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Response to Comments of Reviewer #1 

(comments in italics) 

Manuscript number: EGUSPHERE-2023-2393 

Title: Weakened aerosol-radiation interaction exacerbating ozone pollution in eastern 

China since China’s clean air actions 

 

This paper mainly investigated the impacts of aerosol-photolysis interaction (API) 

and aerosol-radiation feedback (ARF) on the surface ozone concentrations under the 

background of China's clean air action (rapid anthropogenic emission reductions from 

2013 to 2017). 

The effects of API on ozone concentrations are not a new finding since I have found 

several previous studies already addressed it (Gao et al., 2022; Liu and Wang, 2020). 

However, I have not found any previous studies focused on the effects of ARF on ozone 

concentrations. Furthermore, the authors used the IPR methodology to investigate the 

contribution to O3 concentration variation from four processes (VMIX, CHEM, ADVH, 

ADVZ). In conclusion, I consider this paper valuable for publication, even if it has some 

limitations (as shown below). (1) The absence of SOA formation and heterogeneous 

reactions in their simulations could be a limitation of this study; even the authors have 

sufficiently acknowledged this. (2) Some parts/aspects are poorly elucidated, making it 

hard for me to understand. A major revision is needed before it can be published in ACP.  

Response: 

Thanks to the reviewer for the valuable comments and suggestions which are very helpful for 

us to improve our manuscript. We have revised the manuscript carefully, as described in our point-

to-point responses to the comments. 

The major innovation of this study is that it is the first time to quantify the response of aerosol-

radiation interaction to anthropogenic emission reduction from 2013 to 2017, with the mainly focus 

on the contribution to changed O3 concentrations over eastern China both in summer and winter.  

According to the reviewer’s comments, another three widely used chemical mechanisms, i.e., 

RADM2-MADE/SORGAM (RADM2 gas-phase chemistry coupled with MADE/SORGAM 

aerosol module), CBMZ-MADE/SORGAM (CBMZ gas-phase chemistry coupled with 

MADE/SORGAM aerosol module), and MOZART-MOSAIC (MOZART gas-phase chemistry 

coupled with MOSAIC aerosol module), that include SOA formation are also applied to test the 

impact of aerosol-radiation interaction (ARI) on O3 with and without SOA. 

Comparing the simulation results of the three additional mechanisms, the simulated PM2.5 from 

MOZART-MOSAIC are closer to the actual observation. Analyzing the summer/winter MDA8 O3 

reductions due to ARI by the mechanism used in our manuscript (i.e., CBMZ-MOSAIC) and 

MOZART-MOSAIC, similar results are quantified (1.32 ppb vs. 1.85 ppb for summer, and 1.96 

ppb vs. 1.60 ppb for winter). Therefore, although the CBMZ-MOSAIC used in this paper does not 

take into account the formation of SOA and its associated effects, the aerosol radiative effect on O3 

concentration is consistent with the results when the SOA simulation mechanism is considered. 

The impacts of aerosol heterogeneous reactions on O3 have not been considered in this 
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manuscript due to the uncertainty and inconsistency of the heterogeneous uptake shown in 

previous observation and simulation studies (Liu and Wang., 2020b; Tan et al., 2020; Shao et al., 

2021). Shao et al. (2021) summarized that different heterogeneous uptake on the aerosol surface 

applied in the model simulation (e.g., 0.20 vs. 0.08) would cause significant deviations in simulated 

ozone concentrations (e.g., O3 increased by 6% vs. O3 increased by 2.5%). Therefore, the uncertainty 

in the heterogeneous uptake value used in the numerical simulation will finally amplify the deviation 

in model results.  

According to the reviewer’s comments about some poorly elucidated parts, such as 

∆O3_ΔARF_EMI. We have detailedly described in our point-to-point responses as shown below, 

and related descriptions have also been added in the revised manuscript.  

Specific comments: 

1. In my opinion, SOAs account for a substantial portion of total aerosols. Typically, 

in your research, the lack of consideration of SOA can truly affect the reliability of 

the results (the authors also mentioned that PM2.5 is underestimated in your model). 

I highly recommend the authors include SOA formation in their model. 

Response: 

Thanks to the reviewer for the valuable comments and suggestions. The CBMZ gas-phase 

chemistry coupled with MOSAIC aerosol module (CBMZ-MOSAIC for short) used in this study 

does not include secondary organic aerosol (SOA), then we applied three additional chemical 

mechanisms that consider SOA, namely, RADM2 gas-phase chemistry coupled with 

MADE/SORGAM aerosol module (RADM2-MADE/SORGAM for short), CBMZ gas-phase 

chemistry coupled with MADE/SORGAM aerosol module (CBMZ-MADE/SORGAM for short), 

and MOZART gas-phase chemistry coupled with MOSAIC aerosol module (MOZART-MOSAIC 

for short), to test the impact of ARI on O3 with and without SOA for the scenario of BASE_17E17M.  

Figures R1 shows the temporal variations of observed and simulated PM2.5 and O3 

concentrations over eastern China for the three additional chemical mechanisms. Comparing with 

the observed PM2.5 (O3) concentrations, the MOZART-MOSAIC showed the best performance in 

December 2017, with the R of 0.73 (0.79) and NMB of -18.7% (-20.5%). Therefore, we further used 

this mechanism to simulate the air pollutant concentrations during the period of June 2017. As 

shown in Fig. R1 (a4, b4), the temporal variations of observed PM2.5 (O3) can be well captured by 

this mechanism with R of 0.56 (0.91) and NMB of -1.7% (-20.3%).  

Finally, we investigated the effect of aerosol-radiation interaction (ARI) on O3 from the results 

of CBMZ-MOSAIC (this mechanism applied in this manuscript which does not include SOA) and 

MOZART-MOSAIC (this mechanism includes SOA and performs the best simulation results 

comparing with RADM2-MADE/SORGAM and CBMZ-MADE/SORGAM). As shown in Fig. R2, 

summer (winter) MDA8 O3 is significantly reduced over eastern China, ARI reduces the surface 

MDA8 O3 concentrations by 1.32 (1.96) ppb and 1.85 (1.60) ppb by CBMZ-MOSAIC and 

MOZART-MOSAIC, respectively. The O3 reductions are of comparable magnitude in these two 

schemes. Therefore, we can conclude that although the CBMZ-MOSAIC applied in this manuscript 

does not take into account the formation of SOA and its associated effects, the aerosol radiative 

effects on O3 concentrations not only in the pattern of spatial-temporal distribution but also in the 

order of magnitude are consistent with the results when the SOA simulation mechanism is 

considered. 

As shown in Fig. R3, the mean SOA simulated by RADM2-MADE/SORGAM, CBMZ-
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MADE/SORGAM, and MOZART-MOSAIC are 0.29, 0.45 and 0.94 µg m-3, accounting for 3.4%, 

3.8%, and 4.4% of PM2.5 concentrations in winter 2017, respectively. From Fig. R4, the mean SOA 

simulated from MOZART-MOSAIC is 0.90 µg m-3, account for 9.1% of PM2.5 in summer 2017. 

Model simulated SOA concentrations are generally underestimated in most current chemical 

transport models (Zhang et al., 2015; Zhao et al., 2015). The low SOA concentrations simulated by 

the model can be explained by low emissions of biogenic and anthropogenic VOCs (key precursors 

of SOA), but a thorough investigation of this underestimation is outside the scope of this manuscript 

and it will be discussed in our future work. (Page 18-19, Line 497-536) 

According to the reviewer’s suggestion, we have added Figs. R1-R4 in the revised support 

information. (Page 13-16 in supporting information) 

 

Figure R1. Time series of observed (black dots) and simulated (red lines) hourly (a1-a4) PM2.5 and (b1-b4) O3 

concentrations averaged over the whole observation sites in eastern China during summer and winter 2017. (a1, b1) 

Simulated PM2.5 and O3 concentrations in winter 2017 by RADM2 gas-phase chemistry coupled with 

MADE/SORGAM aerosol module (RADM2-MADE/SORGAM). (a2, b2) Simulated PM2.5 and O3 concentrations 

in winter 2017 by CBMZ gas-phase chemistry coupled with MADE/SORGAM aerosol module (CBMZ-

MADE/SORGAM). (a3, b3) Simulated PM2.5 and O3 concentrations in winter 2017 by MOZART gas-phase 

chemistry coupled with MOSAIC aerosol module (MOZART-MOSAIC). (a4, b4) is the same as (a3, b3), but for 

summer 2017. The calculated correlation coefficient (R), mean bias (MB), and normalized mean bias (NMB) are 

also shown. 
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Figure R2. The effects of aerosol-radiation interaction on surface-layer MDA8 O3 in summer (upper) and winter 

(bottom) 2017 calculated by (a, c) CBMZ-MOSAIC and (b, d) MOZART-MOSAIC mechanisms. The changes 

(percentage changes) averaged over China are also shown at the top of each panel. 

 

Figure R3. Spatial distributions of simulated mean PM2.5 and SOA concentrations (μg m-3) in winter 2017 by (a) 

CBMZ gas-phase chemistry coupled with MOSAIC aerosol module (CBMZ-MOSAIC), (b, e) RADM2 gas-phase 

chemistry coupled with MADE/SORGAM aerosol module (RADM2-MADE/SORGAM), (c, f) CBMZ gas-phase 

chemistry coupled with MADE/SORGAM aerosol module (CBMZ-MADE/SORGAM), and (d, g) MOZART gas-

phase chemistry coupled with MOSAIC aerosol module (MOZART-MOSAIC). The calculated pollutant 

concentrations averaged over China are also shown at the top of each panel.  
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Figure R4. Spatial distributions of simulated mean PM2.5 and SOA concentrations (μg m-3) in summer 2017 by (a) 

CBMZ gas-phase chemistry coupled with MOSAIC aerosol module (CBMZ-MOSAIC), (b, c) MOZART gas-phase 

chemistry coupled with MOSAIC aerosol module (MOZART-MOSAIC). The calculated pollutant concentrations 

averaged over China are also shown at the top of each panel. 

2. Similarly, as the significant impacts of heterogeneous reactions on ozone 

concentrations mentioned by previous studies (Lou et al., 2014; Liu and Wang, 

2020), I would expect the authors to include heterogeneous reactions in their 

models. If the authors have specific reasons for not including heterogeneous 

reactions in their models, those reasons need to be stated in the paper. 

Response: 

In addition to the impacts of aerosol-radiation interaction (ARI), aerosols can also affect the 

concentrations of O3 by heterogeneous chemistry (HET). Liu and Wang. (2020b) found that the 

rapid decrease of PM2.5 was a major contributor for the summer O3 increase through weakening the 

heterogeneous uptake of hydroperoxy radical (HO2). However, Tan et al. (2020) launched a field 

campaign in North China Plain (NCP) and proposed a contradicting opinion about the importance 

of the impact of HET on O3. These inconsistent conclusions generated from field observations and 

numerical simulations are mainly originated from the different values of heterogeneous uptake they 

used. Tan et al. (2020) pointed out that the heterogeneous uptake of HO2 on aerosol surface was 

0.08 (γHO2 = 0.08) over NCP, which is smaller than the values (γHO2 = 0.2) used in model simulations 

(Li et al., 2019; Liu and Wang., 2020). As shown in Fig. R5, Shao et al. (2021) found controversial 

results by using the different heterogeneous uptake of HO2. When γHO2 = 0.2 was used in the 

chemical model, the reduced heterogeneous uptake of HO2 due to the decrease in aerosol caused the 

maximum O3 increased by about 6% from 2013 to 2016, which is close to the results of Li et al. 

(2019) (~ 7%). When γHO2 = 0.08 was used, the reduced heterogeneous uptake of HO2 due to the 

decrease in aerosol led to maximum O3 increased by only 2.5% from 2013 to 2016. Therefore, 

significant deviations in the model results would result from the use of different heterogeneous 

uptake on the aerosol surface. 

Furthermore, previous laboratory studies indicate that the uptake coefficient varies widely from 

0.003 to 0.5 with a strong dependence on the concentration of transition metal ions such as Cu(II) 

and Fe(II) in the aerosol (Zou et al., 2019). Taketani et al. (2009) reported that the uptake coefficient 

of HO2 (γHO2) on seawater particles depends on relative humidity (RH), with γHO2 values of 0.10 ± 
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0.03, 0.11 ± 0.02 and 0.10 ± 0.03 at 35%, 50% and 75% RH, respectively. Lakey et al. (2015) also 

found that a large humidity dependence was observed for HO2 uptake onto humic acid aerosols. The 

HO2 uptake coefficient increased from 0.007 ± 0.002 to 0.06 ± 0.01 between 32 and 76% RH for 

the Acros organics humic acid, and from 0.043 ± 0.009 to 0.09 ± 0.03 between 33 and 75% RH for 

the Leonardite humic acid. This strong dependence on aerosol composition and RH implies that a 

single assumed value for heterogeneous uptake used in numerical simulation may cause large 

uncertainty. In addition, our manuscript devoted to quantifying the effects of ARI on O3, rather than 

the impacts of heterogeneous reactions on O3. Due to the reasons listed above, we did not consider 

the effect of heterogeneous reactions on O3 temporarily in the manuscript.  

Thanks for the reviewer’s suggestion, and we will consider the impacts of heterogeneous 

reaction in our future works. A discussion about the impacts of heterogeneous reaction has been 

added in the revised manuscript as follows:  

“The impacts of aerosol heterogeneous reactions (HET) on O3 have not been considered in this 

manuscript due to the uncertainty and inconsistency of the heterogeneous uptake shown in previous 

observation and simulation studies (Liu and Wang., 2020b; Tan et al., 2020; Shao et al., 2021). Liu 

and Wang. (2020b) found that the rapid decrease of PM2.5 was the primary contributor for the 

summer O3 increase through weakening the heterogeneous uptake of hydroperoxy radical (HO2). 

However, Tan et al. (2020) launched a field campaign in NCP and proposed a contradicting opinion 

about the importance of the impact of HET on O3. Shao et al. (2021) summarized that different 

heterogeneous uptake on the aerosol surface applied in the model simulation (e.g., 0.20 vs. 0.08) 

would cause significant deviations in simulated ozone concentrations (e.g., O3 increased by 6% vs. 

O3 increased by 2.5%). Previous laboratory studies indicate that the dependence of the uptake 

coefficient on aerosol composition and RH means that a single assumed value for heterogeneous 

uptake used in numerical simulations can lead to large uncertainties (Lakey et al., 2015; Taketani et 

al., 2009; Zou et al., 2019). Therefore, the uncertainty in the heterogeneous uptake value used in the 

numerical simulation will finally amplify the deviation in model results. Meanwhile, our manuscript 

devoted to quantifying the effects of ARI on O3, rather than the impacts of heterogeneous reactions 

on O3. The absence of heterogeneous chemistry on aerosol surface may result in underestimation of 

the effect of aerosol on O3, which will be considered in our future work.” (Page 19-20, Line 537-

556) 

 

Figure R5. O3 change due to the decrease in PM2.5 during 2006-2016 and during 2013-2016 in the study of Shao et 

al., (2021) and during 2013-2017 in the study of Li et al., (2019a). This picture is from Shao et al., (2021). 
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3. L160, you mentioned you fixed the meteorological field to the year 2013, can you 

explain how to achieve this? Can I understand that all *17M cases have exactly the 

same meteorological fields throughout 2017 simulation? However, I don't think all 

*17M cases should have the same meteorological fields, because you cannot 

investigate deltaO3_deltaARF_EMI if the meteorological fields are fixed in 

different cases. This needs to be explained more clearly in your paper. 

Response: 

Thanks for your comments. ∆O3_ΔARF_EMI represents the impacts of weakened aerosol-

radiation feedback (ΔARF) due to decreased anthropogenic emission (EMI) on O3 concentrations 

(ΔO3). In order to quantify the impacts caused by the decreased EMI from 2013 to 2017, the impacts 

of changed meteorological variables should be removed by fixing the meteorological fields in year 

2017 in sensitivity experiments, such as NOAPI_13E17M, NOALL_13E17M, NOAPI_17E17M 

and NOALL_17E17M (13E17M means anthropogenic emissions are from the year of 2013 and 

meteorological fields are from the year of 2017, more details can be found in Figure 1 in the revised 

manuscript).  

For example, the differences between NOAPI_13E17M and NOALL_13E17M reflect the 

impact of ARF at the condition of 13E17M (the result is denoted as ∆O3_ARF13E for short), and the 

differences of NOAPI_17E17M and NOALL_17E17M show the impact of ARF at the condition of 

17E17M (the result is denoted as ∆O3_ARF17E for short), so the differences between ∆O3_ARF17E 

and ∆O3_ARF13E finally present the impact of weakened aerosol-radiation feedback due to 

decreased anthropogenic emission from 2013 to 2017 on O3 concentrations.  

For the summer simulations and the winter simulation in the year of 2013 or in the year of 

2017, we use the June and December meteorological fields for the corresponding year.  

The same method has been widely used in many other studies, which mainly focus on the 

impacts of weakened aerosol-radiation interactions on air pollutants in China (Li et al. 2019; Zhou 

et al., 2019; Hong et al. 2020; Liu and Wang. 2020b; Zhu et al. 2021; Shao et al. 2021). 

According to the reviewer’s suggestion, we have added this information in the revised 

manuscript. (Page 7-8, Line 175-214)  

4. L23-L25, you mentioned API and ARF. However, the API and ARF terminology is 

so abstract, making it hard for people to understand. It would help if you mentioned 

that API is related to the change in photolysis rates and ARF is related to the change 

of meteorological fields in your abstract. 

Response: 

Thanks for your suggestion, we have added this information in the revised manuscript as 

follows: “Here we apply a coupled meteorology-chemistry model (WRF-Chem) to quantify the 

responses of aerosol-radiation interaction (ARI), including aerosol-photolysis interaction (API) 

related to photolysis rate change and aerosol-radiation feedback (ARF) related to meteorological 

fields change, to anthropogenic emission reductions from 2013 to 2017, and their contributions to 

O3 increases over eastern China in summer and winter.” (Page 2, Line 24-26) 

5. L58, I think chemical species like CO and CH4 can also lead to the formation of O3. 

Response: 

According to the reviewer’s suggestion, we have changed the sentence in the revised 
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manuscript as follows: “As a secondary air pollutant, troposphere O3 can be produced by nitrogen 

oxides (NOx = NO + NO2), carbon monoxide (CO), methane (CH4) and volatile organic compounds 

(VOCs) in the presence of solar radiation through photochemical reactions (Atkinson, 2000; 

Seinfeld and Pandis, 2006).” (Page 3, Line 60) 

6. L57-L62 The causal relationship between the following two sentences is not clear. 

As a secondary air pollutant, troposphere O3 can be produced by nitrogen oxides (NOx 

= NO + NO2) and volatile organic compounds (VOCs) in the presence of solar 

radiation through photochemical reactions (Atkinson, 2000; Seinfeld and Pandis, 

2006). - > Consequently, the concentration of O3 is closely related to changes in 

meteorological conditions and anthropogenic emissions (Wang et al., 2019; Liu and 

Wang, 2020a,b; Shu et al., 2020). "solar radiation" is not directly related to 

"meteorological conditions", try to revise those sentences to make them more logical. 

Response: 

Thanks for your suggestion. we have changed the sentence in the revised manuscript as follows: 

“The concentration of O3 in the troposphere is influenced by changes in meteorological conditions 

(e.g., high temperature and low relative humidity) and its precursors emissions (e.g., NOx and VOCs) 

(Wang et al., 2019; Liu and Wang, 2020a,b; Shu et al., 2020). Most precursors are from 

anthropogenic sources, and some precursors can come from natural sources, such as biogenic VOCs 

and soil and lightning NOx.” (Page 3, Line 62-67) 

7. 2.1 Model configuration: I recommend using a chart (like Table 1 in 

https://www.sciencedirect.com/science/article/pii/S1352231020307378) to 

summarize the model configuration. 

Response: 

Thanks to the reviewer’s comments, the model configuration is summarized in Table R1. We 

have added Table R1 in the revised supporting information. (Table S1) 

Table R1. WRF-Chem model configurations with main physical and chemical schemes adopted in this study.  

Model set-up Values 

Domain East Asia 

Study period June and December 2017 

Domain size 167 × 167 

Domain center 34 °N, 108 °E 

Horizontal resolution 27 km × 27 km 

Vertical resolution 32 eta levels up to 50 hPa 

Meteorological boundary and initial conditions NCEP 1°×1° reanalysis data 

Chemical initial and boundary conditions CAM-Chem output 

Physical options Adopted scheme 

Microphysics scheme Lin (Purdue) scheme 

Cumulus scheme Grell 3D ensemble scheme 

Boundary layer scheme Yonsei University PBL scheme 

Surface layer scheme Monin-Obukhov surface scheme 

Land-surface scheme Unified Noah land-surface model 
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Longwave radiation scheme RRTMG 

Shortwave radiation scheme RRTMG 

Chemical options Adopted scheme 

Gas phase chemistry CBMZ 

Aerosols MOSAIC 

Photolysis Fast-J 

Biogenic emissions MEGAN 

Anthropogenic emissions MEIC 

8. L125-L127, have you applied meteorological nudging? See above, I am not sure 

how you fix the meteorological fields to 2013 or 2017 when running the model. 

Response: 

This work is done without nudging because only one domain is designed in our manuscript. If 

the nudging is turned on in only one domain simulation, the simulated meteorological field can not 

truly reflect the influence of the aerosol-radiation interaction feedback.  

When using the 2013 (2017) FNL meteorological field data, it means that the meteorological 

field are from the year of 2013 (2017). For example, BASE_17E17M means that the meteorological 

field and anthropogenic emission are from the year of 2017. BASE_13E13M means that the 

meteorological field and anthropogenic emission are from the year of 2013.  

9. L151, you mentioned the biogenic emissions are calculated online by MEGAN. 

Have you coupled the MEGAN model with WRF-Chem dynamically? Please 

ascertain whether the biogenic emissions are calculated online or offline by 

MEGAN. 

Response: 

Thanks to the reviewer’s comments. In this work, we set “bio_emiss_opt = 3” in the WRF-

Chem model, which represents the biogenic emissions can be calculated online by the coupled 

MEGAN module based upon the simulated meteorological variables (e.g., temperature, solar 

radiation) and underlying static data (e.g., leaf area index, plant types).  

10. L166, can you explain which aerosol optical properties are turned to zero? 

Response: 

Following Qiu et al. (2017), the aerosol radiation interactions were turned off by removing the 

mass of aerosol species from the calculation of aerosol optical properties. Then, the aerosol optical 

properties such as aerosol optical depth (AOD), aerosol single scattering albedo (SSA), aerosol 

asymmetery factor (g) and aerosol backscatter coefficient were set to zero.  

11. L200-202, you mentioned "To avoid potential deviations caused by long-term model 

integration, each simulation is re-initialized every eight days". I was confused about 

why re-initialize the simulation every eight days can avoid potential deviations. 

What do you mean "potential deviations"? Can you explain this more? 

Response: 

Thanks to the reviewer’s comments. Lo et al. (2008) conducted three types of experiments for 

the entire year of 2000 to test model performance for different simulation durations: (1) continuous 
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integrations with a single initialization as usually done, namely, one year of uninterrupted simulation 

(WRFS), (2) consecutive integrations with re-initializations every 29 days (WRFM-30D), and (3) 

same as (2) but the model is reinitialized every 6 days (WRFM-7D). They found that the traditional 

continuous integration approach (WRFS) shows the worst performance. The model drifts from the 

forcing FNL reanalysis during the course of long integrations. It poorly simulates not only the 

forcing variables, (e.g., pressure, temperature, wind, and moisture), but also the model diagnostics 

variables (e.g., precipitation). Therefore, the simulation is re-initialized every eight days in this work, 

the same as the WRFM-7D, to avoid the deviation from forcing variables, (e.g., pressure, 

temperature, wind, and moisture) and model diagnostics variables (e.g., precipitation).  

12. L214-217 I feel confused about how many sites are operated by China National 

Environmental Monitoring Center (CNEMC)? You mentioned "1296 sites", does 

this number refer to the number of total sites of CNEMC or the number of sites 

chosen in your research? Moreover, are there really 1296 points (sites) on Figs. 2a 

and 2c? 

Response: 

The CNEMC had 1484 observation sites in 2017. In this work, a single site with at least 500 

actual observations during the simulated period are used for model evaluation, as we mentioned in 

the manuscript (Page 9, Line 238-240). Of course, Figs. 2a and 2c does have 1296 sites.  

13. Figure 2 shows the simulated results of which case? (BASE_17E17M?) You need to 

specify this point in L251 and Fig. 2. 

Response: 

According to the reviewer’s comment, we made it clear in Section 3 in the revised manuscript 

that the simulation results from the case of BASE_17E17M are used to evaluate the model performs 

(Page 10, Line 264-266). 

14. Why there are less points on Figs. 3a and 3d than Fig. 2? Please explain. 

Response: 

Thanks to the reviewer’s comments. The CNEMC installed only 450 sites in 2013, which grew 

to more than 1500 stations by 2020. In Fig. 3, only sites with continuous observations and individual 

site data greater than 500 were used to assess ozone trends. Thus, Fig. 3 has fewer points than Fig. 

2. 

15. L221, if possible, I recommend explaining more about IPR in your paper. 

Response: 

Thanks to the reviewer’s suggestion, we have added this sentence in the revised manuscript as 

follows: “Process analysis techniques, i.e., integrated process rate (IPR) analysis, can be used in 

grid-based Eulerian models (e.g., WRF-Chem) to obtain contributions of each physical/chemical 

process to variations in pollutant concentrations. Eulerian models utilize the numerical technique of 

operator splitting to solve continuity equations for each species into several simple ordinary 

differential equations or partial differential equations that only contain the influence of one or two 

processes (Gipson, 1999).  

In order to quantitatively elucidate individual contributions of physical and chemical processes 
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to O3 concentration changes due to weakened ARI, the integrated process rate (IPR) methodology 

is applied in this study. IPR analysis is an advanced tool to evaluate the key process for O3 

concentration variation (Shu et al., 2016; Zhu et al., 2021; Yang et al., 2022). In this study, the IPR 

analysis tracks hourly (e.g., one time step) contribution to O3 concentration variation from four main 

processes, including vertical mixing (VMIX), net chemical production (CHEM), horizontal 

advection (ADVH), and vertical advection (ADVZ). VMIX is initiated by turbulent process and 

closely related to PBL development, which influences O3 vertical gradients. CHEM represents the 

net O3 chemical production (chemical production minus chemical consumption). ADVH and ADVZ 

represent transport by winds. We define ADV as the sum of ADVH and ADVZ.” (Page 9-10, Line 

245-262) 

16. Table 2, how many sites are used for Table 2 (1296 sites?)? 

Response: 

Thanks to the reviewer’s comments. Table 2 contains 1296 sites, and we added this information 

to the revised manuscript (Page 31, Line 811).  

17. L284-285, you mentioned NOx-limited and VOCs-limited regions, I recommend that 

you could add a figure (based on your simulation results) like Fig. 5 in 

https://www.sciencedirect.com/science/article/pii/S1352231013000514 to your 

supplement, to show different O3-sensitive regions on the map. 

Response: 

The typical VOCs/NOx ratio is calculated to classify sensitivity regimes and to indicate the 

possible O3 responses to changes in VOCs and/or NOx concentrations. O3 production is VOC-

limited if the ratio is less than 4, and it is NOx-limited if the ratio is larger than 15 (Edson et al., 

2017; Li et al., 2017). The ratio of VOCs/NOx ranging around 4-15 indicates a transitional 

regime, where ozone is nearly equally sensitive to each species (Sillman, 1999). As shown in 

Fig R6, O3 are mainly formed under the VOC-limited in winter and NOx-limited and transitional 

regimes in eastern China, which is consistent with what our study mentioned.  

According to the reviewer’s suggestion, we have added Fig. R6 in the revised support 

information. (Page 7 in supporting information) 
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Figure R6. The ratios of VOCs/NOx calculated from (a, b) BASE_17E17M, and (c, d) BASE_13E13M during the 

daytime (08:00-17:00 LST) from summer (left) and winter (right).  

18. L290-292, the meteorological effects are comparable or larger or smaller than 

emissions effects? This should be mentioned. 

Response: 

From Figs. R7, compared with 2013, the meteorological conditions in the summer of 2017 

promoted the generation of O3 in the YRD region, but suppressed the generation of O3 in the BTH, 

PRD and SCB regions. In PRD and SCB, the changes in MDA8 O3 due to meteorology even have 

a greater impact than that by emission changes, which highlights the significant role of meteorology 

on summer O3 variations during summer.  

Thanks for reviewer’s suggestion, we have added this information in the revised manuscript. 

(Page 13, Line 343-349) 
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Figure R7. The observed (OBS, black bars) and simulated (SIM, red bars) changes in (left) summer and (right) 

winter surface-layer MDA8 O3 from 2013 to 2017. Contributions of changed meteorological conditions alone (MET, 

blue bars), changed anthropogenic emissions alone (EMI, purple bars), changed aerosol-photolysis interaction alone 

(ΔAPI_EMI, green bars), and changed aerosol-radiation feedback alone (ΔARF_EMI, cyan bars) are also shown. 

Observations are calculated from the monitoring sites in the analyzed region, while the corresponding gridded 

simulations are averaged for SIM. (a1-b1), (a2-b2), (a3-b3), (a4-b4) and (a5-b5) represent the urban areas in eastern 

China, Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin 

(SCB), respectively. 

19. L429-431, you mentioned "multi-pollutants coordinated emissions control 

strategies", can you specify this and give more details? Liu and Wang, 2020 

suggested that "to reduce O3 levels in major urban and industrial areas, VOC 

emission controls should be added to the current NOx-SO2-PM policy". Does your 

research have similar insights, or can you make other recommendations that could 

help policymakers? 

Response: 

Thanks for reviewer’s suggestion. Our suggestion is consistent with Liu and Wang (2020), we 

hope that the government should not focus on the control of PM2.5 pollution (NOx-SO2-PM policy), 
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but should pay attention to the synergistic control of multiple pollutants such as O3 and PM2.5. 

Technical corrections: 

1. L211, "353 stations" - > "353 meteorological stations" 

Response: 

Thanks for your suggestion. We have added the “meteorological” in the revised manuscript. 

(Page 9, Line 235) 

 

2. Figure S5, "from 2013to" - > "from 2013 to" 

Response: 

Thanks for your suggestion. We have changed the expression in the revised manuscript. 

(Page 11 in supporting information) 

 

3. Figure 6, "on the right side of each panel" - > "on the upper right side of each 

panel" 

Response: 

According to the reviewer’s suggestion, we have changed the expression in the revised 

manuscript. (Page 37, Line 859) 

 

4. Data and code availability should be added. 

Response: 

According to the reviewer’s suggestion, we have added the “Data availability” section in 

the revised manuscript. (Page 22, Line 593-600) 

 

Reference: 

Gao, J., Li, Y., Xie, Z., Hu, B., Wang, L., Bao, F., and Fan, S.: The impact of the aerosol 

reduction on the worsening ozone pollution over the Beijing-Tianjin-Hebei region via 

influencing photolysis rates, Sci. Total Environ., 821, 153197, 

https://doi.org/10.1016/j.scitotenv.2022.153197, 2022. 

Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 – 

Part 2: The effects of emission changes and implications for multi-pollutant control, 

Atmospheric Chem. Phys., 20, 6323–6337, https://doi.org/10.5194/acp-20-6323-2020, 

2020. 

Lou, S., Liao, H., and Zhu, B.: Impacts of aerosols on surface-layer ozone 

concentrations in China through heterogeneous reactions and changes in photolysis 

rates, Atmos. Environ., 85, 123–138, https://doi.org/10.1016/j.atmosenv.2013.12.004, 

2014. 

 

 

Reference: 

Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos Environ., 34, 2063–2101, 

https://doi.org/10.1016/S1352-2310(99)00460-4, 2000. 

Edson, C. T., Ivan, H.-P. and Alberto, M.: Use of combined observational- and model-derived photochemical 

indicators to assess the O3-NOx-VOC System sensitivity in urban areas, Atmosphere., 8, 22. 
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Thank you very much for your comments and suggestions. 

  



17 

Response to Comments of Reviewer #2 

(comments in italics) 

Manuscript number: EGUSPHERE-2023-2393 

Title: Weakened aerosol-radiation interaction exacerbating ozone pollution in eastern 

China since China’s clean air actions 

This study examines the role of aerosol-radiation interaction (ARI), decomposed 

into aerosol-photolysis interaction (API) and aerosol-radiation feedback (ARF) on 

surface ozone concentration in China. Surface ozone increased remarkable in eastern 

China, contrasting the dramatic decline of PM2.5 concentrations. It is therefore 

necessary to investigate the reasons for the ozone increase. The study found that 

reduced ARI due to decreased PM concentrations contributes to ozone production, with 

API playing a more important role than ARF. The regional differences are also briefly 

discussed. I think this is a nice study that is helpful in understanding the recent ozone 

increase in China. I only have a few minor comments. 

Response: 

Thanks to the reviewer for the valuable comments and suggestions which are very helpful for 

us to improve our manuscript. We have revised the manuscript carefully, as described in our point-

to-point responses to the comments. 

1. A previous study seemed to indicate that chemical processes associated with PM2.5 

reduction, i.e., reduced removing rate of hydroperoxy radicals, is the main reason 

for the ozone increase in eastern China (Li et al., 2019, PNAS). I wonder how this 

effect compare to the ARI discussed in this study? 

Response: 

As Li et al. (2019) did not directly quantify the extent of O3 increase by weakened aerosol 

heterogeneous reactions, we use the results of Liu and Wang. (2020) for comparison. The increased 

MDA8 O3 concentration over urban areas in summer caused by weakened aerosol-radiation 

interaction in this study is 1.77 ppb, which is compared to the value of 2.12 ppb increase caused by 

weakened aerosol heterogeneous reactions quantified by Liu and Wang (2020). According to the 

reviewer’s comments, we have added this sentence in the revised manuscript. (Page 18, Line 485-

488) 

2. In the WRF-Chem experiments, the authors zeroed off aerosol optical properties 

to exclude ARF. I wonder if aerosol microphysical properties are still included? 

This may affect cloud properties and still impact the radiation budget. 

Response: 

The effects of aerosols on microphysical properties were not consider in this work. The most 

common approach to assessing the impact of aerosol-cloud interactions on air quality in model 

simulation is to assume a prescribed vertically uniform cloud droplet number concentration (Zhang 

et al., 2015; Zhao et al., 2017). In this study, we turned off aerosol optical properties in the optical 



18 

module which could not affect the cloud properties.  

Figure R1 shows the spatial distributions of simulated summer and winter cloud droplet 

number concentration (CDNC) from BASE_17E17M and NOALL_17E17M cases in the daytime 

(08:00–17:00 LST). Analyzing Fig. R1, the CDNC distribution and concentration of BASE and 

NOALL has barely changed. Therefore, we zeroed off aerosol optical properties to exclude ARI 

with less impact on the cloud.  

 

Figure R1. Spatial distributions of simulated summer (upper) and winter (bottom) cloud droplet number 

concentration (CDNC) from BASE_17E17M and NOALL_17E17M cases in the daytime (08:00–17:00 LST).  

3. Section 3.2, model evaluation: why not also evaluate VOCs, which is also an 

important precursor for ozone? 

Response: 

Thanks for reviewer’s suggestion. In this study, we did not evaluate VOCs due to the lack of 

measurements of VOCs over the China. However, the China's Ministry of Environmental Protection 

will include VOCs as a routine monitoring object in the future. Therefore, we will include this 

comparison in our future work. 

4. Line 87 and associated discussions: Does ARI always suppress O3 formation? 

Could the change the meteorological variables through ARF increase O3 

concentration, say by reducing RH or increasing regional transport? 

Response: 

Yang et al. (2022) reported that ARF reduced the planetary boundary layer height in North 

China, leading to an increase in VOCs and NOx concentrations, which is favorable for ozone 

chemical production. Gao et al. (2018) also found that ARF can enhance ozone chemical 
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production through this pathway. Therefore, ARF can increase O3 concentration by influencing 

the meteorological variables, e.g. by reducing the height of the planetary boundary layer. 

5. I suggest the authors discuss more about the summer-winter differences. 

Wintertime has much less radiation and lower temperature, so ARI is in general 

much lower. In summer, meteorology seems to make large contributions than 

emission changes (Figure 4, left column), what might be the reason? 

Response: 

Focusing on the four developed city clusters, compared with 2013, the meteorological 

conditions in the summer of 2017 promoted the generation of O3 in the YRD region (Fig. R2(a3)), 

but suppressed the generation of O3 in the BTH (Fig. R2(a2)), PRD (Fig. R2(a4)) and SCB (Fig. 

R2(a5)) regions. In PRD and SCB, the changes in MDA8 O3 due to meteorology even have a greater 

impact than that by emission changes, which highlights the significant role of meteorology on 

summer O3 variations. (Page 13, Line 343-349) 

According to the comments of Reviewer#1, another three widely used chemical mechanisms, 

i.e., RADM2 gas-phase chemistry coupled with MADE/SORGAM aerosol module (RADM2-

MADE/SORGAM for short), CBMZ gas-phase chemistry coupled with MADE/SORGAM aerosol 

module (CBMZ-MADE/SORGAM for short), and MOZART gas-phase chemistry coupled with 

MOSAIC aerosol module (MOZART-MOSAIC for short), that include SOA formation are also 

applied to assess the impact of aerosol-radiation interaction (ARI) on O3 during summer and winter 

is added in the discussion section. (Page 18-19, Line 497-536) 

In summer, solar radiation flux reaches its maximum and atmospheric temperature are also 

higher than that in winter. The atmospheric warming can alter tropospheric O3 concentrations by 

modulating the chemical kinetic, dynamic processes or biogenic emissions. Warmer temperatures 

often coincide with other meteorological conditions favorable to O3 production, such as stagnation 

air and reduced cloud cover (Vukovich, 1995). This may be the reason why meteorological effect 

on O3 is greater than that by emissions changes.  
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Figure R2. The observed (OBS, black bars) and simulated (SIM, red bars) changes in (left) summer and (right) 

winter surface-layer MDA8 O3 from 2013 to 2017. Contributions of changed meteorological conditions alone (MET, 

blue bars), changed anthropogenic emissions alone (EMI, purple bars), changed aerosol-photolysis interaction alone 

(ΔAPI_EMI, green bars), and changed aerosol-radiation feedback alone (ΔARF_EMI, cyan bars) are also shown. 

Observations are calculated from the monitoring sites in the analyzed region, while the corresponding gridded 

simulations are averaged for SIM. (a1-b1), (a2-b2), (a3-b3), (a4-b4) and (a5-b5) represent the urban areas in eastern 

China, Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin 

(SCB), respectively. 

6. Figure 4: model seems to significantly underestimate the ozone change in BTH for 

summer (Figure 4a2). This area experienced the most ozone increases in the past 

decade. So it is important for the model to correctly represent ozone trend in this 

region. What might be the reason for this significant bias? 

Response: 

Thanks for your suggestion. The reason for the underestimation over BTH in summer may 

be that this study did not consider the effect of changes in aerosol heterogeneous reactions, due 

to the uncertainty of the heterogeneous uptake value used in the numerical simulation. Li et al. 

(2019) found that the weakened uptake of HO2 on aerosol surfaces was the main reason for the 
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O3 increase over BTH. Therefore, the contributions of aerosol heterogeneous reactions to O3 air 

quality will be discussed detailedly in our future work.  

7. Finally, the effects of API and ARF may not be independent, i.e., there may be 

nonlinear interaction between the two effects. This should be noted and discussed. 

Response: 

Thanks for the reviewer’s suggestion. A discussion of the separate treatment of API and ARF 

in this study has been added in the revised manuscript as follows: “There may be an interaction 

between API and ARF. However, in this study we discuss the role of API and ARF separately, which 

may ignore the effects of interactions between API and ARF on O3. This may affect our results, and 

we will discuss their interaction in our future studies.” (Page 20, Line 557-560) 

 

Reference: 

Gao, J. H., Zhu, B., Xiao, H., Kang, H. Q., Pan, C., Wang, D. D., and Wang, H. L.: Effects of black carbon and 

boundary layer interaction on surface ozone in Nanjing, China, Atmos. Chem. Phys., 18, 7081–7094, 

https://doi.org/10.5194/acp-18-7081-2018, 2018. 

Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013–2017 trends in 

summer surface ozone in China, P. Natl. Acad. Sci. USA, 116, 422–427, 

https://doi.org/10.1073/pnas.1812168116, 2019. 

Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 – Part 2: The effects of emission 

changes and implications for multi-pollutant control, Atmos. Chem. Phys., 20, 6323–6337, 

https://doi.org/10.5194/acp-20-6323-2020, 2020. 

Vukovich F. M.: Regional-scale boundary layer ozone variations in the eastern United States and their association 

with meteorological variations, Atmos. Environ., 29, 2259-2273, 1995. 

Yang, H., Chen, L., Liao, H., Zhu, J., Wang, W., and Li, X.: Impacts of aerosol–photolysis interaction and aerosol–

radiation feedback on surface-layer ozone in North China during multi-pollutant air pollution episodes, Atmos. 

Chem. Phys., 22, 4101–4116, https://doi.org/10.5194/acp-22-4101-2022, 2022. 

Zhang, B., Wang, Y., and Hao, J.: Simulating aerosol–radiation–cloud feedbacks on meteorology and air quality over 

eastern China under severe haze conditionsin winter, Atmos. Chem. Phys., 15, 2387–2404, 

https://doi.org/10.5194/acp-15-2387-2015, 2015. 

Zhao, B., Liou, K.-N., Gu, Y., Li, Q., Jiang, J. H., Su, H., He, C., Tseng, H.-L. R., Wang, S., Liu, R., Qi, L., Lee, W.-

L., and Hao, J.: Enhanced PM2.5 pollution in China due to aerosol-cloud interactions, Scient. Rep., 7, 4453, 

https://doi.org/10.1038/s41598-017-04096-8, 2017. 

 

 

 

Thank you very much for your comments and suggestions. 
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Response to Comments of Reviewer #3 

(comments in italics) 

Manuscript number: EGUSPHERE-2023-2393 

Title: Weakened aerosol-radiation interaction exacerbating ozone pollution in eastern 

China since China’s clean air actions 

 

The manuscript focuses on the aerosol-radiation interaction (ARI), discussing how 

this process has changed in the context of the abrupt aerosol decrease in East China 

during 2013-2017, and evaluates its contribution to the recent ozone increase in China. 

ARI is divided into aerosol-photolysis interaction (API) and aerosol-radiation feedback 

(ARF), with the WRF-Chem model used to quantify these impacts. The authors have 

found non-negligible ozone increase resulting from the aerosol decrease through the 

API and ARF processes, which has implications for the synergistic control of aerosol 

and ozone. This is an interesting topic and I believe it can make a novel contribution to 

the community. However, several important aspects need to be addressed before it can 

be published in ACP. 

Response: 

Thanks to the reviewer for the valuable comments and suggestions which are very helpful for 

us to improve our manuscript. We have revised the manuscript carefully, as described in our point-

to-point responses to the comments. 

General comments: 

1. The study focuses on aerosol-radiation interaction (ARI), which is split into two 

parts: the direct aerosol impact on radiation through scattering and absorbing 

(API) and the subsequent feedback on meteorology (ARF), with both influencing 

ozone concentrations. However, the Introduction Section could do a better job at 

breaking down these concepts. A detailed explanation of the distinctions between 

API and ARF would aid comprehension. Also, elucidating the specific ARF-related 

meteorological variables and their influences on ozone concentrations would be 

beneficial. Regarding the cited papers, such as Hong et al. (2020) and Zhu et al. 

(2021), the authors may consider including additional information about which 

ARF-related meteorological factors have been identified as important in affecting 

ozone concentrations. 

Response: 

Thanks to the reviewer for the valuable comments and suggestions, we have added this 

information in the revised manuscript as follows: “API can affect O3 directly by reducing the 

photochemical reactions, which weaken the chemical contribution and reduce the surface O3 

concentrations. ARF indirectly affects O3 concentrations by altering meteorological variables, 

e.g. by reducing the height of the planetary boundary layer. The suppressed planetary boundary 

layer can weaken the vertical mixing of O3 by turbulence and affect the concentration of O3 

precursors. Hong et al. (2020) used WRF-CMAQ in conjunction with future emission scenarios 
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to find that weakened ARF due to reduced aerosol concentration has either negative or positive 

impacts on the daily maximum 1-h average O3 concentration in eastern China from 2010 to 

2050 due to the changed precursor level caused by the weakened ARF. By using WRF-CMAQ, 

Liu and Wang (2020b) reported that weakened API could increase the MDA8 O3 concentrations 

by 0.3 ppb in urban areas from 2013 to 2017. Zhu et al. (2021) used WRF-Chem to investigate 

the impact of weakened ARF on air pollutants over NCP during COVID-19 lockdown and 

reported that the weakened ARF would increase the O3 concentrations by 7.8% due to the 

increased northwesterly and planetary boundary layer height caused by the weakened ARF.” 

(Page 4-5, Line 95-110) 

2. In Section 3.2, could the authors talk more about how well the model is doing in 

reproducing the observed decrease in PM2.5 levels from 2013-2017. This analysis 

is crucial for assessing whether the model’s effectively capturing the weakening of 

ARI. 

Response: 

Thanks for your suggestion. Figure R1 demonstrates the spatial distribution of changed 

summer (left) and winter (right) surface (a, b) PM2.5 and (c, d) MDA8 O3 from 2013 to 2017. As 

shown in Figs. R1(a) and R1(b), the observed concentrations of PM2.5 in eastern China are 

significantly reduced both in summer (-16.2 µg m-3) and winter (-56.0 µg m-3), and these changes 

can be well captured by the model (-14.3 µg m-3 for summer and -49.8 µg m-3 for winter). Therefore, 

the model can reproduce the observed decrease in PM2.5 levels from 2013 to 2017. As shown in Figs. 

R1(c) and R1(d), the model reasonably well reproduces the seasonal patterns of changed surface 

MDA8 O3 over the eastern China during summer and winter from 2013 to 2017. In summer, both 

the observations and simulations show the increased (decreased) MDA8 O3 in YRD (PRD and SCB), 

while the model can not simulate the positive changes in MDA8 O3 over BTH, and the potential 

reasons may be that this study did not consider the effect of changes in aerosol heterogeneous 

reactions. Li et al. (2019) found that the weakened uptake of HO2 on aerosol surfaces was the main 

reason for the O3 increase over BTH. In contrast to the changes in summer, observed MDA8 O3 in 

winter generally increased over the eastern China, which can be well reproduced by the model. 

(Page 12, Line 308-324) 

According to the reviewer’s comments, Figure R1 is added in the model evaluation section. 

(Figure 3) 
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Figure R1. Spatial distribution of changed summer (left) and winter (right) surface (a, b) PM2.5 and (c, 

d) MDA8 O3 from 2013 to 2017.  

3. Section 4 needs to be better organized for clarity. I’ve outlined some areas for 

consideration: 

3.1. The titles suggest Section 4.1 should focus on ΔO3_MET and ΔO3_EMI, while 4.2 

should be devoted to ΔO3_ΔARI_EMI. However, there is content overlap since 4.1 

also examines ΔO3_ΔARI_EMI, which obscures the distinctions between the two 

subsections. 

Response: 

Thanks for your suggestion. We have changed this in revised manuscript. Section 4.1 focuses 

only on the ΔO3_MET and ΔO3_EMI, and the results of the ΔO3_ΔARI_EMI in urban areas have 

been moved to Section 4.2. (Page 12-13, Line 326-349) 

3.2. Section 4.1 discusses ΔO3_MET, ΔO3_EMI, and ΔO3_ΔARI_EMI at sparse polluted 

grids (so-called urban areas) while 4.2 talks about ΔO3_ΔARI_EMI in term of 

regional averages. It is unclear why the discussion about ΔO3_MET and ΔO3_EMI 

focuses only on urban polluted regions. Also, the rationale for addressing urban 

ΔO3_ΔARI_EMI prior to regional averages is not evident, particularly when urban 

results mirror the regional ones, though more pronounced. I recommend relocating 

the OBS-SIM ozone change comparison from Section 4.1 to Section 3.2 (to combine 

it with PM2.5 change evaluation) and discussing regional ΔO3_ΔARI_EMI before 

the urban analysis. 

Response: 

Thanks for your suggestion. The comparison of O3 change from 2013 to 2017 has been 

combined with the comparison of PM2.5 change in Section 3. The detailed information can be found 

in the answer to your second question.  

According to review’s suggestion, in the revised manuscript we first discussed the effects of 

weakened ARI on O3 at the regional level, and then in urban areas. (Page 14-18, Line 383-495) 
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3.3. Section 4.3 and Figure 7 are quite similar to Section 4.2 and Figure 5. Please 

consider merging Sections 4.2 and 4.3. 

Response: 

Thanks for your suggestion. We've combined these two sections in the revised manuscript.  

4. Could the authors explain why ΔO3_ΔARI_EMI displays a much steeper spatial 

gradient in summer compared to winter (Fig. 5), whereas the PM2.5 change suggest 

the opposite pattern (Fig. S8)? How does meteorology contribute to this 

discrepancy? Moreover, why does summertime ΔO3_ΔARI_EMI exhibit both 

positive (e.g., NCP) and negative (e.g., Shandong province) values, even though 

the PM2.5 decreases universally? 

Response: 

The reason may be that the solar radiation flux reaches its maximum in summer seasons. The 

changes in meteorological variables are larger in summer than in winter due to the weakened ARI, 

despite the substantial decrease in aerosol concentrations during winter. Meteorology is likely to be 

a major contributor to this discrepancy.  

Although the concentration of PM2.5 is reduced uniformly, the changes in the components of 

PM2.5 are different in different locations, resulting in different changes in single scattering albedo 

(SSA). As shown in Fig. R2, SSA did not change in NCP, but became smaller in Shandong Province, 

which may be the reason for the different changes in O3 in these two regions. Furthermore, Fig. 

S7(b3) and S7(c3) show that weakened aerosol-radiation interaction leads to a decrease in T2 but an 

increase in RH2 over Shandong, which is also unfavourable for O3 production. This could also be 

one of the reasons why weakened aerosol-radiation interaction leads to O3 reduction in Shandong 

Province. 

 

Figure R2. Spatial distribution of (a, d) scattering aerosol, (b, e) absorbing aerosol, and (c, f) single scattering albedo 

(SSA) of BASE_17E17M (upper) and BASE_13E17M (bottom) cases.  
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5. From my understanding, the reduced impact of ARI on ozone is a component of the 

anthropogenic impact on ozone, since the reduction in ARI results from changes in 

anthropogenic emissions. However, the phrasing in Lines 396-398 and abstract 

(specifically the use of “superimposed”) suggest that ΔO3_ΔARI_EMI is and 

additional, separate effect rather than being nested within the broader 

anthropogenic impact on ozone. Please clarify. 

Response:  

Thanks for your suggestion. Figure R3 shows the changed summer and winter surface-layer 

MDA8 O3 concentrations caused by anthropogenic emission reduction from 2013 to 2017 with 

(ΔO3_EMI) and without (ΔO3_NOARI) ARI, including the effects of weakened ARI on the 

effectiveness of emission reduction for O3 air quality (∆O3_∆ARI_EMI, which is also equal to 

ΔO3_EMI minus ΔO3_NOARI). As shown in Figs. R3(a1) and R3(a4), the surface-layer MDA8 O3 

concentrations increased in urban areas during summer and increased uniformly in winter due to 

anthropogenic emission reduction from 2013 to 2017 without the impact of ARI. The plots in the 

second column (Figs. R3(a2) and R3(a5)) are the same as R3(a1) and R3(a4) except that the impact 

of ARI is applied. When the effect of ARI is considered, the concentrations of MDA8 O3 are 

increased more than that when ARI is not considered. The differences between plots in second 

column and first column are the consequences of weakened ARI resulted from anthropogenic 

emission reduction on MDA8 O3 concentrations. As shown in Figs. R3(a3) and R3(a6), the 

concentrations of MDA8 O3 are increased in both summer and winter over eastern China. Therefore, 

∆O3_∆ARI_EMI makes the superimposed impact on the effectiveness of anthropogenic emission 

reduction for the increased MDA8 O3 concentrations from 2013 to 2017 over eastern China. 

 

Figure R3. Spatial distribution of changed summer (upper) and winter (bottom) surface-layer MDA8 O3 

concentrations from sensitivity simulations. (a1, a4) Effects of anthropogenic emission reduction on MDA8 O3 

without ARI. (a2, a5) Effects of anthropogenic emission reduction on MDA8 O3 with ARI. (a3, a6) Effects of 

weakened ARI on the effectiveness of emission reduction for O3 air quality. 

6. In the Abstract, needs to explicitly clarify that the numbers presented are derived 
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from different analysis. Lines 28-29 are for sparse polluted grids, while Lines 33-

35 are for regional averages. Otherwise, readers may erroneously interpret the 

ratio between the numbers in Lines 33-35 and Lines 28-29 as the contribution of 

ARI to the total anthropogenic impacts. 

Response: 

Thanks for your suggestion. We've added this information in the revised manuscript as follows:  

“Sensitivity experiments show that the decreased anthropogenic emissions play a more 

prominent role for the increased MDA8 O3 both in summer (+1.96 ppb vs. +0.07 ppb) and winter 

(+3.56 ppb vs. -1.08 ppb) than the impacts of changed meteorological conditions in urban areas. 

(Page 2, Line 27-31) 

The weakened ARI due to decreased anthropogenic emission aggravates the summer (winter) 

O3 pollution by +0.81 ppb (+0.63 ppb) averaged over eastern China, with weakened API and ARF 

contributing 55.6% (61.9%) and 44.4% (38.1%), respectively. This superimposed effect is more 

significant for urban areas during summer (+1.77 ppb). (Page 2, Line 33-37)” 

Specific comments: 

1. Line 61, natural emissions are also an important precursor source. Please clarify. 

Response: 

According to the reviewer’s suggestion, we have changed the expression in the revised 

manuscript. (Page 3, Line 65-67) 

2. Section 3.2, it should be “Fig. 2” instead of “Figs. 2”. Similar typos are found in 

other places, e.g., Line 290, 302, 348. Please check. 

Response: 

Thanks for your suggestion. Since it's followed by a plural, we use “Figs”. 

3. Line 293, delete “will”. 

Response: 

Deleted. 

4. Lines 310-312 and figure 4, please clarify in the figure caption that ARI_EMI can 

be obtained by summing the bars of API_EMI and ARF_EMI. 

Response: 

Thanks for your suggestion. We have defined the ΔO3_ΔARI_EMI = ΔO3_ΔARF_EMI 

+ ΔO3_ΔAPI_EMI in the revised manuscript. (Page 15, Line 405-406) 

5. Lines 353-354 and figure 5, the numbers mentioned in the text are inconsistent 

with those presented in the figure. Please correct. 

Response: 

Correct.  

6. Figure 6, the first x-axis label should be “ARI” instead of “ALL”. 

Response: 

Thanks for your suggestion. We have changed the expression in the revised manuscript. 

(Page 37) 
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Abstract 

Since China’s clean air action, PM2.5 air quality has been improved while ozone 

(O3) pollution has been becoming severe. Here we apply a coupled meteorology-

chemistry model (WRF-Chem) to quantify the responses of aerosol-radiation 

interaction (ARI), including aerosol-photolysis interaction (API) related to photolysis 

rate change and aerosol-radiation feedback (ARF) related to meteorological fields 

change, to anthropogenic emission reductions from 2013 to 2017, and their 

contributions to O3 increases over eastern China in summer and winter. Sensitivity 

experiments show that the decreased anthropogenic emissions play a more prominent 

role for the increased MDA8 O3 both in summer (+1.96 ppb vs. +0.07 ppb) and winter 

(+3.56 ppb vs. -1.08 ppb) than the impacts of changed meteorological conditions in 

urban areas. The decreased PM2.5 caused by emission reduction can result in a weaker 

impact of ARI on O3 concentrations, which poses a superimposed effect on the 

worsened O3 air quality. The weakened ARI due to decreased anthropogenic emission 

aggravates the summer (winter) O3 pollution by +0.81 ppb (+0.63 ppb) averaged over 

eastern China, with weakened API and ARF contributing 55.6% (61.9%) and 44.4% 

(38.1%), respectively; t. This superimposed effect is more significant for urban areas 

during summer (+1.77 ppb). Process analysis indicates that the enhanced chemical 

production is the dominant process for the increased O3 concentrations caused by 

weakened ARI both in summer and winter. This study innovatively reveals the adverse 

effect of weakened aerosol-radiation interaction due to decreased anthropogenic 

emissions on O3 air quality, indicating; more stringent coordinated air pollution control 

strategies should be madeare needed for significant improvements in future air quality 

improvement.  

  



31 

1. Introduction 

With the implementation of clean air action since 2013, PM2.5 (particulate matter 

with an aerodynamic equivalent diameter of 2.5 micrometers or less) concentrations 

have decreased significantly in China (Zhai et al., 2019; Zhang et al., 2019). However, 

ozone (O3) pollution is becoming worse and poses a significant challenge over eastern 

China, especially in the developed city clusters including Beijing-Tianjin-Hebei (BTH), 

Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SCB) (Lu 

et al., 2018; Dang and Liao, 2019; Li et al., 2019; Li et al., 2021). According to 

observation data, Li et al. (2020) found that the daily maximum 8-h average O3 

concentrations (MDA8 O3) increased at a rate of 1.9 ppb a-1 from 2013 to 2019 over 

eastern China. Elevated O3 concentrations can not only decrease crop yield but also 

damage human health (Lelieveld et al., 2015; Yue et al., 2017; Mills et al., 2018). 

Therefore, it is essential to gain a comprehensive understanding about factors driving 

the increasing trend of O3 in China in order to formulate effective prevention strategies.  

As a secondary air pollutant, troposphere O3 can be produced by nitrogen oxides 

(NOx = NO + NO2), carbon monoxide (CO), methane (CH4) and volatile organic 

compounds (VOCs) in the presence of solar radiation through photochemical reactions 

(Atkinson, 2000; Seinfeld and Pandis, 2006). Consequently, tThe concentration of O3 

in the troposphere is influenced by changes in meteorological conditions (e.g., high 

temperature and low relative humidity) and its precursors emissions (e.g., NOx and 

VOCs) (Wang et al., 2019; Liu and Wang, 2020a,b; Shu et al., 2020). Most precursors 

are from anthropogenic sources, and some precursors can come from natural sources, 

such as biogenic VOCs and soil and lightning NOx.is closely related to changes in 

meteorological conditions and anthropogenic emissions (Wang et al., 2019; Liu and 

Wang, 2020a,b; Shu et al., 2020). Moreover, particulates can also affect O3 

concentrations through aerosol-radiation interaction (ARI), including aerosol-

photolysis interaction (API) and aerosol-radiation feedback (ARF) (Liao et al., 1999; 

Wang et al., 2016; Zhu et al., 2021; Yang et al., 2022), and heterogeneous chemistry 

on aerosol surface (Lou et al., 2014; Li et al., 2019; Liu and Wang, 2020b). Many 
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studies have found that the decreased PM2.5 can be one of the driving factors 

contributing to the increased O3 concentrations (Li et al., 2019; Liu and Wang, 2020b; 

Shao et al., 2021). Li et al. (2019) analyzed GEOS-Chem simulation results and pointed 

out that the reductions in PM2.5 concentrations from 2013 to 2017 in North China Plain 

(NCP) could decrease the sink of HO2 on aerosol surface, which would result in the 

increase in O3 concentrations. When heterogeneous reactions were considered in WRF-

CMAQ, Liu and Wang (2020b) found that decreased PM2.5 concentrations weakened 

the uptake of reactive gases (mainly HO2 and O3) which led to the increase in O3 

concentrations over China from 2013 to 2017. However, the contribution of weakened 

aerosol-radiation interaction due to substantial decreases in PM2.5 under clean air action 

to the increased O3 has not been systematically quantified. Furthermore, previous 

studies mainly focus on the increased summer O3 (Li et al., 2019; Liu and Wang, 

2020a,b; Shu et al., 2020; Shao et al., 2021), but underlying reasons driven the changes 

in winter O3 is unclear. Li et al. (2021) pointed out that O3 pollution has been extended 

into cold seasons under the emission control measures. Therefore, this study aims to 

quantify the response of aerosol-radiation interaction to anthropogenic emission 

reduction from 2013 to 2017, with the mainly focus on the contribution to changed O3 

concentrations over eastern China both in summer and winter.  

Aerosol-radiation interaction (ARI) can alter photolysis rates through aerosol-

photolysis interaction (API) and meteorological variables through aerosol-radiation 

feedback (ARF) to influence the formation ofsuppress O3 formation (Yang et al., 2022). 

API can affect O3 directly by reducing the photochemical reactions, which weaken the 

chemical contribution and reduce the surface O3 concentrations. ARF indirectly affects 

O3 concentrations by altering meteorological variables, e.g. by reducing the height of 

the planetary boundary layer. The suppressed planetary boundary layer can weaken the 

vertical mixing of O3 by turbulence and affect the concentration of O3 precursors. Hong 

et al. (2020) used WRF-CMAQ in conjunction with future emission scenarios to find 

that weakened ARF due to reduced aerosol concentration has either negative or positive 

impacts on the daily maximum 1-h average O3 concentration in eastern China from 

2010 to 2050 due to the changed precursor level caused by the weakened ARFled to an 
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increase in the daily maximum 1-h average O3 concentration in eastern China from 

2010 to 2050. By using WRF-CMAQ, Liu and Wang (2020b) reported that weakened 

API could increase the MDA8 O3 concentrations by 0.3 ppb in urban areas from 2013 

to 2017. Zhu et al. (2021) used WRF-Chem to investigate the impact of weakened ARF 

on air pollutants over NCP during COVID-19 lockdown and reported that the weakened 

ARF would increase the O3 concentrations by 7.8% due to the increased northwesterly 

and planetary boundary layer height caused by the weakened ARF. In general, previous 

studies mainly examined the impact of either weakened ARF or API, systematic 

analysis about the total and the respective impacts of changed API and/or ARF on O3 

over eastern China both in summer and winter from 2013 to 2017 have not been 

conducted.  

The objective of this manuscript is to examine the impacts of aerosol-radiation 

interactions (ARI), including the effects of aerosol-photolysis interaction (API) and 

aerosol-radiation feedback (ARF), on O3 concentrations over eastern China both in 

summer and winter by using the online coupled WRF-Chem model, with the main focus 

on their responses to clean air action. Process analysis is also applied to explore the 

prominent physical/chemical process responsible for the changed impacts of API and/or 

ARF on surface O3. This study is believed to provide insights into the role of weakened 

ARI on O3 levels over eastern China not only in summer, but also in winter. In Section 

2, we describe the model configuration, numerical experiments, observational data, and 

the integrated process rate analysis. Model evaluation is presented in Section 3. Results 

and discussions are presented The presentation of model results and the corresponding 

analyses are exhibited in Section 4. Conclusions are provided in Section 5.  

2. Methodology 

2.1 Model configuration 

The model used in this study is an online-coupled meteorology-chemistry model, 

Weather Research and Forecasting with Chemistry model (WRF-Chem v3.7.1), that 

can simulate meteorological fields and concentrations of gases and aerosols 

simultaneously (Grell et al., 2005; Skamarock et al., 2008). Figure S1 shows the 
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simulated domain that covers most regions of China with a horizontal resolution of 27 

km and grid points of 167 (west–east) × 167 (south–north). The model contains 32 

vertical levels extending from the surface to 50 hPa, with the first 16 layers located 

below 2 km to resolve fine boundary layer processes. The enclosed black line in Figure 

S1 represents the eastern China (22-41.5 °N, 102-123 °E), and the four heavily polluted 

regions are also selected for analysis, including BTH (36.0-41.5 °N, 113-119.5 °E), 

YRD (29.5-32.5 °N, 118-122 °E), PRD (21-23.5 °N, 112-116 °E), and SCB (27.5-

31.5 °N, 102.5-107.5 °E), respectively.  

The National Center for Environmental Prediction (NCEP) Final Analysis dataset 

(FNL) with a spatial resolution of 1° × 1° and 6-hour temporal resolution are used to 

provide the meteorological initial and lateral boundary conditions. The chemical initial 

and boundary conditions for the WRF-Chem model are taken from the outputs of 

Community Atmosphere Model with Chemistry (CAM-Chem).  

The Carbon Bond Mechanism Z (CBM-Z) is applied as the gas-phase chemical 

mechanism (Zaveri and Peters, 1999), and the full 8-bin MOSAIC (Model for 

Simulating Aerosol Interactions and Chemistry) aerosol module with aqueous 

chemistry is used to simulate aerosol evolution (Zaveri et al., 2008). In MOSAIC 

module, aerosols are assumed to be internally mixed into 8 bins (0.039–0.078 μm, 

0.078–0.156 μm, 0.156–0.312 μm, 0.312–0.625 μm, 0.625–1.25 μm, 1.25–2.5 μm, 2.5–

5.0 μm and 5.0–10 μm), and each bin considers all major aerosol species, such as sulfate 

(SO
2-

4 ), nitrate (NO
- 

3), ammonium (NH
+ 

4 ), black carbon (BC), organic carbon (OC), and 

other inorganic mass. The impacts of aerosols on photolysis rates are calculated by 

using the Fast-J scheme (Wild et al., 2000). The following physical parameterizations 

are used in WRF-Chem. The Rapid Radiative Transfer Model for general circulation 

models (RRTMG) scheme is used to treat both shortwave and longwave radiation in 

the atmosphere (Iacono et al., 2008). The Purdue Lin microphysics scheme (Lin et al., 

1983) and the Grell 3D ensemble scheme (Grell, 1993) are used to describe the cloud 

microphysical and cumulus convective processes. The Noah land surface scheme (Chen 

and Dudhia, 2001) and the Monin-Obukhov surface scheme (Foken, 2006) are used to 

simulate land-atmosphere interactions. The planetary boundary layer is characterized 
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by Yonsei University PBL scheme (Hong et al 2006). The main physical and chemical 

schemes used in this study are summarised in Table S1. 

In this study, Multi-resolution Emission Inventory for China (MEIC; 

http://www.meicmodel.org/) in 2013 and 2017 are used as the anthropogenic emissions 

of particles and gases (Zheng et al., 2018). Biogenic emissions are calculated online by 

using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) developed 

by Guenther et al. (2006).  

2.2 Numerical experiments 

Seven sensitivity experiments are designed (Table 1). Here are the detailed 

descriptions:  

(1) BASE_17E17M: This baseline experiment is coupled with the interactions 

between aerosol and radiation, which includes the impacts of API and ARF. Both 

the meteorological field and anthropogenic emission are from the year of 2017fixed 

at year 2017. 

(2) BASE_13E13M: Same as BASE_17E17M, but the meteorological field and 

anthropogenic emission are from the year of 2013fixed at year 2013.  

(3) NOAPI_17E17M: Same as BASE_17E17M, but the impact of API is not 

considered by turning off the aerosol effect in the photolysis module, following the 

method described in Yang et al. (2022).  

(4) NOALL_17E17M: Same as BASE_17E17M, but neither the impact of API nor 

ARF is considered by zeroing the aerosol optical properties in the optical module, 

following the method described in Yang et al. (2022).  

(5) BASE_13E17M: Same as BASE_17E17M, but the anthropogenic emission is 

fixed from the year of at year 2013. 

(6) NOAPI_13E17M: Same as NOAPI_17E17M, but the anthropogenic emission is 

from the year offixed at year 2013. 

(7) NOALL_13E17M: Same as NOALL_17E17M, but the anthropogenic emission is 

from the year of fixed at year 2013. 

Figure 1 detailedly presents the schematic overview of designed numerical 
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experiments. As shown in Fig. 1, the differences between BASE_17E17M and 

BASE_13E13M (BASE_17E17M minus BASE_13E13M) represent the changed O3 

(∆O3) due to variations in meteorology and anthropogenic emissions from 2013 to 2017. 

The differences between BASE_13E17M and BASE_13E13M (BASE_13E17M minus 

BASE_13E13M) show the impact of changed meteorological conditions on O3 

(∆O3_MET) from 2013 to 2017. The differences between BASE_17E17M and 

BASE_13E17M (BASE_17E17M minus BASE_13E17M) indicate the impact of 

anthropogenic emission reductions on O3 (∆O3_EMI) from 2013 to 2017.  

The impacts of aerosol-radiation interaction (ARI) on O3 under different 

anthropogenic emission scenarios (i.e., strong anthropogenic emission levels in year 

2013, and weaker anthropogenic emission levels in year 2017) can be analyzed as the 

differences between BASE_17E17M and NOALL_17E17M (BASE_17E17M minus 

NOALL_17E17M, denote as ∆O3_ARI17E), and BASE_13E17M and 

NOALL_13E17M (BASE_13E17M minus NOALL_13E17M, denote as ∆O3_ARI13E). 

The ∆O3_ARI17E means that the impact of ARI on O3 at the condition of both the 

meteorological field and anthropogenic emission are applied in the year 2017, and the 

∆O3_ARI13E means that the effect of ARI on O3 at the state of meteorological field used 

in the year 2017 and anthropogenic emission applied in the year 2013. In order to 

quantify the impacts caused by the decreased anthropogenic emission from 2013 to 

2017, the impacts of changed meteorological variables should be removed by fixing the 

meteorological fields in year 2017 in sensitivity experiments. Thus, the impact of 

weakened ARI due to decreased anthropogenic emission from 2013 to 2017clean air 

action on O3 (denote as ∆O3_ΔARI_EMI) can be quantified from the differences 

between ∆O3_ARI17E and ∆O3_ARI13E. Similarly, the impacts of weakened API (denote 

as ∆O3_ΔAPI_EMI) and ARF (denote as ∆O3_ΔARF_EMI) due to decreased 

anthropogenic emission on O3 can also be estimated from the differences between 

(BASE_17E17M minus NOAPI_17E17M, denote as ∆O3_API17E) and 

(BASE_13E17M minus NOAPI_13E17M, denote as ∆O3_API13E), and between 

(NOAPI_17E17M minus NOALL_17E17M, denote as ∆O3_ARF17E) and 

(NOAPI_13E17M minus NOALL_13E17M, denote as ∆O3_ARF13E), respectively. 
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Detailed descriptions can be found in Fig. 1.  

Simulation periods are integrated from 30 May to 30 June (denoted as summer) 

and 29 November to 31 December (denoted as winter) both in 2013 and 2017. To avoid 

potential deviations caused by long-term model integration, each simulation is re-

initialized every eight days, with the first 40 hours as the model spin-up. The complete 

simulation includes five model cycles. Simulation results from the BASE_17E17M 

case during summer and winter are used to evaluate the model performance. If not 

otherwise specified, the time in this paper is the local time, and the synergetic impacts 

of ARF and API are equal to the impact of ARI (i.e., ARI=ARF+API).  

2.3 Observational data 

Meteorological observations of temperature (T2), relative humidity (RH2), wind 

speed (WS10) and wind direction (WD10) provided by the NOAA’s National Climatic 

Data Center (https://www.ncei.noaa.gov/) are used to validate the model 

meteorological performance. In this study, 353 meteorological stations are selected and 

the locations are shown as red dots in Fig. S1. Observed surface PM2.5, O3 and NO2 

concentrations in eastern China are obtained from the China National Environmental 

Monitoring Center, which can be downloaded from http://beijingair.sinaapp.com. To 

ensure the data quality, a single site with at least 500 actual observations during the 

simulated period are used for model evaluation. A total of 1296 sites, as shown in Fig. 

2a, are obtained. Photolysis rates of nitrogen dioxide (NO2) (J[NO2]) measured at the 

Peking University site (39.99 °N, 116.31 °E) are also used to evaluate the model 

performance.  

2.4 Integrated process rate analysis 

Process analysis techniques, i.e., integrated process rate (IPR) analysis, can be 

used in grid-based Eulerian models (e.g., WRF-Chem) to obtain contributions of each 

physical/chemical process to variations in pollutant concentrations. Eulerian models 

utilize the numerical technique of operator splitting to solve continuity equations for 

each species into several simple ordinary differential equations or partial differential 

equations that only contain the influence of one or two processes (Gipson, 1999). 
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In order to quantitatively elucidate individual contributions of physical and 

chemical processes to O3 concentration changes due to weakened ARI, the integrated 

process rate (IPR) methodology is applied in this study. IPR analysis is an advanced 

tool to evaluate the key process for O3 concentration variation (Shu et al., 2016; Zhu et 

al., 2021; Yang et al., 2022). In this study, the IPR analysis tracks hourly (e.g., one time 

step) contribution to O3 concentration variation from four main processes, including 

vertical mixing (VMIX), net chemical production (CHEM), horizontal advection 

(ADVH), and vertical advection (ADVZ). VMIX is initiated by turbulent process and 

closely related to PBL development, which influences O3 vertical gradients. CHEM 

represents the net O3 chemical production (chemical production minus chemical 

consumption). ADVH and ADVZ represent transport by winds. We define ADV as the 

sum of ADVH and ADVZ.  

3. Model Evaluation 

Simulation results of BASE_17E17M are used to compare with the observations 

to evaluate the model performs before interpreting the impacts of aerosol-radiation 

interaction on surface-layer ozone concentration.  

3.1 Evaluation for meteorology  

Figure S2 shows the time series of observed and simulated T2, RH2, WS10, and 

WD10 averaged over the 353 meteorological stations in China during summer and 

winter in 2017. Statistical performances of simulated meteorological parameters 

compared with ground-based observations are shown in Table 2. Simulations track well 

with observed T2 with the correlation coefficient (R) of 0.99 and 0.92, but underestimate 

T2 with the mean bias (MB) of -1.0 and -2.0 K in summer and winter, respectively. 

Simulated RH2 agree reasonably well with observations with R of 0.97 and 0.87, and 

small normalized mean biases (NMB) are found in summer and winter with values of 

3.2% and 3.5%, respectively. WS10 is slightly overpredicted with the MB of 1.6-2.1 m 

s-1. The R and root-mean-square error (RMSE) of WS10 are 0.77-0.82 and 1.6-2.1 m s-

1, respectively. Large bias in wind speed can be partly caused by unresolved 
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topographical features (Jimenez and Dudhia, 2012). The NMB of WD10 ranges from -

3.9% to -2.6% and the R ranges from 0.40 to 0.69, respectively. As shown in Fig. S3, 

the predicted J[NO2] match well with the observations with R of 0.93-0.94 and NMB 

of 4.8%-12.3%. In general, the simulated meteorological variables fairly well 

agreement with the observations.  

3.2 Evaluation for air pollutants  

Figure 2 shows the spatial-temporal variations of observed and simulated near-

surface PM2.5, O3 and NO2 concentrations averaged over eastern China during summer 

and winter in 2017. As demonstrated in Figs. 2(a1) and (c1), WRF-Chem model 

reasonably well reproduces the spatial distribution of observed PM2.5, with high values 

over large city cluster. The predicted O3 concentrations can also reproduce the spatial 

variation of the observed concentrations (Figs. 2(a2) and (c2)). NO2 is an important 

precursor of O3 and aerosol, a good performance on NO2 is necessary. From Figs. 2(a3) 

and (c3), the model can well reproduce the spatial distribution of observed NO2. 

Although the distributions of simulated air pollutants are in good with the observations, 

biases still exist, which may be due to the uncertain in the emission inventories. Figures 

2(b1-b3) and 2(d1-d3) show the temporal profiles of observed and simulated surface-

layer air pollutants averaged over monitoring sites and the grid cell containing the 

monitor site in eastern China. The statistical metrics are also shown in Table 2. As 

shown in Figs. 2(b1) and (d1), the model tracks well with the diurnal variation of PM2.5 

over the eastern China, with R of 0.63 and 0.80, respectively. But the model slightly 

underestimates the concentrations of PM2.5 with MB of -6.3 and -10.1 µg m-3, 

respectively, in summer and winter. Simulated O3 agree reasonably well with 

observations with R of 0.90 and 0.86, and small MB are found in summer and winter 

with values of -0.6 and 2.8 ppb, respectively. The model tracks the daily variation of 

observed NO2 reasonably well, with R of 0.73 and 0.83. But the model slightly 

underestimates the NO2 against measurements, with MB of -1.5 and -4.5 ppb, 

respectively, in summer and winter. In general, WRF-Chem model can well reproduce 

the features of observed meteorology and air pollutants over eastern China.  
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3.3 Evaluation for changes in air pollutants from 2013 to 2017 

Figure 3 demonstrates the spatial distribution of changed summer (left) and winter 

(right) surface (a, b) PM2.5 and (c, d) MDA8 O3 from 2013 to 2017. As shown in Figs. 

3(a) and 3(b), the observed concentrations of PM2.5 in eastern China are significantly 

reduced both in summer (-16.2 µg m-3) and winter (-56.0 µg m-3), and these changes 

can be well captured by the model (-14.3 µg m-3 for summer and -49.8 µg m-3 for winter). 

Therefore, the model can reproduce the observed decrease in PM2.5 levels from 2013 to 

2017. As shown in Figs. 3(c) and 3(d), the model reasonably well reproduces the 

seasonal patterns of changed surface MDA8 O3 over the eastern China during summer 

and winter from 2013 to 2017. In summer, both the observations and simulations show 

the increased (decreased) MDA8 O3 in YRD (PRD and SCB), while the model can not 

simulate the positive changes in MDA8 O3 over BTH, and the potential reasons may be 

that this study did not consider the effect of changes in aerosol heterogeneous reactions. 

Li et al. (2019) found that the weakened uptake of HO2 on aerosol surfaces was the 

main reason for the O3 increase over BTH. In contrast to the changes in summer, 

observed MDA8 O3 in winter generally increased over the eastern China, which can be 

well reproduced by the model. 

4. Results and Discussion 

4.1 Impacts of changed meteorology and anthropogenic emission on O3  

The strategy of clean air action decreased the anthropogenic emission of NOx, but 

the changes in anthropogenic VOCs emissions were unobvious (Fig. S4), which might 

influence the O3 formation sensitive regime and the O3 concentration. Figure 3 4 shows 

the spatial distributions of changed summer and winter MDA8 O3 concentrations from 

2013 to 2017 over eastern China, and the contributions ofdue to changed anthropogenic 

emissions alone and changed meteorological conditions alone. As shown in Fig. 34(ab), 

the concentration of summer MDA8 O3 from 2013 to 2017 was increased in city 

clusters, but it was decreased in rural regions. This discrepancy might be explained by 

the ozone formation regimes in urban (typically VOCs-limited) and rural (typically 

NOx-limited) areas during summer (Li et al., 2019; Wang et al., 2019). Contrary to the 
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phenomenon in summer, decreased anthropogenic emissions lead to a uniform increase 

in winter MDA8 O3 over the whole eastern China (Fig. 34(ec)). These different spatial 

variation characteristics in summer and winter could be explained by the different ozone 

formation regimes in winter (VOCs-limited) and summer (NOx-limited) (Fig. S5, Jin 

and Holloway, 2015). From Figs. 34(cb) and (fd), the impacts of changed 

meteorological conditions on MDA8 O3 varied by regions, ranging from -24.9 (-14.0) 

to 17.0 (7.3) ppb in summer (winter). Focusing on the four developed city clusters, 

compared with 2013, the meteorological conditions in the summer of 2017 promoted 

the generation of O3 in the YRD region (Fig. 8(a3)), but suppressed the generation of 

O3 in the BTH (Fig. 8(a2)), PRD (Fig. 8(a4)) and SCB (Fig. 8(a5)) regions. In PRD and 

SCB, the changes in MDA8 O3 due to meteorology even have a greater impact than that 

by emission changes, which highlights the significant role of meteorology on summer 

O3 variations. 

The reductions in anthropogenic emissions from 2013 to 2017 will also lead to a 

decrease in PM2.5 concentrations (Fig. S5), which can further affect the O3 

concentrations by weakened aerosol-radiation interaction (ARI). Further, we average 

the observed MDA8 O3 concentrations of monitoring sites in the urban areas and the 

simulation value for the grid cell containing the monitoring site to examine the impacts 

of changed meteorological conditions, anthropogenic emissions and ARI on O3 levels 

in densely populated urban areas (Fig. 4). Given that most of the monitoring stations 

with 5 years of continuous observations are located in urban areas. Therefore, these 

monitoring stations and the grid cells containing the monitoring stations can be 

considered as urban areas in this study (Liu and Wang, 2020b). As shown in Figs. 4(a1) 

and (b1), the changes in observed MDA8 O3 over urban areas in eastern China from 

2013 to 2017 can be well captured by WRF-Chem both in summer and winter. In 

summer, changed meteorological conditions from 2013 to 2017 has little impact on the 

variations in MDA8 O3 over the urban areas, while the contribution of emission 

reductions to increased MDA8 O3 is significant. In winter, changed meteorological 

conditions is unfavorable for the increase in MDA8 O3 from 2013 to 2017, indicating 

the worsened ozone pollution driven by the changed anthropogenic emission. What’s 
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more, the ΔO3_ΔARI_EMI has significant effect on the increased MDA8 O3 in summer 

from 2013 to 2017 with the value of +1.77 ppb (87.6%), but its impacts in winter are 

smaller, only +0.42 ppb (11.8%), which is consistent with the results in Li et al. (2021). 

Meanwhile, the contributions of Δ O3_ΔAPI_EMI and Δ O3_ΔARF_EMI to the 

increase in O3 concentration averaged over urban areas in eastern China are almost the 

same in summer (0.79 vs. 0.98) and winter (0.20 vs. 0.22). The model can also capture 

the changes in observed summer/winter MDA8 O3 from 2013 to 2017 over urban areas 

in the four city clusters (Figs. 4(a2-b5)), except BTH in summer. The reason for the 

underestimation over BTH may be that this study did not consider the effect of changes 

in aerosol heterogeneous reactions. Li et al. (2019) found that the weakened uptake of 

HO2 on aerosol surfaces was the main reason for the O3 increase over BTH. In general, 

we find that the enhancement of O3 concentrations both in summer and winter is mainly 

caused by the factor of reduced anthropogenic emissions. Furthermore, the 

contributions of Δ O3_ΔAPI_EMI and Δ O3_ΔARF_EMI to the increases in O3 

concentrations from 2013 to 2017 over urban areas are almost the same during summer 

and winter.  

4.2 Impacts of weakened aerosol-radiation interaction on O3  

Figures S6a (S7a) and S6b (S7b) present the spatial distribution of the impacts of 

ARF, API and ARI on surface MDA8 O3 concentrations in summer (winter) under 

different anthropogenic emission conditions in year 2017 and year 2013, respectively. 

As shown in Fig. S6, summer MDA8 O3 are significantly reduced over eastern China, 

ARF, API and ARI decrease the surface MDA8 O3 concentrations by 0.23 (0.59) ppb, 

1.09 (1.54) ppb and 1.32 (2.13) ppb under low (high) anthropogenic emission 

conditions in year 2017 (year 2013), respectively. The changes in MDA8 O3 

concentrations due to aerosol-radiation interaction under low emission condition are 

weaker than that under high emission condition. This is because the concentration of 

aerosols in year 2013 is higher than that in year 2017, and then its impact on 

meteorological conditions and J[NO2] is greater (Fig. S8). As shown in Fig. S7a, ARF, 
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API and ARI decrease the winter MDA8 O3 concentrations by 0.38 ppb (-0.9%), 1.59 

ppb (-4.1%) and 1.96 ppb (-5.1%) in year 2017, respectively. Compared to the impacts 

under relatively high anthropogenic emission conditions in year 2013, the reduction of 

surface MDA8 O3 concentrations caused by ARF, API and ARI are also greater, with 

the values of 0.62 ppb (-1.6%), 1.98 ppb (-5.4%) and 2.59 ppb (-7.1%), respectively. 

Both API and ARF reduce O3 concentrations, and the reduction in O3 caused by API is 

greater than that caused by ARF both in summer and winter.  

Further, the significant reduction in PM2.5 due to clean air action (Fig. S5S9) will 

lead to an increase in O3 concentrations as the weakened effects of aerosols on O3. 

Therefore, this study further quantifies the effects of ΔO3_ΔAPIARF_EMI, 

ΔO3_ΔARFAPI_EMI and ΔO3_ΔARI_EMI (ΔO3_ΔARI_EMI = ΔO3_ΔARF_EMI + 

ΔO3_ΔAPI_EMI) on O3 air quality. As shown in Figs. 5(a1-a3), the surface MDA8 O3 

in summer are increased over most of eastern China due to ΔO3_ΔAPIARF_EMI, 

ΔO3_ΔARFAPI_EMI and ΔO3_ΔARI_EMI. The largest increases in MDA8 O3 

concentrations due to ΔO3_ΔAPIARF_EMI and ΔO3_ΔARFAPI_EMI are found in the 

developed four city clusters, with the increase larger than 4 ppb. Overall, 

ΔO3_ΔAPIARF_EMI, ΔO3_ΔARFAPI_EMI and ΔO3_ΔARI_EMI lead to the increase 

in surface MDA8 O3 by 0.36 ppb, 0.45 ppb and 0.81 ppb averaged over eastern China 

during summer, respectively. As shown in Fig. 5(a4-a6), the ΔO3_ΔAPIARF_EMI, 

ΔO3_ΔARFAPI_EMI and ΔO3_ΔARI_EMI can also cause an increase in winter MDA8 

O3 concentrations by 0.24 ppb, 0.39 ppb and 0.63 ppb, respectively. In general, 

weakened aerosol-radiation interaction due to reduced anthropogenic emission from 

2013 to 2017 can exacerbate ozone pollution both in summer and winter.  

In order to explore the mechanism of the impacts of ΔO3_ΔARI_EMI on MDA8 

O3, we resolve the changed O3 into the contributions from chemical and physical 

processes. Figure 6 presents the accumulated changes in O3 and each process 

contribution from 09:00 to 16:00 LST by the ΔO3_ΔAPI_EMI, ΔO3_ΔARF_EMI and 

ΔO3_ΔARI_EMI (ΔO3_ΔARI_EMI=ΔO3_ΔAPI_EMI+ΔO3_ΔARF_EMI) during 

summer and winter. As shown in Fig 6, the enhanced chemical production is the 
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dominant process leading to the increase in O3 concentrations over eastern China and 

the four city clusters both in summer and winter. The leading factor of enhancement in 

O3 over BTH are inconsistent with that over eastern China, and the enhancement of O3 

concentration in BTH is mainly due to ΔO3_ΔARF_EMI. But the leading factor of 

enhancement in O3 over SCB are consistent with that in eastern China, the enhancement 

of O3 concentration is mainly due to ΔO3_ΔAPI_EMI both in summer and winter. 

Moreover, the enhancement of O3 concentration in BTH, YRD and PRD is mainly due 

to ΔO3_ΔARF_EMI during winter, which is opposite to that of eastern China. The 

leading factors for the increase of O3 concentration in different city clusters are different. 

The enhancement of O3 concentration in most areas is caused by ΔO3_ΔAPI_EMI, 

whereas the increase in O3 concentration in BTH, YRD and PRD areas is dominated by 

ΔO3_ΔARF_EMI in winter. In general, the weakened aerosol-radiation interaction 

caused by emission reduction would promote the chemical production of O3 and 

increase the O3 concentrations over eastern China in summer and winter.  

In order to explore the reason for the increase in O3 chemical production, we 

further analyzed the variation of HOx (HO+HO2) concentration from 2013 to 2017. As 

the aerosol concentration decreases, its influence on solar radiation is weakened and 

photolysis is enhanced, leading to an increase in HOx levels. It can be seen from Fig. 

S910 that the concentration of HOx increases both in winter and summer. The increase 

in HOx will promote the conversion of NO to NO2, which will lead to the accumulation 

of O3 concentration.  

4.3 Impacts of weakened aerosol-radiation interaction on effectiveness of emission 

reduction for O3 air quality  

Figure 7 shows the changed summer and winter surface-layer MDA8 O3 

concentrations caused by anthropogenic emission reduction from 2013 to 2017 with 

(ΔO3_EMI) and without (ΔO3_NOARI) ARI, including the effects of weakened ARI on 

the effectiveness of emission reduction for O3 air quality (∆O3_∆ARI_EMI, which is 

also equal to ΔO3_EMI minus ΔO3_NOARI). As shown in Figs. 7(a1) and 7(a4), the 

surface-layer MDA8 O3 concentrations increased mainly in urban areas during summer 

and increased uniformly in winter due to anthropogenic emission reduction from 2013 



45 

to 2017 without the impact of ARI. When the effect of ARI is considered, the 

concentrations of MDA8 O3 are increased more than that when ARI is not taken into 

account (Figs. 7(a2) and 7(a5)). The consequences of weakened ARI resulted from 

anthropogenic emission reduction on MDA8 O3 concentrations are shown in Figs. 7(a3) 

and 7(a6). From Figs. 7(a3) and 7(a6) we can find that the concentrations of MDA8 O3 

are increased in both summer and winter over eastern China. Comparing with Fig. 7(a1) 

and (a2) in summer and Fig. 7(a4) and (a5) in winter, when the impact of ARI is 

considered, the concentrations of MDA8 O3 are increased more than that when ARI is 

not taken into account. ThusTherefore, ∆O3_∆ARI_EMI makes the superimposed 

impact on the effectiveness of anthropogenic emission reduction for the increased 

MDA8 O3 concentrations from 2013 to 2017 over eastern China. However, during 

summer, the worsened O3 air quality due to weakened ARI can only be found in 

scattered city clusters (e.g., BTH, YRD and PRD in Fig. 7(a3)). During winter, it would 

will increase MDA8 O3 concentrations over nearly the whole eastern China (Fig. 7(a6)).  

We also average the observed MDA8 O3 concentrations of monitoring sites in the 

urban areas and the simulation value for the grid cell containing the monitoring site to 

further examine the impacts of changed meteorological conditions, anthropogenic 

emissions and ARI on O3 levels in densely populated urban areas (Fig. 8). Given that 

most of the monitoring stations with 5 years of continuous observations are located in 

urban areas. Therefore, these monitoring stations and the grid cells containing the 

monitoring stations can be considered as urban areas in this study (Liu and Wang, 

2020b). As shown in Figs. 8(a1) and 8(b1), the changes in observed MDA8 O3 over 

urban areas in eastern China from 2013 to 2017 can be well captured by WRF-Chem 

both in summer and winter. In summer, changed meteorological conditions from 2013 

to 2017 has little impact on the variations in MDA8 O3 over the urban areas, while the 

contribution of emission reductions to increased MDA8 O3 is significant. In winter, 

changed meteorological conditions is unfavorable for the increase in MDA8 O3 from 

2013 to 2017, indicating the worsened ozone pollution driven by the changed 

anthropogenic emission. What’s more, the ΔO3_ΔARI_EMI has significant effect on 
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the increased MDA8 O3 in summer from 2013 to 2017 with the value of +1.77 ppb 

(87.6%), but its impacts in winter are smaller, only +0.42 ppb (11.8%), which is 

consistent with the results in Li et al. (2021). The increased MDA8 O3 concentration 

over urban areas in summer caused by O3_ΔARI_EMI in this study is 1.77 ppb, which 

is compared to the value of 2.12 ppb increase caused by weakened aerosol 

heterogeneous reactions quantified by Liu and Wang (2020b). Meanwhile, the 

contributions of Δ O3_ΔAPI_EMI and Δ O3_ΔARF_EMI to the increase in O3 

concentration averaged over urban areas in eastern China are almost the same in 

summer (0.79 vs. 0.98) and winter (0.20 vs. 0.22). In general, we find that the 

enhancement of O3 concentrations both in summer and winter is mainly caused by the 

factor of reduced anthropogenic emissions. Furthermore, the contributions of Δ

O3_ΔAPI_EMI and ΔO3_ΔARF_EMI to the increases in O3 concentrations from 2013 

to 2017 over urban areas are almost the same during summer and winter. 

4.3 Discussions  

(1) The CBMZ gas-phase chemistry coupled with MOSAIC aerosol module 

(CBMZ-MOSAIC for short) used in this study does not include secondary organic 

aerosol (SOA), then Here we applied three additional chemical mechanisms that 

consider SOA, namely, RADM2 gas-phase chemistry coupled with MADE/SORGAM 

aerosol module (RADM2-MADE/SORGAM for short), CBMZ gas-phase chemistry 

coupled with MADE/SORGAM aerosol module (CBMZ-MADE/SORGAM for short), 

and MOZART gas-phase chemistry coupled with MOSAIC aerosol module 

(MOZART-MOSAIC for short), to test the impact of ARI on O3 with and without SOA 

for the scenario of BASE_17E17M.  

Figures S11 shows the temporal variations of observed and simulated PM2.5 and 

O3 concentrations over eastern China for the three additional chemical mechanisms. 

Comparing with the observed PM2.5 (O3) concentrations, the MOZART-MOSAIC 

showed the best performance in December 2017, with the R of 0.73 (0.79) and NMB 

of -18.7% (-20.5%). Therefore, we further used this mechanism to simulate the air 



47 

pollutant concentrations during the period of June 2017. As shown in Fig. S11 (a4, b4), 

the temporal variations of observed PM2.5 (O3) can be well captured by this mechanism 

with R of 0.56 (0.91) and NMB of -1.7% (-20.3%).  

Finally, we investigated the effect of ARI on O3 from the results of CBMZ-

MOSAIC (this mechanism applied in this manuscript which does not include SOA) and 

MOZART-MOSAIC (this mechanism includes SOA and performs the best simulation 

results comparing with RADM2-MADE/SORGAM and CBMZ-MADE/SORGAM). 

As shown in Fig. S12, summer (winter) MDA8 O3 is significantly reduced over eastern 

China, ARI reduces the surface MDA8 O3 concentrations by 1.32 (1.96) ppb and 1.85 

(1.60) ppb by CBMZ-MOSAIC and MOZART-MOSAIC, respectively. The O3 

reductions are of comparable magnitude in these two schemes. Therefore, we can 

conclude that although the CBMZ-MOSAIC applied in this manuscript does not take 

into account the formation of SOA and its associated effects, the aerosol radiative 

effects on O3 concentrations not only in the pattern of spatial-temporal distribution but 

also in the order of magnitude are consistent with the results when the SOA simulation 

mechanism is considered. 

As shown in Fig. S13, the mean SOA simulated by RADM2-MADE/SORGAM, 

CBMZ-MADE/SORGAM, and MOZART-MOSAIC are 0.29, 0.45 and 0.94 µg m-3, 

accounting for 3.4%, 3.8%, and 4.4% of PM2.5 concentrations in winter 2017, 

respectively. From Fig. S14, the mean SOA simulated from MOZART-MOSAIC is 0.90 

µg m-3, account for 9.1% of PM2.5 in summer 2017. Model simulated SOA 

concentrations are generally underestimated in most current chemical transport models 

(Zhang et al., 2015; Zhao et al., 2015). The low SOA concentrations simulated by the 

model can be explained by low emissions of biogenic and anthropogenic VOCs (key 

precursors of SOA), but a thorough investigation of this underestimation is outside the 

scope of this manuscript and it will be discussed in our future work.  

(2) The impacts of aerosol heterogeneous reactions (HET) on O3 have not been 

considered in this manuscript due to the uncertainty and inconsistency of the 

heterogeneous uptake shown in previous observation and simulation studies (Liu and 

Wang., 2020b; Tan et al., 2020; Shao et al., 2021). Liu and Wang. (2020b) found that 
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the rapid decrease of PM2.5 was the primary contributor for the summer O3 increase 

through weakening the heterogeneous uptake of hydroperoxy radical (HO2). However, 

Tan et al. (2020) launched a field campaign in NCP and proposed a contradicting 

opinion about the importance of the impact of HET on O3. Shao et al. (2021) 

summarized that different heterogeneous uptake on the aerosol surface applied in the 

model simulation (e.g., 0.20 vs. 0.08) would cause significant deviations in simulated 

ozone concentrations (e.g., O3 increased by 6% vs. O3 increased by 2.5%). Previous 

laboratory studies indicate that the dependence of the uptake coefficient on aerosol 

composition and RH means that a single assumed value for heterogeneous uptake used 

in numerical simulations can lead to large uncertainties (Lakey et al., 2015; Taketani et 

al., 2009; Zou et al., 2019). Therefore, the uncertainty in the heterogeneous uptake value 

used in the numerical simulation will finally amplify the deviation in model results. 

Meanwhile, our manuscript devoted to quantifying the effects of ARI on O3, rather than 

the impacts of heterogeneous reactions on O3. The absence of heterogeneous chemistry 

on aerosol surface may result in underestimation of the effect of aerosol on O3, which 

will be considered in our future work. 

(3) There may be an interaction between API and ARF. However, in this study we 

discuss the role of API and ARF separately, which may ignore the effects of interactions 

between API and ARF on O3. This may affect our results, and we will discuss their 

interaction in our future studies. 

5 Conclusions  

In this study, the impact of weakened aerosol-radiation interaction (ARI) due to 

decreased anthropogenic emissions on surface O3 (∆O3_∆ARI_EMI) over eastern 

China is mainly analyzed by using an online-coupled regional chemistry transport 

model WRF-Chem. Simulation results generally reproduce the spatiotemporal 

characteristics of observations with correlation coefficients of 0.63-0.90 for pollutant 

concentrations and 0.40-0.99 for meteorological parameters, respectively.  

Sensitivity experiments show that the changes in MDA8 O3 from 2013 to 2017 

over eastern China vary spatially and seasonally, and the decreased anthropogenic 
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emission plays a more prominent role for the MDA8 O3 increase than the impact of 

changed meteorological conditions both in summer and winter. Furthermore, the 

decreased PM2.5 concentrations due to reduced anthropogenic emissions can result in a 

weaker impact of ARI on O3 concentrations, which finally pose a superimposed effect 

on the worsened O3 air quality. For urban areas over eastern China, ∆O3_∆ARI_EMI 

has a significant effect on the increase of MDA8 O3 in summer with the value of +1.77 

ppb, accounting for 87.6% of the increased value caused by decreased anthropogenic 

emissions, but the impacts in winter are smaller (+0.42 ppb), accounting for 11.8% of 

the increased value caused by decreased anthropogenic emissions. For the whole 

regions over eastern China, the enhancement of MDA8 O3 by ∆O3_∆ARI_EMI is +0.81 

(+0.63) ppb, with ∆O3_∆API_EMI and ∆O3_∆ARF_EMI contributing for 55.6% 

(61.9%) and 44.4% (38.1%) in summer (winter), respectively. Process analysis shows 

that the enhanced O3 chemical production is the dominant process for the increased O3 

concentrations caused by ∆O3_∆ARI_EMI both in summer and winter.  

Generally, since China’s clean air action from 2013, the decreased PM2.5 

concentrations due to reduced anthropogenic emissions can worsen O3 air quality by 

the weakened interactions between aerosol and radiation, which is a new and an 

important implication for understanding the causes driving the increases in O3 level 

over eastern China. Therefore, our results highlight that more carefully designed multi-

pollutants coordinated emissions control strategies are needed to reduce the 

concentrations of PM2.5 and O3 simultaneously.  
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Table 1. Descriptions of model sensitivity experiments. 

Cases Anthropogenic emission Meteorological field APIa ARFa 

BASE_17E17M 2017 2017 On On 

BASE_13E13M 2013 2013 On On 

NOAPI_17E17M 2017 2017 Off On 

NOALL_17E17M 2017 2017 Off Off 

BASE_13E17M 2013 2017 On On 

NOAPI_13E17M 2013 2017 Off On 

NOALL_13E17M 2013 2017 Off Off 
aAPI means aerosol-photolysis interaction, ARF means aerosol-radiation feedback.  
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Table 2. Statistical parameters of the simulated 2 m temperature (T2, k), 2 m relative humidity (RH2, %), 10 m wind speed (WS10, m s-1), 10 m 1 

wind direction (WD10, °), photolysis rate of NO2 (J[NO2], 10-3 s-1), PM2.5 (µg m-3), O3 (ppb), and NO2 (ppb) against observations during summer 2 

and winter in 2017. There are 1296 air pollutant monitoring stations and 353 meteorological stations. 3 

 Summer  Winter  

Variable Oa Ma Rb MBc NMBd (%) RMSEe Oa Ma Rb MBc NMBd (%) RMSEe 

T2 295.3 294.2 0.99 -1.0 -3.2 1.0 275.0 272.8 0.92 -2.0 -74.1 2.5 

RH2 68.1 71.0 0.97 2.2 3.2 3.6 58.1 60.6 0.87 2.1 3.5 6.5 

WS10 2.6 4.2 0.77 1.6 61.6 1.6 2.6 4.7 0.82 2.1 83.2 2.1 

WD10 175.7 170.9 0.40 -4.6 -2.6 16.9 192.6 184.6 0.69 -7.5 -3.9 17.4 

J[NO2] 2.6 2.7 0.93 0.1 4.8 1.2 1.0 1.2 0.94 0.1 12.3 0.6 

PM2.5 31.0 24.8 0.63 -6.3 -20.2 8.3 69.0 58.9 0.80 -10.1 -14.6 15.6 

O3 39.7 38.9 0.90 -0.6 -1.6 6.9 17.7 20.5 0.86 2.8 15.7 5.0 

NO2 12.7 11.2 0.73 -1.5 -12.0 4.5 23.3 18.7 0.83 -4.5 -19.4 5.6 

aO and M are the averages for observed and simulated results, respectively. O = 
1

n
×∑ Oi

n
i=1 , M=

1

n
×∑ Mi

n
i=1 . 4 

bR is the correlation coefficient between observations and model results. R= 
∑ |(Oi-O)×(Mi-M)|n

i=1

√∑ (Oi-O)n
i=1

2
+∑ (Mi-M)n

i=1
2
. 5 

cMB is the mean bias between observations and model results. MB = 
1

n
×∑ (Mi-Oi)

n
i=1 . 6 

dNMB is the normalized mean bias between observations and model results. NMB = 
1

n
×∑

Mi-Oi

Oi

n
i=1 ×100%. 7 

eRMSE is the root-mean-square error of observations and model results. RMSE= √
1

n
×∑ (Mi-Oi)

2n
i=1 . 8 

In the above Oi and Mi are the hourly observed and simulated data, respectively, and n is the total number of hours.   9 
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 10 
Figure 1. Schematic overview of numerical experiments. 17E17M (13E13M) means meteorological fields and anthropogenic emissions are fixed 11 

from the at year of 2017 (2013). 13E17M means anthropogenic emissions are from the year offixed at year 2013 but meteorological fields are at 12 

year 2017. ∆O3_MET, ∆O3_EMI and ∆O3 mean the impacts of changed meteorological conditions, changed anthropogenic emissions and their 13 

combined effects on O3, respectively. ∆O3_API17E(13E), ∆O3_ARF17E(13E) and ∆O3_ARI17E(13E) mean the impacts of aerosol-photolysis interaction, 14 

aerosol-radiation feedback and aerosol-radiation interaction on O3 under different emission conditions, respectively. ∆O3_NOARI means the 15 

changed O3 concentration by reduced anthropogenic emissions without considering aerosol-radiation interaction. ∆O3_∆API_EMI, 16 

∆O3_∆ARF_EMI and ∆O3_∆ARI_EMI represent the impacts of weakened aerosol-photolysis interaction, aerosol-radiation feedback and aerosol-17 

radiation interaction due to decreased anthropogenic emission on O3 concentration, respectively. 18 
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 19 

Figure 2. Spatial distributions of observed (circle) and simulated (shade) PM2.5, O3 and NO2 concentrations averaged over (a1-a3) summer and 20 

(c1-c3) winter in 2017. Time series of observed (black dots) and simulated (red lines) hourly PM2.5, O3 and NO2 concentrations averaged over the 21 

whole observation sites in eastern China during (b1-b3) summer and (d1-d3) winter in 2017.  22 

 23 
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 24 

Figure 3. Spatial distribution of changed summer (left) and winter (right) surface (a, b) 25 

PM2.5 and (c, d) MDA8 O3 from 2013 to 2017. Observed changes in surface PM2.5 26 

MDA8 O3 are also marked with colored circles. (a, d) Spatial distribution of changed 27 

summer (upper) and winter (bottom) surface-layer MDA8 O3 from 2013 to 2017, and 28 

the contributions of (b, e) changed anthropogenic emissions alone and (c, f) changed 29 

meteorological fields alone. The observed changes in surface MDA8 O3 are also 30 

marked with colored circles in (a) and (d). The enclosed black line in (f) represents 31 

eastern China.   32 
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 33 

Figure 4. Spatial distribution of changed summer (upper) and winter (bottom) surface-34 

layer MDA8 O3 from 2013 to 2017 due to (a, c) changed anthropogenic emissions alone 35 

and (b, d) changed meteorological fields alone. The enclosed black line in (d) 36 

represents eastern China. 37 
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 38 

Figure 5. Impacts of ∆O3_∆ARF_EMI, ∆O3_∆API_EMI, and ∆O3_∆ARI_EMI on 39 

summer (upper) and winter (bottom) surface-layer MDA8 O3 concentrations. The 40 

enclosed black line in (a1) represents eastern China and the four developed city clusters. 41 

The mean changes over eastern China are also shown at the top of each panel. Detailed 42 

information about ∆O3_∆ARF_EMI, ∆O3_∆API_EMI, and ∆O3_∆ARI_EMI can be 43 

found in Figure 1.   44 
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 45 

Figure 6. Accumulated changes in each process from 09:00 to 16:00 LST and the 46 

changed O3 concentrations due to ∆O3_∆ARI_EMI in summer (left column) and winter 47 

(right column). The regions of eastern China, Beijing-Tianjin-Hebei (BTH), Yangtze 48 

River Delta (YRD), Pearl River Delta (PRD) and Sichuan Basin (SCB) are indicated 49 

on the upper right side of each panel.  50 

 51 
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Figure 7. Spatial distribution of changed summer (upper) and winter (bottom) surface-

layer MDA8 O3 concentrations from sensitivity simulations. (a1, a4) Effects of 

anthropogenic emission reduction on MDA8 O3 without ARI. (a2, a5) Effects of 

anthropogenic emission reduction on MDA8 O3 with ARI. (a3, a6) Effects of weakened 

ARI on the effectiveness of emission reduction for O3 air quality. 
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Figure 8. The observed (OBS, black bars) and simulated (SIM, red bars) changes in 

(left) summer and (right) winter surface-layer MDA8 O3 from 2013 to 2017. 

Contributions of changed meteorological conditions alone (MET, blue bars), changed 

anthropogenic emissions alone (EMI, purple bars), changed aerosol-photolysis 

interaction alone (ΔAPI_EMI, green bars), and changed aerosol-radiation feedback 

alone (ΔARF_EMI, cyan bars) are also shown. Observations are calculated from the 

monitoring sites in the analyzed region, while the corresponding gridded simulations 

are averaged for SIM. (a1-b1), (a2-b2), (a3-b3), (a4-b4) and (a5-b5) represent the 

urban areas in eastern China, Beijing-Tianjin-Hebei (BTH), Yangtze River Delta 

(YRD), Pearl River Delta (PRD), and Sichuan Basin (SCB), respectively. 


