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Abstract. It is necessary to accurately determine the optical properties of highly absorbing black carbon (BC) aerosols to esti-

mate their climate impact. In the past, there has been hesitation about using realistic fractal morphologies when simulating BC

optical properties due to the complexity involved in the simulations and the cost of the computations. In this work, we demon-

strate that using a benchmark machine learning algorithm, it is possible to make highly fast and accurate predictions of the

optical properties for BC fractal aggregates. The mean absolute errors (MAE) for the optical efficiencies ranged between 0.0025

and 0.004, whereas they ranged between 0.003 and 0.004 for the asymmetry parameter. Unlike the computationally intensive

simulations of complex scattering models, the ML-based approach accurately predicts optical properties in a fraction of a sec-

ond. Physiochemical properties of BC, such as total particle size (number of primary particles (Npp), outer volume equivalent

radius (ro), and mobility diameter (Dm), outer primary particle size (ao), fractal dimension (Df ), wavelength (λ), and fraction

of coating (fcoating) were used as input parameters for the developed ML-algorithm. An extensive evaluation procedure was10

carried out in this study while training the ML algorithms. The ML-based algorithm compared well with observations from

laboratory-generated soot, demonstrating how realistic morphologies of BC can improve their optical properties. Predictions

of optical properties like single scattering albedo (ω) and mass absorption cross-section (MAC) were improved compared to the

conventional Mie-based predictions. The results indicate that it is possible to generate optical properties in the visible spectrum

using BC fractal aggregates with any desired physicochemical properties within the range of the training dataset, such as size,15

morphology, or organic coating. Based on these findings, climate models can improve their radiative forcing estimates using

such comprehensive parameterizations for the optical properties of BC based on their aging stages.

1 Introduction

Black carbon (BC) aerosols are strong absorbers of solar radiation formed from incomplete combustion of fossil fuels, biofuels,

and biomass (Ramanathan and Carmichael, 2008; Bond et al., 2013). In the atmosphere, BC is usually found together with20

other types of aerosols, which form a coating around it (Sun et al., 2022; Sedlacek III et al., 2022; Romshoo et al., 2023a).
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To understand the impact of BC on the environment, global climate models require information about its light scattering and

absorption properties (Jacobson, 2001). The most common morphology assumed for such BC-containing aerosols in light

scattering codes is a spherical core-shell shape (Bond et al., 2013). The Lorentz-Mie theory (Mie, 1908) is often used to

calculate the optical properties of such spherical BC particles (Bohren and Huffman, 2008). However, studies have shown25

significant discrepancies in the results of Lorentz-Mie theory when compared with ambient measurements (Romshoo et al.,

2024; Adachi et al., 2010; Wu et al., 2018).

High-resolution Transmission Electron Microscopy (TEM) images showed that the BC particles have a fractal structure

composed of numerous spherules known as primary particles (Chakrabarty et al., 2006). This led to an advanced mathematical

description of BC as fractal aggregates, known as fractal law (Mishchenko et al., 2002):30

Npp = kf

(
Rg

a

)Df

, (1)

where a is the radius of the primary particle, Npp is the number of primary particles, kf is the fractal prefactor, and Df is the

fractal dimension. Rg is the radius of gyration, which characterizes the spatial size of the aggregate. The shortcomings of the

simplified spherical assumption of BC have caused the scientific community to develop towards the use of such realistic fractal

aggregate morphology for computing the optical properties of BC (e.g., Kahnert and Kanngießer, 2020; Romshoo et al., 2021;35

Kahnert, 2010a; Wu et al., 2018; Liu and Mishchenko, 2018).

Romshoo et al. (2022) showed that the discrepancy between modeled and measured optical properties could be reduced to

10% when an aggregate morphology is used. To simulate the optical properties of BC as fractal aggregates, the most commonly

used methods are the Rayleigh-Debye-Gans (RDG) approximation (Sorensen, 2001), the discrete dipole approximation DDA

(Purcell and Pennypacker, 1973), the Generalized Multi-particle Mie (GMM) method (Xu and Gustafson, 2001) and the T-40

matrix method (Mishchenko et al., 1996). The Multi Sphere T-Matrix (MSTM) method has found widespread applications in

the research field because of its high computational speed and accuracy in comparison to other methods like the DDA (Kahnert

and Kanngießer, 2020; Yurkin and Kahnert, 2013). Although MSTM has lower computational costs when compared to other

numerical methods, a single simulation can still take more than 24 hours, depending on the properties of the aggregate.

Consequently, pre-calculated databases have been developed for aggregate properties to save time for constructing detailed45

aggregates and the time-consuming optical simulations (Liu et al., 2019; Romshoo et al., 2021). Using these databases as look-

up tables mitigates high computational overhead in large-scale applications. Still, this approach is limited by the range and

step size of parameters chosen during the database creation. Previous work has trained machine learning (ML) models on such

databases (Luo et al., 2018a; Lamb and Gentine, 2023) to overcome those limitations. Once trained, those ML models provide

predictions for BC optical properties in a fraction of a second. Luo et al. (2018a) train a support vector regressor on a database50

generated using MSTM simulations (Npp from 8 to 3000; Df from 1.8 to 2.2). However, they did not consider coating and

used pure BC aggregates in their experiments. Their results also suggest that their model has considerable difficulties when

attempting to predict optical properties for physicochemical properties not in the range of the training data. Lamb and Gentine

(2023) predicted optical properties of uncoated BC fractal aggregate using a graph neural network (Npp from 8 to 960; Df

from 1.8 to 2.3). The input graph contains one node for each primary particle and an edge between two nodes if the distance55
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between the corresponding primary particles is less than some threshold. The authors generate their ground truth database using

the MSTM algorithm, but, like Luo et al. (2018a), they do not consider any coating in their experiments. The machine learning

methods, training parameters, performance metrics, and other details of Luo et al. (2018a) and Lamb and Gentine (2023) are

compared to this study in Table B1.

This study demonstrates the use of a machine-learning-based approach to predict the optical properties of BC aggregates at60

various aging stages, including coating, which is highly relevant for atmospheric aerosols. Combining this ML-based approach

with a laboratory dataset showed optical properties like single scattering albedo (ω) and mass absorption cross-section (MAC)

can be predicted more accurately than with conventional Mie-based methods. A database of optical and physicochemical

properties of BC has been built for this study, which is an extension to the previous work by Romshoo et al. (2021). We

trained two ML methods on this database: kernel ridge regression (KRR) and artificial neural networks (ANN). Experiments65

show that these models predict the optical properties of BC aggregates regardless of their size, morphology, or composition

at low computational costs and with high accuracy. The dataset used to train our ML models is freely available at Zenodo
1. Furthermore, we publish our ML models at GitHub2 together with an easy-to-use wrapper script to allow for integration

into higher-level applications. Our approach contributes to improving global climate model radiative forcing estimates by

parametrizing BC optical properties using realistic fractal aggregate morphology.70

The manuscript is structured as follows: Section 2 provides an overview of the physical, chemical, and optical properties of

BC used in this study. Section 3 describes the machine learning techniques, including the data processing, machine learning

algorithms, and evaluation procedures. In Section 4, the results demonstrate that realistic morphologies of BC can be used

to accurately predict optical properties at various stages of aging. Section 5 discusses how the results compare to laboratory

measurements of BC, discussing the atmospheric processing in detail. Potential limitations and challenges of this work in75

presented in Section 6, ending with the main conclusions in Section 7.

2 Database of physicochemical and optical properties of black carbon fractal aggregates

The database for the physicochemical and optical properties of BC fractal aggregates has been designed to consider all the

possible aging stages of BC. The optical properties of BC fractal aggregates are most sensitive to the change in particle size

as they age (Matsui et al., 2018). The particle size is reported as dependent parameters of the number of primary particles80

(Npp), volume equivalent radii (ri and ro), and mobility diameter (Dm). Further, the chemical composition and morphology

also influence their optical properties. There are constants related to the particle’s chemical composition, such as density

and refractive index. The optical properties have been reported as efficiencies and cross-sections. Further dependent optical

properties have also been included. The mass and volume of the BC particles were used for conversion between various optical

parameters. Further, some parameters, such as the wavelength, were related to the optical model. The database was created85

using 6192 particles of varying sizes, morphologies, and coating fractions. There are 35 features in the database, which are

1https://zenodo.org/records/7523058
2https://github.com/jaikrishnap/Machine-learning-for-prediction-of-BCFAs
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Step 2: Calculation of optical properties: MSTMStep 1: Simulation of BC fractal aggregates Step 3: Derived optical properties 

Physicochemical properties 

Optical properties 

Others

- Primary particle size (a)
- Number of primary particles (Npp)
- Total outer volume equivalent radius (ro)
- Total inner volume equivalent radius (ri)
- Mobility diameter (Dmob)
- Fractal dimension (Df)
- Fraction of coating (fcoating)
- Total volume of particle (Vtotal)
- Volume of the BC (VBC)
- Volume of the coating (Vcoating)
- Density of BC (𝜌B𝐶) 
- Density of OC (𝜌𝑂𝐶) 
- Total mass of particle (mtotal)
- Mass of the BC (mBC)
- Mass of the coating (mcoating)
- Mass ration (MR)

- Wavelength (l)
- Length scale factor
- Real part of refractive indices (nBC & ncoating)
- Imaginary part of refractive indices (kBC & kcoating)

- Optical efficiencies (Qext/abs/sca)
- Geometric cross-section (Cgeo)
- Optical cross-sections (Cext/abs/sca)
- Assymetry parameter (g)
- Single scattering albedo (SSA)
- Mass absorption cross-section (MACtotal/BC/coating)

Database of physicochemical and optical properties of BC fractal aggregates

Type of feature:

Figure 1. Overview of the various features of the database for physicochemical and optical properties of black carbon fractal aggregates. The

features are arranged based on the three steps of constructing this database. As the legend at the bottom indicates, the features are further

divided into physicochemical properties, optical properties, and others.

categorized into 15 physicochemical features, 13 optical features, and seven constants. In Fig. 1, you can see an overview of

all the features of the database. In Table A1, the upper and lower bounds of the main features are provided.

2.1 Physicochemical features of the database

The BC fractal aggregate’s physicochemical features include size, mass, volume, morphology, and composition. Figure 2 gives90

some examples of the various BC aggregate particles generated in this study. All the relevant properties provided in the study

are discussed below, and their formulas are given in Appendix A1.

2.1.1 Size

Primary particle size (a). The primary particle size of a BC fractal aggregate is sensitive to the emission source or flame

condition. Biomass burning produces black carbon aggregates with comparatively large primary particles, ranging from 15 to95

25 nm in radius (Chakrabarty et al., 2006). Diesel engines produce aggregates whose primary particle radius ranges between 10

and 12 nm (Guarieiro et al., 2017). On the other hand, emissions from aircraft engines consist of particles with a radius as small

as 5 nm (Liati et al., 2014). There has also been research indicating that the size distribution of primary particles is largely

polydisperse (Bescond et al., 2014). Liu et al. (2015) pointed out that when considering a monodisperse and polydisperse

distribution of the radius of the primary particle, their resultant radiative properties differ. However, Kahnert (2010b) has100

shown that particle light absorption is insensitive to the radius of primary particles when they are between 10 nm and 25 nm.
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(a) Ns = 100; Df = 1.5; fcoating = 0%.  

(b) Ns = 100; Df = 2.1; fcoating = 0%.  

(c) Ns = 100; Df = 2.7; fcoating = 0%.  

(d) Ns = 250; Df = 1.5; fcoating = 50%.  

(e) Ns = 250; Df = 2.1; fcoating = 50%.  

(f) Ns = 250; Df = 2.7; fcoating = 50%.  

(g) Ns = 500; Df = 1.5; fcoating = 90%.  

(h) Ns = 500; Df = 2.1; fcoating = 90%.  

(i) Ns = 600; Df = 2.7; fcoating = 90%.  

Figure 2. Visualization of the various BC aggregate particles generated in this study. Fresh BC aggregates with no external coating are shown

in (a) to (c). Semi-aged BC aggregates with 50% coating are shown in (d) to (f). Aged BC aggregates with 90% coating are shown in (g) to

(i)

The black carbon fractal aggregates in this study have a monodisperse distribution of the radius of the primary particle. BC

aggregates were simulated with the inner diameter of the primary particle (ai) fixed at 15 nm. In contrast, the outer radius of

the primary particle (ao), consisting of the organics, varied between 15.1 nm to 30 nm with the fraction of coating (fcoating

following Eq. (A3) in the Appendix section. The ao was 15, 15.1, 15.3, 15.5, 15.8, 16.2, 16.5, 16.9, 17.8, 18.9, 20.4, 22.4, 25.6,105

and 29 according to the value the fcoating given in Table A1.

Number of primary particles (Npp). The number of primary particles determines the overall size of the particle. The BC

fractal aggregates were simulated by varying Npp by 5%, starting from 1 up to 1000.

Volume equivalent radius (r). The volume equivalent radius is defined as the radius of a sphere having the same volume as

the BC fractal aggregate, described in Eq. (A1) in the Appendix section. The outer volume equivalent radius (ro) was calculated110

for the whole BC aggregate and the coating using ao. The inner volume equivalent radius (ri) was calculated using ai for the

BC aggregate without the coating, i.e., pure BC.

Mobility diameter (Dm). The mobility diameter is the diameter of a sphere with the same migration velocity in a constant

electric field as that of the BC fractal aggregate (Flagan, 2001). Mobility size spectrometers can measure Dm, which is inter-

esting for ambient and laboratory studies. We derived Dm for the entire range of Npp using the conversion given by Sorensen115

(2011)—see Eq. (A2) in the Appendix section.

Geometric cross-section (Cgeo). The geometric cross-section is the area of the cross-section of a volume-equivalent sphere

given as Eq. (A4) in the Appendix section.
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2.1.2 Mixing state

Along with BC, a complex mixture of gas-phase organic compounds is co-emitted during incomplete combustion, forming a120

coating around the BC aggregates (Gentner et al., 2017). As the BC aggregates stay in the atmosphere, they transform from

being hydrophobic to hydrophilic due to water deposition attracting other foreign coatings (Bhandari et al., 2019). The result

is that BC particles undergo complex changes in their morphology throughout atmospheric aging, transforming from bare to

partially coated aggregates and finally forming compact spherical structures embedded within external coatings (Coz and Leck,

2011; Joel C. Corbin and Gysel-Beer, 2023). Therefore, considering BC as fractal aggregates is necessary to represent all the125

different stages during their atmospheric aging process. The two parameters describing the mixing state are:

Fractal dimension (Df ). The fractal dimension is a parameter for morphology that quantifies the folding of BC fractal

aggregates into spherical structures with increasing residence time. The value of Df increases as an aggregate grows into a

more spherical frame. A Df of 3 is the maximum value describing a complete sphere, whereas Df of 1 represents an early

stage open-chain-like aggregate. In the early stages of the BC aging cycle, Df is usually between 1.5 and 1.9 (Wentzel et al.,130

2003). With increasing residence time in the atmosphere, aggregates become more compact with a fractal dimension of up to

2.2 (Wang et al., 2017). A humid environment or foreign coatings may further reshape the BC fractal aggregates into more

compact structures with a fractal dimension of up to 2.6 (Bambha et al., 2013). In this study, the range of fractal dimensions

was taken from 1.5 to 2.9 with a step size of 0.2.

Fraction of coating (fcoating). The fraction of coating is the percentage of coating volume compared to the total volume of135

the BC fractal aggregate. To cover all aging stages, the coating fraction was taken from 1% to 90% in increments of 5%. Note

that the coating composition was constrained to non-absorbing organics in this study. fcoating is dependent on the ao and ai,

described by Eq. (A3) in the Appendix section.

2.1.3 Others

Volume. Three features in our database describe the volume of a BC aggregate: 1. Total volume of the particle (Vtotal), 2. the140

volume of the BC (VBC), and 3. the volume of the organic coating (Vcoating).

Mass. Similarly, we include five features related to the mass of the BC aggregate: 1. Total mass of the particle (mtotal), 2.

the mass of the BC (mBC), 3. the mass of the coating (mcoating), 4. the mass ratio of total mass to BC mass
(

mtotal
mBC

)
, and 5.

the mass ratio of coating mass to BC mass
(

mcoating

mBC

)
. We computed those values fixing the density of BC as ρBC = 1.8gcm−3

(Park et al., 2004), and the density of the organic coating as ρOC = 1.1gcm−3 (Schkolnik et al., 2007).145

Wavelength (λ). The optical properties were calculated in the visible spectrum, i.e., for λ ∈ {467nm,530nm,660nm}.

2.2 Optical model and the optical features of the database

The tunable Diffusion Limited Aggregation (DLA) software (Wozniak et al., 2012) was used to simulate bare BC fractal

aggregates of various physicochemical properties. BC can exhibit a range of coating thicknesses and fractal dimensions at

any point in the atmosphere, as evidenced by images from Transmission Electron Microscopy (TEM) analyzed from different150
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locations (Fu et al., 2012). Detailed information and images from TEM analysis of BC particles have been provided in the

Supplementary. The coating model used in this study is called the "closed-cell model," the results showed good comparability

with the realistic coating model (Kahnert, 2017). The MSTM calculates the electromagnetic properties of a system that consists

of a set of spheres (Mishchenko et al., 2004; Mackowski and Mishchenko, 2011). In this study, we use MSTM version 3.0

(Mackowski, 2013) written in FORTRAN to compute the electromagnetic properties for fixed and random orientations. For155

every BC fractal aggregate, the MSTM algorithm presents an orientational average of the combined spherical expansions of

each primary particle. The MSTM code is best suited to calculate the optical properties of coated BC fractal aggregates since

it consists of nested spheres. However, a limiting condition in MSTM is that primary particles cannot overlap.It was necessary

to use this closed-cell coating model due to the non-overlapping sphere limitation of the MSTM code. A sophisticated coating

model would be a good choice, but it requires more complex scattering models, such as Discrete Dipole Approximation (DDA),160

which is computationally expensive. The optical features of the database are given below:

The real (n) and imaginary (k) part of the refractive indices for BC and coating (non-absorbing organics) at different wave-

lengths (Kim et al., 2015) used in this study are summarized in Table A2.

Optical efficiencies (Qext/abs/sca). The MSTM directly calculates the extinction efficiency (Qext), absorption efficiency (Qabs),

and scattering efficiency (Qsca) of the BC aggregate.165

Optical cross-sections (Cext/abs/sca). The optical cross-section is the product of efficiency and geometric cross-section—see

Eq. (A5) in the Appendix section.

Asymmetry parameter (g). The asymmetry parameter is directly obtained from the MSTM, defined as the intensity-weighted

average of the cosine of the scattering angle (Eq. (A6) in the Appendix section).

Single scattering albedo (ω). The single scattering albedo is the ratio of scattering efficiency (Qsca) and extinction efficiency170

(Qext), given as Eq. (A7) in the Appendix section.

Mass absorption cross-section (MAC). The mass absorption cross section is calculated from the ratio of absorption cross

section (Cabs) and mass (m) as detailed in Eq. (A8) in the Appendix section. The three kinds of MAC calculated in this study

are total mass absorption cross-section (MACtotal), BC mass absorption cross-section (MACBC), and coating mass absorption

cross-section (MACcoating).175

3 Machine learning method for predicting optical properties of BC fractal aggregates

As mentioned in Section 1, several high-impact applications, such as climate modeling (Jacobson, 2001), depend on accurate

optical properties for specific BC particles. Hence, we propose to train an ML model on a pre-computed database containing

physicochemical and corresponding optical properties of BC fractal aggregates at several life cycle stages. This model will learn

patterns and structures within the data and should generalize to unseen data values when used in applications, as evidenced by180

the success of ML in several domains (Radford et al., 2021; Ramesh et al., 2022). In this work, we train kernel ridge regression

and a multi-layer perceptron on the database introduced in Section 2. The following sections detail our data processing routines,

models, and evaluation procedures.
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3.1 Data pre-processing

The subset of the database used as input was designed to include the critical parameters that influence the BC optical properties.185

As mentioned in Section 2.1, not all physical properties in the database are independent, as some can be derived from others

using simple formulae. Including all properties as inputs for the ML model will thus present it with redundant information,

increasing its computational overhead and possibly even harming its performance. The first criterion to narrow down the input

parameters was broadly choosing the independent physicochemical parameters representing particle size and mixing state.

The fractal dimension (Df ) was used to represent the morphology of the BC fractal particles. The chemical mixing state is190

represented by the fraction of coating (fcoating). The Wavelength (λ) is also an input parameter. There was an exception in

selecting the input parameters for particle size where we decided to keep four dependent parameters of outer primary particle

size (ao), number of primary particles (Npp), outer volume equivalent radii (ro), and mobility diameter (Dm). The reason

for including all four size parameters is that depending upon the focus of a study, the user may have one or another parameter

representing the size. In this way, we could provide a more user-friendly prediction script in which the user has a choice to enter195

at least one or more of the four size parameters. Therefore, the subset of the database’s properties as input for our ML models

is λ, Df , fcoating, ao, Npp, and ro, and Dm. The range of each input parameter used for designing the prediction algorithm is

summarised in Table A1. The selection of input parameters needed while running the prediction script: λ, Df , fcoating, and at

least one among the Npp, and ro, and Dm.

Similarly, a BC fractal aggregate’s optical properties are also not independent. Thus, we make the ML model predict only200

the following three properties and compute the rest using the formulae in Appendix A1: absorption efficiency (Qabs), scattering

efficiency (Qsca), and asymmetry parameter (g).

After feature selection, we transform input features using the Box-Cox transformation (Box and Cox, 1964), where we

choose the transformation parameter by maximum-likelihood estimation. We also tried to apply the Box-Cox transformation

to the target features, but since this did not improve results, we decided not to use any transformation on the target features for205

the experiments that we report in Section 4. To find a suitable regression model, we conducted experiments with multiple ML-

based models for regression, including Support Vector Regression (SVR), Ridge Regression (RR), Kernel Ridge Regression

(KRR), and Artificial Neural Network (ANN). Each model was evaluated using Mean Absolute Error (MAE) on the sample

dataset. The results showed that Kernel ridge regression and Neural Networks demonstrated better performance, especially in

capturing the non-linear relationships within the dataset. Hence, we used KRR and Neural Networks for further analysis.210

3.2 Kernel ridge regression

Given a labeled dataset of N ∈ N points {(x(1),y(1)),(x(2),y(2)), . . . ,(x(N),y(N))} ⊂ RD ×RD′
, the regression problem

consists of finding a function f : RD → RD′
such that f(x(n))≈ y(n) for all n ∈ {1, . . . ,N}. Kernel ridge regression (KRR)

(Shawe-Taylor and Cristianini, 2004) learns a function of the form f(x)d =
∑N

n=1α
∗
ndk(x

(n),x), where k : RD ×RD → R

is a positive semidefinite kernel function (Cortes and Vapnik, 1995) and α∗ ∈ RN×D′
is a solution of the following convex215
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optimization problem:

min
α∈RN×D′

λTr(αTKα)+ ∥YT −Kα∥2Fro, (2)

where K ∈ RN×N is the so-called kernel matrix defined by Kij = k(x(i),x(j)), λ ∈ R+ is a trade-off parameter that controls

the influence of the regularization term, Y = (y(1), . . . ,y(N))T ∈ RN×D′
, and ∥Z∥Fro :=

√∑N
n=1

∑D′

d=1|znd|2 denotes the

Frobenius norm. Note that Eq. (2) has a closed-form solution:220

α∗ := (K+λIN )
−1

Y. (3)

A popular choice for the kernel function is the Gaussian or radial basis function (RBF) kernel

k(x,x′) = exp
(
−γ∥x−x′∥22

)
, (4)

where γ ∈ R+ is a parameter called bandwidth and ∥x∥2 :=
√∑D

d=1|xd|2 denotes the L2-norm.

We use scikit-learn’s KRR implementation3 with the RBF kernel for our experiments. This method has two hyperparameters225

that need tuning: the RBF kernel’s γ ∈ R+ and λ ∈ R+ (see Eq. (2)). We optimize hyperparameters using grid search—please

see Table B2 for the grid and Section 3.4 for more detailed information on our evaluation procedure.

3.3 Artificial neural networks

Artificial neural networks (ANN) constitute one of the founding pillars of ML’s success during the last ten years. Originally,

their design was inspired by the structure of neurons inside the nervous system of several organisms (Rosenblatt, 1958). Most230

designs used in practice nowadays abandoned that idea, but the name remains.

In our experiments, we use a feed-forward ANN, sometimes also called multi-layer perceptron (MLP). It consists of an

arbitrary number (L≥ 2) of layers, of which the first is called input layer, the last is called output layer, and all layers in

between are called hidden layers. Each layer consists of a certain number of neurons, which are connected to the neurons in

the previous and the following layer235

Formally, we can define an MLP as a function f : RD → RD′
that is composed of L− 1 layer functions, i.e., f(x) :=

f (L−1)(f (L−2)(. . .f (1)(x) . . .)), where each f (l) : RD(l) → RD(l+1)

represents a connection between two layers. They are

defined as f (l)(x) := σ(l)(W(l)x+ b(l)), where W(l) ∈ RD(l+1)×D(l)

,b(l) ∈ RD(l+1)

are learnable parameters, and σ(l) is a

so-called activation function that is applied separately to each element of its input vector. Common choices for σ(l) include,

for example, the rectified linear unit (ReLU) σ(l)(x) = max(x,0) or the tanh function. We use the same activation function240

for each layer except the last, where we always use the identity function, i.e., σ(L−1)(x) := x. Finally, D(l) ∈ N denotes the

number of neurons in layer l, with D(1) =D and D(L) =D′.

The number of hidden layers, the number of neurons in those hidden layers, and the activation function are usually chosen

by a human before training a neural network. Together, they define the architecture of the MLP. We can learn values for the

3https://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html
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parameters W := (W(1), . . . ,W(L−1)) and b := (b(1), . . . ,b(L−1)) by minimizing a so-called loss function L : RD′×RD′ → R245

over a dataset:

min
W,b

1

N

N∑
n=1

L(f(x(n)),y(n)). (5)

When solving a regression problem, the most common choice for L is the squared loss L(ŷ,y) := ∥y− ŷ∥22, but practitioners

sometimes use other loss functions as well, for example, the Huber loss (Huber, 1964):

L(ŷ,y) =
D′∑
d=1


1
2 (yd − ŷd)

2 if |yd − ŷd| ≤ δ

δ
(
|yd − ŷd| − 1

2δ
)
, otherwise,

(6)250

where δ ∈ R+ determines the cut-off point between squared and absolute loss and is usually chosen as δ = 1. The entire

procedure of adapting the ANN’s parameters using a given dataset is called training in the ANN literature.

Note that, in general, Eq. (5) is not convex and does not have a closed-form solution. Hence, practitioners use gradient-

based optimization methods, i.e., variants of mini-batch stochastic gradient descent (SGD) (Bottou et al., 2018), to find a local

minimum of Eq. (5).255

For our experiments, we implemented an MLP using keras4. Table B3 contains the hyperparameter grid for the MLP’s

architecture and training procedure.

3.4 Evaluation procedure

In the case of kernel ridge regression, regularization is carried out by the regularization constant λ (chosen optimal value =

0.0001). For neural networks, we tested the dropout technique to prevent overfitting. However, dropout regularization did not260

show notable improvements in the model’s generalization. After preprocessing, we split the database into a training and a

test set. Models perform their training procedures and hyperparameter tuning on the training set only, and we then evaluate

the model’s performance exclusively on the test set. We consider three different methods of performing this split—each one

intends to measure another aspect of the model’s performance:

1. Random split: We randomly assign each point in the database to either the training or test set. Note that we use 30% of265

the data for the test set and the rest for the training set. Using this split, the training and test set’s feature distribution

should be similar. Thus, measuring the performance on the test set produces a general measure of the model’s capability

to learn the underlying patterns in the data.

2. Interpolation split: Here, we choose a feature and a certain range in the middle of that feature’s range and choose all data

points within that range as the test set. To achieve high test scores, the model must, therefore be capable to interpolate270

4https://keras.io/
2https://keras.io/api/layers/activations/#sigmoid-function
3http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
4https://keras.io/api/losses/regression_losses/#logcosh-class
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predictions for data points it has not seen during training. Table B4 shows the features and ranges used for the two

interpolation splits. The split was tested for Df using the training data of Df = [1.5,2.1)∪ (2.5,2.9], whereas, a training

data of [0,35)∪ (50,90] was used for testing fcoating.

3. Extrapolation split: Similar to the interpolation splits, we also consider choosing a test set at the boundaries of certain

features. This measures the model’s extrapolation capabilities. Table B5 shows the features and ranges used for the four275

different extrapolation splits. The two splits for testing Df used training data [1.5,2.5) and (1.9,2.9]. The other two

splits for fcoating used training data of [0,75) and (15,90].

We use the mean absolute error (MAE) as our primary performance metric: given a dataset D ⊂ RD×RD′
, and our predic-

tion model f : RD → RD′
we can compute the MAE as follows:

MAE(f,D) =
1

|D|
∑

(x,y)∈D

∥y− f(x)∥1 , (7)280

where ∥z∥1 :=
∑D′

d=1|zd| is the L1-norm.

Regardless of the split strategy, we split the training set once more into a train and a validation set using the random split

method during the training phase. Here, we use again 30% of the data for validation and the remaining 70% for training.

Our models then train on the train set for all possible hyperparameter configurations defined in the grid, and we record the

MAE on the validation set for each combination. Finally, we choose the combination with the lowest MAE and evaluate the285

corresponding model’s MAE on the test set.

4 Performance of the machine learning models

The error distributions for the ML methods are presented in Fig. 3, for different experimental scenarios of the data splitting with

respect to the parameter fractal dimension. The median error is close to zero for the random and interpolation splits, meaning

our models do not generally over- or underestimate any optical value. The distribution of errors (excluding outliers) for the290

random and interpolation splits is relatively narrow, indicating that most test points have minor errors. In the extrapolation

case, both ML models exhibit bias, such as overestimation of Qsca by the ANN and overestimation of g by the KRR. However,

the mean absolute error, even for the extrapolation split, is 1.5 to 8 %, which is still within reasonable limits. Luo et al.

(2018a) showed that their model has considerable difficulties when attempting to predict optical properties for parameters not

in the range of the training data. However, adding a few data points to extend any parameter range significantly improved the295

prediction ability of the ML algorithm. The interpolation and extrapolation results are similar if training and test data are split

according to the parameters of the coating fcoating and particle size Dm. The appendix provides a more detailed discussion about

the interpolation and extrapolation results for parameters of fcoating and Dm in Fig. C1 and Fig. C2, respectively. Overall, the

narrow box plots of the errors in the random split demonstrate the effectiveness of the ML algorithms for predicting the optical

properties of coated BC fractal aggregates.300
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Figure 3. Boxplots summarizing the error between the predicted value (Q̂abs, Q̂sca, ĝ) and the true value for three optical properties. The

training data for the interpolation split consists of fractal dimensions in Df = [1.5,2.1)∪ (2.5,2.9], whereas the extrapolation split uses

Df = [1.5,2.5). The lower hinge and the upper hinge of the boxplot represent the 25 % and 75 % quantile of the observations, respectively.

Note that the outliers significantly reduced the visualization of the boxplots and, therefore, were omitted from the figures. However, please

all the outliers are considered in the training data and error evaluation.

The MAEs for our experiments are reported in Table 1. In the case of the random split, both ML models are pretty accurate,

with the percentage of MAEs ranging from 0.1 to 0.4 % when compared to the average feature range. Lamb and Gentine (2023)

reported mean absolute percentage errors (MAPE) between 2 to 9% for their optical predictions, whereas Luo et al. (2018a)

reported relative errors between 1 to 5 %. The MAPEs are biased to the magnitude of the true value in the denominator. The

same MAE can result in significantly different MAPE depending on the magnitude of true value they are divided with. In our305

view, the prediction error should be weighted equally for both points, and therefore, we chose the MAE as our error metric.

Lamb and Gentine (2023) have also discussed how the bias of MAPEs resulted in higher values of nearly 70% for smaller
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particles. Error distributions for the ML methods shown in Fig. 3 are presented in terms of MAPE in the Supplementary.

The comparison of the two ML methods for random split in Table 1 showed that KRR generally results in a lower MAE for

predictions of Qabs and Qsca. Contrary to this, the ANN could predict g with a lower MAE. In line with expectations, the MAE310

for the splits based on interpolation and extrapolation is somewhat higher. The errors, however, are still considered relatively

minor compared to the features’ range. The extrapolation and interpolation experiments were used to test the performance of

the ML algorithm under various scenarios of data available for training. The ML models we publish for use in applications

were trained on the entire dataset using the best parameters from the random split experiments. As a result, the errors should

be similar to those we report for the random split here.315

Table 1. Mean absolute errors of the predicted optical properties for different experiments. The training data for the interpolation split consists

of fractal dimensions in Df = [1.5,2.1)∪ (2.5,2.9], whereas the extrapolation split uses Df = [1.5,2.5).

Optical property
Random split Interpolation split Extrapolation split

Feature range
KRR ANN KRR ANN KRR ANN

Qabs 0.0022 0.0039 0.0122 0.0287 0.0329 0.0354 0− 2

Qsca 0.0019 0.0031 0.0224 0.0466 0.0393 0.0939 0− 2

g 0.0044 0.0038 0.0429 0.0289 0.0879 0.0485 0− 1

A one-to-one comparison was performed between the estimates and true values to understand better how the ML methods

predict optical properties. Fig. 4 compares the estimated and true values for the wavelength of 660 nm when the training and

test data are randomly split. The values of Q̂abs, Q̂sca, ĝ obtained from the KRR and ANN methods are compared to the true

values derived from the MSTM method. The performance of both ML methods was studied for BC fractal aggregates with

three representative morphologies, and coating fractions (Df = 1.5 & fcoating = 0%; Df = 2.1 & fcoating = 50%; Df = 2.7 &320

fcoating = 90%). There was reasonable agreement between the KRR and the ANN for all the sub-cases. Therefore, the machine

learning models appear applicable in a broader context. The model does not overfit with different coating fractions and complex

morphologies. The one-to-one comparison results agree with the results from Lamb and Gentine (2023), which also showed

reasonable predictions of Q̂ext, Q̂sca, Q̂abs, ĝ across the entire range of size parameters.

During their lifetime, BC fractal aggregates undergo complex changes in size, composition, and morphology due to atmo-325

spheric processing. Figure 5 shows a visualization of how the ML predictions compare to the MSTM reference for different

aging scenarios for BC fractal aggregates. It compares the estimated and true values of the optical properties for the random

split. The models trained using a random split of training data generally show a good agreement with the ground-truth data

over the entire range of Dm. Overall, the KRR predictions are very close to the true values throughout the entire range of

Dm for all nine cases in Figure 5. The ANN predictions slightly deviate from the true value for cases with larger fcoating. For330

example, in the case of fcoating = 90% and Df = 1.5, the ANN underestimates the Q̂abs. Lamb and Gentine (2023) showed

comparatively more deviation in the predictions for larger pure BC fractal particles than smaller particles. In this study, KRR

and ANN predictions were consistently good for pure BC fractal particles (first row in Figure 5). Although we could observe
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Figure 4. Comparison of the predicted optical properties with their true values when the ML models are trained on a random subset of data.

The data points for predicted optical properties correspond to KRR and ANN, as shown by the legend on the top right. The blue line in each

panel of the figure corresponds to the one-to-one line between the X-axis and Y-axis.

deviations from the true values for large and aged coated particle predictions (last row in Figure 5). Appendix C3 contains

plots similar to Figure 5 for the interpolation and extrapolation split. In general, errors increase with increasing aggregate sizes335

for the interpolation and extrapolation splits. The ML models we publish are based upon random split experiments, and Fig. 5

shows how well both the ML methods provide accurate estimates of the optical properties of BC fractal aggregates at each

aging stage.

Apart from making accurate predictions, our ML models should also be fast to provide a benefit over time-consuming

simulations. Hence, we recorded the time needed to train on the entire training dataset and the time for making a single340

prediction in Table 2. As a result, the prediction time of both algorithms is less than one millisecond, which is a drastic
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Figure 5. Absorption efficiency (Qabs) at a wavelength of 660 nm predicted using KRR and ANN for nine representative BC aggregates

with a variety of morphologies (represented by Df ) and coatings (represented by fcoating). Both models were trained on a random split of

training data.

Table 2. Training time for 18526 samples in the dataset and prediction time per sample in seconds. Values were recorded on a machine with

Intel(R) Core(TM) i7-9750H CPU, 8 GB RAM, and NVIDIA GeForce GTX 1650 GPU.

ML model Training time Prediction time

KRR 33.3s 0.0006s

ANN 1770s 0.0005s
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improvement compared to the MSTM method, which can take up to 24 hours, depending on the particle. It should be noted

that the prediction time for the ANN does not depend on the input data. Training the models takes comparatively longer, but it

is usually done offline. Therefore, it is irrelevant for users using the pre-trained models we provide for their applications (see

Section 8).345

5 Comparison to black carbon laboratory measurements

Incorporating the fractal morphology of BC in global model calculations is essential as the BC radiative forcing can increase

up to 61% compared to a more compact and aged particle (Romshoo et al., 2021). In the atmosphere, BC fractal aggregates are

primarily found in conjunction with other aerosol types, such as organic carbon. It is, therefore, more relevant to predict the

optical properties of BC fractal aggregates with organic coatings for atmospheric applications. To give an example of applying350

the ML algorithm to real-world atmospheric research, we predicted the optical properties of laboratory-generated soot for

experiments described in the Table. 1 of our previous study (Romshoo et al., 2022).

The ML-based predictions were compared to the averages of each experimental case, represented by one data point in Fig-

ure 6. The ML results correspond to KRR, the default algorithm used in the prediction script. The details of the laboratory

experiments and instrumentations are given in Appendix D. Figure 6A compares the ML algorithm predicted single scattering355

albedo (ω̂ML) with the measured ω from the laboratory experiment. The ω̂ML predictions are in good agreement with the mea-

sured results for a range of forganics going up to 55%. The uncertainty of nearly 10% in the measured SSA (Weber et al., 2022)

is well represented within the 95% confidence band of the ML-based predictions. On the contrary, Figure 6B demonstrates

that if the conventionally used Mie-core-shell theory is used, the predictions are overestimated by a large margin. The ML

predictions of MAC are also compared to the measured MAC and Mie-based predictions, whose results are given in Figure D1360

of the Appendix. The predictions ˆMACML were found to be less sensitive to the change in Dmob. Due to a lack of monodisperse

mass measurements, comparing the predictions and measured values is not so straightforward. However, one can see that the

discrepancies in the ML-based predictions of MAC are comparatively lower than the Mie-derived MAC values.

The sensitivity in the predicted MAC and SSA as a function of change in input parameters such as the Dmob, Df, fcoating, and

a have been extensively discussed by Romshoo et al. (2021, 2023b); Smith and Grainger (2014). The recommendations given365

by the above studies have been adapted for obtaining the results in Figure 6 and Figure D1, discussed in detail in Appendix D.

For future applications, it is recommended to use ambient or laboratory datasets with a resolution of more than 30 minutes to

minimize the interference of instrumental uncertainty due to noisy data. Similarly, for ambient or laboratory closure studies,

the model output is recommended to be compared with averaged optical observations.

Based on the success of the ML-based approach in predicting the optical properties of coated BC particles, it has great poten-370

tial for future development to predict the optical properties of mixtures of BC and other aerosols. Because such a study would

be exhaustive, we initially tested this approach on BC fractal aggregates and organic coatings to determine its effectiveness.

Further research is necessary to develop an ML algorithm with features representing different morphological shapes and other

chemical compositions, such as inorganics. In the long run, the goal should be to develop an ML algorithm that can be used
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A. B.

Figure 6. Single scattering albedo ω of coated BC particles at varying forganics, generated in a laboratory study using different miniCAST

setpoints (Romshoo et al., 2022). (A) compares the ω̂ML with the measured ω from the laboratory experiment. The cross points in the figure

show the results from the MSTM-based database used for training the ML algorithm. (B) compares the ω̂Mie with the measured ω. The

ML results correspond to KRR, the default algorithm used in the prediction script. Error bars along the X-axis show the uncertainty in the

measured ω. The cross points are the ω from MSTM simulations. The black linear represents a linear regression equation shown in the upper

left corner, with the coefficient of determination (R2) in the upper right corner of each panel. The grey area represents the 95% confidence

level interval for predictions.

to integrate all atmospheric aerosols into global climate models. To develop such a universal algorithm for all atmospheric375

aerosols, we must incorporate the conventional spherically shaped particles into the current prediction algorithm to represent

the fraction of aged aerosols. In this study, due to the experimental design of (Romshoo et al., 2022), we could only test the

ML-based prediction algorithm for particles with forganics of less than 65 %. The extension of the current algorithm to include

more parameters also demands closure studies using more datasets of laboratory and ambient measurements.

6 Limitations and future challenges380

The experiments conducted for this study show that our ML methods predict the optical properties of BC fractal aggregates

with high accuracy as long as they are trained on sufficient data. However, the interpolation and extrapolation experiments

show that the performance of both KRR and ANN significantly deteriorates when entirely removing certain ranges from the
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training data. This suggests that our models possess only limited generalization capabilities. Still, it should be noted that we

train the models for practical use on the entire physically feasible range of Df and fcoating. Hence, those models will not have385

to extrapolate for any reasonable inputs.

Our models treat the wavelength λ as a continuous variable, meaning they should support computing optical properties at

wavelengths that are not part of the training data. The prediction script can predict the optical properties well for the range

between 467 and 660, and points close to the upper and lower limit. However, we did not test the models’ generalization

capabilities about the wavelength since omitting just one wavelength from the training data would reduce the dataset size390

by one-third. Generating more ground truth data for other wavelengths requires refractive indices of BC and organics for

that specific wavelength, which are unavailable in the literature. Even if they were available, it would be time-consuming as

MSTM simulations can take a long time to compute. Nevertheless, examining the models’ generalization capabilities on other

wavelengths in the future would be interesting.

In this study, the ML-based prediction algorithm is developed using training data of Npp up to 1000, which corresponded to395

particles with maximum Dmob of 1561 nm depending on the fcoating. This range of particle sizes was chosen while designing

the database, considering the realistic size of BC-containing particles in the atmosphere. TEM analysis has shown a high

probability that the BC-containing particles less than 1500 nm will be fractal ((Adachi et al., 2016; Wang et al., 2017)). The

ML algorithm developed in this study, which is based on a close-shell coating model, is suitable for such particles smaller than

1500 nm. However, when aerosol particles grow larger, the mass of BC decreases significantly compared to the mass of coating400

(Adachi et al., 2016). For such cases of aged BC, using the conventional core-shell-based spherical morphology is appropriate.

This is why we limited our training data range for particle size to 1561 nm. However, as demonstrated by Luo et al. (2018a),

adding a few points in the training data significantly improves the extrapolation efficiency of machine learning models. Further,

some studies show that the optical properties are not sensitive to the change in the primary particle size a. Therefore, we fixed

the ai to 15 nm, and changed ao from 15.1 to 29 depending on the fcoating. Similar to the parameters related to a particle size405

such as Npp, ro, and Dm, adding a few data points to the aiorao can help optimize the extrapolation ability of the ML-based

prediction algorithm. Although future studies can extend the model’s extrapolation ability, the particle size range of the current

prediction algorithm covers the physically feasible cases for BC fractal aggregates.

Both KRR and the ANN provide only a single-point prediction for each input. In particular, their estimate does not quantify

any uncertainty in the prediction. Bayesian ML methods such as Gaussian Process Regression (Rasmussen and Williams,410

2005) can provide information about the uncertainty of a prediction via credible intervals as they return an entire probability

distribution instead of a single point estimate. Thus, it would be interesting to examine Bayesian ML for the prediction of BC

fractal aggregates’ optical properties. This method could be further developed for reporting the predictions for an ensemble of

BC-containing aerosols with various physicochemical properties. However, applying them directly to our problem is not trivial

since the assumptions made by their statistical model (e.g., target variables follow a multivariate Gaussian distribution) are415

often violated in practice. Therefore, we leave the application of Bayesian ML to the BC aerosol problem to future work.

Atmospheric BC can exhibit a wide range of morphologies showing diversity at different locations (Sedlacek III et al., 2022).

It was observed that aged transported soot can retain its fractal morphology 500 to 1000 km downwind of emission sources (Sun
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et al., 2020). The current state of the art for representing atmospheric soot particles focuses on spherical morphology (Aquila

et al., 2011; Stier et al., 2005; Bauer et al., 2008). The model provided in this study was designed to simulate the optical420

properties for the entire BC lifecycle, capturing the transition between fresh fractal and aged spherical particles. Furthermore,

the calibration of light absorption measurement devices is mostly done with fresh soot. We can link to atmospheric relevant

absorption by simulating mass absorption cross-sections and light absorption enhancement factors. The coating model used in

this study is called the "closed-cell model," the results showed good comparability with the realistic coating model (Kahnert,

2017). A more sophisticated coating model would be a good choice, but it requires more complex scattering models, such425

as Discrete Dipole Approximation (DDA), which is computationally expensive. With the DDA method, generating elaborate

datasets for training ML algorithms is not feasible. We provide a method that predicts the optical properties of a wide range

of ambient soot particles with high accuracy. Therefore, the results of this study are valuable for the simulation of realistic

scenarios, despite the model limitations. There is scope for future studies to extend such an ML-based approach using other

morphological models of BC and coating positions.430

7 Conclusions

The present study demonstrated that the predictions of BC optical properties can be improved by incorporating their realistic

morphologies. Unlike the computationally intensive simulations of complex scattering models, the ML-based approach accu-

rately predicts optical properties in fractions of a second. In conjunction with a laboratory dataset, it was shown that optical

properties like single scattering albedo ω and mass absorption cross-section (MAC) can be predicted with greater accuracy435

than with a Mie-based approach. Using an extensive database for the physicochemical and optical properties of BC fractal

aggregates, we trained two ML models—KRR and ANN—that can be used to predict the optical properties of coated BC

aggregates at all aging stages. In particular, we could accurately predict the optical properties in the visible spectrum for BC

fractal aggregates of any desired size, shape, and fraction of organic coating. Thus, this work illustrates the use of this realistic

approach in real-world atmospheric research applications.440

We summarize the key conclusions of the study as:

– Active investigation area: BC is a highly relevant and active field of research, as it affects the climate system and human

health. Global climate models require information about the optical properties of BC to simulate their radiative forcing.

The BC research will benefit from using this ML algorithm to generate the optical properties of BC based on more

realistic fractal aggregates.445

– Broader application: The ML algorithm can predict the optical properties absorption efficiency, scattering efficiency,

and asymmetry parameter for a wide range of BC fractal aggregates with physiochemical properties specified by particle

size, morphology, and coating fraction. Previous studies did not consider the critical parameter of coating fraction in

their ML models. Therefore, even though we discuss the results in terms of Number of primary particles (Npp), the user

is additionally able to specify the particle size in terms of Volume equivalent diameter (Rv) or Mobility diameter (Dm)450
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depending on numerical or in-situ based nature of the study. We tested the use of the ML algorithm for predicting the

scattering properties of laboratory-generated soot particles and found that it was well in agreement with the measured

values.

– User-friendly: We published a simple Python script that allows users to predict optical properties for BC fractal aggre-

gates using our pre-trained models at GitHub5. The user must specify the physicochemical properties of a BC fractal455

aggregate as a .csv file, from which the prediction script generates the corresponding optical properties using either KRR

or ANN.

– Low computational and energy costs: Our ML models have a low computational cost, taking fractions of a second to

provide the predictions on a run-of-the-mill desktop PC. The same optical properties could take more than 24 hours to

be generated when using a T-matrix optical model. Using such ML algorithms will thus reduce the energy expenditures460

associated with running optical models on supercomputers.

– Citability and reproducibility: The dataset used for developing the ML algorithm is available for download at Zenodo

(Romshoo et al., 2023b). Furthermore, the baseline experiments can be reproduced with the code that is openly available

on GitHub6.

In summary, we demonstrated the feasibility of incorporating the realistic morphology of BC to improve their predictions of465

optical properties using a first-of-its-kind machine-learning approach. This ML-based approach constitutes a significant step

forward in BC aerosol research in two ways: first, it is the first attempt to provide optical properties of coated BC fractal

aggregates at different stages of atmospheric aging using realistic representations. Second, this approach significantly reduces

the heavy computational costs of using previous complex scattering models. Previous studies of BC avoid using complex

scattering theories because of the high computational costs and prefer the more simplistic Mie theory. This research will be470

further developed in the future with the final goal of accurately predicting the optical properties of any mixture of atmospheric

aerosols. We will investigate if the spherical core-shell model can be combined together with the fractal aggregate-based ML

model to distribute the weightage of light absorption predictions for an ensemble of atmospheric BC aerosols with variable

aging stages.

8 Code and data availability475

A Python script that predicts the optical properties of BC fractal aggregates using the trained ML-based models is available in a

GitHub repository https://github.com/jaikrishnap/Machine-learning-for-prediction-of-BCFAs (Romshoo et al., 2023d). To run

the prediction script, the physio-chemical properties need to be provided as a .csv file that contains the fractal dimension Df ,

the fraction of coating fcoating, and the wavelength (λ) at which the optical properties should be calculated. Depending on the

relevance, users may specify the particle size by giving the values of one among the number of primary particles (Npp), the480

5https://github.com/jaikrishnap/Machine-learning-for-prediction-of-BCFAs
6https://github.com/jaikrishnap/Optical-properties-of-black-carbon-aggregates
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mobility diameter (Dm), or the outer volume equivalent radii (ro). If the input parameters are obtained from instrumental mea-

surements, taking hourly or half-hour averages is recommended to cancel the effect of noisy input parameters. The prediction

script will generate a .csv file with the corresponding optical properties for the provided physio-chemical properties. Please

check the README file inside the repository for more detailed information on using the script.

The dataset of simulated physio-chemical and optical properties that we describe in Section 2 is available at https://doi.org/485

10.5281/zenodo.7523058 (Romshoo et al., 2023b). In case they want to reproduce any of the results in this work, readers may

find the entire source code that we used to perform the ML-based experiments and generate figures included in this work on

https://github.com/jaikrishnap/Optical-properties-of-black-carbon-aggregates (Romshoo et al., 2023c).
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Appendix A: Details about the physiochemical and optical properties of BC fractal aggregates

A1 Formulae490

The volume equivalent radius (r) is defined as the radius of a sphere having the same volume as the BC fractal aggregate, given

as:

r = a 3
√
Npp (A1)

where Npp is the number of primary particles, and a is the radius of a single primary particle. The outer volume equivalent

radius (ro) was calculated for the whole BC aggregate and the coating using ao. The inner volume equivalent radius (ri) was495

calculated using ai for the BC aggregate without the coating, i.e., pure BC.

The mobility diameter of a sphere (Dm) was defined by Sorensen (2001) as:

Dm = 2ao
(
10−2x+0.92

)
Nx

pp, (A2)

where Npp is the number of primary particles, and ao is the radius of a primary particle with coating, x is the mobility mass

scaling exponent given by x= 0.51Kn0.043,0.46< x < 0.56. Kn is the Knudsen number, which is the ratio of the molecular500

free path to the agglomerate mobility radius. The error estimated in the mobility mass scaling exponent (x) is ±0.02.

The relationship between the outer radius of the primary particle (ao), the inner radius of the primary particle (ai), and the

fraction of organics (forganics)is given as:

ao
3 = (1− forganics)ai

3 (A3)

The geometric cross-section (Cgeo) is the area of the cross-section of the volume-equivalent sphere, given as:505

Cgeo = πro
2 (A4)

The optical cross-sections (Cext/abs/sca) are defined as the product of efficiency (Qext/abs/sca) and geometric cross-section (Cgeo)

as:

Cext/abs/sca =Qext/abs/scaCgeo (A5)

The asymmetry parameter (or asymmetry factor) g is defined as the average cosine of the scattering angle theta θ:510

g = ⟨cosθ⟩ (A6)

The single-scattering albedo (ω) is derived from the ratio of the scattering efficiency (Qsca) to the extinction efficiency (Qext)

as:

ω =
Qsca

Qext
(A7)
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The total mass absorption cross-section (MACTotal), BC mass absorption cross-section (MACBC), and coating mass absorp-515

tion cross-section (MACCoating) were calculated from the ratio of (Cabs) with total mass (mTotal), BC mass (mBC), and coating

mass (mCoating), respectively, as:

MACtotal/BC/coating =
Cabs

mtotal/BC/coating
(A8)
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A2 Range of features and constants

Table A1. Features from the database of physicochemical and optical properties of black carbon fractal aggregates. For independent features,

the list of values are provided. The features for which the range has provided correspond to dependent features.

Parameter Values/Range

Wavelength (λ) 467, 530, 660

Fractal dimension (Df ) 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, 2.7, 2.9

Fraction of coating (fcoating) 0, 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90

Primary particle size (ao) 15.1 - 29

Number of primary particles (Npp) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 23, 26, 29, 31, 34, 36, 39, 42,

45, 50, 55, 60, 65, 70, 75, 85, 95, 105, 115, 125, 140, 155, 170, 185, 200,

225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 800, 900, 1000

Outer volume equivalent radius (ro) 12 - 290

Inner volume equivalent radius (ri) 12 - 150

Mobility diameter (Dm) 17 - 1561

Extinction cross-section (Cext) 0.043 - 3.02

Absorption cross-section (Cabs) 0.041 - 1.75

Scattering cross-section (Csca) 0.00038 - 1.82

Asymmetry parameter (g) 0.00036 - 0.91

Single scattering albedo (SSA) 0.00030 - 0.776

Mass absorption cross-section (MAC) 3.89 - 24.5

Table A2. Refractive indices (both real and imaginary parts) of BC and organics at various wavelengths in the visible range (Kim et al.,

2015).

Parameter
Wavelength (nm)

467 530 660

nBC 1.92 1.96 2.00

kBC 0.67 0.65 0.63

ncoating 1.59 1.47 1.47

kcoating 0.11 0.04 0.00
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Table B2. Hyperparameter values for the kernel ridge regression (KRR) experiments along with optimal value for each parameter.

Parameter Values Optimal value

RBF kernel bandwidth (γ) 0.0001,0.001,0.01,0.05,0.1, 0.5

0.5,0.75,1

Regularization coefficient (λ) 0.0001,0.001,0.01,0.05,0.5, 0.0001

0.75,1

Table B3. Hyperparameter values for the multi-layer perceptron (MLP) experiments along with optimal value for each parameter.

Parameter Values Optimal value

Number of layers (L) 3,4, . . . ,12 6

Number of neurons (D(l)) 1,8,16,32,64,128,256,512,1024 256

Activation function (σ(l)) id, ReLU, Sigmoid7, tanh, ELU ReLU

(Clevert et al., 2016), Leaky ReLU (Maas et al., 2013)

Optimizer SGD, Adam (Kingma and Ba, 2015), RMSProp8 Adam

Learning rate 0.001,0.005,0.075,0.01,0.05,0.075,0.1 0.001

Loss function (L) MSE, MAE, Huber, LogCosh9 MSE

Table B4. Training range and test range of the features during the interpolation split.

Feature Range Test range Training range

Df [1.5,2.9] [2.1,2.5] [1.5,2.1)∪ (2.5,2.9]

fcoating [0,90] [35,50] [0,35)∪ (50,90]

Table B5. Training range and test range of the features during the extrapolation split.

Feature Range Test range Training range

Df [1.5,2.9] [2.5,2.9] [1.5,2.5)

Df [1.5,2.9] [1.5,1.9] (1.9,2.9]

fcoating [0,90] [75,90] [0,75)

fcoating [0,90] [0,15] (15,90]
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Table B6. Maximum errors of different splits for their test sets.

Optical property
Random split Interpolation split Extrapolation split

Feature range
KRR ANN KRR ANN KRR ANN

Qabs 0.17 0.34 0.38 0.34 0.23 0.21 0− 2

Qsca 0.14 0.17 0.32 0.44 0.55 1.42 0− 2

g 0.14 0.22 0.46 0.44 0.42 0.32 0− 1

Appendix C: Additional figures

C1 Error Boxplots

Fig. C1 shows the residuals for the machine-learning methods for the three splits related to the feature fcoating: random, ex-

trapolation (training data fcoating = [0,75)), and interpolation (training data: fcoating = [0,35)∪ (50,90]. When the training and

testing data is randomly split, we see that residual errors are concentrated near zero for all intervals of fcoating similar to Fig. 3.525

The errors from the KRR and ANN are comparable in the random split. For the case of interpolation split, the errors from

both ANN and KRR models are comparatively higher for all the three optical properties, i.e., Qabs, Qabs, and g. It was noted

in the errors from the interpolation split that KRR performs better for predicting the Qabs, whereas the ANN performs better

for g predictions. The errors in the Qabs, Qabs, and g from the extrapolation split were the highest. The error is largest for the

predictions when fcoating = 90, which is the case farthest away from the training data during an extrapolation split. The relative530

performance of the ANN and KRR are comparable to those observed in the interpolation split.

C2 Point-wise comparison of predicted and true values

Fig. C3 and Fig. C4 compare the machine-learning predictions to their true values for the cases where the data was excluded

while training the ML model. In the Fig. C3, ML predictions were made after removing the intermediate values of the Df

feature (i.e., 2.1, 2.3, 2.5) from the training data. It was observed that the predictions Q̂abs fitted well with the true values,535

especially for the KRR method. However, the predictions Q̂sca fluctuate from the true value Qsca as the approach maximum

values above 1. For predictions ĝ, the ML methods ANN and KRR perform slightly differently. In the case of extrapolation

split, as shown in Fig. C4, the predictions deviated from their true values for Df = 2.7,2.9 since the ML models did not see

the data. However, we can see that for Df = 2.5 (first row), all the predictions are in better agreement with their true values

since it was present in the training data. The predictions Q̂abs and Q̂sca showed reasonable agreement in the case of Df = 2.7.540

The predictions Q̂sca for the unseen Df features were observed to be smaller than their true values. The predictions Q̂abs,

Q̂sca, ĝ are most inconsistent with their true values when the Df = 2.9 which is the case farthest away from the training data.

Therefore, it is demonstrated that there is comparatively higher uncertainty for predicting optical properties for features out of

the range of the training data. Further, the performance of the KRR and ANN varied for different optical properties in such

cases of interpolation and extrapolation split. The interpolation split performed better for predicting the optical properties out545
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Figure C1. Error between the predicted and true values for three optical properties. The residuals are shown when models are trained on

data with different ranges of fractions of coating (fcoating). The residuals for both KRR and NN predictions are presented in each panel.The

lower hinge and the upper hinge of the boxplot represent the 25 % and 75 % quantile of the observations, respectively. Note that the outliers

significantly reduced the visualization of the boxplots and, therefore, were omitted from the figures. However, please all the outliers are

considered in the training data and error evaluation.

of the range of the training data. Therefore, adding more data in the training set for boundary values to let it interpolate would

result in better predictions.

C3 Line plots showing performance as aggregate size changes

Fig. C5 compares the machine-learning predictions to their true values for interpolation split. The predictions for the case

Df = 2.3 (middle row) showed the highest deviations from the true values since it is the farthest point in the training data for550

the interpolation split. From the Q̂abs results, the KRR predictions were reasonable for the entire size range. The predictions
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Figure C2. Error between the predicted value (Q̂abs, Q̂sca, ĝ) and the true value for three optical properties for various cases of mobility

diameter (Dmob). The lower hinge and the upper hinge of the boxplot represent the 25 % and 75 % quantile of the observations, respectively.

Note that the outliers significantly reduced the visualization of the boxplots and, therefore, were omitted from the figures. However, please

all the outliers are considered in the training data and error evaluation.

for Q̂sca were also reasonable for KRR. However, after the particle size increased to larger than 500 nm, the prediction of Q̂sca

using KRR was underpredicted. The prediction of Q̂sca using ANN showed a size-dependent behavior, under-predicting the

results for certain particle sizes, after which there is an over-prediction. Similar size-dependent behavior was observed in the

predictions ĝ from ANN and KRR. The ĝ predictions showed deviations from their true values as the particle size increased. In555

the case of interpolation split, the overfitting or underfitting is generally more pronounced in the larger particle size (> 500 nm).

The explanation for this could be the lower resolution of the training data for particle size > 500 nm, which was a limitation of

large computation time for larger particles and more coating fraction.
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Figure C3. Comparison of the predicted optical properties with their true values for the interpolation split when the ML models have

trained on data with boundary fractal dimensions: Df = 1.5,1.7,1.9,2.7,2.9 and tested the model on data with inner fractal dimensions:

Df = 2.1,2.3,2.5).

Similarly, Fig. C6 show the machine-learning predictions compared to the true values for the extrapolation split. To study

the performance of the KRR and ANN, the results for Df = 2.9 are interesting since they are the farthest from the training560

data. The deviations of the Q̂abs are more from the true values in the case of the KRR, which showed better performance in

the interpolation-split. However, the results for Df = 2.5 and Df = 2.7 show reasonable results since they are closer to the

training data set. The predictions Q̂sca were lower than the true values for ANN, especially as the particle size increased. The

prediction ĝ was larger than its true value in the case of extrapolation-split. However, the performance of predicting ĝ from

KRR showed an interesting size dependence over particle size unique to this split. When particle sizes were smaller, ĝ was565

higher than the true value, decreased, and returned to higher levels once a certain threshold was reached. In general, for the
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Figure C4. Comparison of the predicted optical properties with their true values for extrapolation split when the ML models are trained

on data with smaller fractal dimensions: Df = 1.5,1.7,1.9,2.1,2.3 and tested the model on data with boundary fractal dimensions: Df =

2.5,2.7,2.9).

results when the fcoating is 90, which is the upper limit of the feature, the results for Q̂abs, Q̂sca, and ĝshowed an expected

higher deviation from their true values for both interpolation and extrapolation split.

Appendix D: Laboratory measurements of black carbon

The data from the laboratory experiments by Romshoo et al. (2022) is compared to the ML-based prediction model in Fig. 6570

and Fig. D1. A mobility particle size spectrometer (MPSS, TROPOS – Leibniz Institute for Tropospheric Research – design)

measured the particle number size distribution of the black carbon particles. A cavity-attenuated phase shift extinction monitor

(CAPS PMex 630, Aerodyne Res. Inc., USA) measured the light extinction coefficient, σext, at a λ of 630 nm. The particle
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Figure C5. Optical properties of BC fractal aggregates predicted using machine learning methods KRR and NN for the interpolation split:

when models have trained on data with boundary fractal dimensions Df = 1.5,1.7,1.9,2.7,2.9 and tested the model if it fits for the interme-

diate values of fractal dimensions Df = 2.1,2.3,2.5).The three columns show the predicted values of absorption efficiency(Qabs), scattering

efficiency(Qsca), and asymmetry parameter(g). Each row corresponds to the predictions for the intermediate values of fractal dimensions

Df = 2.1,2.3,2.5.

light-scattering coefficient σsca was measured using a nephelometer (Aurora 4000, Ecotech Pvt Ltd, Melbourne, Australia) at λ

of 635 nm. A multi-angle absorption photometer (MAAP, type 5012, Thermo Scientific, Franklin, MA) measured the particle575

light-scattering coefficient, σabs, at a λ of 637 nm. The aerosol mass concentration for selected experiments was determined

using the tapered element oscillating microbalance (TEOM 1405, Thermo Scientific, Franklin, MA). Aerosols were collected

on quartz fiber filters and were analyzed by an EC–OC analyzer (Sunset Laboratory Inc., Hillsborough, USA).

32



0.25

0.50

0.75

1.00

Q
a
b
s

Df = 2.5, fcoating = 50% Df = 2.7, fcoating = 50% Df = 2.9, fcoating = 50%

0.0

0.5

1.0

Q
s
c
a

Df = 2.5, fcoating = 50% Df = 2.7, fcoating = 50% Df = 2.9, fcoating = 50%

0 500 1000

Dm(nm)

0.0

0.5

1.0

g

Df = 2.5, fcoating = 50%

0 500 1000

Dm(nm)

Df = 2.7, fcoating = 50%

0 500 1000

Dm(nm)

Df = 2.9, fcoating = 50%

MSTM

KRR

ANN

Figure C6. Optical properties of BC fractal aggregates predicted using machine learning methods KRR and NN for the extrapolation split:

when models are trained on data with smaller fractal dimensions Df = 1.5,1.7,1.9,2.1,2.3 and tested the model on data with higher fractal

dimensions Df = 2.5,2.7,2.9).The three columns show the predicted values of absorption efficiency(Qabs), scattering efficiency(Qsca), and

asymmetry parameter(g). Each row corresponds to the predictions for the left-out higher fractal dimensions Df = 2.5,2.7,2.9.
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The input parameters used while running the prediction script are λ, Df , fcoating, and Dm. The parameter of Dm was cho-

sen for particle size due to the MPSS measurements available in the experiment. Df value of 1.7 was taken as it represents580

laboratory-generated soot (Wentzel et al., 2003). The default ai value of 15 nm was used. Numerical studies have also investi-

gated the sensitivity to input parameters like a, Df , and fcoating to modeled optical properties (Romshoo et al., 2022; Luo et al.,

2018b; Smith and Grainger, 2014). For example, Romshoo et al. (2022) recommended Df from 1.7 to 1.9 and a between 10

and 14 nm for laboratory-generated soot. The values of fcoating for each experiment were derived from the EC–OC analysis

results of the quartz fiber filters. The mean of the number size distribution measured by the MPSS was used as the input values585

for Dm. There were 11 sub-cases of the laboratory experiment for which the mean of Dm and fcoating were taken as input. The

input parameters for the Mie core-shell theory were λ, fcoating and Dm.

The output parameters compared to the observations were SSA and MAC. The observational SSA was calculated from the

ratio of σsca and σext. The observational MAC was calculated from the σabs and mass using Eq. (A8). The predicted SSA is

compared to all the 11 experimental cases for which the observational SSA was available (Table 1 in Romshoo et al. (2022)).590

The uncertainty in the measured SSA is nearly 10% (Weber et al., 2022). The uncertainties in the SSA are included in the 95%

confidence band of the ML-based predictions. The predicted MAC is compared to the six experimental cases of coated soot

for which the observational MAC was available (last six rows in Table 1 in Romshoo et al. (2022)).

Figure D1. Mass absorption cross-section (MAC) for coated BC particles generated in a laboratory study at different Dmob (Romshoo et al.,

2022). (A) compares the ˆMACML with the measured MAC from the laboratory experiment. (B) compares the ˆMACMie with the measured

MAC. The number of points used in this figure is less than Fig. 6 as some of the data was excluded due to the uncertainties associated with

the tapered element oscillating microbalance (TEOM) instrument.

34



Author contributions. The study was designed by BR, ThM, JP, ToM, MP, and MK. BR and ThM developed the optical simulations and

database. The machine learning experiments were conducted by JP and ToM, with help from BR and ThM. The results were prepared by JP595

and ToM, with help from BR. The paper was written by BR, JP, and ToM. The paper was reviewed, commented on, and edited by ThM, MK,

and MP.

Competing interests. The authors declare that none of the authors have any competing interests.

Acknowledgements. This research has been supported by the “Metrology for light absorption by atmospheric aerosols” project funded by

the European Metrology Programme for Innovation and Research (EMPIR, grant no. 16ENV02 Black Carbon). We would like to thank the600

members of the European Metrology Programme for Innovation and Research EMPIR 16ENV02 Black Carbon project for their support

and feedback. MK acknowledges support by the Carl-Zeiss Foundation, the DFG awards KL 2698/2-1, KL 2698/5-1, KL 2698/6-1, and KL

2698/7-1, and the BMBF awards 03|B0770E and 01|S21010C.

35



References

Adachi, K., Chung, S. H., and Buseck, P. R.: Shapes of soot aerosol particles and implications for their effects on climate, Journal of605

Geophysical Research: Atmospheres, 115, https://doi.org/10.1029/2009JD012868, 2010.

Adachi, K., Moteki, N., Kondo, Y., and Igarashi, Y.: Mixing states of light-absorbing particles measured using a transmission electron

microscope and a single-particle soot photometer in Tokyo, Japan, Journal of Geophysical Research: Atmospheres, 121, 9153–9164,

https://doi.org/https://doi.org/10.1002/2016JD025153, 2016.

Aquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D., Minikin, A., Petzold, A., Schwarz, J. P., Spackman, J. R.,610

Weinzierl, B., Righi, M., and Dall’Amico, M.: MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles

and their mixing state, Geoscientific Model Development, 4, 325–355, https://doi.org/10.5194/gmd-4-325-2011, 2011.

Bambha, R. P., Dansson, M. A., Schrader, P. E., and Michelsen, H. A.: Effects of volatile coatings on the laser-induced incandescence of

soot, Applied Physics B, 112, 343–358, https://doi.org/10.1007/s00340-013-5463-9, 2013.

Bauer, S. E., Wright, D. L., Koch, D., Lewis, E. R., McGraw, R., Chang, L.-S., Schwartz, S. E., and Ruedy, R.: MATRIX (Multiconfiguration615

Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models, Atmospheric Chemistry and Physics,

8, 6003–6035, https://doi.org/10.5194/acp-8-6003-2008, 2008.

Bescond, A., Yon, J., Ouf, F. X., Ferry, D., Delhaye, D., Gaffié, D., Coppalle, A., and Rozé, C.: Automated Determination of Aggre-

gate Primary Particle Size Distribution by TEM Image Analysis: Application to Soot, Aerosol Science and Technology, 48, 831–841,

https://doi.org/10.1080/02786826.2014.932896, 2014.620

Bhandari, J., China, S., Chandrakar, K. K., Kinney, G., Cantrell, W., Shaw, R. A., Mazzoleni, L. R., Girotto, G., Sharma, N., Gorkowski,

K., Gilardoni, S., Decesari, S., Facchini, M. C., Zanca, N., Pavese, G., Esposito, F., Dubey, M. K., Aiken, A. C., Chakrabarty, R. K.,

Moosmüller, H., Onasch, T. B., Zaveri, R. A., Scarnato, B. V., Fialho, P., and Mazzoleni, C.: Extensive Soot Compaction by Cloud

Processing from Laboratory and Field Observations, Scientific Reports, 9, 11 824, https://doi.org/10.1038/s41598-019-48143-y, 2019.

Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, John Wiley & Sons, 2008.625

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D.,

Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N.,

Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T.,

Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, Journal of Geophysical

Research: Atmospheres, 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.630

Bottou, L., Curtis, F. E., and Nocedal, J.: Optimization Methods for Large-Scale Machine Learning, SIAM Review, 60, 223–311,

https://doi.org/10.1137/16M1080173, 2018.

Box, G. E. P. and Cox, D. R.: An Analysis of Transformations, Journal of the Royal Statistical Society. Series B (Methodological), 26,

211–252, http://www.jstor.org/stable/2984418, 1964.

Chakrabarty, R. K., Moosmüller, H., Garro, M. A., Arnott, W. P., Walker, J., Susott, R. A., Babbitt, R. E., Wold, C. E., Lincoln, E. N., and635

Hao, W. M.: Emissions from the laboratory combustion of wildland fuels: Particle morphology and size, Journal of Geophysical Research:

Atmospheres, 111, https://doi.org/10.1029/2005JD006659, 2006.

Clevert, D., Unterthiner, T., and Hochreiter, S.: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs), in: 4th

International Conference on Learning Representations, San Juan, Puerto Rico, May 2–4, 2016, edited by Bengio, Y. and LeCun, Y.,

http://arxiv.org/abs/1511.07289, 2016.640

36

https://doi.org/10.1029/2009JD012868
https://doi.org/https://doi.org/10.1002/2016JD025153
https://doi.org/10.5194/gmd-4-325-2011
https://doi.org/10.1007/s00340-013-5463-9
https://doi.org/10.5194/acp-8-6003-2008
https://doi.org/10.1080/02786826.2014.932896
https://doi.org/10.1038/s41598-019-48143-y
https://doi.org/10.1002/jgrd.50171
https://doi.org/10.1137/16M1080173
http://www.jstor.org/stable/2984418
https://doi.org/10.1029/2005JD006659
http://arxiv.org/abs/1511.07289


Cortes, C. and Vapnik, V.: Support-vector networks, Machine Learning, 20, 273–297, https://doi.org/10.1007/BF00994018, 1995.

Coz, E. and Leck, C.: Morphology and state of mixture of atmospheric soot aggregates during the winter season over Southern Asia-a

quantitative approach, Tellus B: Chemical and Physical Meteorology, 63, 107–116, https://doi.org/10.1111/j.1600-0889.2010.00513.x,

2011.

Flagan, R.: Electrical techniques, Aerosol Measurement: Principles, Techniques, and Applications, pp. 537–568, 2001.645

Fu, H., Zhang, M., Li, W., Chen, J., Wang, L., Quan, X., and Wang, W.: Morphology, composition and mixing state of individual carbonaceous

aerosol in urban Shanghai, Atmospheric Chemistry and Physics, 12, 693–707, https://doi.org/10.5194/acp-12-693-2012, 2012.

Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., El Haddad, I., Hayes, P. L., Pieber, S. M., Platt, S. M.,

de Gouw, J., Goldstein, A. H., Harley, R. A., Jimenez, J. L., Prévôt, A. S. H., and Robinson, A. L.: Review of Urban Secondary Or-

ganic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions, Environmental Science & Technology, 51, 1074–1093,650

https://doi.org/10.1021/acs.est.6b04509, pMID: 28000440, 2017.

Guarieiro, A. L. N., Eiguren-Fernandez, A., da Rocha, G. O., and de Andrade, J. B.: An investigation on morphology and fractal dimension

of diesel and diesel-biodiesel soot agglomerates, Journal of the Brazilian Chemical Society, 28, 1351–1362, 2017.

Huber, P. J.: Robust Estimation of a Location Parameter, The Annals of Mathematical Statistics, 35, 73 – 101,

https://doi.org/10.1214/aoms/1177703732, 1964.655

Jacobson, M. Z.: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695–697,

https://doi.org/10.1038/35055518, 2001.

Joel C. Corbin, R. L. M. and Gysel-Beer, M.: Mechanisms of soot-aggregate restructuring and compaction, Aerosol Science and Technology,

57, 89–111, https://doi.org/10.1080/02786826.2022.2137385, 2023.

Kahnert, M.: On the Discrepancy between Modeled and Measured Mass Absorption Cross Sections of Light Absorbing Carbon Aerosols,660

Aerosol Science and Technology, 44, 453–460, https://doi.org/10.1080/02786821003733834, 2010a.

Kahnert, M.: Numerically exact computation of the optical properties of light absorbing carbon aggregates for wavelength of 200 nm–12.2

µm, Atmospheric Chemistry and Physics, 10, 8319–8329, https://doi.org/10.5194/acp-10-8319-2010, 2010b.

Kahnert, M.: Optical properties of black carbon aerosols encapsulated in a shell of sulfate: comparison of the closed cell model with a coated

aggregate model, Opt. Express, 25, 24 579–24 593, https://doi.org/10.1364/OE.25.024579, 2017.665

Kahnert, M. and Kanngießer, F.: Modelling optical properties of atmospheric black carbon aerosols, Journal of Quantitative Spectroscopy

and Radiative Transfer, 244, 106 849, https://doi.org/10.1016/j.jqsrt.2020.106849, 2020.
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