

sample date, and chloride concentration were presented as a single measurement, resulting in 192,300 measurements. 

Measurements without a sample date were retained because excluding them would remove 99.8 % of measurements from the 100 

state of Western Australia (n = 19,967). 

Bores with repeat measurements from different sample dates were represented as the mean of the time series, producing a final 

dataset with 115,630 bores each with a single chloride value for the analyses. Due to the size of the dataset, analysis of charge 

balance errors was not undertaken in this study. The final chloride dataset is provided as a downloadable electronic data file 

in the supporting information. 105 

2.2 Collation of spatial datasets 

To investigate factors that influence groundwater recharge, we identified 17 different spatial datasets – 16 of which are 

available as gridded mapsgridded datasets (Table 1Table 1). These variables were chosen based on their use in previous global 

groundwater recharge studies (e.g., Mohan et al., 2018; Moeck et al., 2020) or in regional scale to continental-scale recharge 

studies in Australia (e.g., Crosbie et al., 2010a; Leaney et al., 2011). All analyses in our study utilise the native resolution of 110 

the datasets shown in Table 1Table 1. 

 

Table 1. Spatial datasets of factors that are known to influence groundwater recharge. Variables are grouped into climatological-related, 

surface process and hydrogeological-related, geomorphologicalsoil properties-related, and vegetation-related datasets. AHD denotes the 

Australian Height Datum. 115 

Variable (symbol) Unit Resolution Description Reference 

Climatological     

Precipitation (P) mm y-1 0.05° × 0.05° The mean annual P, PET and 

aridity index were calculated 

by averaging data from 21 

overlapping decadal periods 

spanning from 1911 to 2020. 

Bureau of Meteorology 

(Bureau of 

Meteorology, 2023b) 

Potential 

evapotranspiration (PET) 

mm y-1 0.05° × 0.05° Bureau of Meteorology 

(Bureau of 

Meteorology, 2022d) 

Aridity index (P/PET) - 0.05° × 0.05° Bureau of Meteorology 

(Bureau of 
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Meteorology, 2023b; 

Bureau of Meteorology, 

2022d) 

Köppen Geiger 

classification 

- 0.0833° × 0.0833° Climate classification for the 

present-day, from 1980 to 

2016. 

Beck et al. (2018) 

Rainfall seasonality (all 

zones) 

- 0.25° × 0.25° Based on median annual 

rainfall and seasonal 

incidence from 1900 to 1999. 

Bureau of Meteorology 

(Bureau of 

Meteorology, 2022a) 

Surface processes and 

hydrogeological 

    

Ground elevation m AHD 0.0008° × 0.0008° Geoscience Australia SRTM 

3 sec DEM version 1. 

Gallant et al. (2009) 

Depth to water table m 0.008° × 0.008° Output of global numerical 

groundwater model. Mean 

simulated water table depth. 

Fan et al. (2013) 

Regolith depth m 0.0008° × 0.0008° Soil and landscape grid 

national soil attribute maps – 

depth of regolith (3 arc sec 

resolution) version 6. 

Wilford et al. (2018) 

Slope % 0.0008° × 0.0008° CSIRO data published in 

2016. Slope derived from 1 

sec SRTM DEM-S version 4. 

Gallant and Austin 

(2012) 

Distance to coast km - Not a national gridded 

dataset. Calculated using 

GEODATA Coast 100K 2004 

coastline and the Distance 

Matrix tool in QGIS. 

Geoscience Australia 

(2004) 

Geology - 0.001° × 0.001° Surface Geology of Australia 

1:1M scale categorised into 

simpler groups. 

Raymond et al. (2012) 

GeomorphologicalSoil 

properties 
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Sand fraction % 0.0008° × 0.0008° CSIRO data published in 

2022 as release 1 version 6 

(sand and silt) and release 2 

version 4 (clay). 100 to 200 

cm interval. 

Malone and Searle 

(2022b) 

Silt fraction % 0.0008° × 0.0008° Malone and Searle 

(2022c) 

Clay fraction % 0.0008° × 0.0008° Malone and Searle 

(2022a) 

Australian Soil 

Classification 

- 0.0025° × 0.0025° Australian Soil Resource 

Information System 

Australian Soil Classification. 

CSIRO (CSIRO, 2023) 

Vegetation related     

NDVI - 0.05° × 0.05° Indicator of vegetation 

greenness. Values presented 

as the mean of the 3-monthly 

averages from July 1992 to 

January 2019. 

Bureau of Meteorology 

(Bureau of 

Meteorology, 2022e) 

Vegetation class (major) - 0.0009° × 0.0009° Present (extant) major 

vegetation groups from the 

National Vegetation 

Information System. 

Categorised based on Eamus 

et al. (2016). 

Department of Climate 

Change, Energy, the 

Environment and Water 

(Department of Climate 

Change, Energy, the 

Environment and 

Water, 2022) 

 

The decadal rainfall maps from the Bureau of Meteorology (2023b) were chosen over the Australian Water Outlook 

precipitation data (Bureau of Meteorology, 2022d) used in the Australian Water Resources Assessment Landscape (AWRA-

L) model (Frost and Shokri, 2021), due to missing and unreliable data in the Australian Water Outlook dataset for a large area 

of north-central Western Australia and other smaller areas in South Australia and Northern Territory. Non-gridded spatial data 120 

were also used, including the Australian coastline (Geoscience Australia, 2004; for the purposes of approximating the distance 

from bore holes to the coast; Table 1) and a halite deposit dataset of Australia (Feitz et al., 2019). 

Spatial maps of the variables from Table 1 and the halite deposit are provided as Figure S1 in the supporting information. 

To assist with later assessments, all gridded spatial data collated in Sect. 2.2 (Table 1Table 1) were appended to the recharge 

output produced later in Sect. 2.3. The Point Sampling Tool in QGIS was used to extract the corresponding value from the 125 

raster pixel in which the groundwater recharge rate derived from CMB is located. The Distance Matrix tool in QGIS was used 
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to measure the nearest distance to the Australian coastline. Some groundwater recharge rates were located outside of the extents 

of some gridded spatial data. 

To produce a continental scale recharge estimator, all spatial resolutions were converted to a 0.05-degree grid. For conversion, 

the GDAL Warp (reproject) tool in QGIS was used, utilising the average resampling method. The average resampling method 130 

was chosen as opposed to one of the more commonly used methods that take the value or aggregation of a limited number of 

nearest pixels (e.g., nearest neighbour, bilinear interpolation or cubic convolution). The average method considers all pixels 

that contribute to the output pixel in its calculation, preserving the overall statistical characteristics of the data, while producing 

a smooth output (similar to cubic convolution), and covering areas of the coastline that were not observed when using other 

resampling methods. 135 

2.3 Chloride Mass Balance analysis 

The CMB method produces estimates of long-term groundwater recharge by comparing groundwater (or soil water) chloride 

concentration to that measured in rainfall (and dry deposition), provided various assumptions are met (Wood, 1999; Leaney et 

al., 2011). The method assumes that chloride acts conservatively, is solely sourced from precipitation, and that groundwater 

has returned to steady-state conditions following any land-use changes (e.g., vegetation clearing; Leaney et al., 2011). 140 

Following Davies and Crosbie (2018), recharge (R, mm y-1) from the CMB method can be calculated using Eq. 1: 

𝑅 =
100𝐷

Clgw
 ,            (1) 

where D is the chloride deposition rate due to rainfall (kg ha-1 y-1), Clgw is the chloride concentration in groundwater (mg L-1), 

and a multiplier of 100 is applied for unit conversion. 

While Eq. 1. assumes that no chloride is exported laterally, the input/output of chloride through runoff or run-on can be 145 

accounted for by modifying Eq. 1 (e.g., Crosbie et al., 2018). Accounting for lateral export of chloride can be especially 

important in upland areas with steep topography and high rainfall (Leaney et al., 2011). The uncertainty associated with run-

on is suggested to be negligible (e.g., Crosbie et al., 2018), while the uncertainty associated with chloride concentration in 

runoff is small compared to that of chloride deposition (Leaney et al., 2011). However, due to the large number of bores, and 

the continental scale of this study where a range of landscapes may be covered, runoff was accounted for to address this 150 

uncertainty. Following Crosbie et al. (2018) and Crosbie and Rachakonda (2021), the modified Eq. 2 can be used: 

𝑅 =
100 𝐷(1−𝛼∙𝑅𝐶)

Clgw
 ,            (2) 

where RC (-) is the runoff coefficient determined by dividing the long-term average annual runoff by the long-term average 

annual precipitation, and α is a scalar. 

In this study, we used a modified version of the Chloride Mass Balance Estimator for Australian Recharge (CMBEAR; Irvine 155 

and Cartwright, 2022). The modified version of CMBEAR utilises the Australian gridded dataset of chloride deposition (i.e., 
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Wilkins et al., 2022) to automate recharge estimation using the CMB method. The modified version also applies Eq. 2, where 

the previous version applied Eq. 1. In this updated version of CMBEAR, when applying Eq. 2 uncertainty for each input 

variable is quantified using a stochastic approach adopted from Crosbie et al. (2018). 

Out of 115,630 bores in our dataset, 79 % only had one groundwater chloride measurement available. To estimate an 160 

uncertainty in groundwater chloride, bores with more than 10 measurements (n = 1,516) were used to calculate a mean 

coefficient of variation (CVμ). As per Crosbie et al. (2018), the coefficient of variation was calculated for each bore, with the 

resulting CVμ being the mean of these values. The CVμ of 0.37 was multiplied by the mean chloride value (Clgwμ) for each 

bore in our dataset to estimate the standard deviation (Clgwσ). The Clgwμ and Clgwσ were then used to generate normal 

distributions for each bore. A normal distribution was adopted because 52 % of bores with more than 10 measurements passed 165 

a normality test (p-value >0.05). The approach to use the CV, rather than a standard deviation directly was made since the CV 

scales with the mean chloride value, whereas applying the same standard deviation to all values could be problematic for small 

values (i.e., values becoming negative). 

For each bore, the mean, standard deviation, and skew of the chloride deposition (Dμ, Dσ and Dskew, respectively) were 

extracted from the chloride deposition map from Wilkins et al. (2022) from the pixel in which the bore was located and used 170 

to generate a Pearson Type III distribution, following the description from Wilkins et al. (2022). 

While the RC extracted from the location of the bore is held constant, this value is scaled down by the α value (Eq. 2) which 

is sampled from a uniform distribution between 0.33 and 0.66. This scaling approach is adopted from Crosbie et al. (2018) to 

deal with uncertainty in the proportion of baseflow contributing to runoff, and the below average chloride concentration in 

high intensity rainfall events that typically generates runoff. Long-term annual runoff was calculated by averaging annual 175 

runoff data from 21 overlapping decadal periods spanning from 1911 to 2020 (Bureau of Meteorology, 2023b). As this runoff 

data was an output from the AWRA-L model (Frost and Shokri, 2021) and reliant on precipitation inputs which contained 

missing and unreliable values (see Sect. 2.2), the runoff data was therefore unreliable in certain areas. The problematic areas 

were identified as those with long-term annual precipitation <100 mm y-1 (Bureau of Meteorology, 2022d). A mask for the RC 

dataset was created using these areas and used to convert all RC values in problematic areas to 0.0018 (the minimum RC 180 

calculated for an adjacent rectangular area covering similar latitudes compared to the problematic areas, from -29.5 to -20.5 

degrees, and longitudes from 133.0 to 136.0 degrees). Long-term average annual precipitation was calculated from decadal 

rainfall maps (Bureau of Meteorology, 2023b) as mentioned in Table 1. While further investigation into the range and 

distribution type for the α value could be conducted, the range used has been used across multiple climate zones (e.g., Crosbie 

et al., 2018; Crosbie and Rachakonda, 2021; Crosbie et al., 2022). 185 

A probability distribution was created for each bore by calculating recharge (R) 1,000 times using the 1,000 sampled replicates 

from the distributions of Clgw, D and α. To quantify the uncertainty in recharge estimates, theThe median recharge (R50), 95th 

percentile recharge (R95) and 5th percentile recharge (R5) values were calculated from each probability distribution and 

provided as outputs for each bore. The median was chosen as it is unaffected by extreme outliers as is with the arithmetic 

mean. 190 
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2.4 Data filtering  

The assessment of the suitability of input data for the application of the CMB method is a vital step to ensure that the 

assumptions of the method are met (Irvine and Cartwright, 2022). In our study, this assessment (hereafter referred to as data 

filtering process) involved six steps that were performed after obtaining the recharge estimates. 

The data filtering process removed recharge estimates where the following conditions likely invalidate the CMB method, or 195 

where unrealistic recharge estimates were produced using the following steps:  

(1) bores where the screen mid-point is ≥150 m below ground surface (bgs) which are unlikely to be in an unconfined 

aquifer (e.g., Crosbie and Rachakonda, 2021; Crosbie et al., 2022);  

(2) bores with mean chloride concentrations <2 mg L-1 are unlikely to be representative of groundwater where poor bore 

construction allows rain water to rapidly reach the well screen (e.g., Crosbie and Rachakonda, 2021; Crosbie et al., 200 

2022);  

(3) bores with both mean chloride concentration ≥2,000 mg L-1 and where depth to the water table ≤1 m bgs are likely to 

be in or downstream of discharge areas (criteria modified from Crosbie and Rachakonda (2021) and Crosbie et al. 

(2022));  

(4) bores located within the known area of the Amadeus Basin halite deposit which could be a potential additional source 205 

of chloride;  

(5) bores that are located <1 km from the coast may contain additional chloride from marine sources, and are in coastal 

areas prone to large chloride deposition variability and uncertainty;  

(6) cases where estimated recharge equals or exceeds mean annual rainfall were also removed (e.g., West et al., 2023).  

The outcomes of the data filtering process are provided both in Sect. 3.2 and in more detail in the supporting information. 210 

2.5 Random forest analyses 

Random forest analyses have been utilised for a wide range of applications in hydrogeological studies, including predictive 

modelling of groundwater pollutants (e.g., Rodriguez-Galiano et al., 2014; Ouedraogo et al., 2019), source aquifer attribution 

of hydrogeochemical samples (e.g., Baudron et al., 2013), modelling groundwater levels (e.g., Koch et al., 2019), modelling 

groundwater potential (e.g., Rahmati et al., 2016), and predicting groundwater recharge (e.g., Sihag et al., 2020; West et al., 215 

2023). In this study, we implemented the random forest regressor from the Scikit-learn Python library (Pedregosa et al., 2011) 

to develop groundwater recharge prediction models. 

Our dataset comprised groundwater recharge as the target variable and 17 influential factors (i.e., spatial variables from Table 

1Table 1). These factors were utilised for feature importance analyses and to produce a model to predict recharge. The random 

forest feature importance provides insight into how each input variable contributes to the predictive performance of the random 220 

forest model. The feature importance for a variable is generated according to the mean decrease in variance produced by 

including that variable at a split in the decision tree. 
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Three models were produced, using R50, R95, and R5 long-term annual recharge produced from the CMB analysis. The dataset 

was split into a randomly selected training subset (70 %) and validation subset (remaining 30 %) following typical practicethe 

train test split procedure (e.g., West et al., 2023; Sihag et al., 2020; Rahmati et al., 2016). Each tree in the random forest model 225 

(the model) was trained on n randomly selected observations, with replacement (i.e., bootstrapping) from the training subset, 

where n is equal to the total number of observations in the training subset. The observations chosen to train the model are 

referred to as ‘in-the-bag’ samples whereas those not chosen are known as ‘out-of-bag’ samples (Cutler et al., 2012). The 

random forest algorithm introduces further randomness at each split in a tree by random selection of a subset of the total 

number of input variables (Pedregosa et al., 2011). Once a model was trained, external validation was conducted by making 230 

predictions using the reserved validation subset. The locations of bores used in the training and validation datasets are provided 

in Figure S3 of the supporting information. 

Multiple models were produced using R50 as the target variable, and various combinations of the 17 input features to determine 

the impact of the choice of input features on model performance. The grid search with cross validation method was used to 

determine the best values to use for hyperparameters including maximum depth, maximum features, minimum samples in a 235 

leaf, and minimum samples per split (Pedregosa et al., 2011). No limit was set for maximum leaf nodes as per the default 

random forest regressor settings from the Scikit-learn Python library (Pedregosa et al., 2011). Each model was run using 50, 

100, 150, 200, 250, 300, 350, and 400 trees. The performance of a model was assessed through goodness-of-fit using the 

training score, i.e., the Pearson R2 value obtained from comparing the point recharge training data value versus modelled 

recharge value.  240 

An external validation of the model was performed by running predictions on the 30 % of data that was reserved for testing 

the model. A test score (R2) was obtained through comparing point versus modelled recharge. An internal validation of the 

model was performed by running predictions for the ‘out-of-bag’ samples in trees for which those samples were not used for 

training. An ‘out-of-bag’ prediction score (R2) was obtained. The model with the highest test score was further evaluated 

through its training score to assess whether the model was ‘over-fitting’. Hyperparameters were adjusted accordingly to reduce 245 

the difference between the training score and test score to limit over-fitting. The optimal number of trees to use in the model 

was determined as the point when increasing the number of trees did not increase the ‘out-of-bag’ score. Cross-validation was 

also conducted on the training subset through a k-fold test with 10 folds to ensure the model was not biased by data selection.  

The feature importance tool was used to determine the relative importance of each input feature in our random forest model. 

Finally, three gridded recharge maps (R5, R50 and R95) were produced using the optimal combination of spatial variables and 250 

trees as initially explored using R50. 
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3 Results 

3.1 Distribution of chloride measurements 

The Clgw data collated in this study and its distribution are shown in Figure 1Figure 1. Clgw varies widely across the Australian 

continent, ranging from 1 mg L-1 to >200,000 mg L-1 (Figure 1Figure 1a). Moderate to high Clgw concentrations predominantly 255 

occur in inland Australia. High Clgw concentrations are particularly prominent in southern Australia, in areas including the 

Murray Darling Basin near the South Australia-Victoria-New South Wales junction where dryland salinity issues have been 

reported (e.g., Cartwright et al., 2007). Other Clgw hotspots such as in southern Western Australia correspond with where salt 

lakes exist (e.g., Bowen and Benison, 2009). As expected, the lowest Clgw concentrations are mainly located in the monsoon-

influenced tropical north of Australia and along much of the temperate east coast of Australia where rainfall is typically high 260 

(>1,000 mm y-1; Figure 1Figure 1a). 

 

Figure 1. Spatial distribution of groundwater chloride (Clgw) shown as (a) locations and concentrations of Clgw, with Australian states and 

territories marked as NT (Northern Territory), Qld (Queensland), NSW (New South Wales), Vic (Victoria), Tas (Tasmania), SA (South 

Australia) and WA (Western Australia); (b) box plots showing the depth distribution of Clgw. Box plots were binned by 150 m depth intervals 265 
except for the last box which contains Clgw measurements sampled from a depth of >1,050 m. The blue box corresponds to the data used for 

recharge estimation. The upper and lower extents of the boxes represent the 75th and 25th percentiles of Clgw, respectively. The upper and 

lower whiskers represent the 95th and 5th percentiles of Clgw, respectively. The medians are shown as black lines and outliers are shown as 

hollow black circles; (c) cumulative distribution function (CDF) of Clgw for shallow wells (depth of sample from 0–150 m) and deep wells 

(>150 m). 270 

Figure 1Figure 1b shows the variation of chloride with depth. Most of the data are within 150 m of the ground surface (n = 

171,681; median Clgw: 250 mg L-1). The median Clgw decreases with depth between 0 and 900 m, followed by an increase 

between 1,050 and 3,902 m. This notably contrasts with other regions in the world (e.g., Ferguson et al., 2023) due to 

Australia’s unique climatic and geologic conditions (see Figure S2 in supporting information for more details). 



12 

 

The cumulative distribution function (CDF) plot (Figure 1c) shows the difference in Clgw distribution between shallow (<150 275 

m) and deep (>150 m) bores in Australia, with the shallow bores spanning a much wider range of Clgw values compared to 

deeper bores. The CDF plot also highlights the proportionally lower number of low Clgw values (47 % of deep bores have Clgw 

<100 mg L-1) and a lower median value of deeper bores (median Clgw = 110 mg L-1) compared to shallow bores (30 % of 

shallow bores have Clgw <100 mg L-1; median Clgw = 250 mg L-1). 

3.2 Recharge estimates and data filtering 280 

Figure 2 shows the data filtering process applied to remove values that do not meet the assumptions required to apply the CMB 

method. It is important to note that the same bores that were excluded for R50 during each step of the data filtering process 

(Figure 2Figure 2) were also excluded for R5 and R95. The recharge dataset prior to data filtering is provided as an electronic 

data file in the supporting information. 
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 285 

Figure 2. Data filtering process showing all data (a) and the groundwater recharge rate (R; mm y-1) estimates that were included at each 

step with statistics for R50 (mean, standard deviation and number of measurements remaining) and box plots for R50 binned by P at 200 

mm y-1 intervals (except the >1,600 mm y-1 bin). The upper and lower extents of the boxes represent the 75th and 25th percentiles of R50, 
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respectively. The upper and lower whiskers represent the 95th and 5th percentiles of R50, respectively. The medians are shown as orange 

lines and outliers are shown as hollow black circles. The remaining number of measurements at each step is shown above the box plot. The 290 
maps on the right show the location of data, the number of measurements removed, and cumulative number of measurements removed at 

each step. 

The boxplots in Figure 2 present the R50 distribution binned by P in 200 mm y-1 intervals (except the >1,600 mm y-1 bin) at 

each step after data filtering. P ranged from 109 mm y-1 to 4,231 mm y-1. The 600–800 mm y-1 bin contained the greatest 

number of R50 values (~33 %), followed by the 400–600 mm y-1 bin (~21 %). Throughout the data filtering process, each bin 295 

was affected in different ways. R50 values in the 400–600 mm y-1 bin had the highest number of exclusions (n = 5,460 between 

Figure 2a and 2g). While the number of exclusions from the 0–200 mm y-1 bin was low (n = 422), as a percentage this was a 

substantial cut of ~20 % to the recharge estimates within this P range. 

A map visualising the spatial locations of data being removed is shown for each step of the data filtering process in Figure 

2Figure 2 (Figure 2, right column). While clear spatial trends could be inferred for data removed in step 1 where deep bores 300 

were removed from the dataset (e.g., mostly bores in the Great Artesian Basin), step 4 where known halite deposits were 

removed (e.g., Amadeus Basin halite deposit) and step 5 where bores near the coast were removed, without detailed analyses, 

no obvious factors could be identified from most of the other steps. A visual assessment shows that bores that were removed 

in step 3 broadly align with areas likely to contain areas of high hazard or risk of dryland salinity (National Land and Water 

Resources Audit, 2001). 305 

At the end of the data filtering process (Figure 2Figure 2g), ~12 % of the original dataset was removed, leaving 98,568 recharge 

values. Overall, the change in mean R50 (µR50) was minimal with ~2 % decrease from an initial µR50 of 44.3 mm y-1 to 43.5 

mm y-1. The largest change in µR50 between steps was in the depth filtering step (i.e., sample depth >150 m bgs), with a 7 % 

increase in µR50 (Figure 2Figure 2b). Removing sample depths more than 150 m bgs, is crucial because most of the deep bores 

are located within the Great Artesian Basin and similar deep confined aquifers. The recharge area of these deep systems is 310 

likely to be hundreds of kilometres away from the bore location, whereas our analyses assume recharge occurs within the 0.05° 

× 0.05° pixel from the chloride deposition map that contains the bore. 

It is important to note that while the overall µR50 did not change significantly at the end of the data filtering process, the 

standard deviation of R50 (σR50) decreased by ~ 40 %. The noticeable decrease in σR50 is the result of the exclusion of high 

recharge values generated from chloride concentrations <2 mg L-1 in step 2 (Figure 2Figure 2c), and recharge values with R/P 315 

>1 in step 6 (Figure 2Figure 2g). While step 6 (Figure 2Figure 2g) did not remove a significant number of R50 values (n = 

118), it is likely that many R50 values with R/P >1 had already been removed in previous steps of the data filtering process due 

to other factors. 

The resulting recharge estimates for R50, R95 and R5 are shown in Figure 3a, b and c, respectively. The mean values of recharge 

rates for R50, R95, and R5 are 43.5 mm y-1, 113.4 mm y-1, and 25.8 mm y-1, respectively. 320 
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Figure 3. Groundwater recharge rates (R; mm y-1) estimated using CMB from 98,568 bores. Maps show: (a) median recharge (R50), (b) 95th 

percentile recharge (R95) and (c) 5th percentile recharge (R5) rates. 

As expected, high recharge rates are mostly located in areas with high precipitation, i.e., in the tropical north, along the east 

coast, and in north-western Tasmania (see Figure 3Figure 3 and rainfall map in Figure S1a of the supporting information), 325 

while low recharge rates are mostly located inland from the coast. However, there is variability in recharge rates, spanning 1–

3 orders of magnitude in inland areas that cannot be explained by rainfall variability alone. 

The majority of R50 values in our dataset are either low or moderate, between 1–10 mm y-1 (35 %) or 10–100 mm y-1 (38 %), 

respectively. Extremely low R50 values (i.e., <1 mm y-1) constitute 16 % of the dataset, while high R50 values (i.e., 100–1,000 

mm y-1) constitute 11 % of the dataset. Only 0.01 % of R50 values are extremely high (i.e., >1,000 mm y-1). The point datasets 330 

of R50, R5 and R95 before and after the data filtering process are available as electronic data files in the supporting information. 

3.3 Random Forest models and feature importance 

To explore the effects of the selection of variables in the random forest analyses (Table 1Table 1), different variable groupings 

were investigated as input features to train different R50 random forest models. Table 2Table 2 outlines combinations of 

variables and their impact on various fit metrics, showing the highest R2 values, and lowest root mean square error (RMSE), 335 

mean absolute error (MAE), and the number of trees used. 

Table 2. Best results from random forest R50 models developed using different variable groupings, showing optimal number of trees in each 

forest, training score (R2) external validation test score (R2), root mean square error (RMSE), and mean absolute error (MAE), where 

P=precipitation, AI=aridity index, PET=potential evapotranspiration, KG=Köppen-Geiger, RS=rainfall seasonality, DTC=distance to coast, 

RD=regolith depth, WTD=water table depth, SP=slope percentage, E=elevation, G=geology, SC=soil class, CP=clay percentage, SiP=silt 340 
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percentage, SaP=sand percentage, NDVI=normalised difference vegetation index, VC=vegetation category. * Denotes the model selected 

for further analyses. 

Model / groupings No. of 

trees 

Training 

score R2 

Out-of-bag 

score R2 

External validation 

Test score 

R2 

RMSE 

(mm y-1) 

MAE 

(mm y-1) 

All variables 200 0.795 0.720 0.735 51.5 20.8 

Categorical grouping 

Climate (P, AI, PET, KG, RS) 150 0.718 0.688 0.705 54.4 22.9 

Surface/hydrogeological (DTC, RD, 

WTD, SP, E, G) 

250350 0.5490.621 0.4240.520 0.4290.528 75.768.8 35.631.9 

Geomorphological Soil properties (G, SC, 

CP, SiP, SaP) 

150250 0.5080.361 0.4700.328 0.4760.341 72.581.3 35.840.2 

Vegetation (NDVI, VC) 350 0.571 0.519 0.524 69.1 32.3 

Highest performing 4–8 variable grouping 

P, RS, PET, E 150 0.745 0.700 0.716 53.4 22.3 

P, RS, PET, E, DTC 300 0.758 0.707 0.720 53.0 21.9 

P, RS, PET, E, DTC, NDVI 250 0.756 0.708 0.724 52.6 21.8 

P, RS, PET, E, DTC, NDVI, CP 200 0.775 0.715 0.731 52.0 21.1 

P, RS, PET, E, DTC, NDVI, CP, SC* 250 0.772 0.716 0.732 51.9 21.1 

 

The results in Table 2Table 2 have also been influenced by the selection of optimal hyperparameters, such as the number of 

trees, maximum depth of trees, and maximum features. Aside from grouping variables categorically by climate, 345 

surface/hydrogeology, geomorphologysoil properties, and vegetation, various other groupings ranging from four variables to 

eight variables were also explored. Exploring fewer input variables allows us to assess whether a model trained on less 

variables could achieve similar model accuracy while being less computationally expensive. The strongest performing 4–8 

variable groups are shown in Table 2Table 2. The best performing 8-variable model trained with 250 trees achieves a training 

score R2 of 0.772, an external validation test score R2 of 0.732, RMSE of 51.9 mm y-1, and MAE of 21.1 mm y-1 which are 350 

similar to the all-variable model (Table 2Table 2). Model accuracy does not improve when a ninth variable (either regolith 

depth, water table depth, geology, sand percentage, slope percentage, vegetation class, Köppen-Geiger, aridity index or silt 

percentage) was added (see Table S2 of the supporting information); hence, the best performing 8-variable model was chosen. 
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 355 

Table 2Table 2 demonstrates the importance of the climatological variables, for example, producing an external validation test 

score R2 value of 0.705, similar to the maximum external validation test score obtained across all parameter combinations 

(0.735). The R50 random forest model selected for further analyses, (the best performing 8-variable model) consists of the 

variables precipitation (P), rainfall seasonality (RS), potential evapotranspiration (PET), elevation (E), distance to coast (DTC), 

normalised difference vegetation index (NDVI), clay percentage (CP), and soil class (SC) (bottom row, Table 2). This 360 

observation highlights that while the climatological variables are strong controls on recharge, other variables related to surface 

processes, hydrogeology, geomorphology soil properties and vegetation are also important. The vegetation model (containing 

variables NDVI and vegetation class) having the second highest score in the categorical groupings suggests that in Australia, 

vegetation could be a more important control on recharge compared to surface/hydrogeological and geomorphological soil 

properties variables. 365 

Out of the 8 input variables used in our best performing R50 random forest model, P, RS, PET, and NDVI are ranked highest 

as shown in the feature importance plot in Figure 4Figure 4. The feature importance plots for the R5 and R95 random forest 

models are provided in Figure S4 and S5 of the supporting information, respectively. For comparison, the feature importance 

plot for the R50 all-variable model is provided in Figure S6 of the supporting information.  

 370 

Figure 4. Mean feature importance through mean decrease in variance for the R50 best performing 8-variable model (250 trees). The features 

are grouped according to climatological, surface processes/hydrogeological, geomorphological soil properties and vegetation variable groups 

depicted in Table 1Table 1. 

The R50 random forest model achieved a training score of R2: 0.772, ‘out-of-bag’ score of R2: 0.716, external validation test 

score of R2: 0.732 and 10-fold cross validation R2: 0.715, with 200 250 trees in the random forest (Figure 5). The relatively 375 
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small difference between the training score and external validation test score indicates that our model is not over-fitting the 

training data. The similar R2 values across different model evaluation methods indicate that our model should perform 

relatively well with unseen data. Figure 5a shows that our model tends to overestimate lower recharge values and underestimate 

higher values.  

Figure 5b further demonstrates this point. For example, for CMB recharge values between 0.001 mm y-1 and 30 mm y-1, our 380 

model tends to overestimate recharge, while at moderate to higher recharge rates (i.e., >30 mm y-1) our model tends to 

underestimate recharge. At high to extremely high recharge rates (i.e., >470 mm y-1) our model only produces underestimates, 

which could be the result of underrepresentation of samples in extremely high recharge areas. The residuals at the higher end 

of recharge in Figure 5b may appear seemingly large, but the majority represent errors of less than 40 %. 

 385 

Figure 5. Model validation results for the selected R50 model trained using 250 trees, showing: (a) CMB recharge rate (R50) versus predicted 

recharge rate, showing 1:1 line, and point density, and (b) CMB recharge rate (R50) versus residuals (predicted recharge rate minus CMB 

recharge rate) and point density. 

Compared to the µR50 of 43.5 mm y-1 in Figure 2g, the RMSE of 51.9 mm y-1 from external validation of our model (Figure 

5a) might suggest relatively high variability and overall inaccuracy in model predictions. However, Figure 5a shows that most 390 

of the recharge rate estimates lie near the 1:1 line (as shown by the density of pixels in the colour map). When assessing only 

R50 <1 mm y-1 for the validation results (Figure 5), we obtain an RMSE of 12.4 mm y-1 or >1,000 %; however, percentage 

errors can be misleading when assessing errors of low values. This is similarly the case for R50 from 1–10 mm y-1 (RMSE: 

19.4 mm y-1), 10–100 mm y-1 (RMSE: 29.8 mm y-1), and 100–1,000 mm y-1 (RMSE: 140.7 mm y-1). Evaluating errors in 

different recharge ranges reveals that some errors are not as severe as they may appear. Model validation results for R5 and 395 

R95 recharge models are provided in Figure S7 of the supporting information. 
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The random forest generated groundwater recharge rate (R5, R50, R95) maps of Australia (utilising P, RS, PET, E, DTC, NDVI, 

CP, and SC) are shown in Figure 6Figure 6a, b and c. 

 

Figure 6. Gridded groundwater recharge rate map of Australia generated using the highest performing random forest model, shown as (a) 400 
median recharge rate (R50), (b) 95th percentile recharge rate (R95) and (c) 5th percentile recharge rate (R5) values, and gridded recharge ratio 

(R/P) map of Australia, shown as (d) R50/P, (e) R95/P and (f) R5/P. Gridded datasets are available for download, see Code and data availability. 

The CMB method provides recharge estimates that span the residence time of the groundwater (Crosbie et al., 2010a), hence 

the recharge outputs produced in Figure 6Figure 6 represent recharge that has occurred over the longer term (e.g., hundreds to 

thousands of years). The variability in modelled recharge is highest within the arid Köppen-Geiger zones, which cover almost 405 
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80 % of the Australian continent, with R50 ranging between ~0.03 and 278 mm y-1, and a mean of 6.3 mm y-1 (n pixels = 

220,947). In the temperate Köppen-Geiger zones, which cover almost 12 % of the Australian continent, R50 ranges between 

~0.6 and 522 mm y-1, with a mean of ~60 mm y-1 (n pixels = 33,177). In the tropical climates, which only cover 8 % of the 

Australian continent, R50 ranges between and ~2.6 and 621 mm y-1, with a mean of ~125 mm y-1 (n pixels = 22,897). As shown 

in Figure 6Figure 6b and c, uncertainties in recharge estimates can range by orders of magnitude, regardless of climate zone. 410 

For example, the town of Tully, Queensland (located in the Af tropical Köppen-Geiger zone with latitude: -17.934°, longitude: 

145.925°), has the highest average rainfall in Australia (>3,100 mm y-1) and the highest modelled R50 of ~621 mm y-1. However, 

the uncertainty ranges from 393 mm y-1 to 1,759 mm y-1. The town of Coober Pedy, South Australia (located in the BWh arid 

Köppen-Geiger zone with latitude: -29.012°, longitude: 134.753°), has one of the lowest average rainfalls in Australia (<150 

mm y-1), and a modelled R50 of ~0.38 mm y-1, with uncertainty ranging from 0.09 mm y-1 to 0.56 mm y-1. 415 

The proportion of rainfall that becomes recharge, represented by the recharge ratios (R5/P, R50/P, and R95/P) are shown as 

gridded maps in Figure 6Figure 6d, e and f, respectively. Like recharge, the variability in modelled R50/P is the highest in the 

arid Köppen-Geiger zones, ranging over 4 orders of magnitude, from ~0.0001 to 0.42 (mean: 0.02, n pixels = 220,947). In 

temperate and tropical climates, R50/P ranges are smaller, from ~0.002 to 0.36 (mean: 0.06, n pixels = 33,177) and ~0.003 to 

0.35 (mean: 0.11, n pixels = 22,897), respectively. The ranges in R/P reduce significantly when assessing the 5th and 95th 420 

percentiles (i.e., 90 % of the values are in the following ranges for arid, temperate and tropical zones: ~0.002–0.06, ~0.01–

0.15, and ~0.03–0.20, respectively). It should be noted that some values of R95/P exceed a value of one due to the data filtering 

process only focused on removing bores with R/P >1 from the R50 point recharge dataset. Therefore, both the R95 gridded 

recharge and point recharge datasets will contain some unrepresentative recharge values with R/P values more than one. 

However, the number of values equates to <0.01 % of pixels in the R95/P gridded map. 425 

Boxplots showing the distribution of modelled recharge values (R50, R5 and R95) and modelled recharge ratios (R5/P, R50/P, 

R95/P) categorised by arid, temperate and tropical Köppen-Geiger zones are shown as Figure S8 of the supporting information. 

The gridded maps of R50, R5 and R95 are available as electronic text files in the supporting information. 

4 Discussion 

4.1 Groundwater recharge rate predictors 430 

Clearly, precipitation has a strong control on groundwater recharge rates. While studies have found long-term average 

precipitation to be the key predictor of recharge (e.g., MacDonald et al., 2021; West et al., 2023), others have found other 

precipitation-related factors such as aridity index (e.g., Berghuijs et al., 2022) or seasonal rainfall (e.g., Fu et al., 2019) to be 

the most important. Some investigations highlighted the strong explanatory power of vegetation and soils in addition to 

climate-related variables (e.g., Petheram et al., 2002; Crosbie et al., 2010a; Mohan et al., 2018; Moeck et al., 2020). Our R50 435 

random forest model incorporated eight variables from climatological, surface processes/hydrogeological, geomorphological 

soil properties and vegetation categories. Using these eight variables in the feature importance analyses, our study revealed 
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that the top four most important variables influencing recharge in Australia were precipitation (P), rainfall seasonality (RS), 

potential evapotranspiration (PET), and NDVI (Figure 4). These four variables highlight the importance of climatic factors on 

the prediction of recharge, which agrees with other studies (e.g., Mohan et al., 2018; Berghuijs et al., 2022; West et al., 2023; 440 

Huang et al., 2023). Overall, the ranking of variables highlighted in our study is most aligned with the ranking of predictors in 

Mohan et al. (2018), who found precipitation, PET and land use (vegetation) to be the top three important factors controlling 

recharge globally. 

The aforementioned studies cover vastly different spatial scales, ranging from regional areas (e.g., Fu et al., 2019; Huang et 

al., 2023), the African continent (e.g., MacDonald et al., 2021; West et al., 2023), the Australian continent (e.g., Petheram et 445 

al., 2002; Crosbie et al., 2010a), to all continents (e.g., Mohan et al., 2018; Moeck et al., 2020; Berghuijs et al., 2022), and 

contain datasets with varying spatial distributions and resolutions. The spatial variability across these previous studies suggests 

that some studies can have a climatic bias, depending on the climates included in the study area. For example, the chloride 

data used in our study to produce recharge estimates was mainly biased towards temperate and arid Köppen-Geiger zones 

(comprising ~50 % and ~40 % of the recharge dataset, respectively) and less towards tropical (~10 % of recharge values). The 450 

similarities and differences in climate types and recharge estimation techniques may influence the ultimate ranking of 

important variables and be the reason for differences between studies. 

It is important to highlight that while feature importance analyses can provide insight into important variables, 

overinterpretation should be avoided. Ranking of features in the feature importance plot can be affected by the choice of 

hyperparameters such as maximum features (e.g., limiting maximum features to a subset will avoid over-selection of the most 455 

important feature, such as precipitation in our case, during training of the random forest model). Feature importance may be 

influenced by factors such as variable cardinality (i.e., tendency to score give higher importance to variables with many unique 

levels higher importance as they offer more opportunities for splitting the data; Strobl et al., 2007). Low cardinality of 

categorical features such as Köppen-Geiger, geology, soil class and vegetation class could be the reason for their relatively 

lower feature importance as shown in Figure S6 of the supporting information. Variables with lower importance can compete 460 

with more important variables, such that having more input variables does not necessarily improve performance of the model. 

Correlated variables can also out-compete each other, leading to unreliable feature importance rankings (Toloşi and Lengauer, 

2011). Some highly correlated variable pairs likely act as proxies for each other during the training process when the subset of 

features randomly selected only contains one of the variable pairs. Such is likely the reason for the climate group being most 

important in the all-variable model (Figure S6 of the supporting information). Similarly, the relationship between precipitation, 465 

distance to coast and elevation could explain why these variables also rank highly. 

4.2 Comparison of groundwater recharge rate estimates with previous studies 

The average groundwater recharge rate estimates produced for the Australian continent differs from those found in other 

studies, both for point recharge (Figure 3Figure 3) and the modelled recharge (Figure 6Figure 6). For example, the mean point 

recharge rate for the Australian studies collated by Crosbie et al. (2010a) was 257.2 mm y-1 (n = 4,360), compared to 43.5 mm 470 



22 

 

y-1 in our study (n = 98,568). Similar mean recharge values of 246.5 mm y-1 from Australian studies collated by Moeck et al. 

(2020; n = 4,579) and 244 mm y-1 from Berghuijs et al. (2022) were not surprising given that the data from Crosbie et al. 

(2010a) was used in both studies. The mean recharge rate for the Australian studies collated by Mohan et al. (2018) was much 

closer to our study at 46.2 mm y-1. This is likely due to the much smaller dataset of Mohan et al. (2018; n = 217) and limited 

spatial coverage – especially in tropical Northern Australia, compared to other studies. 475 

The higher mean recharge values of the point data reported in other studies that cover Australia (e.g., Crosbie et al., 2010a; 

Moeck et al., 2020; Berghuijs et al., 2022) compared to ours can be attributed to the difference in spatial distribution of recharge 

point estimates, and the different recharge estimation methods used. Several differences in the method are important, including: 

(1) 60 % of the estimates in Crosbie et al. (2010a) and Moeck et al. (2020) were from an earlier study (Crosbie et al., 

2009), which used a simpler CMB method and an older chloride deposition map to calculate recharge (see chloride 480 

deposition maps in Figure S9b of the supporting information). 

(2) Our method incorporates the most recent improved chloride deposition map with enhanced data and spatial coverage 

(Wilkins et al., 2022). 

(1) There are key differences in chloride deposition rates between the different chloride deposition maps, especially 

within 50 kilometres of the coastline, that can significantly affect the resulting recharge rate (see chloride deposition 485 

maps in Figure S9 of the supporting information).  

(3)  

(4) The mean of the 2,722 CMB recharge estimates from Crosbie et al. (2009) is 388 mm y-1. The mean of the 1,620 

estimates from Crosbie et al. (2010), which were estimated from 14 different methods (including 38 % from CMB, 

25 % from transient soil CMB, and 9 % from water table fluctuation), is 40 mm y-1. The estimates from Crosbie et al. 490 

(2009) are likely overestimates and were flagged by Crosbie et al. (2010a) to have very little quality control. 

(5) Our approach accounts for chloride lost to runoff in the calculationestimation of recharge, resulting in a reduction in 

our recharge rates compared to the simpler method used in Crosbie et al. (2009) which does not consider this factor. 

(6) Following the approach used by Crosbie et al. (2018) and Crosbie and Rachakonda (2021), our methodology is 

stochastic, performing 1,000 recharge calculations to generate a probability distribution. We present the median and 495 

an error range taken as the 5th and 95th percentiles of the distribution to provide a more robust interpretation of the 

results.compared to ours can be attributed to the spatial distribution of recharge point estimates, and the estimation of 

recharge values using different recharge estimation techniques (i.e., water table fluctuation method, water balance, 

CMB, and other tracers). 

The spatial distribution of the recharge estimates (in our study relative to previous investigations) is important because the 500 

climate at the location of the recharge estimate strongly influences the annual recharge rate (Moeck et al., 2020). Figure 7 

demonstrates this point by using theAustralian climate zones found in Australia that are classified from different aridity index 

values (i.e., in order of increasing aridity or decreasing recharge potential: humid, dry subhumid, semi-arid, arid, and hyper-

arid, based on United Nations Environment Programme, 1997). 
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 505 

Figure 7. Histograms and maps showing the difference in spatial distribution and proportion (%) of the point recharge dataset of (a, d) 

Crosbie et al. (2010a), (b, e) Moeck et al. (2020) and (c, f) our study that are located in various aridity classes (Hyper-arid, arid, semi-arid, 

dry-subhumid and humid; United Nations Environment Programme, 1997). The proportion (%) and mean recharge (mm y-1) are shown in 

the histograms above each bar. 

The proportion of recharge estimates from Crosbie et al. (2010a) and Moeck et al. (2020) located in dry subhumid and humid 510 

aridity classes is double that ofsignificantly higher than our dataset (Figure 7), with 46.43 % and 44.91 % for Crosbie et al. 

(2010a) and Moeck et al. (2020), respectively, compared to 22.01 % in our study. The mean recharge rates in Crosbie et al. 

(2010a) and Moeck et al. (2020) for each aridity category are all higher than our study – particularly dry subhumid and humid 

which are 3-4 times higher. The higher proportion of estimates in the dry subhumid and humid climate zones together with the 

significantly higher mean recharge rates in these climates, results in a higher overall mean recharge rate for the Crosbie et al. 515 

(2010a) and Moeck et al. (2020) datasets compared to our study. Further details including limitations oin the comparisons with 

Crosbie et al. (2010a) and Moeck et al. (2020) are provided in the supporting information. 
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 Studies that collated recharge estimates from other continents have also reported higher recharge rates than our point estimates. 

For example, MacDonald et al. (2021) reported median decadal point recharge estimates from compiled studies for different 

aridity zones in the African continent, with arid, semi-arid and humid areas equivalent to 6 mm y-1, 20 mm y-1, and 130 mm y-520 

1, respectively. Point estimates of recharge from our study had median values of 1.1 mm y-1, 8.0 mm y-1, and 45.8 mm y-1, for 

arid, semi-arid, and humid areas in Australia, respectively across these climate zones. This suggests that in the long term, 

aquifer systems in Australia are replenished on average at a rate 2–4 times lower than those in Africa. 

Regarding the methods used, the CMB method produces long-term average diffuse groundwater recharge rates that are lower, 

compared to other methods, including the water table fluctuation method, that estimate modern recharge. For example, methods 525 

such as the water table fluctuation method and tritium tend to estimate different recharge rates relative to those obtained via 

the CMB method, particularly in Australia, where modern recharge rates have increased due to large scale land clearing 

(Cartwright et al., 2007). Measurements using the water table fluctuation method will also be heavily influenced by focused 

recharge in areas where indirect recharge processes are dominant (e.g., leakage from ephemeral streams in arid regions; 

Cuthbert et al., 2016) as opposed to diffuse recharge measured by the CMB method. These observations likely highlight the 530 

importance of considering recharge estimation type in the collation and use of large datasets. For example, recharge studies 

that have compared recharge estimation techniques have found large differences across different methods (e.g., Cartwright et 

al., 2007; King et al., 2017; Walker et al., 2019; Cartwright et al., 2020). 

The mean modelled (R50) recharge rate from our gridded recharge rate map was 22.7 mm y-1, which is significantly lower than 

modelled global estimates. For example, Mohan et al. (2018) reported a long-term, global average recharge of 134 mm y-1, 535 

whereas Müller Schmied et al. (2021) reported a global mean diffuse recharge rate of 111 mm y-1. The significant difference 

between these modelled recharge values is likely due to the large proportion of arid and semi-arid areas in Australia. Our 

gridded map contains 278,253 pixels of which ~80 % are in an arid Köppen-Geiger climate (see Figure S911 in the supporting 

information), compared to ~26 % of the global land area that is classified as arid (Gaur and Squires, 2018). The mean modelled 

recharge for the Australian continent was not reported in either Mohan et al. (2018) or in Berghuijs et al. (2022). However, 540 

Berghuijs et al. (2022) highlight that their recharge estimates are higher than those presented in other global studies (e.g., Döll 

and Fiedler, 2008; de Graaf et al., 2015; Mohan et al., 2018; Müller Schmied et al., 2021), and are therefore, on average, likely 

to be higher than those presented here. We highlight that numerical outputs from these studies should be provided more 

routinely. Sharing these numerical outputs could facilitate further comparisons and produce more useful outputs for potential 

users. 545 

4.3 Limitations and implications 

In this study, the assumptions for estimating recharge using the CMB method were implemented through a data filtering 

process (Sect. 2.4), which was crucial to improving the reliability of inputs to our model. While we assume that erroneous 

recharge estimates have been removed during the data filtering process, some criteria that were assessed in other studies (e.g., 

Crosbie et al., 2022; Crosbie and Rachakonda, 2021) were not considered here due to the challenges of implementing them on 550 
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a continental scale. For example, excluding measurements from bores screened within alluvium (e.g., Crosbie et al., 2022), 

would require a thorough understanding of local conceptual models and hydrogeological processes (e.g., cross-aquifer 

interaction) and existing recharge processes (e.g., flooding). By not excluding bores located in alluvium, point and modelled 

recharge estimates for these bores can be underestimated if additional chloride not sourced directly from rainfall is present, for 

example, through the application of irrigation water or chloride-based fertilisers (e.g., potassium chloride). 555 

The tendency of our model to underestimate recharge where moderate to higher recharge rates (i.e., 30–1,000 mm y-1) were 

estimated from the CMB method, may be related to a skew in the distribution of our point recharge dataset towards lower 

recharge rates. The tendency for overestimation could be due to the aggregation of random forest leaf node values and tree 

predictions using the arithmetic mean which can be biased by large outlier values. 

Large areas (e.g., inland Western Australia) had no chloride data and hence, the modelled recharge for these areas can be 560 

subject to larger ranges of uncertainty. No geological dataset is available that provides detailed spatial information on the 

permeability of bedrockWe do not account for geology in our model; therefore, modelled recharge rates can be significantly 

overestimated in areas such as where low permeability bedrock outcrops at the surface and underestimated in areas where 

highly fractured bedrock exists. Similarly, we highlight that users should be aware of the range of uncertainty in the modelled 

recharge when using values from the analyses presented here. The same message was emphasized by Leaney et al. (2011) and 565 

Crosbie et al. (2010a) for the ‘method of last resort’. As is the case with all hydrogeological measurements and models, users 

of our modelled recharge rates should exercise expert judgement and determine whether the estimates are reliable and fit-for-

purpose. Preference should always be given to the collection of field data to constrain recharge estimates where possible. 

For groundwater practitioners in Australia, our study provides an extensive database of groundwater chloride measurements 

and rigorously interpreted groundwater recharge rate estimates at high spatial resolution that holds potential for further use for 570 

researchers and water resource managers. We present a more robust, stochastic recharge rate estimator, modified from 

CMBEAR (Irvine and Cartwright, 2022) to include the runoff coefficient term utilised in recent regional Australian studies 

(e.g., Crosbie et al., 2018; Crosbie and Rachakonda, 2021). Our study produced long-term recharge maps of the Australian 

continent. While Australian recharge maps have been produced previously (e.g., Leaney et al., 2011), this is the first time that 

a model of such scale has been developed on recharge estimates derived from only a single recharge estimation technique. 575 

Furthermore, by providing the Python code, point estimates and gridded map, we facilitate a transparent and reproducible 

workflow that enables the broader community to utilise our methodology or further improve the approach. 

5 Conclusions 

We produce a groundwater recharge rate dataset for Australia with high resolution based on the an improved chloride mass 

balance (CMB). This combines more than 200,000 compiled chloride measurements, existing chloride deposition maps, 17 580 

national spatial gridded datasets, and a rigorous groundwater recharge rate estimation workflow. We enhance an open-source 

python tool, CMBEAR and leverage existing methodologies (e.g., Crosbie et al., 2018) to provide an efficient, reproducible, 
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and transparent stochastic approach that can be applied to anywhere in Australia. This approach quantifies uncertainty by 

creating groundwater recharge rate probability distributions, providing the 5th and 95th percentiles of point recharge 

rategroundwater recharge rate estimates (R5 and R95) using distributions of groundwater chloride, runoff and chloride 585 

deposition. 

We utilise subsets of the CMB recharge datasets (R5, R50 and R95) to train and test three random forest regression models for 

the purpose of upscaling point recharge estimates and assessing relative importance of recharge predictors. We show that 

climate-related variables (i.e., precipitation, rainfall seasonality and PET) have the strongest control on the groundwater 

recharge rate, but vegetation (NDVI) is also important. Other geographic and geomorphologic soil properties variables ranked 590 

lower but are still relatively important. The importance of climate and vegetation as recharge predictors are generally aligned 

with global recharge studies. The use of only eight of the 17 variables demonstrates that similar prediction performance can 

be achieved with less variables, while reducing computation time and ensuring adequate performance on unseen data. 

We present a gridded map of groundwater recharge rate estimates and uncertainties that could be valuable where data required 

to estimate recharge rategroundwater recharge rates may be scarce or not available. Our groundwater recharge model utilises 595 

a data-driven approach based on a single recharge estimation technique to provide long-term recharge rategroundwater 

recharge rates. Our CMB-based recharge rategroundwater recharge rates are considerably lower than other studies including 

global water balance models (e.g., Döll and Fiedler, 2008; de Graaf et al., 2015; Müller Schmied et al., 2021). This is likely 

due to the fact that CMB operates on longer timescales that span the residence time of the groundwater (e.g., chloride can take 

between 4,000 and 40,000 years to accumulate in the Murray Basin, South Australia; Scanlon et al., 2006). Contrary to this, 600 

global water balance models estimate modern recharge (i.e., over the last century where climate and soil data are available). 

Recharge estimation methods operating over modern timescales tend to be impacted by land-use change. For example, Scanlon 

et al. (2006) demonstrate groundwater recharge both pre-and post-clearing in an Australian context, showing significant change 

(increase) in recharge. We emphasise that the appropriate recharge timescales (e.g., long-term, or modern) and mechanisms 

(e.g., diffuse or focused recharge) should be taken into consideration when collating recharge values produced from different 605 

techniques for the purpose of modelling recharge. We recommend that users exercise care and expert judgement when utilising 

the groundwater recharge rate estimates from these large-scale groundwater recharge models. 

By applying an improved version of the most widely used recharge estimation method (e.g., Moeck et al., 2020; Crosbie et al., 

2010b), we provide a robust approach to automate the estimation of long-term diffuse groundwater recharge rates 

including(with uncertaintyuncertainties). With chloride data being amongst the most common of groundwater analytes, there 610 

are significant opportunities to conduct similar analyses elsewhere. 

 

Code and data availability. The code and output data presented in this paper is available as supporting information from 

https://www.hydroshare.org/resource/088b1f35ee1b4c348a44a6cbad21250d/. Data presented in this paper has been visualised 

using scientific colour maps created by Crameri (2018). Gridded data inputs for the CMB recharge estimator Python code, 615 
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including precipitation, chloride deposition, runoff coefficient, PET and aridity index are provided with attribution in the 

supporting information. Other gridded and non-gridded datasets used here can be downloaded from the references provided. 
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