

1 2	Overview: Cascading spatial, seasonal, and temporal effects of permafrost thaw on streamflow in changing nested Arctic catchments
3 4	Alexa M. Hinzman ¹ , Ylva Sjöberg ^{2,3} , Steve W. Lyon ⁴ , Wouter R. Berghuijs ¹ , Ype van der Velde ¹
5	1 Department of Earth and Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
6 7	2 Department of Geoscience and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
8	3 Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
9 10	4 School of Environment and Natural Resources, Ohio State University, Ohio, United States of America
11	Corresponding Author: Alexa Hinzman, a.m.h.hinzman@vu.nl
12	Abstract:
13 14 15 16	In the Arctic, the thawing of permafrost affects how catchments store and release water. However, the effects of thawing on the hydrological response remain poorly documented. In addition, it remains unclear how the effects of a thawing landscape will propagate through nested catchments. Here we investigate 10 nested catchments within the Yukon basin (Alaska and Canada) to study how permefrect they impacts eatchments' streamflow seeconglity and
17 18 19 20 21	storage-discharge relationships, and how these effects cascade through the nested catchments, from headwaters to downstream. Our results indicate that upstream catchments, characterized by continuous permafrost, have stronger streamflow seasonality and that these catchments also exhibit the most nonlinear storage-discharge relationships. Larger catchments downstream
22	sustain year-round streamflow with baseflow continuing during winter. Since the 1950s flow
23 24	more abrupt freshet, whereas further downstream flow seasonality has remained stable. Across
25	the Yukon, storage-discharge relationships for 9 out of 10 sub-catchments have become
26	increasingly nonlinear over time, with the biggest change occurring in the largest downstream
27	catchments. In smaller catchments, each season has distinct recession characteristics, but those
28	seasonal differences are not apparent further downstream. Upstream catchments are strongly
29 30	different localized unstream impacts, making it difficult to detect a singular cause of change
31	Seasonal and long-term shifts in storage-discharge relationships are typically not accounted for
32	by hydrological models and make accurate streamflow predictions more difficult. These shifts
33	highlight how the changing landscape of the Arctic has far-reaching hydrological
34	consequences.

35	1	Introduction
36		The Arctic is warming at a faster rate than any other region in the world (Rantanen et al.,

37	2022). The Arctic is heterogeneous, as polar and subpolar zones feature many biomes, various
38	habitats, and diverse soil compositions. The arctic desert, tundra, taiga, and boreal forest zones
39	are all connected by the hydrologic continuum, by water moving from soil to headwater streams
40	in uplands, through lowlands, and eventually to high-order streams in coastal areas. (McKenzie
41	et al., 2021a).
42	Permafrost is a ubiquitous feature of the Arctic. Not considering the impact of
43	permafrost on Arctic rivers will give an incomplete understanding of how Arctic catchments
44	behave, especially now that the permafrost is thawing. Changes in catchment hydrology caused
45	by permafrost thaw can lead to changes in groundwater flow, biodiversity, and the development
46	of lakes and unfrozen conduits for groundwater (taliks) (Tananaev and Lotsari, 2022). Thawing
47	catchments in the Arctic have undergone changes such as lowering of the permafrost table,
48	marked subsidence of the ground surface, increased active layer thickness, and the expansion
49	and connection of previously isolated taliks (Jin et al., 2022). In addition, in the Arctic, where

- 50 direct human-ecosystem interactions are limited, land-cover change determined by climate
- 51 change and permafrost thaw influences streamflow more than human-induced landcover change 52 (Frey and McClelland, 2009).

53 Arctic hydrologic responses to climate warming vary between seasons (Wang et al., 2021). Firstly, the thawing permafrost can increase the hydrologic connectivity between aquifers 54 55 and surface waters (Lamontagne-Hallé et al., 2018; Chiasson-Poirier et al., 2020). This can lead to increased surface-subsurface water exchange. Secondly, a thicker active layer can contribute 56 57 to the melting of excess ground ice but also allows soils to store more water. This can increase streamflow in winter due to the development of the supra-permafrost aquifers allowing for 58 59 groundwater flow below the seasonal frost layer (Lyon and Destouni, 2010; Wellman et al., 60 2013; Walvoord and Striegl, 2007a; Walvoord et al., 2019). Finally, a longer thaw season can 61 contribute to the thickening of the active layer, which in turn delays the active layer freeze-up

62	and will also contribute to increased winter river runoff (Sjöberg et al., 2021). Also, the
63	percentage of permafrost coverage will cause different hydrologic responses. For example, in
64	catchments with higher permafrost presence, more water leaves the catchment as discharge
65	while in catchments with less permafrost coverage, there is water loss in the form of
66	evapotranspiration and infiltration into deeper groundwater flow paths (Koch et al., 2022). These
67	impacts are heavily intertwined and therefore make it hard to isolate singular changes. (Asano et
68	al., 2020; Karlsen et al., 2016; Lyon et al., 2012)
69	The impacts of permafrost thaw on catchment hydrology are widely variable throughout
70	the Arctic and the temporal rate of permafrost degradation also differs substantially between
71	locations (Obu et al., 2019; Sergeant et al., 2021). If the climate warms, 0.1°C in 10 years, a
72	trend seen in (Bekryaev et al., 2010) which does not include the current polar amplification
73	occurring, catchments with mean annual air temperature around $0^{\circ}C$ will be affected more than
74	catchments with a mean annual air temperature of -5°C. Effectively, those catchments situated
75	on that temperature threshold will be unable to re-freeze previously thawed permafrost in winter,
76	exacerbating the thawing rates of permafrost while catchments with lower mean annual air
77	temperatures have thicker active layers in summer but refreeze completely in winter (Åkerman
78	and Johansson, 2008; Cooper et al., 2022).
79	Recession analysis uses streamflow records to provide insight into groundwater
80	movement at the catchment scale. Traditionally, recession analysis quantifies baseflow
81	dynamics, and the catchment water balance by inferencing the unconfined aquifer storage and
82	release relationship and has successfully represented the lateral redistribution of groundwater in
83	land surface systems (Troch et al., 2013). Relating the changes in subsurface groundwater flow
84	to changes in surface discharge has been a method of investigating the catchment's storage-
85	discharge relationship to the change in climate. In permafrost-laden catchments, recession
86	analysis has been used in a round-about way to evaluate the health of the permafrost (e.g., if
87	there is an increase in active layer thickness, the amount of groundwater that can be stored in a
88	catchment changes which can influence flow paths in a catchment and therefore be detected in

89	the recession analysis). It can illustrate permafrost thaw trends by making similar inferences to
90	the catchment's storage dynamics, such as the active layer thickening and the changing
91	groundwater flow (Hinzman et al., 2020, 2022).
92	Previous studies (Lyon et al., 2009; Brutsaert and Hiyama, 2012) have tested if an
93	increased active layer thickness will lead to an increase in the recession curve slope. Recent
94	work by Sergeant et al. (2021) echoed knowledge of the complexity of Arctic systems and found
95	a dominant decrease in the recession curve intercept (i.e., the rate of discharge decline at a
96	discharge of 1mm/d during a recession, indicating an increase in baseflow) after examining over
97	300 Arctic catchments from 1970 to 2000. Camporese et al. (2014), Cooper et al. (2022), and
98	Sergeant et al. (2021) used the nonlinear relationships between saturated soil thickness and
99	average baseflow to infer changes in the active layer thickness and found that the growth rate of
100	the active layer has been accelerating in the last 20 years. Clearly, there are many ways how
101	surface and subsurface processes affect each other. For that reason, the relationship between
102	streamflow and storage does not yet have a concise explanation. In addition, due to the
103	heterogeneous nature of the Arctic, dissimilar results should be expected.
104	While there has been ample research showing a change in the recession curve slope as
105	permafrost degrades (Sjöberg et al., 2013; Bogaart et al., 2016; Hinzman et al., 2022), the
106	question remains if changes in catchment streamflow are observable at all spatial scales or if the
107	observed change diminishes at larger spatial scales. This is a crucial question because most
108	streamflow of the larger rivers in the Arctic is measured with goals to estimate water and solute
109	loads to the Arctic Ocean, but these large river systems are potentially less informative as
110	indicators of permafrost change.
111	Here we study the effects of permafrost thaw on spatial differences, seasonal changes,
112	and long-term shifts of streamflow seasonality and storage-discharge relationships in the Arctic.
113	We focus on how these changes vary across nested catchments with spatial scale and how any
114	effects of thawing may propagate downstream. This helps to understand how the effects of
115	permafrost thaw on streamflow vary across spatial scales.

- 116
- 117 2 Methods
- 118 2.1 The Yukon Basin
- 119 We used data from 10 nested catchments from the Yukon basin in Alaska and Canada.
- 120 These catchments have a wide range of sizes as they cover the relatively smaller upstream
- catchments, up to almost the entire basin near the mouth of the river (Figure 1; Table 1).

122

Figure 1. Outline of catchments, the blue lines indicate the river network, the smallest
 catchments are red and the rivers flow into the next larger catchment which changes to green.
 The catchments are numbered and correspond to Table 1.

We downloaded daily discharge data from the Global Runoff Data Centre (GRDC). Monitoring for three catchments started in the 1950s, three in the 1960s, and three in the 1970s with the latest catchment record starting in the 1980s. Four catchments have their data record continue into the 21st century. Pilot Station has the longest dataset with 46 years, followed by Steven Village with a dataset of 45 years. The exact date range and length of the record can be found in Table 1.

132	Meteorological data, such as precipitation and potential evapotranspiration, were
133	obtained from the Global Historical Climatology Network Daily (GHCN - Daily) dataset hosted
134	by the National Centers of Environmental Information (NCEI). In cases of missing data, we used
135	precipitation and potential evapotranspiration data from the gridded ERA5 dataset (Muñoz
136	Sabater, 2019, 2021).
137	Table 1 . Information on 10 catchments used in this study.

Catchment Name (#)	River	Period	Lat (°)	Long (°)	Area (km ²)	Missing Data
Pilot Station (1)	Yukon	1975-2020 (46)	61.9337	-162.8829	831390	18.4%
Kaltag (2)	Yukon	1956-1966 (11)	64.3271	-158.7219	766640	0.0%
Ruby (3)	Yukon	1956-1978 (23)	64.7405	-155.4919	670810	4.8%
Rampart (4)	Yukon	1956-1967 (12)	65.5065	-150.1734	516446	17.2%
Stevens Village (5)	Yukon	1976-2020 (45)	65.8751	-149.7203	508417	11.5%
Fort Yukon (6)	Porcupine	1964-1979 (16)	66.9903	-143.1404	76405	33.7%
International Boundary (7)	Porcupine	1987-2019 (33)	67.4239	-140.8938	59829	15.6%
Old Crow (8)	Porcupine	1961-1995 (35)	67.5639	-139.8833	55400	31.3%
Bell River (9)	Porcupine	1964-1995 (32)	67.4403	-137.7836	36000	44.5%
Dempster Highway						
Bridge (10)	Eagle	1978-2017 (40)	66.4417	-136.7083	1720	60.6%

139	We determined topography and permafrost presence by using the Circum-Arctic Map of
140	Permafrost and Ground-Ice Conditions dataset (Brown et al., 2002) from the National Snow and
141	Ice Data Center (NSIDC). The largest catchments are flatter, with alpine conditions from the
142	south consisting of the Alaska Range, and the Kuskokwim Mountains with moderate Arctic
143	conditions. The smaller catchments are further North, in a mix of alpine regions (Brooks Range
144	and Ogilvie Mountains) and lowland regions and moreover colder climate conditions (Figure
145	2a). Lowlands are defined by (Brown et al., 2002) as intra- and intermontane depressions and
146	terrains characterized by thick overburden cover (5-10m). While the uplands included
147	mountains, highlands ridges, and plateaus characterized by a thick overburden cover (>5m) or
148	exposed bedrock. We determined that during 2002, (when the Circum-Arctic map was first
149	published), the smaller, more Northern catchments were in a continuous permafrost region while
150	the downstream catchments had greater sections that encompass discontinuous and sporadic
151	permafrost regions (Figure 2b).

152

153 Figure 2. Outline of catchments with topography (a) and side-by-side of permafrost154 presence (b).

155 2.2 Streamflow and recession analysis

Discharge data were originally collected in cubic meters per second. We convert these data into specific discharge (i.e., mm/d) to allow more direct comparison between the catchments of strongly varying sizes. In addition, we calculate ratios of average monthly discharge to the average annual discharge (i.e., Pardé coefficients), first utilized by Maurice Pardé in 1933 and still used by hydrologists today to allow direct comparison of the streamflow seasonality between catchments (Curran and Biles, 2021; Poschlod et al., 2020).

Many studies have expanded on Brutsaert and Nieber's (1977) work on recession analysis and Kirchner's (2009) work on Arctic catchments to further the understanding of permafrost's control of the catchment's response (Karlsen et al., 2019; Ploum et al., 2019; Sergeant et al., 2021). The basic recession curve analysis used in this study follows the method first explained in Hinzman et al. (2020) and then expounded in Hinzman et al. (2022) A concise explanation is

- 167 that while the hydrograph is reclining (Figure 3a), signifying no extra influence from
- 168 meteorological factors, the rate of change in discharge (dQ, [mm/d/d]) over a change in time (dt,
- [d]) can be equated to the discharge (Q, [mm/d]) and the sensitivity of discharge to change in
- 170 groundwater storage (dQ/dS, [d⁻¹]), which in turn is approximately a power function of the

- 171 discharge (Q) (Eq.1). The resulting constants (Figure 3b), α and β can be interpreted as the
- 172 intercept (α , [mm^{1- β}d^{β -2}]) and the slope (β , [-]) of the recession curve, as explained in (Kirchner,
- 173 2009).

174

Figure 3. Hydrograph (a) and recession curve (b) of Pilot Station, red dots in (a) indicate
recession points, which are then used in Figure 1b. The red line in (b) is the recession curve
slope (β), which is obtained by a linear regression. The hydrograph (a) has a y-axis of the
specific discharge. Specific discharge is discharge divided by catchment area. The specific
discharge is seen in the x-axis of (b), and the y-axis is the change of specific discharge over the
change of time.

181
$$\frac{dQ}{dt} = -Q \frac{dQ}{dS} \approx -\alpha Q^{\beta}$$
 1)

182 2.3 Temporal change analysis

183 Our paper focuses on changes in the catchments' streamflow dynamics, as seen in changes 184 in the specific discharge or changes in the slope of the recession curve, to be referred to in the 185 future as β . Previous studies on arctic recessions (Lyon et al., 2009; Sjöberg et al., 2013; Evans 186 et al., 2020; Lyon and Destouni, 2010), held β constant ($\beta = 1$) and focused on the recession 187 intercept (α). Our focus on β is to characterize the amount of water moving through the 188 catchment and to better examine the non-linear or linear relationship between discharge and 189 groundwater storage. The length of the data collected is substantial for five catchments. They are Pilot Station (46 years), Ruby (23 years), Stevens Village (45 years), International Boundary (33 190 191 years), and Bell River (32 years), (Table 1). These catchments were gauged during different time 192 periods, thus, for comparison the datasets were divided into halves (early and later years). This 193 allows for comparison of hydrological changes within the catchments themselves as well as

194	direct comparison of the catchments that do have overlapping time series. We characterize
195	streamflow seasonality (as expressed by Pardé coefficients) and streamflow recession behavior
196	(as expressed by β) for both the earlier and later periods. There are significant gaps in data
197	collection for the Bell River and Dempster Highway Bridge. Those gaps arise from no stream
198	discharge monitoring rather than a technical malfunction in data collection equipment. Other
199	data gaps come from reduced monitoring frequency, especially in the earlier times of data
200	collection as well as natural events like extreme weather conditions or floods that disrupt the
201	normal functioning of measurement stations.
202	
202	3 Desults and discussion
205	
204	3.1 Spatial patterns in seasonality and streamflow recessions
205	All catchments of the Yukon Basin have strongly seasonal streamflow regimes, but the
206	degree of seasonality varies and is mediated by the catchment location within the Yukon River
207	basin (Figure 4). Average monthly discharges for all catchments, as expressed by Pardé
208	coefficients, indicate that smaller catchments that are located further upstream have relatively
209	higher spring streamflows than the more downstream catchments. The smallest catchment,
210	Dempster Highway Bridge (area = 1720 km ²) has its highest mean monthly flow around May.
211	This freshet is almost five times larger than the mean flow of this catchment. During July and
212	August, flow rates show a slight increase caused by typically higher precipitation rates during
213	summer than other periods of the year. From November through March flow rates become near-
214	zero. The largest catchment (Pilot Station, area = $831,390$ km ²) has a more dampened highest
215	mean monthly flow that also occurs later in the season. This peak flow is ~ 2.5 times the
216	catchment's mean monthly flow rate and occurs around June. From thereon, flow reduces over
217	summer, and low flows (Pardé coefficient ~0.25) persist also during the winter period up to the
218	freshet. The other nested catchments have maximum seasonality patterns that fall between these
219	two upstream and downstream end-member catchments. Overall, the Pardé coefficient indicates
220	that larger catchments are less impacted by local factors throughout the year, resulting in more

consistent year-round streamflow. Curran and Biles (2021) analyzed Pardé coefficients for 253
 Alaskan catchments grouped by subclasses like winter temperature and basin elevation. The
 catchments they classified as driven by snowmelt or rainfall streamflow were comparable to the
 catchments in our study. Furthermore, their Pardé coefficients were similar, and their conclusion
 of shifting geographic seasonality echoed our own findings.

229

230 231

226

Figure 4. Seasonal flow regimes of the nested catchments within the Yukon basin. Comparison of Pardé coefficients, the catchments located in the North tend to have higher monthly Pardé coefficients compared to the catchments in the South, except during the winter months, when the northern catchments do not have any streamflow.

232 Streamflow recession behavior for all seasons over the whole times series, as 233 characterized by the dimensionless recession slope β , is also mediated by the catchment's 234 location within a basin (Figure 5). Smaller upstream catchments (<100,000 km²) tend to have 235 steeper recession curve slopes than the larger downstream catchments (Figure 5). Spatially, the 236 smaller catchments have a higher percentage of continuous permafrost (Figure 5) as well as 237 steeper slopes. Interestingly, steeper slopes correlate with greater changes in β was a result found 238 in (Hinzman et al., 2022), which may explain the findings here. The catchments' permafrost becomes mostly discontinuous downstream of Stevens Village (area = 508,417 km²). In larger 239 240 catchments (> 500,000 km²) further downstream than Stevens Village, β decreases suddenly and 241 there is a wider range of recession curve slopes (0.80-1.70), while upstream β appears relatively 242 constant and high (~1.5-1.7), with the exception of Fort Yukon ($\beta = ~1.0$). This wide range of

- 243 recession curve slopes seen in the large catchments can be attributed to those catchments having
- 244 different time periods of data collection.

245 246

247 248

249 250

Figure 5. Recession curve slopes vs area of catchments. Note that the period for which the recession curve slopes are determined may vary between stations (Table 1). The pie graphs indicate the percentage of different permafrost for each catchment during the early 2000s. C is continuous permafrost (90-100%), D is discontinuous permafrost (50-90%), S is sporadic permafrost (10-50%) and I is isolated permafrost (0-10%).

251

3.2 Seasonal shifts in recession behavior

252 The rate at which frozen ground thaws varies throughout the year, and the effects of that 253 thawing (i.e. differences in active layer thickness, taliks that widen/open and narrow/close, and 254 permafrost thawing from the bottom) can result in distinct recession curve slopes between 255 seasons. Several studies have looked at seasonal effects of ground freeze-thaw processes on 256 streamflow, (Ploum et al., 2019; Wang et al., 2020). We first illustrate these seasonal shifts by 257 calculating recession curve slopes for spring, summer, and fall at Pilot Station and Bell River 258 (Figure 6). While winter recession points were included in the graphs, the winter recession curve 259 slope was not considered as many of the upstream catchments do not have winter recessions due 260 to low or no streamflow (Figure 4). At Pilot Station (Figure 6a), the recession curve slope does 261 not substantially vary throughout the seasons, except for spring. In spring, the β -value (~1.8) is 262 higher than in the other seasons where β is ~1.0-1.2. For the upstream catchment of Bell River

263	(Figure 6b), there are much stronger seasonal differences in recession curve slopes. Here, fall
264	has the highest recession curve β (~2.2) whereas the slope is lowest during spring (~0.78). More
265	generally, when we consider seasonal recession curve slopes across all catchments (Table 2), we
266	find that downstream catchments tend to have lower fall recession curve slopes, whereas in
267	upstream catchments the recession curve slope continues to increase from spring to fall. This
268	shift from spring to fall, where the recession becomes more non-linear, indicates that as the
269	seasons progress, streamflow responses become more sensitive to storage variations and thereby
270	potentially harder to predict. This echoes our seasonal findings from an earlier paper focused on
271	Swedish catchments (Hinzman et al., 2020) where the summer recession curve slope was greater
272	than the spring recession curve slope but we also found that spring recession curve slopes were
273	increasing at a more rapid rate the summer recession curve slopes.

274 These changes in seasonal behavior can be attributed to several factors. In the upstream 275 catchments, the thawing active layer will allow for increasing subsurface flow, with spring 276 having the shallowest thickness of the active layer and fall having the deepest thickness of the 277 active layer, while in downstream catchments the thickness of the active layer can already be 278 fluctuating within the areas of discontinuous permafrost, leading some areas to already have 279 deep thickness of active layer as well as with streamflow of different seasons flowing from the 280 upstream catchments creating a blend of spring, summer or fall discharge further obfuscating 281 seasonal recessions. Increasing groundwater flow as found in studies from Lyon et al. (2010) 282 and Walvoord and Striegl (2007) lead researchers to suggest that this increase leads to more 283 non-linearity in streamflow response and the increased storage capacity lengthens timescales and 284 leads to the increased blending of streamflow seasonalities (Wang et al., 2022; Curran and Biles, 285 2021).

Figure 6. Pilot Station (a), and Below Bell River (b) recession curve with seasonal recession points. Red is the overall recession curve slope. Light green represents the recession curve slope and recession points that occurred in spring. Light blue represents the recession curve slope and recession points that occurred in summer. Orange represents the recession curve slope and recession points that occurred in fall. Dark blue represents recession points that occurred in winter. The y-axis is log of the change of discharge over the change in time, and the x-axis is the log of discharge.

Table 2. Recession Curve β results, stratified per season.

Catchment	Area (km ²)	Overall β	Spring β	Summer β	Fall β
Pilot Station	831,390	1.38	1.78	1.19	1.03
Kaltag	766,640	0.833	NA	1.06	0.701
Ruby	670,810	1.06	NA	3.04	0.872
Rampart	516,446	1.01	3.27	2.83	0.967
Stevens Village	508,417	1.65	1.25	NA	1.61
Fort Yukon	76,405	1.01	0.942	1.12	NA
International Boundary	59,829	1.69	1.2	1.25	1.82
Old Crow	55,400	1.53	0.902	1.27	2.44

	Bell River Dempster Highway Bridge	36,000 1.720	1.66 1.56	0.779 0.46	1.38 1.42	2.17 1.54		
295	I THE SAMP SE	,						
296	3.3 Temporal change in seasonality and recession behavior							
297	The changes in the Arctic are not confined solely to seasonal patterns; rather, the							
298	warming of the Arctic instigates enduring shifts in hydrological behavior over the long term. For							
299	catchments where we could divide the dataset into an early and late period (both with >7 years							
300	of (near-) continuous data), we cal	culate monthl	y Pardé coeffi	cients for the	early and th	e late		
301	period, using the average discharg	e value for the	e entire dataset	, thus allowi	ng for a com	parison		
302	temporally and seasonally.							
303	In most catchments, streamflow seasonality appears to be changing over time (Figure 7),							
304	whereby the patterns of change va	ry according t	o the location	within the ba	asin. In the up	pstream		
305	stations, the spring discharge peak	has shifted to	wards an earli	er start (Figu	ıre 7f-7j), and	d this		
306	freshet has not consistently change	ed its magnitu	de compared t	o the older p	eriod. In thes	se		
307	upstream catchments, streamflow has remained marginal during early winter (October-							
308	December) and near zero through	out the later w	inter months (.	January-Mar	ch). Similarl	y, for		
309	almost all of the downstream catch	nments (Steve	ns Village and	larger), the	freshet has sl	ightly		
310	shifted towards an earlier start, wh	ile spring pea	k flows have r	emained sim	ilar, except i	n		
311	Rampart and Ruby. For Rampart t	he change in I	Pardé coefficie	ents suggests	greater strea	mflow		
312	throughout the second period while	e Ruby has les	ss streamflow	during the se	cond period.	. Another		
313	shift we observe in downstream ca	atchments are	increases in str	reamflow thr	oughout late	fall and		
314	early winter (Oct-Dec), as indicate	ed by the large	r Pardé coeffi	cients. While	downstream	1		
315	catchments have year-round stream	nflow, later w	inter months s	treamflow h	as remained o	constant		
316	over the years, which is consistent	with no chang	ges seen in the	winter mon	ths of upstrea	am		
317	catchments (Fig. 7a-7j). Moreover	, the earlier st	art of the sease	on is clear in	the upstream	n, smaller		
318	catchments and less pronounced in	n downstream	catchments. H	lowever, for	downstream			
319	catchments impacts extend into the	e late fall and	early winter p	eriods. Down	nstream catcl	hments		
320	interact with larger and typically deeper groundwater aquifers. The flow through these aquifers							

- has been shown to increase by permafrost thaw leading to larger baseflow and increasingly nonlinear storage discharge relationships (Walvoord et al., 2012; Hinzman et al., 2020). Analyses of
 other basins, such as the Yana and Indigirka basins in Russia have shown shifting streamflows,
 with increasing streamflows into September, an increasing number of rivers not freezing in
- 325 November or December, and earlier recorded freshet (Makarieva et al., 2019).

327 328 329 330	Figure 7. Changes in the average monthly streamflow of catchments. Blue solid lines represent the earlier years of the dataset, and the red dotted line represents the later years of the catchment, the length of each catchment's record can be found in Table 1. The black arrows indicate the directions of the catchment flow.
331	Across the Yukon, 9 out of 10 sub-catchments' storage-discharge relationships have
332	become increasingly nonlinear as time progressed. These changes are often substantial, as for
333	example, Pilot Station shifts draining roughly linearly (early $\beta = 0.93$) towards substantially
334	nonlinear (later $\beta = 1.55$). For most of the other catchments, β has increased roughly 0.3-0.4. The
335	largest changes have occurred in the downstream catchments (most notably Pilot Station and
336	Rampart), whereas changes in the upstream catchments (e.g., Old Crow, Bell River, Dempster
337	Highway Bridge) tend to be of a smaller magnitude. Ruby and Rampart have large differences
338	between early and later periods (early $\beta = 0.706$, later $\beta = 1.06$ and early $\beta = 2.09$, later $\beta = 1.01$,
339	respectively), with the later β being almost identical to the overall β , which reflects there were
340	few recession points captured in earlier periods compared to later periods. Few recession points
341	in the earlier period may also cause larger uncertainty in the early β of Ruby and Rampart. Our
342	results of increased non-linearity in β differed from the work by Sergeant et al. (2021), who
343	found a decreasing recession curve β for a majority of their catchments. However, an
344	explanation for this difference could be in the length of the dataset, with Sergeant using data
345	from 1970-2000 and our study encompassed data from 1954-2020, an extra 40 years. Other
346	studies agree with our findings of increased β values (e.g., McKenzie et al., 2021b; Ploum et al.,
347	2019; Wang et al., 2022).

348 349 **Table 3.** Recession characteristics for early and later periods. 3.4 Nested catchments as expenditures of missing data

Catchment	Area (km ²)	Overall β	Period	Early β	Period	Later β
Pilot Station	831,390	1.38	1975-2001	0.93	2001-2020	1.55
Kaltag	766,640	0.833	1956-1961	NA	1961-1966	NA
Ruby	670,810	1.06	1956-1967	0.71	1967-1978	1.06
Rampart	516,446	1.01	1956-1961	2.09	1961-1967	1.01
Stevens Village	508,417	1.65	1976-1997	1.37	1997-2020	1.8
Fort Yukon	76,405	1.01	1964-1971	0.80	1971-1979	1.2
International	59,829	1.69	1987-2001	1.68	2001-2019	1.71
Boundary						
Old Crow	55,400	1.53	1963-1984	1.32	1984-1995	1.72
Bell River	36,000	1.66	1964-1986	1.49	1986-1995	1.77

	Dempster Highway Bridge	1,720	1.56	1978-1990	1.36	1990-2017	1.69
350	In cases of missing	g data, which is	s a commo	n issue within t	he Yukor	n basin and the	
351	Arctic more broadly, our a	nalysis of casc	ading spat	ial, seasonal, ar	id tempor	ral effects of	
352	permafrost thaw on stream	flow may help	to fill data	a gaps. There ar	e clear pa	atterns in upstrea	ım
353	and downstream difference	es in seasonal f	low patter	ns (Fig 4), rece	ssion cha	racteristics (Fig.	5),
354	and temporal shifts of these	e flow patterns	and reces	sion characteris	tics (Figs	s 7a-7j). This im	plies
355	that in cases of missing dat	a (either becau	ise a gauge	e is not operatio	nal or be	cause there is no)
356	gauge at all), we can use the	e data of surro	ounding ca	tchments to esti	mate flow	w seasonality,	
357	recession behavior, and ter	nporal shifts o	f the unga	iged catchment	. The mo	st representative	
358	donor catchments are not n	ecessarily the	closest in	geographic loca	tion, but	they are the one	S
359	that most closely resemble	the catchment	's location	within the rive	r networl	k, and the associ	ated
360	permafrost conditions. Suc	h information	is readily a	available across	the entir	e Yukon basin (or
361	even the Arctic) and thereb	y allows for w	vide applic	ation.			
362	Such estimates cou	ıld not only pro	ovide estin	nates in space, l	out also p	provide estimates	s in
363	time. For example, Pilot St	ation data coll	ection star	ted in 1975, in	other wor	rds, it was an	
364	ungauged catchment before	e 1975 and the	refore earl	ier streamflow	and reces	sion behavior ar	e
365	unknown. However, data f	rom a nearby a	and represe	entative station	(Kaltag)	goes back to 195	56. It
366	is very similar in size (a 7.3	8% area differ	ence), in p	ermafrost chara	cteristics	(22.4% and 21.3	8%
367	of the catchments are cove	red in continue	ous permaf	rost, with 66.79	% and 66	.3% covered by	
368	discontinuous permafrost)	and in the rela	tive locatio	on within the ca	tchment.	Using the data f	rom
369	Kaltag to estimate catchme	ent behavior du	uring the ea	arlier years of a	n ungaug	ed Pilot Station	
370	would be beneficial in crea	tting a longer t	ime frame	of which to do	cument cl	hanges in the	
371	catchment.						
372	Data from similar-	sized catchme	nts further	supports the us	e of data	from other	
373	catchments to create a mor	e complete dat	ta record, b	because both Pa	rdé coeff	icients and reces	ssion
374	curve slope are comparable	e in similar siz	ed catchm	ents. For examp	ole, the Pa	ardé coefficients	and

375	the recession curve slopes of Pilot Station and Ruby are comparable over the period where data
376	of the two catchments overlap for (i.e., earlier $\beta_{PS} = 0.932$ and later $\beta_{Ru} = 1.06$). In addition, the
377	earlier period seasonal flow regime of Pilot Station (1975-2001) (the blue line in Fig. 7a) is
378	almost identical to the later period seasonal flow regime of Ruby (1967-1978) (red line in Figure
379	7c). Another example is International Boundary and Old Crow, which only differ by 7.5% in
380	size. These catchments have near-identical recession behavior (when the overlapping time
381	period is considered) with a recession slope for International Boundary (1987-2001) of $\beta_{\rm IB}$
382	=1.68, and the later part of Old Crow (1984-1995) of β_{OC} = 1.72. Such transfer of data likely
383	becomes increasingly reliable when catchment properties and the considered period better
384	overlap. A study by Betterle and Botter (2021) found that nested catchments had less streamflow
385	correlation than non-nested catchments that were more similar in area and geomorphic
386	conditions, while we do not find similar findings in our nested catchments, it does lead credence
387	that the dataset of similar catchments, nested or otherwise, can be used to create a more
388	complete picture when data is not available.

389 4 Conclusion

390	The thawing of permafrost affects how Arctic catchments store and release water, but the
391	effects of thawing on hydrological response are poorly documented. These effects will vary
392	according to the location in the catchment, but it also is unclear how the effects of a potentially
393	thawing landscape will propagate through nested catchments. Here we investigated 10 nested
394	catchments within the Yukon basin (Alaska and Canada) to study how permafrost thaw impacts
395	catchments' streamflow seasonality and storage-discharge relationships, and how these effects
396	cascade through nested catchments, from headwaters to downstream. Our results indicate that
397	upstream catchments, characterized by continuous permafrost, mostly have stronger streamflow
398	seasonality, and that these catchments also exhibit the most nonlinear storage-discharge
399	relationships. Larger catchments downstream sustain year-round streamflow with baseflow
400	continuing during winter. Since the 1950s flow regimes have become increasingly seasonal in
401	the upstream catchments, with an earlier and more abrupt freshet, whereas further downstream

402	flow seasonality has remained stable. Across the Yukon, 9 out of 10 sub-catchments' storage-
403	discharge relationships have become increasingly nonlinear over time, with the biggest change
404	in the largest downstream catchments. In smaller catchments, each season has distinct recession
405	characteristics, but those seasonal differences are not apparent further downstream. Upstream
406	catchments are strongly influenced by localized change, whereas downstream catchments
407	receive many different localized upstream impacts, making it difficult to detect a singular cause
408	of the change. Seasonal and long-term shifts in storage-discharge nonlinearity are typically not
409	accounted for by hydrological models and make accurate streamflow predictions with a
410	changing climate and thawing permafrost more difficult. These shifts highlight how the
411	changing landscape of the Arctic has far-reaching hydrological consequences.
412	Data availability:
413 414 415	The paper uses streamflow data obtained from the Global Runoff Data Centre (GRDC) The full dataset and documentation can be downloaded from: <u>https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser#dataDownload/Hom</u>
410 417 418 419	The paper uses meteorological data obtained from the Global Historical Climatology Network Daily (GHCN - Daily) <u>https://www.ncdc.noaa.gov/cdo-web/</u> The full dataset and documentation can be downloaded from DOI:10.7289/V5D21VHZ
420 421 422	For missing meteorological data the paper used gridded ERA5 dataset. <u>https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview</u> The full dataset and documentation can be downloaded from: DOI: 10.24381/cds.adbb2d47
423 424 425	The paper used data from Circum-Arctic Map of Permafrost and Ground-Ice Conditions <u>https://nsidc.org/data/ggd318/versions/2</u> The shapefiles and documentation can be downloaded here: DOI: 10.7265/skbg-kf16
426 427 428	For River Shapes the paper used Global River Classification (GloRiC) <u>https://www.hydrosheds.org/products/gloric</u> The shapefiles and documentation can be downloaded here: DOI: 10.1088/1748-9326/aad8e9
429	Author contribution:
430 431 432 433 434	Alexa M. Hinzman: Conceptualization, Formal analysis, Data Curation, Writing - Original Draft, Visualization. Ylva Sjöberg: Writing - Review & Editing. Steve W. Lyon: Writing - Review & Editing. Wouter R. Berghuijs: Conceptualization, Writing - Review & Editing, Visualization. Ype van der Velde: Methodology, Writing - Review & Editing, Visualization, Supervision.
435	Declaration of interests:
436	At least one of the (co-)authors is a member of the editorial board of The Cryosphere.
437	Funding:

438 439	This work is part of the research program Netherlands Polar Programme with project number ALWPP.2016.014, which is financed by the Dutch Research Council (NWO).
440	5 References
441 442	Åkerman, H. J. and Johansson, M.: Thawing permafrost and thicker active layers in sub-arctic Sweden, Permafr Periglac Process, 19, 279–292, https://doi.org/doi:10.1002/ppp.626, 2008.
443 444 445 446	Asano, Y., Kawasaki, M., Saito, T., Haraguchi, R., Takatoku, K., Saiki, M., and Kimura, K.: An Increase in Specific Discharge With Catchment Area Implies That Bedrock Infiltration Feeds Large Rather Than Small Mountain Headwater Streams, Water Resour Res, 56, e2019WR025658, https://doi.org/https://doi.org/10.1029/2019WR025658, 2020.
447 448 449	Bekryaev, R. V, Polyakov, I. V, and Alexeev, V. A.: Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming, Journal of Climate, 23, 3888– 3906, https://doi.org/https://doi.org/10.1175/2010JCLI3297.1, 2010.
450 451 452	Betterle, A. and Botter, G.: Does Catchment Nestedness Enhance Hydrological Similarity?, Geophys Res Lett, 48, e2021GL094148, https://doi.org/https://doi.org/10.1029/2021GL094148, 2021.
453 454 455	Bogaart, P. W., Van Der Velde, Y., Lyon, S. W., and Dekker, S. C.: Streamflow recession patterns can help unravel the role of climate and humans in landscape co-evolution, Hydrol Earth Syst Sci, 20, 1413–1432, https://doi.org/10.5194/hess-20-1413-2016, 2016.
456 457	Brown, J., Ferrians, O., Heginbottom, J. A., and Melnikov, E.: Circum-Arctic Map of Permafrost and Ground-Ice Conditions, https://doi.org/10.7265/skbg-kf16, 2002.
458 459 460	Brutsaert, W. and Hiyama, T.: The determination of permafrost thawing trends from long-term streamflow measurements with an application in eastern Siberia, 22110 pp., https://doi.org/10.1029/2012JD018344, 2012.
461 462	Brutsaert, W. and Nieber, J. L.: Regionalized drought flow hydrographs from a mature glaciated plateau, Water Resour Res, 13, 637–643, https://doi.org/10.1029/WR013i003p00637, 1977.
463 464 465	Camporese, M., Penna, D., Borga, M., and Paniconi, C.: A field and modeling study of nonlinear storage-discharge dynamics for an Alpine headwater catchment, Water Resour Res, 50, 806–822, https://doi.org/10.1002/2013WR013604, 2014.
466 467 468 469	Chiasson-Poirier, G., Franssen, J., Lafrenière, M. J., Fortier, D., and Lamoureux, S. F.: Seasonal evolution of active layer thaw depth and hillslope-stream connectivity in a permafrost watershed, Water Resour Res, 56, e2019WR025828, https://doi.org/https://doi.org/10.1029/2019WR025828, 2020.
470 471 472 473	Cooper, M. G., Zhou, T., Bennett, K. E., Bolton, R., Coon, E., Fleming, S. W., Rowland, J. C., and Schwenk, J.: Detecting permafrost active layer thickness change from nonlinear baseflow recession, Earth and Space Science Open Archive, 48, https://doi.org/10.1002/essoar.10511865.1, 2022.
474 475 476	Curran, J. H. and Biles, F. E.: Identification of Seasonal Streamflow Regimes and Streamflow Drivers for Daily and Peak Flows in Alaska, Water Resour Res, 57, e2020WR028425, https://doi.org/https://doi.org/10.1029/2020WR028425, 2021.
477 478 479	Evans, S. G., Yokeley, B., Stephens, C., and Brewer, B.: Potential mechanistic causes of increased baseflow across northern Eurasia catchments underlain by permafrost, Hydrol Process, 34, 2676–2690, https://doi.org/https://doi.org/10.1002/hyp.13759, 2020.

480 481 482	Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on arctic river biogeochemistry, Hydrol Process, 23, 169–182, https://doi.org/https://doi.org/10.1002/hyp.7196, 2009.
483 484 485 486	Hinzman, A., Sjöberg, Y., Lyon, S., Schaap, P., and van der Velde, Y.: Using a mechanistic model to explain the rising non-linearity in storage discharge relationships as the extent of permafrost decreases in Arctic catchments, J Hydrol (Amst), 612, 128162, https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.128162, 2022.
487 488 489	Hinzman, A. M., Sjöberg, Y., Lyon, S. W., Ploum, S. W., and van der Velde, Y.: Increasing non-linearity of the storage-discharge relationship in sub-Arctic catchments, Hydrol Process, 34, 3894–3909, https://doi.org/10.1002/hyp.13860, 2020.
490 491 492	Jin, H., Huang, Y., Bense, V. F., Ma, Q., Marchenko, S. S., Shepelev, V. V, Hu, Y., Liang, S., Spektor, V. V, and Jin, X.: Permafrost Degradation and Its Hydrogeological Impacts, Water (Basel), 14, 372, 2022.
493 494 495	Karlsen, R. H., Grabs, T., Bishop, K., Buffam, I., Laudon, H., and Seibert, J.: Landscape controls on spatiotemporal discharge variability in a boreal catchment, Water Resour Res, 52, 6541–6556, https://doi.org/10.1002/2016WR019186, 2016.
496 497 498 499	Karlsen, R. H., Bishop, K., Grabs, T., Ottosson-Löfvenius, M., Laudon, H., and Seibert, J.: The role of landscape properties, storage and evapotranspiration on variability in streamflow recessions in a boreal catchment, J Hydrol (Amst), 570, 315–328, https://doi.org/10.1016/j.jhydrol.2018.12.065, 2019.
500 501 502	Kirchner, J. W.: Catchments as simple dynamical systems: Catchment characterization, rainfall- runoff modeling, and doing hydrology backward, Water Resour Res, 45, https://doi.org/10.1029/2008WR006912, 2009.
503 504 505 506	Koch, J. C., Sjöberg, Y., O'Donnell, J. A., Carey, M. P., Sullivan, P. F., and Terskaia, A.: Sensitivity of headwater streamflow to thawing permafrost and vegetation change in a warming Arctic, Environmental Research Letters, 17, 44074, https://doi.org/10.1088/1748-9326/ac5f2d, 2022.
507 508 509	Lamontagne-Hallé, P., McKenzie, J. M., Kurylyk, B. L., and Zipper, S. C.: Changing groundwater discharge dynamics in permafrost regions, Environmental Research Letters, 13, 84017, https://doi.org/10.1088/1748-9326/aad404, 2018.
510 511 512	Lyon, S. W. and Destouni, G.: Changes in Catchment-Scale Recession Flow Properties in Response to Permafrost Thawing in the Yukon River Basin, International Journal of Climatology, 30, 2138–2145, https://doi.org/10.1002/joc.1993, 2010.
513 514 515 516	Lyon, S. W., Destouni, G., Giesler, R., Humborg, C., Mörth, M., Seibert, J., Karlsson, J., and Troch, P. A.: Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis, Hydrol Earth Syst Sci, 13, 595–604, https://doi.org/10.5194/hess-13-595-2009, 2009.
517 518 519	Lyon, S. W., Mörth, M., Humborg, C., Giesler, R., and Destouni, G.: The relationship between subsurface hydrology and dissolved carbon fluxes for a sub-arctic catchment, Hydrol Earth Syst Sci, 14, 941–950, https://doi.org/10.5194/hess-14-941-2010, 2010.
520 521 522	Lyon, S. W., Nathanson, M., Spans, A., Grabs, T., Laudon, H., Temnerud, J., Bishop, K. H., and Seibert, J.: Specific discharge variability in a boreal landscape, Water Resour Res, 48, https://doi.org/https://doi.org/10.1029/2011WR011073, 2012.

523 Makarieva, O., Nesterova, N., Post, D. A., Sherstyukov, A., and Lebedeva, L.: Warming 524 temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of 525 continuous permafrost, Cryosphere, 13, 1635-1659, https://doi.org/10.5194/tc-13-1635-2019, 526 2019. 527 McKenzie, J. M., Kurylyk, B. L., Walvoord, M. A., Bense, V. F., Fortier, D., Spence, C., and 528 Grenier, C.: Invited perspective: What lies beneath a changing Arctic?, Cryosphere, 15, 479-529 484, https://doi.org/10.5194/tc-15-479-2021, 2021a. 530 McKenzie, J. M., Kurylyk, B. L., Walvoord, M. A., Bense, V. F., Fortier, D., Spence, C., and 531 Grenier, C.: Invited perspective: What lies beneath a changing Arctic?, Cryosphere, 15, 479– 532 484, https://doi.org/10.5194/tc-15-479-2021, 2021b. 533 Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, 534 https://doi.org/10.24381/cds.e2161bac, 2019. 535 Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to 1980, https://doi.org/10.24381/cds.e2161bac, 2021. 536 537 Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., 538 Delalove, R., Elberling, B., Etzelmüller, B., Kholodov, A., Khomutov, A., Kääb, A., Leibman, 539 M. O., Lewkowicz, A. G., Panda, S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., 540 Wu, T., Yamkhin, J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale, Earth Sci Rev, 193, 299-316, 541 https://doi.org/10.1016/J.EARSCIREV.2019.04.023, 2019. 542 Ploum, S. W., Lyon, S. W., Teuling, A. J., Laudon, H., and van der Velde, Y.: Soil frost effects 543 544 on streamflow recessions in a subarctic catchment, Hydrol Process, 33, 1304–1316, 545 https://doi.org/10.1002/hyp.13401, 2019. 546 Poschlod, B., Willkofer, F., and Ludwig, R.: Impact of Climate Change on the Hydrological 547 Regimes in Bavaria, Water (Basel), 12, https://doi.org/10.3390/w12061599, 2020. 548 Rantanen, M., Karpechko, A. Yu., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., 549 Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe 550 since 1979, Commun Earth Environ, 3, 168, https://doi.org/10.1038/s43247-022-00498-3, 2022. 551 Sergeant, F., Therrien, R., Oudin, L., Jost, A., and Anctil, F.: Evolution of Arctic rivers 552 recession flow: Global assessment and data-based attribution analysis, J Hydrol (Amst), 601, 553 126577, https://doi.org/10.1016/J.JHYDROL.2021.126577, 2021. 554 Sjöberg, Y., Frampton, A., and Lyon, S. W.: Using streamflow characteristics to explore 555 permafrost thawing in northern Swedish catchments, Hydrogeol J, 21, 121–131, https://doi.org/10.1007/s10040-012-0932-5, 2013. 556 557 Sjöberg, Y., Jan, A., Painter, S. L., Coon, E. T., Carey, M. P., O'Donnell, J. A., and Koch, J. C.: 558 Permafrost Promotes Shallow Groundwater Flow and Warmer Headwater Streams, Water 559 Resour Res, 57, e2020WR027463, https://doi.org/https://doi.org/10.1029/2020WR027463, 560 2021. 561 Tananaev, N. and Lotsari, E.: Defrosting northern catchments: Fluvial effects of permafrost 562 degradation, Earth Sci Rev, 228, 103996, https://doi.org/https://doi.org/10.1016/j.earscirev.2022.103996, 2022. 563 Troch, P. A., Berne, A., Bogaart, P. W., Harman, C., Hilberts, A. G. J., Lyon, S. W., Paniconi, 564 565 C., Pauwels, V. R. N., Rupp, D. E., Selker, J. S., Teuling, A. J., Uijlenhoet, R., and Verhoest, N.

566 567 568	E. C.: The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange, Water Resour Res, 49, 5099–5116, https://doi.org/doi:10.1002/wrcr.20407, 2013.
569 570 571	Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen, Geophys Res Lett, 34, L12402, https://doi.org/10.1029/2007GL030216, 2007a.
572 573 574	Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen, Geophys Res Lett, 34, https://doi.org/10.1029/2007GL030216, 2007b.
575 576 577 578	Walvoord, M. A., Voss, C. I., and Wellman, T. P.: Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States, Water Resour Res, 48, https://doi.org/10.1029/2011WR011595, 2012.
579 580 581	Walvoord, M. A., Voss, C. I., Ebel, B. A., and Minsley, B. J.: Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon, Environmental Research Letters, 14, 15003, https://doi.org/10.1088/1748-9326/aaf0cc, 2019.
582 583 584 585	Wang, J., Chen, X., Gao, M., Hu, Q., and Liu, J.: Changes in nonlinearity and stability of streamflow recession characteristics under climate warming in a large glaciated basin of the Tibetan Plateau, Hydrol Earth Syst Sci, 26, 3901–3920, https://doi.org/10.5194/hess-26-3901-2022, 2022.
586 587 588	Wang, K., Zhang, T., and Yang, D.: Permafrost dynamics and their hydrologic impacts over the Russian Arctic drainage basin, Advances in Climate Change Research, 12, 482–498, https://doi.org/10.1016/J.ACCRE.2021.03.014, 2021.
589 590 591	Wang, Q., Qi, J., Wu, H., Zeng, Y., Shui, W., Zeng, J., and Zhang, X.: Freeze-Thaw cycle representation alters response of watershed hydrology to future climate change, Catena (Amst), 195, 104767, https://doi.org/https://doi.org/10.1016/j.catena.2020.104767, 2020.
592 593 594	Wellman, T. P., Voss, C. I., and Walvoord, M. A.: Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA), Hydrogeol J, 21, 281–298, https://doi.org/10.1007/s10040-012-0941-4, 2013.
595	