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Abstract

Long term observations of deep convective cloud (DCC) vertical velocity and mass flux were
collected during the GoAmazon2014/5 experiment. Precipitation echoes from a surveillance
weather radar near Manaus, Brazil are tracked to identify and evaluate the isolated DCC lifecycle
evolution during the dry and wet seasons. A Radar Wind Profiler (RWP) provides precipitation
and air motion profiles to estimate the vertical velocity, mass flux, and mass transport rates
within overpassing DCC cores as a function of the tracked cell lifecycle stage. The average radar
reflectivity factor (Z), DCC area (A), and surface rainfall rate (R) increased with DCC lifetime as
convective cells were developing, reached a peak as the cells matured, and decreased thereafter
as cells dissipated.

As the convective cells mature, cumulative DCC properties exhibit stronger updraft behaviors
with higher upward mass flux and transport rates above the melting layer (compared to initial
and later lifecycle stages). In comparison, developing DCCs have the lowest Z associated with
weak updrafts, and negative mass flux and transport rates above the melting layer. Over the DCC
lifetime, the height of the maximum downward mass flux decreased whereas the height of
maximum net mass flux increased. During the dry season, the tracked DCCs had higher Z,
propagation speed, and DCC area, and were more isolated spatially compared to the wet season.
Dry season DCCs exhibit higher Z, mass flux, and mass transport rate while developing whereas
wet season DCCs exhibit higher Z, mass flux, and mass transport rates at later stages.

1 Introduction

Despite recent improvements in parameterization schemes and model resolutions (Marinescu et
al., 2021; Prein et al., 2021; Wang et al., 2022), Earth system models do not represent aerosols,
convection, or convective updrafts accurately at their native resolutions (Tao and Moncrieff,
2009; Caldwell et al., 2021). These inaccuracies form the largest source of uncertainty in climate
sensitivity estimates (Meehl et al., 2020; Chen et al., 2021). Model biases and the difficulty in
evaluating model parameterizations arise from the disparity between model resolutions and
process scales (Del Genio et al., 2012; Prein et al., 2021; Ramos-Valle et al., 2023). Process-level
model evaluation is typically limited by the lack of long-term observations of convective cloud
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formation and organization (Bony et al., 2015). Observational datasets in regions like the Amazon
rainforest can be of particular importance as they represent convective systems tied to global
climate. The Amazon hosts 40% of the global rainforest area and its hydrometeorology is related
to the El Nifio Southern Oscillation and the Walker circulation (Marengo and Espinoza, 2015;
Marengo et al., 2018; Barichivich et al., 2018; Machado et al., 2018). The diurnal cycle of the local
convection is linked to surface topography and the local river network with regional variability
(dos Santos et al., 2014; Saraiva et al., 2016; Wu et al., 2021). The region exhibits thermodynamic
contrasts between the local dry and wet seasons (Horel et al., 1989; Giangrande et al., 2017;
2020). The Sixth Assessment Report from IPCC indicates the effects of climate change will further
enhance the seasonality of local precipitation over the Amazon rainforest (Chen et al., 2021;
Douville et al., 2021).

Deep convection is a crucial component of the Amazon climate as it generates most of the
regional precipitation and drives atmospheric circulations that redistribute moisture and energy
(Betts et al., 2009; Nobre et al., 2009). Human activities like deforestation and burning events
routinely influence the microphysical processes governing droplet nucleation and precipitation
formation, which affects local hydrology and atmospheric dynamics (Andreae et al., 2004;
Cecchini et al., 2016; Leite-Filho et al., 2019). Better understanding of the relative influence of
aerosols and atmospheric thermodynamics on deep convection intensity and kinematic
properties like updraft strength and mass flux is needed (Rosenfeld et al., 2008; Fan et al., 2018;
Grabowski and Morrison, 2020). To constrain these influences, model simulations of DCC
microphysical processes (e.g., Marinescu et al., 2021; Igel and van den Heever, 2021) must be
complemented by long-term measurements of updraft strength and mass flux (Varble, 2018;
Veals et al., 2022; Oktem et al., 2023). Weather and climate models continue to overestimate the
precipitation extremes, convective drafts, and vertical mass fluxes associated with Amazonian
DCCs (Wang et al., 2022; Ramos-Valle et al., 2023) despite the improvements in model grid
spacing (Prein et al., 2021; 2022). This motivates the need for fine scale observations of vertical
velocity and mass flux to understand how these properties evolve over the DCC lifetime.

Observations of the air motions within convective clouds under varying meteorological regimes
remains scarce due to the challenges associated with measuring updraft and downdraft size,
strength and mass flux in deeper cloud contexts. Historically, aircraft provided the most direct,
in-situ measurements of air motions within DCCs (e.g., LeMone and Zipser, 1980), but airborne
data have limited spatial coverage and cannot measure the entire cloud lifecycle of stronger
convective clouds due to safety and other practical flight/campaign considerations. While
satellite-based retrievals would be of benefit for global observations, few techniques are
currently available to adequately estimate profiles or proxy properties of vertical motions within
DCCs (e.g., Jeyaratnam et al., 20218). Ground-based observations of the air motions within
convective clouds can complement satellite _missions aiming to gquantify the vertical mass
transport in _convective storms, for example, the NASA Investigation of Convective Updrafts
(INCUS) mission (Stephens et al., 2020; van den Heever, 2022; Prasanth et al., 2023). Recently,
profiling radars such as ground-based Radar Wind Profilers (RWPs) or those radar on high-
altitude aircraft (Heymsfield et al., 2010) have provided viable measurements of vertical motion
and mass flux retrievals in DCCs with limited attenuation in rain (Williams et al., 1995; May and
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Rajopadhyaya, 1996; Protat and Williams, 2011; Giangrande et al., 2013; 2016; Tridon et al.,
2013). During the Observations and Modelling of the Green Ocean Amazon (GoAmazon2014/5)
field campaign (Martin et al.,, 2016, 2017), a 1,290 MHz RWP was located at a heavily
instrumented ground site near Manacapuru, Brazil (¥3/MAO). Over a 2-year period, the RWP
sampled DCCs of varying sizes and intensity (Wang et al., 2019; 2020) in regimes that resemble
both oceanic and continental meteorological conditions (Giangrande et al., 2017, 2020; Machado
et al., 2018; Wang et al., 2018). These RWP observations provide a long-term dataset of vertical
velocity measurements suited for retrievals of vertical mass flux and transport rate in various
meteorological regimes.

In this study, an open-source tracking algorithm (Heikenfeld et al.,, 2019) is applied to a
surveillance S-band radar dataset to identify and track precipitating DCCs. These tracking outputs
are co-located with RWP profiles of updraft and downdraft strength, and an associated estimate
for mass flux and transport rate. The RWP measurements spanning the Amazon wet and dry
seasons are classified into convective lifecycle stages to understand the temporal evolution of
isolated DCCs. Storm lifecycle tracking is applied to Centro Gestor e Operacional do Sistema de
Protecdo da Amazonia (SIPAM) S-band (10-cm wavelength) scanning radar data (Saraiva et al.,
2016), for a radar located 70 km east of MAO at the Ponta Pelada airport (3.15° S, 59.99° W). This
RWP and surveillance radar lifecycle perspective on coupled DCC dynamical and microphysical
variability is examined in conjunction with surface measurements and-sateliteretrievals-that
provide surface rainfall rates and thermodynamics,—+radar—echo—top—height—andbrightness
temperature{Ts} at different stages of the convection lifecycle. This forms a unique framework
to add new perspectives on the evolution of DCC dynamics over the DCC lifecycle.

2 Data and Methodology
2.1. Instrumentation and Data

The MAO site was located at 3.21° S, 60.59° W near Manacapuru, Brazil (Martin et al., 2017) with
an Atmospheric Radiation Measurement (ARM; Mather and Voyles, 2013) Climate Research
Mobile Facility (AMF; Miller et al., 2016) operated by the US Department of Energy. An ARM RWP
at MAO provided time-height profiles of vertical velocity (w) based on measurements of radar
reflectivity factor (Z) and Doppler velocity at 6 s temporal, 120 m vertical and approximately 1
km horizontal resolution, respectively. Details regarding the RWP retrievals are described by
Wang et al. (2019; 2020). The AMF at MAO also deployed instruments to measure meteorological
state variables. The 2-m temperature and relative humidity, and 1-m pressure were measured
every minute by the ARM Surface Meteorology System (Ritsche, 2011). Surface equivalent
potential temperature (6.) was calculated following Bolton (1980) using MetPy (May et al., 2022).
Surface rainfall rates (R) and additional radar Z calibration references were estimated based on
drop size distributions obtained from the ARM laser disdrometer value added product (Hardin
and Guy, 2014; Hardin et al., 2019).

The SIPAM radar has a beamwidth of 1.8° and performs two volumetric radar scans every 12
minutes. The first scan covers a domain of 240 km from the radar location with a gate resolution
of 500 m, azimuth resolution of 1°, and 17 elevation angles (0.9° to 19.5°). The second scan covers
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400 km with three elevation angles (0.9° to 3.7°). Given these radar configuration parameters,
Saraiva et al. (2016) limited the 3D representation of the radar data only up to 150 km from the
radar location and computed Constant Altitude Plan Position Indicators (CAPPI) for the 150 km
domain. In comparison, this study uses a stricter threshold of 100 km from the radar location.
The clutter-corrected SIPAM Z was gridded onto a 1 x 1 km grid for 2 km CAPPIs. The GOES-13
satellite (Hillger and Donald, 2007) was deployed as part of the National Oceanic and
Atmospheric Administration's Geostationary Operational Environmental Satellite system. The
radiance from GOES-13 channel 4 (10.7 um) was collected at 30 min temporal and 4 km

horizontal resolution (Hillger and Donald, 2007). Fhe-SiPAM-radarcompleted-volumetricscans

from geostationary satellites to track the evolution of deep convection (e.g., Machado et al.,
1998; Futyan and del Genio, 2007; Fiolleau and Roca, 2013; Mattos and Machado, 2011; Jones et
al., 2023). Geostationary satellites relate cloud-top properties of convective clouds to their

evolution. Forinstance, satellite data from the infrared channel can be used to infer vertical cloud
development based on a decrease in brightness temperatures and the cloud expansion rate
based on the divergence at upper levels. In comparison, radars can infer the content and
characteristics of hydrometeors and retrieve information about shallow precipitating clouds.
Radar-based studies can also associate the development and decay of the precipitating core with
the rate of mass flow and precipitation within the core. Previous studies have used radar data to
track the evolution of convective systems for decades, not only for operational nowcasting
purposes (Wilson et al., 1998, Keenan et al., 2003, Wilhelm et al., 2023), but also for studying
convective cloud processes (Rosenfeld, 1987; Wapler, 2017; Feng et al. 2022, Giangrande et al.,

2023).

Hewever—The SIPAM radar data were preferred for cell tracking in this study over data from
GOES-13, the satellite that sampled the study region during GoAmazon2014/5. This is because
the radar resolution (12 mins and 1 km) was finer than the GOES-13 infrared channel resolution
(30 mins and 4 km). The radar DCC tracking was conducted using an open-source Python-based
tracking algorithm called tobac (Tracking and Object-Based Analysis of Clouds; Heikenfeld et al.,
2019). tobac identifies objects based on user-defined thresholds to determine their shape and




160

165

170

175

180

185

190

195

size, and tracks their motion and temporal evolution. Given that less than 50 % of the cells
sampled for more than 36 mins were also sampled for more than 60 mins (Table 1), the use of
SIPAM radar data helped increase the study’s sample size. Observations with better spatial
resolution also improve the characterization of cloud processes as the profiles of vertical velocity
and convective mass flux can vary within 5 to 10 mins (Fig. S1 and S2).

The 2 km CAPPI data were used as input for tobac for tracking precipitating DCCs with SIPAM Z >
30 dBZ. A minimum threshold of 30 dBZ and the altitude of 2 km for the CAPPI data were chosen
following the visual inspection of the radar data which revealed ground clutter and artifacts at
lower altitudes and with reflectivity values up to 20 dBZ. The selection of 30 dBZ as the minimum
threshold also ensures the minimization of splits/mergers in our dataset (Leal et al., 2022). It is
important to note that the cell tracking outputs heavily depend on the temporal resolution of the
input data. Unfortunately, the SIPAM radar, being part of the Amazonian operational weather
radar network, uses a fixed temporal resolution of 12 minutes that could not be changed (Saraiva
et al., 2016). Ideally, a smaller repetition time would result in a more accurate description of the
convective processes. Nevertheless, this 12-minute temporal resolution is better than the
satellite alternative (30 minutes).

As defined by tobac, an object identified at one time step is referred to as a “feature”, and a
collection of features linked along a trajectory is what defines a “cell”. tobac allows users to select
multiple thresholds for feature identification. For this study, thresholds of 30, 40, 50, and 60 dBZ
were chosen.tebacusesmultiplethreshold 040,50 and-60dB Sfeaireldendticatien <
In an iterative process, contiguous regions satisfying a threshold were identified as features, and
existing features (satisfying a lower threshold) were replaced (Heikenfeld et al., 2019). By using
multiple thresholds, tobac can preserve the variability in Z within the domain and convective
systems, as a single threshold (e.g., 60 dBZ) may not be sufficient to identify convection in
developing stages, or may lump together distinct drafts within a multicellular system (e.g., 30
dBZ). The minimum threshold of 30 dBZ is used to minimize the inclusion of congestus clouds
observed by the RWP during GoAmazon2014/5 (Giangrande et al., 2017; Wang et al., 2018), or
areas of stratiform precipitation surrounding the convective core (Houze, 2004; Giangrande et
al., 2023; Leal et al., 2022). The minimum identification threshold of 30 dBZ was found to
minimize the proportion of tracked systems with mergers or splits in the Amazon to under 20 %
(Leal et al., 2022).

The position of the feature is determined by calculating the center of mass, with each point
weighted by the difference between local reflectivity and the identification threshold. Figure 1
shows an example of the gridded reflectivity field near MAO and reflectivity features identified
by tobac between 15:00 and 15:24 Z on June 22, 2014. Markers represent the position of each
feature with SIPAM Z > 30 dBZ and polygons surrounding these features represent their areal
extent based on the segmentation process.

The displacement of feature positions is used to calculate the propagation speed and direction,
excluding the last time step as further displacement cannot be determined. The feature area is
determined by a segmentation process that uses the water shedding tool from the scikit-image
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library (van der Walt et al., 2014). The input grid is treated like a topographic map, and an area
starting from the feature position is filled until a segmentation threshold of 30 dBZ is reached.

Feature tracking is performed by linking features to a connected trajectory using the trackpy
library (Allan et al., 2023). In each time step, the feature’s position in the previous radar scan is
located, and the feature is searched in the current scan within a range defined by the product of
the temporal resolution (12-min) and maximum propagation speed (20 m s!). The search range
is centered at a position predicted by trackpy based on the past trajectory of the feature. For new
features, the trajectory of the closest existing feature is used. Each cell is kept in memory for one
radar scan in case the cell disappears and reappears over consecutive scans. For this study, cell
tracking was conducted using tobac 1.3.3 following improvements in linking features along a cell
trajectory (Sokolowsky et al., 2023). The time step when a cell is first detected with SIPAM Z > 30
dBZ is defined as the time of deep convection or precipitation initiation. However, it is important
to note that the initial detection of SIPAM Z > 30 dBZ by the radar may not reflect the exact timing
of precipitation initiation. For each cell, thea nearest neighbor distance was determined by
locating the closest feature and measuring its distance from the cell’s position. With one value at
every time step, each cell has a range of nearest neighbor distance values over its lifetime.

2.3. Selection of tracked DCCs

This study evaluates convection characteristics including the w and mass flux at different lifecycle
stages of isolated DCCs. The DCC lifetime information from tobac is matched with RWP
measurements. Days when isolated DCCs were observed over MAO were selected for detailed
examination. Following Giangrande et al. (2023), data from 102 days within the SIPAM radar and
RWP datasets when isolated DCCs were observed near MAO are examined. Their methodology
required the SIPAM radar to sample a DCC for over 48 mins in the radar domain without an
obvious split/merger and without systems larger than 1000 km? which could represent mesoscale
convective systems or squall lines. Such days are defined as “ISO” days (Table S3%) and the
subsequent analyses focus on isolated DCCs observed on ISO days within 20 km of MAO at least
once over their lifetime. In Figure 1a and 1b, we highlight the cell tracks ard-the-distribution-of
cellpropagation-directionfor isolated DCCs from the wet (December to April) and dry season
(June to September). In Fig. 2, we show wind rose diagrams based on the propagation direction
of these cells and heatmaps from a 2D histogram of latitude and longitude pairings from the cell
tracks. -There were 498 GoAmazon2014/5 days with additional convection events (ACE) that
were at least 20 km away from MAO or included larger mesoscale convective systems (MCSs),
neither of which represent the focus of this study. Such days are defined as “ACE” days.

To identify any sampling biases associated with the selection of the ISO days, tracking statistics
from ISO days are compared with ACE days. The median value of the average, maximum, and
minimum nearest neighbor distance on ISO days was 10.5, 17.2, and 4.8 km, respectively. ISO
days had little distinction from ACE days with minor differences between the distributions of DCC
lifetime (Fig. 32a) and nearest neighbor distance (Fig. 32b). In addition, small variations were
seen between cells near MAO (Fig. 32 b, d) and cells across the entire radar domain (Fig. 3 2a, b).
These results indicate that in terms of the spatial distribution and temporal longevity of
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convection, DCCs sampled near MAO on ISO days did not have a bias relative to DCCs tracked
over the entire SIPAM radar domain or on ACE days.

On average, 694 cells were tracked per day on ISO days with an average of 4.3 features per cell.
Over 50% of the cells were observed for more than 36 minutes, while 20% of features were
observed for more than 60 minutes (Table 1). Cells with lifetime less than 36 minutes correspond
to less—than-three or fewer radar scans or feature designations. These short-lived cells with
lifetime less than 36 mins are removed from the analysis due to insufficient data to study
temporal trends in convection properties. The average DCC lifetime was approximately 70
minutes, which implies 6 to 7 radar volume scans having SIPAM Z > 30 dBZ for the same cell. The
radar-tracked DCCs are collocated with RWP data to classify the RWP observations into different
stages of convection lifecycle. The cells selected for data analysis are allowed a maximum
distance of 100 km from MAO to capture their evolution before or after they were sampled near
MAO. As a final check, we remove any cells with propagation speed below 0.5 m s! to avoid the
inclusion of ground clutter or radar artifacts.

Based on these criteria, 1,130 cells were identified. The bulk statistics and trends in convection
properties are examined for these cells. In certain instances, a radar scan had more than one
feature satisfying every criteria. For such cases, the feature closest to MAO was selected to assign
a lifecycle stage to the RWP data without ambiguity. This resulted in the selection of 2803
features (from 672 cells) with one feature representing each radar scan to assign a lifecycle stage
to the RWP data from the radar scan timestep. The RWP data are further screened in Section 2.5

i jiguity- This screening meant that only 31% of the DCCs and
12% of the features initially selected were used for the analysis of RWP data in Section 3. Table
1 lists the number of cells and features selected for data analysis along with their seasonal

distribution.

Interestingly, the area distributions of the tracked cells were skewed toward higher values by a
small number of large cells with area exceeding 500 km? for at least one feature during their
lifetime. When these outlier cell events are excluded, the skewness of the distributions decreases
from 11.4 to 3.1 (not shown). Cells with an area exceeding 500 km? may represent convective
systems with multiple updrafts or cores (i.e., Houze et al. 2015; Giangrande et al. 2020). Previous
studies have used the RWP measurements to evaluate the organized convective systems over
the Amazon rainforest (e.g., Wang et al., 2018; 2019). To complement these efforts, this study
focuses on cells with area < 500 km? while evaluating the profiles of kinematic properties across
different convection lifecycle stages. This does not affect the sample size as cells with area > 500
km? constitute less than 5% of the tracking dataset during the 1SO days.

2.4. Lifecycle Stages of DCCs

The trends in cell Z from the SIPAM radar for the tracked DCCs (Fig. 43a) are consistent with
established conceptual models for the lifecycle stages of deep convection (e.g., Byers and
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Braham, 1949). For satellite-based tracking of convection, Futyan and Del Genio (2007)
characterized the lifecycle stages of convection based on the strength and size of deep
convection. Once convection initiates, it expands werticalyvertically, and the system is
considered to be “developing”. This is followed by a period when the system reaches its
maximum vertical extent and peak rainfall rates while expanding horizontally, and the system is
considered to be “mature”. Finally, the system shows a decline in its horizontal and vertical
extent, and is considered to be “dissipating”. These definitions, based on convection intensity or
size, are useful for when the complete DCC lifetime may not necessarily be detected (Futyan and
Del Genio, 2007). Other studies have used these trends in convection properties to inform their
definitions for the lifecycle stages of convection (e.g., Tadesse and Anagnostou, 2009: Mattos
and Machado, 2011; Feng et al., 2012; Kumar et al., 2020). Following these studies, the bulk
statistical trends in convection size and intensity are used in this study to define the lifecycle
stages as outlined below. Felewing-etherstudiesthatused-similardefinitions{e-

Since the observed cells carry a wide range of DCC lifetimes (Fig. 32), the lifetime values were
first normalized by the total lifetime. The data for each tracked cell were then classified into one

of five bins based on the normalized lifetime value. Based on this classification, the 15t bin refers
to observations from the first 20% of the cell’s lifetime duration. FereurappreachwFinally, we
examine the bulk statistical trends in the estimates for the maximum_SIPAM Z and area as a
function of DCC lifetime to analyze the changes in DCC strength and size over time (Fig. 4). These
statistical trends are used to associate each normalized lifetime bin with a lifecycle stage
consistent with Futyan and Del Genio (2007). The 3™ lifetime bin, when DCCs reach their peak
SIPAM Z and A, is therefore defined as the mature stage (Figs. 43,-5,-6). Data for “mature DCCs”
hereafter corresponds to data from the 3™ lifetime bin. Subsequently, the 1%t, 29, 4t and 5% bins
were defined as “developing”, “early mature”, “late mature”, and “dissipating” stages,
respectively. The mature stage was the second most frequently observed after the dissipating
stage (Table 2).

The proportional contribution of cells with different cell lifetime values to the five lifecycle stages
or bins is provided in Table S2. The lifecycle classification described above meant that cells with
a lifetime of 36 minutes do not contribute data to the 3™ lifetime bin. This is because there are
five lifetime bins while these shorter-lived cells consist of four radar scans without a normalized
lifetime value corresponding to the 3™ lifetime bin. However, this does not affect our analysis or
the bulk statistics of the convection properties. This is because the average lifetime of cells
contributing data to each bin is within 10 mins regardless of whether these shorter-lived cells are
included. The similarity in the average cell lifetime across the bins was due to the similar
proportional distribution of cells lasting for 36 mins or more into the five lifetime bins (Table S2).
Consequently, the average SIPAM Z for each lifetime bin changes by less than 0.2 dBZ depending
on whether the shorter-level cells were included. To preserve our sample size, we include these
shorter-lived cells in the subsequent analyses. The choice of these lifecycle definitions and the
data classification is justified by results presented in the following sections.
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As a sensitivity test, the trend in_SIPAM Z for individual DCCs was used to define the lifecycle
stage for each DCC. Under this definition, the lifetime bin during which a DCC reached its
maximum SIPAM Z would be defined as the mature stage rather than using the bulk statistics
from Fig. 43. Figure 54a shows the distribution of the normalized lifetime when DCCs were
sampled by the RWP and when the DCCs had maximum SIPAM Z during their lifetime. The lifetime
bins of maximum Z were distributed across the entire range of normalized lifetime, which
suggests this definition could misattribute some of the developing or dissipating DCCs as mature
DCCs. This is because the SIPAM Z at 2 km can evolve non-linearly, and have peaks that may not
correlate with convection intensity throughout the column. Giangrande et al. (2023) showed
similar findings that DCCs could have multiple peaks with Z > 35 dBZ during their evolution. As a
result, the 3™ lifetime bin was defined as the mature stage.

2.5. Selection of RWP data

The average and maximum distance (90" percentile) between MAO and the feature position was
19.6 and 40.8 km, respectively. Given these distances between the RWP at MAO and the feature
positions, the RWP profile of Z for each radar-tracked DCC core was inspected to confirm the
RWP sufficiently sampled the DCC core (e.g., Oktem et al., 2023). The following criteria were
established for the selection of RWP data:

1. Only profiles with echoes from at least 10 consecutive cloud echoes (in height) and
maximum Z > 10 dBZ were considered.

2. Profiles with the maximum height of 10 dBZ echo (Echo Top Height, ETH) less than 8 km
were removed to avoid the potential sampling of congestus clouds reflected in the
bimodal ETH distribution from the RWP (Wang et al., 2018). Profiles with more than 10
instances of ETH > 8 km within 12 minutes were selected to include developing or
dissipating deep convection.

3. The selected profiles had to satisfy at least one of the following conditions to avoid the
selection of upper-level clouds or multiple cloud layers that may pass the previous
criteria:

a. contained at least one echo classified as ‘convection’ (according to the
classification described by Giangrande et al., 20136);

b. at minimum, one echo of Z > 20 dBZ was observed between 2 to 4 km, 4 to 6 km,
and 6 to 8 km; or,

c. at minimum 60 instantaneous values of Z > 20 dBZ were observed within 12
minutes of column observations.

A total of 357 time steps were identified when DCCs tracked by tobac were sufficiently sampled
by the RWP. These cells represent 31% of the DCCs_and 12% of the features initially selected
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based on tobac tracking and distance from the MAO site. The average distance between the
selected features and MAO was 8.5 km, with over 70 % of the feature positions from tobac being
within 10 km of MAO (Fig. 54b).

3 Results
3.1. Seasonal and Temporal Evolution of Convection
3.1.1. Temporal Evolution of Convection

Figure 43 shows boxplots for cell properties of Z, propagation speed, and area within each
lifetime bin. The boxplots are notched, and the notches extend to the 95% confidence intervals
of the median value. The average cell Z initially increases with lifetime, reaches a peak at the 3™
bin, and decreases thereafter (Fig. 43). Consistent with the established models of deep
convection lifecycle (e.g., Byers and Braham, 1949), lower Z values were observed as
precipitation echoes were first observed within initiating DCCs, followed by a peak as the DCCs
matured, and a decrease as the DCCs eventually dissipated. The cells tracked for this study had
an average propagation speed of about 9 m s1. The average propagation speed increased with
DCC lifetime by about 1 m s from the 15t to the 5% lifetime bin. The median cell areas for the 1,
37, and 5™ bins were significantly different, shown by the spread of the notches. The median cell
area increased with lifetime with an average value of 46.456-2 km?, yet decreased by the final
bin. This trend in the evolution of the DCC horizontal size is consistent with previous estimates
based on Ty, from satellites (e.g., Machado et al., 1998; Machado and Laurent, 2004; Inoue et al.,
2009). Machado and Laurent (2004) showed the rate of horizontal expansion of the DCC cores
can be linked to the DCC lifetime duration. Similarity between the lifetime trends for cell Z and
area (Fig. 43) suggest the increase in Z within DCC cores coincides with their horizontal expansion.

3.1.2. Seasonal Evolution of Convection

Large-scale circulations drive seasonal variability in Amazon precipitation, with a dry season that
is typically identified as June to September, a wet season from December to April, and transitional
seasons in the adjacent months of May, October, and November (Marengo et al., 2017;

10
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Giangrande et al., 2020). During GoAmazon2014/5, the wet season experienced the highest
number of days with convection near MAO, and the highest proportion of the total cells
designated across the seasons (Fig. 65). Figure 76 shows the average cell Z, propagation speed,
and area across the DCC lifetime bins for the wet, dry, and transitional seasons. The temporal
evolution of average SIPAM Z did not differ across seasons, with average cell Z values from the
SIPAM radar increasing until the 3 bin, and decreasing thereafter (Figs. 76a, b). The average cell
area peaked at the 3™ bin for the dry and transitional seasons with a later peak at the 4t bin for
the wet season (Fig. 76c).

Consistent with previous studies (e.g., Wang et al., 2018), the strongest DCCs were observed
during the dry season (as defined by the higher values of average Z). The average SIPAM Z during
the dry season (44.1 dBZ) was greater than the average SIPAM Z during the transitional (42.4 dBZ)
and wet season (41.3 dBZ). Based on Welch’s t-test (Welch, 1947), these differences were
statistically significant with a p-value less than 0.01. These findings are similar to Machado et al.
(2018) who reported higher hourly rainfall rates during the dry season. However, the daily
cumulative rainfall observed during the wet season was 4 times larger than the dry season owing
to the longer duration of rainfall during the wet season (cf., Giangrande et al., 2016). According
to Figure S34, the average dry season DCCs examined in this study had shorter lifetimes (73 mins)
and larger nearest neighbor distances (12.6 km) when compared to the wet (76 mins and 10.0
km) and transitional (78 mins and 10.5 km) season DCCs. The differences in DCC lifetimes were
statistically insignificant while the differences in nearest neighbor distances were statistically
significant. The dry season had the largest cells with an average cell area of 49.5 km?, which was
11% higher than the wet season.

The average propagation speed for all seasons increased with DCC lifetime (Fig. 76b). The fastest
moving DCCs were observed during the dry season, followed by the wet and transitional seasons.
This seasonal difference in the propagation speed is attributed to the observation of stronger
downdrafts during the dry season, consistent with the findings of Giangrande et al. (2023), and
discussed further in Sect. 3.2. Stronger downdrafts result in cold pools that trigger secondary
convection (e.g., Torri et al., 2015), transport free tropospheric air with low 8. toward the surface
(discussed further in Sect. 3.3), and drive the propagation of surrounding DCCs. The average
propagation speed during the dry season (9.2 m s!) was greater than the average values for the
wet (8.4 m st) and transitional season (8.0 m s), with the differences being statistically
significant. During the dry season, the GoAmazon2014/5 DCCs were most frequently propagating
toward the west (Figs. 1 and 2a). The most frequently observed direction of cell propagation was
toward the west during the dry season, and toward the southwest during the wet season (Figs. 1
and 2b). This is consistent with seasonal trends in vertically integrated moisture transport
(Marengo et al.,, 2017) and previous estimates of propagation direction, which point to the
influence of the Bolivia high during the wet season (e.g., Horel et al., 1989; Machado et al.,
1998). There were minor differences across seasons in terms of the distance of the tracked cell
from the MAO site. About 39% and 33% of the tracks were within 0.1-degree latitude and
longitude of the MAO site and about 80% and 77% of the tracks were within 0.2-degree latitude
and longitude of the MAO site for the dry and wet season, respectively (Fig. 2b, d).
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3.1.3. Diurnal Cycle of Deep Convection Initiation

The sunrise and sunset times near Manaus are typically within 30 mins of 06.00 and 18.00 local
time (LT), respectively. Cells that initiated between 0 and 6 LT are referred to as pre-sunrise cells,
while cells that initiated from 6 to 12 LT and 12 to 18 LT are classified as morning and afternoon
cells, respectively. Cells that initiated after 18 LT are excluded due to small sample sizes (Fig. S42).
Afternoon cells were the most frequent (Fig. S42) type observed in terms of the initiation time of
deep convection. The afternoon cells also had the highest cell Z values from the SIPAM radar and
the largest cell area. The differences between afternoon and other cell types were statistically
significant (p < 0.01). The observation of stronger cells in the afternoon hours is consistent with
an afternoon peak in the frequency of satellite T, < 240 K in a 15-year climatology (Burleyson et
al., 2016), higher peaks in vertical motion from reanalysis (Tang et al., 2016), higher rates of
horizontal areal expansion from 12 to 16 LT (Machado and Laurent, 2004), and a midday peak in
Convective Available Potential Energy (CAPE) (Giangrande et al., 2017).

Pre-sunrise cells were the weakest, yet fastest-moving cell type with the differences between the
average SIPAM Z and propagation speed between the cell types being statistically significant (p <
0.01). The lower SIPAM Z for pre-sunrise cells (Fig. 8#a) may be attributed to the lack of solar
insolation, weaker surface fluxes or similar environmental controls that may contrast with the
environments found with convective cells observed later in the day. Morning and afternoon cells
exhibited a slight increase in their propagation speed with the DCC lifetime. The average cell
lifetime decreased with time of day with values of 103, 95, and 91 mins for pre-sunrise, morning,
and afternoon cells, respectively. This is likely due to the stronger precipitation in proportion with
higher average Z leading to hydrometeor unloading and cloud depletion. It is hypothesized that
an increase in the frequency and strength of DCCs after sunrise enables more numerous and
stronger cold pools and outflows driven by convective downdrafts. The outflows can trigger
secondary convection through low-level convergence or mechanical lifting and enhance the
propagation speed of nearby convection (Del Genio et al., 2012).

3.2. Profiles of DCC Kinematic Properties
3.2.1. Updraft and Downdraft Strength

In Figure 98a, we provide RWP profiles of the average Z and maximum Z (95 percentile) for DCCs
in the developing, mature, and dissipating stages at the time of overpass. The RWP data below 2
km were masked to avoid low Z bias offsets in those measurements owing to potential RWP
receiver saturation (e.g., Tridon et al., 2013; Wang et al., 2020). The data were smoothed using a
rolling average every three vertical levels (about 360 m). In Figure 98b, we include profiles of the
strongest estimated updraft (95t percentile of measurements with w > 18 m s?) and downdraft
(5™ percentile of measurements with w < 18 m s!) to represent updraft and downdraft strength.
RWP retrievals of w at 3.5 to 5 km were masked due to retrieval uncertainties in the vicinity of
the melting layer (Giangrande et al., 2016; Wang et al., 2019). These data were smoothed using
a rolling average every five vertical levels (about 600 m). Seasonal variability was examined by
comparing these profiles for the dry and wet seasons (Figs. 109 and 118), with DCCs from the
transitional (May, October, November) season excluded due to small sample sizes. Surface
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precipitation was quantified based on the rainfall rate retrieved using drop size distributions
sampled by the disdrometer (Fig—Table 21).

Mature DCCs exhibited the strongest convection defined in terms of the associated Z values
observed over the vertical extent of these profiles (Fig. 98a). Mature DCCs also indicated the
strongest estimated updrafts (Fig. 98b), as well as the highest frequency of surface rainfall rate
measurements > 1 mm h! (Table 2), and the highest overall rainfall rates among developing,
mature, and dissipating DCCs—{Fig—11}. These results support our initial designation of the 3™
lifetime bin as the conceptual “mature” stage of the convection lifecycle. From 6 km to 9 km agl,
developing DCCs displayed the lowest Z values and the weakest updrafts (Fig. 98). Updraft
strength above 8 km represented a key discriminating characteristic between lifecycle stages. At
upper levels (above 9 km), mature DCCs exhibit the highest maximum Z values, as anticipated
due to their stronger updrafts that may loft rain or promote media such as frozen drops and
graupel to higher altitudes (Fig. 98a). Conversely, developing DCCs demonstrated the weakest
convective signatures, while exhibiting the lowest values of average Z over most of the profile
and were associated with the fewest measurements of rainfall rate > 1 mm h! (Table 2). As height
increased, updraft strength typically increased for mature DCCs higher aloft (i.e., above 8 km),
while remaining relatively flat for dissipating DCCs, and decreased with altitude for developing
DCCs (Fig. 98b). For this study, mature DCCs exhibited the strongest updrafts between 9 to 12 km
with a magnitude of 12.6 m s%, followed by dissipating DCCs (7.4 m s'!) and developing DCCs (3.2
ms?).

Seasonal variability in the lifecycle of Z and w profiles was reflected in terms of the contrast in
the temporal evolution of Z and w between the dry and wet seasons (Figs. 109 and 118). During
the dry season, developing DCCs had stronger updrafts below the freezing level (typically, 5 km
for most events) and into the mid-levels (altitudes to 8 km) when compared to the wet season
cells. Developing and mature DCCs often displayed similar profiles of Z during the dry season (Fig.
109). This finding is consistent with Giangrande et al. (2023), who attributed the stronger
intensity found in their developing DCCs during the dry season to higher low-level CAPE, lower
convection inhibition, and higher pre-convective daytime instability (i.e., reduced shallow clouds
resulting in more incoming solar radiation) when compared to their wet season events. In
contrast, for the wet season cells, developing DCCs exhibited weaker updrafts above the freezing
level in addition to lower Z values compared to mature and dissipating stage DCC observations
(Fig. 110). A delayed peak in convection intensity during the DCC lifetime may help explain the
later peak observed for the average cell area during the wet season compared to the dry season
(Fig. 76). Giangrande et al. (2023) found a similar pattern and using stochastic parcel modeling
suggested that free-tropospheric relative humidity and entrainment-driven dilution above the
melting layer (5 to 8 km) and at upper levels (above 8 km), respectively, may also influence the
different behaviors for developing DCCs during the wet and dry seasons.

Precipitation-driven downdrafts below the melting layer were summarized for each lifecycle
stage (Fig. 98b). During the wet season, downdrafts below the freezing level had a similar
magnitude (about 3 m s1) across the lifecycle stages (Fig. 116b). In comparison, consistent with
the results of Wang et al. (2019), stronger downdrafts (up to 5 m s!) were sampled below the
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freezing level during the dry season (Fig. 11Sb). Mature DCCs exhibited the weakest downdrafts,
which we suggest may be attributed to the low probability of sampling downdrafts below the
melting layer during the passage of mature DCCs for this study (Fig. 13S3). The most frequent
and intense downdrafts were observed below an altitude of 10 km (Fig. 98b and $313), while
stronger downdrafts were sampled between 6 km to 10 km during the dry season compared to
the wet season. The latter results are consistent with the seasonal behaviors of Amazon
downdrafts presented by Giangrande et al. (2023). Those authors attributed enhanced dry
season downdrafts aloft to the higher propensity for graupel loading in the dry season, as well as
increased evaporation and entrainment mixing adjacent to DCC cores. During the convection
lifecycle, composite downdraft strength typically increased with DCC lifetime during the dry
season, as dissipating DCCs often suggested the strongest downdrafts (Fig. 9611b). Giangrande
et al. (2023) used the ETHs from the RWP as a proxy for convective cloud maturity and found that
stronger downdrafts aloft were associated with the later stages of convection. As a supplement
to their updraft studies, their use of a stochastic parcel model also suggested that mixing
between updraft and environmental air may lead to negative buoyancy. The magnitude of the
resulting downward acceleration was suggested to be greater during the dry season due to the
lower relative humidity aloft compared to the wet season (Wang et al., 2018; 2019).

Overall, our cumulative classification of updraft and downdraft intensity contingent on the
lifecycle stage highlights key patterns in the evolution of isolated DCCs. The mature stage exhibits
the strongest convection across lifecycle stages, with the most intense Z values and strongest
updrafts. In turn, stronger precipitation events were observed when mature DCCs overpass the
ground site, with the potential to exert a greater influence on local hydrology and surface
thermodynamics compared to other lifecycle stages. Subsequent classifications based on bulk
seasonal Amazon environmental controls reveal variability in the timing and nature of convective
cloud intensity. Seasonal changes in updraft strength above the freezing level for developing
DCCs implies stronger convection is observed during the second (first) half of the DCC lifetime
during the wet (dry) season. Evaluation of these patterns is crucial because, consistent with
previous studies (e.g., Wang et al., 2019), trends in profiles of updraft and downdraft strength
are closely linked to trends in profiles of upward and downward mass flux.

3.2.2. Vertical Mass Flux and Transport Rate

While previous studies have attempted to estimate mass flux within Amazonian DCCs (e.g.,
Giangrande et al.,, 2016; Wang et al., 2020), the assumptions and summary nature of these
previous efforts intrinsically implied that the mass transport rate or the variability in mass flux
over DCC lifetime could not be examined. For instance, Giangrande et al. (2016) adopted a
methodology developed by Kumar et al. (2015) to define mass flux as the rate of mass transport
per unit area within a fixed domain and assumed cell motion, independent of individual core
sizes. In contrast, following previous aircraft and profiler studies (e.g., LeMone and Zipser, 1980;
May and Rajopadhyaya, 1999; Giangrande et al., 2013), Wang et al. (2020) calculated mass flux
over a core width that was determined in a time-height configuration, as based on coherent RWP
observations meeting an updraft “core” threshold of w > 1.5 m s™. This methodology assumes
that core width remains constant during the period of time the updraft is sampled.
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The RWP data are used to characterize the properties of the DCC cores. Time-height profiles of
the composite w and Z for DCCs classified as mature DCCs are shown in Fig. 12 with composites
for other lifecycle stages in Fig. S1. These composites represent the median values of w and Z
across all DCCs classified within the lifecycle stage. The profiles are centered at time 0 which
represents the time of simultaneous sampling by the SIPAM radar and the RWP during the DCC
overpass at MAOQ. This is the timestep for which we have the DCC lifecycle classification from the
cell tracking. Given an average propagation speed of 9 m s (Fig. 4), a 2-min period of RWP
observations corresponds to sampling a core that is 1.08 km wide. Based on previous
observations of a median updraft width of 1 km for MAO (Wang et al., 2020), we use a 2-min
period of RWP observations centered at time 0 to represent each DCC core. The use of an average
value for updraft or downdraft speed over the 2-min period also reduces the influence of a single
profile of RWP measurements from time O.

Natural variability in the shape of updraft or downdraft regions within the DCC core can lead to
variability in the vertical velocity profiles over the 2-min period. To account for these natural
variations, the time series of vertical velocity used to represent the DCC core is weighted by the
probability, p(w), of sampling an updraft or a downdraft during the 2-min period. For each height
level, the value of p(w) for updrafts (or downdrafts) is determined as the ratio of the number of
observations with w > 1 m s! (or w < -1 m s?) and the total number of observatlons over the 2-
min perlod (20 observatlons given the RWP resolutlon of 6 seconds)

(w) for updrafts and downdrafts averaged across all DCCs cIa55|f|ed as developing, mature, and

dissipating DCCs. The values of p(w) represent a proxy for estimating the updraft or downdraft
core width within the averaging time interval. For example, developing and mature DCCs had the
highest p(w) for updrafts immediately below the freezing level, with the widest updrafts also
observed at these levels.

For most of the vertical profile, p(w) for updrafts followed the opposite trends compared to p(w)
for downdrafts. In case of updrafts, developing DCCs had the highest p(w) below the freezing
level, while mature DCCs had the highest p(w) above that level across all lifecycle stages. In case
of downdrafts, dissipating DCCs had the highest p(w) up to 8 km, while mature DCCs had the
highest p(w) above 8 km across all lifecycle stages. To examine the sensitivity of p(w) and mass
flux to the averaging time interval of 2-mins, similar mass flux calculations were also performed
using p(w) and w up to 5 or 10-mins before and after the passage of the DCCs. Results from these
sensitivity tests indicate that mass flux decreases when the sampling time interval is increased
(Fig. S2). This is consistent with the hypothesis that mass flux should decrease due to a decrease
in both p(w) and w as the distance from the region of strongest convection within the DCCs
increases (e.g., Houze, 2004).

For this study, we adopt a modified definition wherein mass flux is calculated for individual cells
using additional properties from tobac-based cell tracking. Here, mass flux is defined as the rate
of mass transport per unit area for each cell. centered-at-the-time-ofsamplingby-the-SIPAM
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downdraft{w<—1ms™ ~Mass flux [kg m s1] is calculated as the product of
air density r(H) [kg m3] and the probability weighted average of w [m s1] over the 2-min interval.
The mass transport rate in [kg s] is obtained by multiplying mass flux and cell area from the
tracking output. Since area was estimated at the 2 km CAPPI level, mass transport rate was
calculated assuming this area remained constant with height. The use of a probability-weighted
estimate of w limits the bias in mass transport rate associated with assuming constant cell area
with height.

Figure 142 shows profiles of the average mass flux (net, upward, and downward) for each
lifecycle stage. Overall, these profiles highlight the variability in mass flux as a function of height
relative to the melting layer, the cloud lifecycle stage, and the direction of vertical air motion.

Fer-example—mMature DCCs exhibited the highest upward mass flux across lifecycle stages.
These values correspond to the strong updrafts for mature DCCs (Fig. 98b), along with higher
p(w) for updrafts above the freezing level (Fig. 153). Dissipating DCCs had strong downdrafts and
higher p(w) for downdrafts, leading to the highest downward mass flux we observed for this
study, while weak updrafts in these times led to the lowest upward mass flux across all lifecycle
stages (Fig. 142a). Consequently, dissipating DCCs displayed a negative net mass flux below the
freezing level, whereas developing and mature DCCs displayed positive net mass flux (Fig. 142b).
Just above the freezing level, the net mass flux was positive, with values decreasing with height
up to about 6 km. High values of upward mass flux for developing DCCs were associated with
higher p(w) for updrafts between 5 km to 6 km, and strong updrafts (Fig. 98b). Above 6 km, our
mature DCCs showed the highest upward mass flux, followed by dissipating and developing DCCs,
respectively. This finding is consistent with the relative trends in the updraft strength for each
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stage (Fig. 98b), and their p(w) values with height (Fig. 153). Developing DCCs indicated the
weakest updrafts between 6 km and 9 km, leading to negative net mass flux at these levels. Above
10 km, mature and dissipating DCCs exhibited similar values of net mass flux due to weaker
downdrafts, with lower p(w) for the latter. Developing DCCs displayed negative net mass flux
above 9 km with the lowest upward mass flux (weak updrafts) and high downward mass flux
(strong downdrafts).

In Figure 153, we show profiles of the average upward, downward, and net mass transport rate
contingent on lifecycle stage. Developing, mature, and dissipating DCCs had an average cell area
of 46.7, 115.6, and 79.4 km?, respectively. Compared to mass flux, differences in the mass
transport rate across lifecycle stages were enhanced by the influence of cell area. For example,
the average upward mass flux for mature DCCs above 6 km was 1.6 times higher than for
developing DCCs, while the upward mass transport rate was 6.4 times higher (Fig. 153), with the
differences being statistically significant. Below the freezing level, dissipating DCCs had the
lowest and also negative net mass transport rate (- 8 x 107 kg s), while other stages had a positive
net mass transport rate (6 x 107 kg s). Above the freezing level, the net mass transport rate
decreased with height for developing DCCs, with negative values above 7 km. Dissipating DCCs
had low values up to 9 km (average of 2 x 107 kg s!) before the net mass transport rate increased
at upper levels. Mature DCCs had the highest net mass transport rate above the freezing level
(up to 30 x 107 kg s), while the other stages did not exceed 20 x 107 kg s. This disparity in the
values was due to the mature DCCs having the highest upward and downward mass transport
rates, with higher values for the former (Fig. 153).

Figures 164 ane—15-presents profiles of upward and downward mass transport rate for the dry
and wet seasons;+espectively. The seasonal variations in updraft and downdraft strength (Figs.
119,10) results in seasonal variability in the lifecycle trends of mass transport rate. Below the
freezing level, each lifecycle stage exhibited higher values of net mass transport rate during the
dry season. Above the freezing level, developing DCCs demonstrated stronger updrafts during
the dry season, which was reflected in the higher upward mass transport rate (the highest among
the lifecycle stages) and positive mass transport rate up to 7 km (Fig. 3416). Figure 17 presents
profiles of net mass transport rate for the dry and wet seasons. In comparison, both dissipating
and mature DCCs had stronger updrafts and positive net mass transport rate during the wet
season, while developing DCCs had negative net mass transport rate (Fig. 175). This seasonal
change in net mass transport rate for developing DCCs, driven by stronger updrafts during the
dry season, meant the temporal evolution of upward mass transport rate was consistent with
convection intensity. Similar to the findings by Giangrande et al. (2023), greater upward mass
transport rate was observed during the first half of DCC lifetime in the dry season and during the
second half of DCC lifetime in the wet season.

These results highlight the dependence of mass flux and transport rate profiles on the lifecycle
trends in profiles of updraft and downdraft strength. The height of the maximum downward mass
flux decreases over DCC lifetime, whereas the height of the maximum net mass flux increases
over DCC lifetime. Lifecycle trends for net mass flux and transport rate below the freezing level
are consistent with trends in convection strength and size at the 2 km altitude identified using
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cell tracking. Vertical variability in updraft strength contributes to an increase in the level of
maximum net mass transport rate over DCC lifetime, whereas the magnitude of the net mass
transport rate is dependent on convection intensity in terms of Z and size in terms of cell area.
Seasonality in updraft strength above the freezing level leads to the considerably higher net mass
transport rate for developing DCCs during the dry season compared to the wet season. It is
suggestive that higher mass transport rate during the developing stage would lead to the
observations of other stronger, instantaneous convective cloud behaviors (i.e., rainfall rates,
maximum Z values) during the dry season events. During the wet season, higher mass transport
rate is observed once convection has matured, which likely affects the vertical extent more than
the intensity of the convection.

3.3. Impact of DCCs on Surface Thermodynamics and Rainfall

Amazonian DCCs can produce intense bursts of rainfall (dos Santos et al., 2014; Burleyson et al.,
2016; Giangrande et al., 2017; Machado et al., 2018). The rainfall is associated with downward
mass flux in convective downdrafts that may drive secondary convection triggered by cold pools
through mechanical lifting or thermodynamic forcing (Khairoutdinov and Randall, 2006; Torri et
al., 2015). Estimating the variability in rainfall rate over DCC lifetime and its impact on surface
fluxes is crucial for addressing model biases in convection initiation and development (Del Genio
et al., 2012; Hagos et al., 2013). Instances with measurable precipitation, i.e., rainfall rate > 1 mm
h', as defined by Giangrande et al. (2017), are considered in this study. The disdrometer had
limited data availability before 24 September 2014, and rainfall rate was not retrieved for 143
out of the 357 time steps. Two outliers with rainfall rate > 100 mm h! were filtered out. Table 2
provides a statistical summary of rainfall rates retrieved during the lifecycle stages. In line with
lifecycle trends in convection size and intensity (Fig. 43), the number of samples with measurable
precipitation and the average rainfall rate at the surface increased from developing to mature
stage, and then decreased into the dissipating stage (Fig—3-Table 2).

To examine the impact of rainfall rate on surface thermodynamics, 8. at the surface was
calculated up to one hour before or after DCC passage (Fig. 186). In Fig. 2618, time 0 represents
the timestep when the DCC was simultaneously sampled by the SIPAM radar and the RWP at the
MAQ site. This is the timestep for which we have the DCC lifecycle stage determined from the
cell tracking. It is assumed the RWP sufficiently sampled the updraft core of the DCC at this

The temporal evolution of surface 6. follows a pattern outlined by Barnes and Seickman (1984).
The surface 6. exhibited an “environmental” phase characterized by fair weather values for 8.
with a slightly negative or negligible temporal gradient (dB¢/dt). This was followed by a
“convectively active” phase where rapid cooling at the surface occurred, associated with a
negative dB./dt with a higher magnitude that eventually approaches zero. The high magnitude
of dB./dt during this phase represents the injection of ambient low B. air from the free
troposphere into the boundary layer by the convective downdraft (Houze, 2004). Finally, the
“wake” phase was observed, when dB./dt became positive as 0. started recovering towards fair
weather values, indicating the dissipation of convection. The phases of 6. varied in their timing
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across lifecycle stages, and d6./dt showed temporal variations associated with Z and rainfall rate
(Fig. 186).

Developing and mature DCCs had similar 8¢ (366 K) one hour before the DCC overpass (Fig. 186a).
For developing DCCs, there was a gradual transition to the “convectively active” phase that
started 30 mins before DCC overpass, ended 35 mins after, and 6. decreased by 8.6 K during this
phase. Afterwards, 6. remained nearly constant, and the “wake” phase was not observed up to
one hour after the overpass time. On the other hand, mature DCCs had a shorter “convectively
active” phase, which started 20 mins before and ended 15 mins after DCC overpass, with 8.
decreasing by 6.7 K. As a reference, during the passage of mature Amazon MCSs, stronger drops
in Be of around 10 K have been observed (Wang et al., 2019). Nevertheless, the observed
magnitudes of dBe/dt for mature, isolated DCCs was 50 % higher than that for developing isolated
DCCs, consistent with stronger precipitation and downward mass transport rate associated with
downdrafts in mature DCC phases (Table 2, Fig. 153). For mature isolated DCCs, the “wake” phase
was observed as 0. started to increase about 30 mins after the DCC overpass. For dissipating cells,
Be was 1.5 K lower initially, the minimum 6. was 1 K higher, and the “convectively active” and
“wake” phases started earlier than other lifecycle stages. Dissipating DCCs exhibited the lowest
dB./dt, indicating weak precipitation, and had the highest 0. at the end of the time series. This
suggests there was a faster recovery of 8¢ as convection dissipated.

The observation of stronger deep convection during the dry season (Fig. 76) was reflected in the
surface B. values. During the dry season, each lifecycle stage exhibited a longer “environmental”
phase, with low dfe/dt up to (at minimum) 25 mins before DCC overpass, and a shorter
“convectively active” phase associated with higher magnitudes of dB./dt compared to the wet
season (Fig. 186 b, c). The higher magnitudes of dB./dt during the dry season are indicative of
stronger outflows associated with downdrafts within the stronger convection. The shorter
duration of the active phase is likely associated with a shorter duration of more intense surface
rainfall rates. The impact of deep convection at the surface was thus proportional to convection
intensity and updraft strength. The earlier peak in convection intensity (Figs. 119,-48) and mass
fl—transport rate (Figs. 34,—3516) during the dry season, with stronger developing DCCs
compared to the wet season, was reflected in the evolution of surface 6.. Developing DCCs
showed the strongest seasonality in terms of 8., with a lower minima and higher d8¢/dt during
the dry season. The minima for developing and mature DCCs during the dry season (354.4 and
354.9 K observed 15 and 33 mins after DCC overpass, respectively) was 2 K lower than the
corresponding wet season values at the same time. During the wet season, dB./dt was lower due
to weaker convection, the minimum 8. was higher due to higher rainfall rates with more intense
rainfall periods (e.g., Machado et al., 2018), while the recovery of 8. was weaker (less than 1 K
compared to over 3 K during the dry season).
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4 Conclusions

This study examined the seasonal and temporal evolution of isolated deep convection in the
Amazon rainforest during GoAmazon2014/5 near Manacapuru, Brazil. The focus was on isolated
DCCs with Z exceeding 30 dBZ which were tracked using the tobac algorithm. Tracking-based
insights into the DCC lifecycle were used to evaluate RWP measurements of DCC kinematic
properties. The analysis examined the lifecycle stages of convection on days when isolated DCCs
were present. DCCs within a 20 km radius, with lifetime exceeding 36 minutes, were tracked. The
kinematic properties of tracked DCCs were examined as a function of DCC lifetime, convection
initiation time, height, and local seasons. The key findings are listed below.

1.

The propagation speed of isolated DCCs increased slightly as DCC lifetime progressed.
Regarding Z, area, and rainfall rate, they increased from developing to the mature stage
of convection before decreasing during the dissipating stage. Afternoon DCCs were more
frequent, stronger, and larger compared to morning or pre-sunrise DCCs.

Based on observations from MAO, mature DCCs exhibited the strongest updrafts, highest
Z, rainfall rate, mass flux, and mass transport rate, and most frequently had rainfall rates
exceeding 1 mm h. Developing DCCs had the weakest convection with weak updrafts
above the melting layer and negative mass flux and mass transport rate at upper levels.

The variations in DCC strength and size over the lifecycle stages were associated with
updraft strength above the melting layer. Above 8 km, mature DCCs had the strongest
updrafts (12.6 m s') and highest mass flux and mass transport rate, followed by
dissipating DCCs (7.4 m s) with positive mass flux and mass transport rate, and
developing DCCs (3.2 m s!) with negative mass transport rate and mass flux.

The height of the maximum downward mass flux decreases over DCC lifetime whereas
the height of the maximum net mass flux increases over DCC lifetime. Vertical variability
in updraft strength contributes to an increase in the level of maximum net mass transport
rate over DCC lifetime.

Developing and mature DCCs had similar B, values before the DCC overpass. For mature
DCCs, dBe/dt was 50 % higher over a shorter convectively active phase compared to
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developing DCCs. Dissipating DCCs had lower 6. values before DCC overpass, lower dB./dt
associated with lower R, and higher B¢ values as the convection dissipated.

6. The dry season exhibited stronger, faster, more isolated, and larger DCCs than the wet
season. During the dry season, developing DCCs were stronger than mature and
dissipating DCCs with the strongest updrafts and highest upward mass transport rate.
During the wet season, developing DCCs had the weakest updrafts and negative mass
transport rate. Mature and dissipating DCCs, on the other hand, were stronger during the
wet season, with positive mass transport rates and stronger updrafts above the melting
layer.

7. Stronger convection was observed with greater upward mass transport rate during the
first (second) half of the DCC lifetime during the dry (wet) season. Fhe—average—T;

Previous studies used GoAmazon2014/5 data to examine the shallow to deep convection
transition (Ghate and Kollias, 2016; Biscaro et al., 2021; Tian et al., 2021; Barber et al., 2022) and
the diurnal cycle of precipitation (Giangrande et al., 2017; Tai et al., 2021; Tian et al., 2022). The
vertical extent and maintenance of Amazonian DCCs are linked to surface fluxes, vertical wind
shear, free tropospheric humidity, low-level cloudiness, and cold pools (Tai et al., 2021; Tian et
al., 2021, 2022; Barber et al., 2022). Giangrande et al. (2023) tracked a subset of the DCCs
examined in this study to employ the unique vertical velocity dataset from GoAmazon2014/5 for
days when radiosondes were launched ahead of the DCC overpass. Their study attributed
differences in convection draft strength during different seasons and lifecycle stages to low-level
atmospheric stability, graupel formation/loading, and seasonal differences in the humidity
profile. This study compliments their conclusions and expands upon these insights by analyzing
profiles of vertical mass flux and transport rate. The results presented in Sect. 3 can help guide
model parameterization development (del Genio et al., 2012) by analyzing a larger set of cells
with the results being applicable over a wider range of convection events.

Model estimates of the strength, longevity, and radiative impacts of DCCs depend on the vertical
transport of mass and momentum within DCC cores. However, few datasets are available to
examine DCC kinematics and vertical air motion throughout the DCC lifetime as deep convection
initiates, matures, and dissipates. This study presents the lifecycle trends of mass flux and
transport rate profiles at finer resolution compared to current climate models. For example,
Khairoutdinov and Randall (2006) used a vertical resolution of 50 to 250 m. Incorporating the
variations in the level of maximum downward or net mass transport rate as a function of DCC
lifetime can help address model biases like premature triggering of deep convection (del Genio
et al., 2012) and its anomalously fast dissipation (Khairoutdinov and Randall, 2006). Future work
will examine profiles of mass flux and updraft strength across aerosol and thermodynamic
conditions to test aerosol invigoration hypotheses. This will form a critical step toward addressing
aerosol effects on convection vigor and the variability of the aerosol effects over DCC lifetime
(Ilgel and van den Heever, 2021). With updates to open-source tracking algorithms, three-
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dimensional cell tracking will help estimate cell volume and cell area at different vertical levels.
Uncertainties associated with calculating mass transport rate with the assumption of cell area
being constant with height can then be evaluated.

Data availability. The SIPAM S-band radar data are available at
http://ftp.cptec.inpe.br/chuva/goamazon/experimental/level 2/eq radar/esp band s/st sipa
m/ with information on the calibration offsets and data availability (last access: October 13,
2023). The calibrated RWP data are available at Giangrande (2018). The merged RWP and W-
band radar cloud mask and type are available at Feng and Giangrande (2018). GOES-13 data are
available for download at https://www.ssec.wisc. edu/datacenter/goes arch|ve/ (last access:
October 13, 2023)

(—Iast—aeeess—@eteber—l%—Z@Q%}—The Iaser dlsdrometer data are avallable at
doi.org/10.5439/1432694 (last access: October 13, 2023).

Code availability. tobac is available at_https://github.com/tobac-project/tobac (Heikenfeld et
al., 2019). MetPy is available at_https://unidata.github.io/MetPy/latest/index.htm| (May et al.,
2022).
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TABLES AND FIGURES:

Table 1: Number of features and cells identified by tobac over the entire radar domain.

Parameter Count

Features 302,193

Cells 70,798

Cells with lifetime > 36 mins 38,442

Cells with lifetime > 60 mins 15,583
Cells/features selected for data analysis 672/2803
Cells/features from the dry season 225/994
Cells/features from the wet season 311/1231
Cells/features from the transitional season 136/578

Table 2: Lifecycle stages for radar-tracked DCCs at the time of passing over the RWP with

rainfall rate (R) statistics.

Lifecycle stage Developing Early Mature Mature | Late Mature | Dissipating
Number of cells 59 53 88 56 101
R>1mmht 10 11 23 21 22
measurements
Minimum R (mm h1) 2.8 1.7 1.1 1.1 1.2
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020

025

Maximum R (mm h1)

42

57

69

73

58

Mean R (mm h)

19

17

23

21

14

Table 3: Number of DCCs at different lifecycle stages with different Echo Top Heights (ETH) and

the average Ty for each lifecycle stage.

season) (K)

Developing | Early Mature | Mature | Late Mature Dissipating
N (4 < ETH < 8 km) 18 11 10 15 16
N (8 < ETH < 10 km) 9 9 23 12 21
N (10 < ETH < 12 km) 16, 25 33 12 33
N (ETH > 12 km) 13 7 21 16 29
N (10 < ETH < 12 km, 0 3 7 1 0
Tb > 250 K)
Average Ty (K) 230 228 227 232 225
Average Ty (Dry 230 234 237 241 242
season) (K)
Average Ty (Wet 227 223 221 221 218
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035 season (December to April). Panels (c), (d), and (e) show the gridded reflectivity field near MAO
onJune 22, 2014 from 15:00 to 15:24 Z with tobac-identified features surrounded by polygons
representing their areal extent.- j . j
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Figure 2: (a, c) Wind rose diagrams for propagation direction and (b, d) heatmaps of cell tracks
from the (a, b) dry season and (c, d) wet season corresponding to the cell tracks shown in Figure
1la and 1b.
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Figure 32: Probability distributions of (a,c) DCC lifetime and (b,d) nearest neighbor distance
(NND) for cells with lifetime > 36 mins for (a,b) all cells within radar domain and (c,d) cells
950 within 20 km of MAO with propagation speed > 0.5 m s,
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Figure 65: The relative proportion of rejected cells (lifetime < 36 minutes) and the seasonal
distribution of selected cells (observed within 20 km of the MAO site, lifetime > 36 mins, and
propagation speed > 0.5 m s).
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Figure 175: Profiles of net mass transport rate for developing, mature, and dissipating DCCs
from the dry season (solid lines) and wet season (dotted-dashed lines).Same-asFigure-8-butfor
DCCs-observed-during the-wet seasen-
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