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Brief Communication: Recent estimates of glacier mass loss for

western North America from laser altimetry
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Abstract. Glaciers in Western North American outside of Alaska are often overlooked in global studies, because their
potential to contribute to changes in sea level is small. Nonetheless, these glaciers represent important sources of freshwater,
especially during times of drought. Differencing recent ICESat-2 data from a digital elevation model derived from a
combination of synthetic aperture radar data (TerraSAR-X/TanDEM-X), we find that over the period 2013-2021, glaciers in (F tted: Font: 10 nt
western North America lost mass at a rate of -12.3 + 3.5 Gt yr'!. This rate is comparable to the rate of mass loss (-11.7 = 1.0 ormattec: ront: 0p
Gt yr!) for the period 2018-2022 calculated through trend analysis using ICESat-2 and Global Ecosystems Dynamics (Formatted: Font: 10 pt
Investigation (GEDI) data. (Formatted: Font: 10 pt
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Western North American glaciers outside of Alaska cover 14,384 km? of mountainous terrain (Pfeffer et al. 2014). Although (Forma tted: Font: 10 nt
the global sea level equivalent of these glaciers is only 2.6 + 0.7 mm (Farinotti et al., 2019), these glaciers provide important ; - 0P
thermal buffering capacity during late summer or during times of drought (Moore et al., 2009), Early attempts to define CFormatted: Font: 10 pt
regional estimates of glacier mass change suffered from sparse, in-situ glaciological observations, non-uniform distribution . ,(Formatted: Font: 10 pt
of geodetic measurements, and uncertainties in gravimetric assessments due to changes in seasonal water storage (Jacob et (F ormatted: Font: 10 pt
al., 2012; Gardner et al., 2013; Zemp et al., 2019), Two recent studies combined publicly-available geodetic datasets and - 0P
statistical methods to yield mass change estimates with much less spatial bias and lower overall uncertainties (Menounos et (Formatted: Font: 10 pt
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al., 2019; Hugonnet et al., 2021), Both of these studies rely on DEMs generated from NASA’s Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER) sensor aboard the Terra satellite. Unfortunately, Terra’s orbit is
degrading and will reach its end of life within the next 3-4 years_(https:/terra.nasa.gov/). Additional datasets are thus
required to quantify glacier mass loss in mountain environments where glacier loss is accelerating (Hugonnet et al., 2021),

but the glaciers of western North America have so far been excluded from global altimetry assessments (Jakob and
Gourmelen, 2023), Eight of the 19, regions of the globally complete Randolph, Glacier Inventory (RGI) are sparsely

Deleted: but recent studies leveraging laser altimetry in
global glacier assessments have excluded glaciers in western
North America (Jakob and Gourmelen, 2023).
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glacierized, including Western North America. Models and current ice volume estimates suggest that these regions will each
contribute <2 mm to sea level by 2100 under a +2° C global mean temperature warming scenario (Rounce et al. 2023).
Several of these regions were not assessed by Jakob and Gourmelen (2023) due to the small size of the glaciers within these
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regions and complex topography that makes CryoSat-2 processing challenging due in part to the larger beam diameter of
CryoSat-2 (~ 380 m) compared to IceSat-2 (~12,m). Here we provide, new estimates of recent glacier mass loss based on e 'CDeleted: 20

laser altimetry data for the western United States and Canada which is Region (2 of the Randolph Glacier Inventory (Pfeffer
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For the decadal estimate of mass change, we buffered each glacier polygon (RGI ver. 6.0) within the study region by 1 km -
and then masked from the original glacier polygon, to capture areas adjacent to glaciers that we considered to be areas of CDeleted: were excluded from subsequent analysis
stable terrain. This stable terrain might include vegetated terrain, landslides or standing water, however. Due to the buffer, S (Deleted: as it was
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et al., 2022), We therefore limit our analysis to the ablation season when the positive bias associated with snow-covered
terrain is minimized. Confirmation of the source of this bias is revealed when the analysis of rates of elevation change is
limited to ICESat-2 laser shots acquired between 1 August and 1 October. For these late summer laser shots, we respectively
observe a mean bias and uncertainty (+ 1 sigma) over stable terrain of 0.038 and 1.53 m yr''.

2.3 Recent rate of elevation change from ICESat-2 and GEDI

For the period 2018-2022, herein referred to as the recent period, we first create altimetry anomalies by differencing ICESat-
2 and GEDI laser shots to the COP-30 DEM. A least squares regression that includes an offset, trend and seasonal sinusoidal
terms is fit to anomalies within a 250 m radius search window. The y-intercept of the regression is set to the year 2020. We
exclude any ICESat-2 or GEDI laser shots if they deviate more than 250 m from the COP-30 DEM, or if they deviate by
more than 150 m from the median anomaly within the 250 m search radius. The search radius and median anomaly threshold
were selected to omit elevation change signals that were not physically realistic. Regression fits were excluded from further
analysis if: (i) there were fewer than five data point for given search window; (ii) the temporal span of observations is less
than three years; (iii) the root mean squared error (RMSE) of the fit residuals exceed 5.0 m yr'! and (iv); the seasonal
amplitude of the least squares fit exceeds 10 m yr''. We use the trend obtained from the regression to the 250 m radius to
represent elevation change. This filtering yielded an unbiased sample across elevation bins of ice in study area (i.e. the area
distributions of sampled vs. observed ice were similar).

2.4 Mass change uncertainty

Uncertainty in mass change originates from errors in rates of elevation change and volume-to-mass conversion factor. We

use 850 kg m™ and its associated uncertainty term (£60 kg m™) for mass conversion (Huss, 2013), We generate bootstrapped |
errors in total volume change using a Monte Carlo method. We first temporally randomize the laser altimetric data, randomly
choose the acquisition date of the COP-30 DEM (2012, 2013, 2014) and sample 5% of the data with replacement 1,000

times. Total volume change over glacierized terrain is calculated for each synthetic dataset by multiplying the rate of

elevation change by the area of glaciers within a given elevation bin (100 m bins). We then take 5% and 95% modelled
volume change as our uncertainty.

/

WUncertainty in mass change is then calculated from: /

V(dVy - p)* + (py - dV )2 M

|
Where AdVaA is the uncertainty of volume change generated from the Monte Carlo method, /,is material density (850 kg m?), /l:“
Pois uncertainty of density (60 kg m) and dV/,is the change in volume. /
3.0 Results

To minimize the impact of the seasonal snow signal, we limit the presentation of our analysis o mass change using ICESat-2 ]
and COP-30 elevation changes to ICESat-2 data acquired during the latter half of the ablation season (1 August - 1 October).
Glaciers throughout the western United States and Canada thinned both during the decadal and recent period with prominent

thinning within the Southern Coast Mountains, a region that contains nearly one half of the total ice cover of the study region

(Fig. 2). For the period 2013-2021 (median date of ICESat-2 data is 26 August, 2020), we estimate a rate of mass change of
-12.3 £3.5 Gtyr! (Fig. 1). This measurement agrees within the rate of mass change [~12.3 £ 4.6 Gt yr ] reported for the
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period 2009-2018 (Menounos et al., 2019),and the estimate [-12.3 + 3.0 Gt yr''] for the period 2015-2019 based primarily
on ASTER data (Hugonnet et al., 2021), Comparable estimates of mass loss exist for western North America for the period

etal., (2013), Using only ICESat-2 and GEDI laser shots and rates of elevation change determined through least squares
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per subregions (Fig. 1) are summarized jn the supplementary material (SM Table 1). The effect of a small sample size is

evident in the larger uncertainty of elevation change at highest and lowest elevations, but the contribution of this error to
total mass change is small since little total glacierized area exists at these elevations.

4.0 Discussion and Concl

Our geodetic balance obtained from laser altimetry using least squares fitting provides the most recent mass change update

for western North America, a region excluded in a recent global assessment of glacier mass loss using laser altimetry from
CryoSat-2 data (Jakob and Gourmelen, 2023), While our trend analysis provides a robust estimate of recent glacier mass

change, insufficient sampling precludes our assessment of mass loss for regions where laser altimetry data are,sparse. This
sparseness is especially pronounced in regions north of GEDI data coverage (51.6° N), e.g. Nahanni, and regions
characterised by very small glaciers, e.g. Sierra Nevada (Fig. 2). Our decadal estimates of glacier mass loss provide jnsight

o (Deleted: is

(Deleted: elsewhere )

(Formatted: Font: 10 pt

(Formatted: Font: 10 pt
(Formatted: Font: 10 pt

into sub-regional patterns of glacier mass loss, but insight is offset by the additional uncertainty of radar penetration at
highest elevation and the ambiguity of the acquisition data for the COP-30 DEM. Others report penetration of the TanDEM,;
X radar signal into high elevation firn and snow surfaces (Abdullahi et al., 2019), The potential of this penetration bias to

greatly affect our results is limited since it is spatially limited to highest elevation zones containing dry snow and firn (Millan -

etal., 2015); these zones fypically represent < 1-2% of the total glacierized area, within a given region of this study. ,
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Figure 1: Elevation change [m yr'!| for western North American glaciers. Data are aggregated to points with 50 km spacing. Left

panel (a): Elevation change [m yr'| determined from ICESat-2 and COP-30 data (2020, - 2013); Right Panel (b): Elevation change Formatted: Not Highlight
[m yr'] from trend analysis over period 2022-2018 from ICESat-2 and GEDI laser altimetric data. Numbers refer to glacierized Formatted: Not Highlight
regions of Western North America (RGI region 02). The regions include: (1) Central Coast (1,692 km?); (2) Southern Coast (7,181 4 —
km?); (3) Vancouver Island (15 km?); (4) Northern Interior (572 km?); (5) Southern Interior (1,959 km?); (6) Nahanni (657 km?); (Formatted: Not Highlight
(7) Northern Rocky Mountains (415 km?); (8) Central Rocky Mountains (422 km?); (9) Southern Rocky Mountains (1,350 km?); {Formatted: Not Highlight
(10) Olympics (30 km?); (11) North Cascades (250 km?); (12) South Cascades (153 km?); (13) Sierra Nevada (11 km?); (14) Glacier —
National Park (11 km?) and; (15) Wind River (60 km?). —"CFormatted: Not Highlight
(Formatted: Not Highlight
The regional pattern of elevation change obtained for the recent period shows areas of neutral or slight elevation gain (e.g. | . ,,x'—'(Formatted: Font: 10 pt
regions 1 and 5) that are not apparent in the map of decadal elevation change (Fig. 1). The most parsimonious explanation ,{Deleted:
for these differences is the influence of spatially variable snow accumulation in these regions, though we cannot rule out the " (Formatted: Font: 10 ot
possibility of changing balance between ice dynamics and mass balance to explain the observed elevation changes. In
addition, the decadal pattern largely accords with the notable zonal difference in elevation change observed by Menounos et CF‘“matted: Font: 10 pt
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mass change estimates can be obtained using much sparser observations from laser altimetry. Our recent and decadal
estimates of glacier mass loss using independent datasets confirms the magnitude of recent mass change for a comparably
recent period (2018 to 2022), corroborating the finding of accelerated mass loss from this previous study.

Glaciers in western North America provide cold meltwater that buffers hot and dry conditions (Anderson and Radi¢, 2020;

Moore et al., 2009), sustains alpine stream ecosystems (e.g. Muhlfeld et al., 2020), and supports downstream communities
via agricultural irrigation and hydroelectric power generation (e.g. Frans et al., 2018). Thus, our study provides relevant

detailed information to land managers who are responsible for understanding and responding to the local consequences of
rapid glacier change. Sparsely glacierized regions in Western North America and Europe contribute minimally to sea level

change (Rounce et al., 2023) but coincide with river basins where mountain water supply and downstream demand are
highest (Immerzeel et al., 2019). This justifies the need to surmount technical and data limitations that impede quantifying
glacier mass change in sparsely glacierized regions. The projected, continued loss of glacier ice (Rounce et al. 2023)
furthermore suggests that this technical challenge will only become more widespread.
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Figure 2: In both panels, light grey shading denotes uncertainty (5-95%) of elevation change. Black dashed line and green dots,

respectively, indicate percent area of RGI ice and percentage of ICESat-2 laser shots within a given elevation bin. Left Panel:

Rates of elevation change [m yr!| versus elevation for the period 2013-2020, Only laser shots from 1 August-1 October (n=347,630) )

used in analysis. Right Panel: Rates of elevation change [m yr™'] versus elevation for the period 2018-2022 from ICESat-2 and
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GEDI laser shots from least-squares trend analysis (n=66,201).,
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