The Antarctic stratospheric Nitrogen Hole: Southern Hemisphere and Antarctic springtime total nitrogen dioxide and total ozone variability as observed in Sentinel-5p TROPOMI data

Adrianus de Laat, Jos van Geffen, Piet Stammes, Ronald van der A, Henk Eskes and J. Pepijn Veefkind

Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
Correspondence: Adrianus de Laat (laatdej@knmi.nl)

Abstract

. Denitrification of the stratospheric vortex is a crucial process for the Antarctic Ozone Hole formation resulting in an analogous stratospheric "Nitrogen Hole". Here, 2018-2021 daily TROPOMI measurements are used for the first time for a detailed characterization of this Nitrogen Hole. Nitrogen dioxide total columns exhibit strong spatiotemporal and seasonal variations associated with both photochemistry as well as transport and mixing processes. Combined with total ozone column data two main regimes are identified: inner-vortex ozone and nitrogen dioxide depleted air and outer-vortex air enhanced in ozone and nitrogen dioxide. Within the vortex total ozone and total stratospheric nitrogen dioxide are strongly correlated which is much less evident outside of the vortex. Connecting both main regimes are what is defined here as "mixing lines", a third regime of coherent patterns in the total nitrogen dioxide column - total ozone column phase space. These mixing lines exist because of differences in three dimensional variations of nitrogen dioxide and ozone thereby providing information about vortex dynamics and cross-vortex edge mixing. On the other hand, interannual variability of nitrogen dioxide - total ozone characteristics are rather small except in 2019 when the vortex was unusually unstable. Overall, the results show that daily stratospheric nitrogen dioxide column satellite measurements provide an innovative means for characterizing polar stratospheric denitrification processes, vortex dynamics and potentially long term monitoring if the total nitrogen column data record is extended with past satellite observations.

1. Introduction

Stratospheric nitrogen plays a crucial role in the formation of the Antarctic ozone hole. The hole forms during Antarctic springtime when halogens - mostly chlorine but also some bromine - are massively released from stable reservoir species like $\mathrm{ClONO}_{2}, \mathrm{HOCl}$ and HCl (Solomon, 1990; Solomon and Keys, 1992; Dessler, 2000; von Clarmann, 2013). Extremely low stratospheric temperatures during Antarctic winter after formation of the stratospheric polar vortex result in widespread formation of small particles containing nitrogen oxides - so-called Polar Stratospheric Clouds (PSC) - which slowly sediment. This process depletes nitrogen oxides (denitrification/denoxification) in the Antarctic stratospheric vortex from
nitrogen oxides (denitrification/denoxification)-(Farman et al., 19895; Solomon and Garcia, 1983; Salawitch et al., 1989; Sofieva et al., 2012; Belmonte Rivas et al., 2014; Khosrawi et al., 2017; Dubé et al., 2020; Strode et al., 2022). Note that many of these papers only touch upon the Noxon cliff, i.e. it is seen in the measurements and presented as an example of the observational capacity of a certain satellite and/or data product. Some results have been reported on the use of nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ total columns/stratospheric columns for nadir looking satellites but without a focus on polar regions
60 (Belmonte Rivas et al., 2014; Beirle et al., 2016). Note that a main interest in stratospheric or total NO_{2} from nadir-viewing satellites is because of the need to remove the stratospheric component from total column amounts to arrive at the tropospheric NO_{2} column (e.g. Hilboll et al., 2013).

There are a few research publications that touch upon satellite nadir total or stratospheric nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ observations over polar regions. Wenig et al. (2004) explore satellite nadir total stratospheric $\mathrm{NO}_{2}\left(\mathrm{SNO}_{2}\right)$ column precipitation (EEP) but do not explore OMI TNO_{2} beyond that application. The Noxon cliff has also been identified satellite nadir observations of nitrous acid $\left(\mathrm{HNO}_{3}\right)$ total columns of the European IASI satellite (Wespes et al., 2009, 2022; Ronsmans et al., 2016) as removal of HNO_{3} from the Antarctic stratosphere is part of the denitrification process. Those studies showed that - not unexpectedly - Antarctic stratospheric vortex stability was important for inner-vortex HNO_{3} and the strength of the Noxon cliff. However, in-depth analysis of the Noxon cliff in IASI HNO_{3} observations is still also

accuracy.

The TROPOspheric Monitoring Instrument (TROPOMI) is the first of the next generation of hyperspectral UV/VIS satellite instruments. Designed and developed based on experience with satellite instruments like GOME, SCIAMACHY, GOME and GOME-2 it provides satellite observations of unprecedented spatial resolution and accuracy. Although measurements from the GOME instrument. They identify the Noxon cliff in Arctic springtime observations in 1997 in relation to the Arctic stratospheric vortex which persisted much longer than typical during that year. However, they do not explore the Antarctic region for similar purposes even though they mention multiple times that the Noxon cliff is present in both polar regions and that denitrification is larger over Antarctica relative to the Arctic. Richter et al. (2005) also explores GOME observations of total column $\mathrm{O}_{3}\left(\mathrm{TCO}_{\mathfrak{1}}\right)$, total $\mathrm{NO}_{2}\left(\mathrm{TNO}_{2}\right)$ as well as OClO over Antarctica during the early 2000s with a focus on the well-known September 2002 Antarctic vortex split (Ricaud et al., 2005; Richter et al., 2005; von Savigny et al., 2005; Yela et al., 2005). They observe strongly reduced inner vortex $\mathrm{SNO}_{\mathbb{Z}_{2}}$ during early Antarctic spring that largely vanished after the vortex split. However, no effort is put into quantitively correlating $\mathrm{TNO}_{2} / \mathrm{SNO}_{2}$ with TCO_{3} and $/$ or OClO . Adams et al. (2013) explore some OMI TNO_{2} data and TCO_{3} data in their study of ground-based observations at the Eureka station in northern Canada in relation to the anomalous longevity of the 2011 Arctic stratospheric vortex. They observe enhanced NO_{2} and O_{3} when outer-vortex air passes over Eureka associated with photochemical NO_{2} production and the stratospheric vortex preventing mixing of outer-vortex air with inner-vortex air, causing NO_{2} and O_{3} rich stratospheric air to accumulate in the region bordering the Antarctic stratospheric vortex. They also show the conjunction of NO_{2} and O_{3} depleted inner-vortex air in OMI data but do not analyze those observations in more detail. Gordon et al. (2020) explore OMI TNO_{2} and TCO_{3} in relation to (upper) stratospheric and mesospheric NO_{x} formation due to energetic particle lacking. Note that the Noxon cliff strong cross-vortex gradients haves also been observed in nadir viewing satellite measurements of OClO (Kühl et al., 2006, 2008; Oetjen et al., 2011; Puḳīte et al., 2021; Pinardi et al., 2022)

Satellite-observation-based exploration of the Noxon cliff and the denitrification process thus has almost exclusively been restricted to limb-sounding type satellite. Insofar as can be assessed the use of satellite nadir NO_{2} measurements for indepth studying the Antarctic stratosphere and denitrification has been absent. Even exploitation of the IASI HNO_{3} data for this purpose has remained limited - in part also because of the need to average IASI HNO_{3} data to reach sufficient data developed for monitoring tropospheric pollution, t $\mathrm{Fotal} \mathrm{NO}_{2}$ column measurements from a satellite instrument like TROPOMI nevertheless-allows for studying stratospheric NO_{2} especially as well since the entire Southern Hemisphere south

Formatted: Subscript

Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript

Formatted: Subscript
 Formatted: Subscript
 Formatted: Subscript

of approximately $45^{\circ} \mathrm{S}$ - and thus Antarctica - is devoid of large NO_{2} sources. Antarctica is effectively unpopulated and combined with a moratorium on industrial mining activities emissions associated with combustion are largely missing. Without much vegetated land, soil NO_{x} emission are small and although little is known about the occurrence of lightning near Antarctic the atmospheric conditions do not favor widespread frequent occurrence of lightning. NO_{x} production due to nitrate photolysis in the Antarctic snowpack is too small to yield tropospheric column amounts measurable by TROPOMI (France et al., 2011; Frey et al., 2013, 2015; Barbero et al., 2021). NO_{2} emissions from the largest known single point source in Antarctic - the active volcano Mt. Erebus (Oppenheimer et al., 2005) - are likewise too small to affect NO_{x} columns on a exploring TROPOMI TNO_{2} or SNO_{2} over Antarctica - where they are nearly each other's equivalent - to characterize the Noxon Cliff for NO_{2} as well as the denitrification/denoxification process.

Furthermore, the current suite of satellites that can be used for stratospheric monitoring is aging and the number of such satellites is dwindling. This is a significant concern for the scientific community and their commitment towards monitoring the ozone layer as part of the Montreal Protocol for "Protection of the Ozone Layer". Recovery due to the phase out of emissions of ozone depleting substances is a slow process and full recovery is only expected in the second half of the $21_{\llcorner }^{\text {st }}$ century. However, unusual stratospheric events can strongly affect the ozone layer thickness from year to year. Whether such year-to-year changes in stratospheric ozone are anomalous or the result of natural variability is crucial for confident statements whether recovery is progressing as expected (or not). Satellite instrument measuring the stratospheric chemical composition other than ozone have been essential for understanding this year-to-year variability and thus meeting the commitment of the scientific community towards monitoring the ozone layer support of the Montreal Protocol. Given the aging suite of stratospheric monitoring satellites and their dwindling numbers, identifying new stratospheric monitoring applications is more than welcome for continued stratospheric monitoring. Especially if these applications are based on satellite instruments that are planned to remain available for many decades into the future.

This paper presents the first steps towards assessing high spatial resolution daily TROPOMI TNO_{2} and SNO_{2} Southern
Hemisphere middle and high latitude measurements and in particular its relationship with TCO_{3}. First, the TROPOMI SNO_{2} measurements are evaluated by comparison with ground based southern hemisphere and Antarctic $\mathrm{SNO}_{\mathbb{2}}$ column observations. Daily and multi-day TROPOMI TNO_{2} measurements are then explored to characterize their spatiotemporal distribution and variability over and around Antarctica during local springtime. Subsequently daily TROPOMI SNO \mathbb{R}_{2} column measurements are collocated with daily TCO_{3} data. Similarities and differences in spatiotemporal distributions of both TROPOMI SNO_{2} and TCO_{k} are identified, analyzed and discussed. The origins of the complex relation between TCO_{k} and $\mathrm{SNO}_{\mathbb{R}}$ in and around the Antarctic stratospheric vortex are briefly hypothesized and recommendations are provided about how satellite data of SNO_{2} columns could be further explored and used for studying stratospheric nitrogen.

Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript

Formatted: Superscript

Formatted: Subscript

2. Satellite data sources and data selection

1 TROPOMI stratospheric NO_{2} data

The Sentinel-5 Precursor (S5P) satellite, launched on 13 Oct. 2017 in an ascending sun-synchronous polar orbit, with an equator crossing at about 13:30 local time, carries the Tropospheric Monitoring Instrument (TROPOMI; Veefkind et al., 2012). This instrument provides measurements in four channels (UV, visible, NIR and SWIR) of several atmospheric trace gases (such as $\mathrm{NO}_{2}, \mathrm{O}_{3}, \mathrm{SO}_{2}, \mathrm{HCHO}, \mathrm{CH}_{4}, \mathrm{CO}$) and of cloud and aerosol properties.

The TROPOMI NO_{2} data retrieval is performed from the visible band ($400-496 \mathrm{~nm}$), with a spectral resolution and sampling of 0.54 nm and 0.20 nm , respectively, and a signal-to-noise ratio of around 1500 . Individual ground pixels measure in the along-track direction $5.6 \mathrm{~km}(7.2 \mathrm{~km}$ prior to 6 Aug. 2019) and in the across-track direction 3.6 km at the middle of the swath, which increases to about 14 km near the edges of the swath. The full swath is about 2600 km wide, which means that TROPOMI achieves global coverage each day, except for narrow strips between orbits of about 0.5° wide at the equator.

The NO_{2} retrieval process (van Geffen et al., 2022a, 2022b) uses the three-step approach introduced for OMI (Boersma et al., 2007, 2011). First a Differential Optical Absorption Spectroscopy (DOAS) is applied to determine the slant column density, the total amount of NO_{2} along the effective light path from sun through atmosphere to satellite. A temperature correction is applied to correct for the temperature dependence of the NO_{2} cross sections, based on collocated temperature profiles from ECMWF (re)analysis data. Then information on the NO_{2} vertical profile shape taken from a chemistry transport model / data assimilation system (for TROPOMI: TM5-MP) that assimilates the slant columns is used to determine the stratospheric vertical column density, symbolized hereafter by $N_{\mathrm{v}}{ }^{\text {strat }}$. The final step determines the tropospheric vertical column using appropriate air-mass factors (AMFs). The total vertical column density can be determined either from the sum of the two sub-columns or directly from the retrieved slant column - which of these total columns is the appropriate one depends on the application, as described in the Product User Manual (PUM; Eskes et al., 2022).

Since most of the NO_{2} is located in the stratosphere, this study looks only at $N_{\mathrm{v}}{ }^{\text {strat }}$, the precision of which is estimated to be approximately 2×10^{14} molec. $\mathrm{cm}^{-2}\left(3.3 \mu \mathrm{~mol} \mathrm{~m} ~{ }^{-2}\right)$ in the data assimilation. The spatiotemporal variations in $\mathrm{SNO}_{\mathbb{2}}$ are also seen in TNO_{2} and the geometric NO_{2} column (i.e. the slant column divided by the geometric AMF, i.e. without any model information; cf. van Geffen et al. (2022a)), but not in the tropospheric column. TROPOMI NO_{2} data is reported in SI units, i.e. in $\mathrm{mol} \mathrm{m}^{-2}$, where the conversion factor to the more commonly used unit molecules cm^{-2} is $6.022 \times 10^{19} \mathrm{~mol}^{-1}$.

The data used for this study comes from the version v2.3.1 intermediate S5P-PAL reprocessing (https://dataportal.s5ppal.com/products/ NO_{2}.html; last access: 06 Dec. 2022) over the period 1 May 2018 up to 14 Nov. 2021, followed by the operational v2.3.1 and v2.4.0 processing. The latter version change has little to no impact on the stratospheric NO_{2} column and can therefore be ignored in this study. For some info on the different versions, see van Geffen et al. (2022a), the Product ReadMe File (PRF; Eskes et al., 2021) and the latest PRF of the operational product (Eskes and Eichmann, 2022).

Formatted: Subscript
 Formatted: Subscript

The stratospheric NO_{2} column of all ground pixels with valid retrieval (qa_value >0.50) of all 14 or 15 orbits of a given day, i.e. orbit files with a start date \& time in the file name for that day (irrespective of the actual sensing start and end), are arithmetically averaged on a $0.8^{\circ} \times 0.4^{\circ}$ grid (i.e. there are in total 450 by 450 grid cells globally). A qu_value >0.5 excludes any TROPOMI observation with a solar zenith angle >81.2. During the Antarctic summer this leads to some observations from the descending TROPOMI orbit over Antarctic to be include in the daily average (TROPOMI orbits the sunlit part of the earth from south to north). No weighting in space, time, or with measurement errors is applied. The daily gridded data is more convenient for various statistical analyses than using daily orbit data, for example for spatiotemporal averaging. We will return in the discussion section 4 to the question whether the gridding and averaging matters for the results presented here.

2.2 TROPOMI stratospheric and/or total NO_{2} column validation

170 It is well established that nadir viewing satellite measurements of TNO_{2} are of good quality (Bortoli et al., 2013). An extensive first global validation of TROPOMI NO_{2} can be found in Verhoelst et al. (2021). To highlight the quality of TROPOMI TNO_{2} data over and around Antarctica we explore TROPOMI data collocated with ground-based stations from the SAOZ network. The data is conveniently provided and visualized at the TROPOMI validation facility and the TROPOMI validation server (https://mpc-vdaf.tropomi.eu/ \& https://mpc-vdaf-server.tropomi.eu/). Extensive evaluation and reports are provided at the validation facility and server and in quarterly validation reports (Lambert et al., 2023) where also details about the SAOZ data can be found. We selected five Southern Hemisphere surface stations for comparing SAOZ sunrise data with TROPOMI SNO_{2} data from the TROPOMI offline data stream. These five stations are located inside and outside of the vortex and also sample the vortex edge (Table 1). To account for the often large difference in solar local time between the satellite (afternoon) and ground-based (twilight) observations, a diurnal cycle correction is applied based on model calculations. According to Compernolle, et al. [2020] and Lambert et al. [2023], "the SAOZ measurements are adjusted to the TROPOMI overpass time using a model-based factor. This is calculated with the PSCBOX 1D stacked-box photochemical model (Errera and Fonteyn, 2001; Hendrick et al., 2004), initiated with daily fields from the SLIMCAT chemistry transport model (CTM). The uncertainty related to this adjustment is in the order of 10%. To reduce mismatch errors due to the significant horizontal smoothing differences between TROPOMI and SAOZ measurements, TROPOMI SNO 2_{2} values (from ground pixels at high resolution) are averaged over the air mass footprint where ground-based zenith-sky measurements are sensitive". The random error of $\mathrm{SAOZ} \mathrm{NO}_{2}$ total column measurements has been estimated at 4.7% with a total accuracy of 5.9% (Hendrick et al., 2011). See Verhoelst et al. (2021) as well as the TROPOMI validation server for more details. Figure 1A shows a time series of the comparison of TROPOMI stratospheric NO_{2} data with the SAOZ observations at the Antarctic site of Dumont d'Urville for the period 2018-2022.- The Dumont d’Urville site is chosen as it is located outer Antarctic stratospheric vortex air during local spring. Note that observations are missing during the middle of winter at Dumont d'Urville due to the polar night. Figure 1B shows the scatter plot of the same data.

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto

Formatted: Font color: Auto, Subscript

Formatted: Font color: Auto

Formatted: English (United Kingdom)

Overall, the satellite measurements and ground-based measurements at Dumont d'Urville agree well (Table 1). The correlation coefficient is $0.88\left(\mathrm{R}^{2}\right)$ with a bias of less than 2% and root means square differences of approximately 10%. The regression coefficients equals 0.94 and almost 1.0 dependent on the regression method. The measurements at Dumont d'Urville during Antarctic springtime sample both inner and outer vortex air as evidenced by the rapid changes between large and small SNO_{2} values during springtime. The validation results for Dumont d'Urville thus cover a wide range of atmospheric conditions. Results for the other four stations are rather similar (Table 1). Figures for the other four chosen validation sites can be found in the appendix (Figures A2A and A2B) as well as on the TROPOMI validation server. The validation results for all stations can be summarized as follows:

- correlations $\left(\mathrm{R}^{2}\right)$ are always better than 0.80 and up to 0.96
- biases are of the order of a few percent (11% for Rio Gallegos, Patagonia)
- root-mean-square differences vary between $10-20 \%$
- standard errors are smaller than 1%
- regression values vary between 0.8 and 0.95
- results are fully consistent with Verhoelst et al. (2021)
- results are fully consistent with Lambert et al. (2023)

210 Note that for Rio Gallegos the bias is larger than for the other four locations used here (ground-based total NO_{2} columns larger than TROPOMI total NO_{2} columns). One possible explanation could be that the SAOZ measurement location at Rio Gallegos is within 5 km from the edge of the buildup area of Rio Gallegos and 10 km from the city center. Lambert et al. [2023] found that for 42 polluted locations worldwide Pandora total NO_{2} columns were on average approximately 18% larger than corresponding TROPOMI total NO_{2} columns, not unlike the 11% bias for Rio Gallegos. For low pollution and clean locations the bias was smaller and reversed (TROPOMI total NO_{2} columns approximately 6% larger than Pandora total NO_{2} columns. No large dependencies were found for the satellite solar zenith angle (SZA), the satellite cloud fraction and satellite surface albedo. Given that Rio Gallegos is a city of approximately 80,000 inhabitants and its proximity to the SAOZ measurement site it is not unlikely that Rio Gallegos SAOZ measurements could be contaminated by local air pollution under favorable wind conditions although it is beyond the scope of this paper to investigate this in detail. Note that given the large seasonal cycle in total NO_{2} columns an 11% bias is still very well acceptable.
Given that the typical seasonal cycle and differences between inner and outer vortex air vary by a factor of two to five, standard errors are a few percent or less combined with very high correlation coefficients and regression coefficients are close to one, shows that single TROPOMI stratospheric NO_{2} column measurements are of high quality and likely useful for in-depth exploration of spatiotemporal Antarctic stratospheric NO_{2} variability.

Formatted: Subscript

2.3 Global ozone field data

In this study assimilated TROPOMI NO_{2} column pixel data is used and gridded at a spatial resolution much coarser than the original TROPOMI resolution while also averaging in time due to multiple polar overpasses per day as the main interest in this first exploratory study is at phenomena at continental scales. However, the TROPOMI NO_{2} column pixel data itself are also already postprocessed level 2 observations, i.e. TROPOMI NO_{2} data derived from a data assimilation system and in that sense not pure level 2 pixel data anymore. Hence, it was decided to compare the TROPOMI NO_{2} data with gridded assimilated TCO_{3} data rather than TCO_{3} data at orbit level. An obvious TCO_{3} dataset top use would be the Multi Sensor Reanalysis version-2 (MSR-2; van der A et al., 2010, 2015) which provides a global reanalysis of TCO_{3} combining multiple and sometimes overlapping satellite measurements using an advanced ground-data-based approach to minimize inter-satellite-instrument TCO_{2} differences and biases. However, the MSR-2 Furthermore, at the time of this analysis the MSR-2 TCO_{13} reanalysis-dataset had not yet been extended in time to cover the entire period for which TROPOMI NO_{2} data was available. Hence the TEMIS-KNMI operational daily global assimilated TCO_{2} field is used here (Eskes et al., 2003; van der A et al., 2015; https://www.temis.nl/protocols/O3global.php, last access: 06 Dec. 2022) which is based on TCO ${ }_{3}$ level 2 data products of the GOME-2 instruments aboard the MetOp satellites (Munro et al., 2006, 2016). This operational TCO TH_{2} field is produced by KNMI for operational UV index predictions up to nine days ahead in time. GOME-2-based TCO_{2} analyses are thus always available in real-time - unlike MSR-2 which is currently updated only once per year. From this operational $\mathrm{TCO}_{\mathbb{2}}$ dataset the global total ozone field at each longitude at local solar noon is used, which is close to the TROPOMI measurement time (section 2.1) and which is available for every day of the year for the full globe. The local solar noon ozone field is, for example, used for the operational TEMIS UV index and UV dose processing (van Geffen et al., 2017; Zempila et al., 2017). The local solar noon global TCO3 field is given at a longitude-latitude grid of $1.5^{\circ} \times 1.0^{\circ}$ and is regridded (bi-linear interpolatation) to a finer $0.8^{\circ} \times 0.4^{\circ}$ to match the gridded NO_{2} data. Note that differences between the TEMIS-KNMI operational daily global assimilated TCO_{3} data and the MSR-2 TCO_{3} data are small. GOME-2 has a 4 DU bias-offset relative to ground observations (MSR-2 has none) but otherwise GOME-2 and MSR-2 have similar root-mean square differences compared to ground observations (van der A et al., 2015). Hence, for the purpose of this study both datasets would be interchangeable. The question of whether using assimilated TCO_{3} data rather than collocated TROPOMI TCO_{3} orbit data will be discussed in section 4.

3 Data analysis and results

3.1 spatiotemporal variability

Figure 2 shows maps of the spatial distribution of SNO_{2} and TCO_{3} at local solar noon on 1 November 2018 as an example of daily data. In both panels a black line displays the $\mathrm{TCO}_{3}=200 \mathrm{DU}$ contour, a not uncommon reference value to mark the edge of the Antarctic ozone hole for the Southern Hemisphere polar vortex.

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript
Formatted: Subscript

Formatted: Subscript

Formatted: Subscript
Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript
 Formatted: Subscript
 Formatted: Subscript

$\mathrm{SNO}_{\mathbb{2}}$ depleted Antarctic inner vortex air and enhancement of SNO_{2} around the edge of the polar vortex are clearly visible. Figure 3 shows the same data as in Figure 2 but for an Antarctic polar view and with a different color scale. There are clear similarities between the spatial patterns in SNO_{2} and TCO_{2}. First of all, both show a significant reduction of values within the Antarctic stratospheric vortex. Secondly, values for both are strongly enhanced equatorward just outside of the vortex. Third, further equatorward of $45^{\circ} \mathrm{S}$ values of both start to decrease. And fourth: outside of the vortex values for both are reduced around 0° longitude and enhanced at the opposite side towards 180° longitude (wave- 1 pattern).

However, there are also clear differences. The $\mathrm{SNO}_{2} / \mathrm{TCO}_{3}$ ratio for example does not show a clear vortex edge (Noxon cliff) like in both separate products. Furthermore, the gradient from the vortex edge towards the equator is smaller for $\mathrm{TCO}_{\bar{\beta}}$ than it is for SNO_{2}. These similarities and differences point to different processes governing their respective spatiotemporal variations: chemistry (sources \& sinks) and stratospheric dynamics (source and sink regions and transport from sources to sinks).

Figure 4 shows the evolution of zonal averages of the $\mathrm{SNO}_{2^{2}}$ during the four Southern Hemisphere summers from 2018 to 2021 , with the 200 DU ozone contour indicated by a black line. From these figures it is clear that the springtime $\mathrm{SNO}_{\mathbb{R}}$ enhancement outside of the Antarctic vortex is kept out of the vortex during 2018, 2020 and 2021. The lack of such a welldefined SNO_{2} depleted area in 2019 is related to the weak Antarctic stratospheric vortex during spring 2019, which led to weak ozone depletion (Safiedinne et al., 2020; Wargan et al., 2020; Stone et al., 2021) and according to the TROPOMI NO ${ }_{2}$ data thus also led to less denitrification. This is consistent with results found for IASI HNO_{3} (Wespes et al., 2022).

3.2 Correlating SNO_{2} and TCO_{3} : 2D phase diagram

Figure 5 displays TROPOMI TCO_{2} and SNO_{2} data for 1 November 2018 as a 2D histogram (phase diagram; panel A) revealing rather intricate patterns. For reasons explained below, the histogram was divided into three areas to be able to discriminate between the inner-vortex, outer-vortex and the vortex edge. For the area "MASK 1 " $\mathrm{SNO}_{\mathbb{2}}$ and TCO_{3} show a well-defined linear relationship. The area is associated with the inner vortex and is characterized by small TCO_{3} values. The area "MASK 2" represents air outside of the vortex characterized by larger TCO_{3} values and somewhat larger SNO_{2} values than for the "MASK 1" area. Also, there is not such a well-defined linear relation between $\mathrm{TCO}_{\mathbf{k}^{2}}$ and SNO_{2} for the "MASK 2 " area as there is for the "MASK 1" area. The relation between TCO_{2} and SNO_{2} for "MASK 3 " is much more intricate with what appear to be "coherent line structures" connecting the "MASK 1" and "MASK 2" areas. These "mixing lines" - by lack of better expression - are found for both small and large TCO_{3} and SNO_{2} values. The largest SNO_{2} values are found in the "MASK $1 / 3$ " areas whereas the largest TCO_{3} values are found in the "MASK $2 / 3$ " areas. Note that the logarithmic color scale enhances the focus on parts of the distribution that are less frequent. There are thus essentially two populations: inside the vortex and outside the vortex. 16% of the histogram bins contain two thirds ($\sim 67 \%$) of the data points and only approximately 10% of the data qualifies for MASK-3.

Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript
Formatted: Subscript

3.3 multi-day periods and multi-annual data

Two key follow-up questions are whether these results change significantly over time. Figure 6 shows phase diagrams similar to the one displayed in Figure 5 but for days combined during multiple day intervals (5-10-15-30 days) starting at 1

290 November 2018. Although this means that each panel covers a different time period, the results are nevertheless very consistent. The distinction of two clear concentrated populations and the "mixing lines" is present for each time period. The results do also reveal a relation between TCO_{2} and SNO_{2} outside of the vortex albeit with a much larger spread. The high correlation between $\mathrm{TCO}_{3}-\mathrm{SNO}_{2}$ inside the vortex is also present during all periods. The distribution does shift towards larger SNO_{2} values due to increasing SNO_{2} as part of the natural springtime SNO_{2} cycle. Similarly - albeit more difficult to distinguish in Figure 6, outer vortex TCO_{3} values become slightly smaller due to the natural seasonal springtime noncatalytic photochemical destruction of stratospheric O_{3}. However, for inner-vortex air the TCO_{3} distribution shifts towards larger TCO_{3} values, reflecting the effects of dynamical mixing extra-vortex O_{3}-rich (upper) stratospheric air during late spring (de Laat and van Weele, 2011).

Figure 7 shows similar panels as in Figures 5 and 6 but for 5 -day periods starting at the first day of each month from can still be discerned in TCO_{3} but interestingly enough not in SNO_{2} (see animation in the Supplementary Information). Remarkably the populations still cover the three previously defined areas "MASK $1 / 2 / 3$ ". This indicates that $\mathrm{TCO}_{3} / \mathrm{SNO}_{2}$ ratios are rather useful for characterizing the origins and locations of stratospheric air masses.

Figure 8 displays similar results as in Figure 7 for early October but for all years from 2018 to 2021. The results for 2018, 2020 and 2021 are very similar providing further support for the notion that the $\mathrm{TCO}_{3} / \mathrm{SNO}_{2}$ ratios can be used to
unusually weak 2019 Antarctic stratospheric vortex. There are still two populations in 2019 albeit only weakly separated. TCO_{2} and SNO_{2} values inside the vortex are larger compared to the other years. Overall, the anomalous 2019 vortex has a clear imprint on the $\mathrm{TCO}_{\underline{1}}$ and SNO_{2} distributions. Note that during early September 2019 the amount of SNO_{2} depletion was still similar to those in 2018-2020-2021 (not shown). The normal vortex pre-conditioning during Austral winter 2019

Formatted: Subscript
Formatted: Subscript

thus was not unusual which is consistent with published analyses of the 2019 Antarctic springtime vortex (Wargan et al., 2020; Smale et al., 2021; WMO, 2022). The faster 2019 increase in SNO_{2} by early October compared to 2018-2020-2021 indicates that dynamics and mixing with - or influx of - NO_{2}-rich extra-vortex air is the main cause. Otherwise the SNO_{2} increase would have been slower and more in line with the other three years.

3.4 Qualitative explanation of phase diagram results

The consistency of patterns in the spatiotemporal variations in the $\mathrm{TCO}_{3_{2}}-\mathrm{SNO}_{2}$ distributions suggest some very basic underlying processes. For example, differences in the location of the Noxon cliff for TCO3 cross-vortex gradient relative to the location of the Noxon cliff for SNO_{2} should show up as patterns in the phase diagram. To provide a qualitative explanation of the observed patterns two simple series of longitudinal and latitudinal variations in TCO_{3} and SNO_{2} were created. For the first one, TCO_{3} and SNO_{2} vary as a sine wave along longitudes but with a different longitudinal phase (Figure 9). For the second one, TCO_{3} and SNO_{2} increased from pole to middle-latitudes and then decrease toward the equator to resemble the Noxon cliff but with a slightly different latitudinal change visually mimicking the observed TCO_{3} and SNO_{2} latitudinal gradients. Figure 9 shows the results for the relation between both. For the phase-shifted sine wave functions, the results obviously show up as an oval. The latitudinal shifted results however follow a curve qualitatively not dissimilar from the observed "mixing lines". These results thus support the observation that the Noxon cliffs forcross-vortex TCO_{3} gradient and SNO_{2} Noxon cliffs do not occur at the same locations which results in the emergence of "mixing lines" in the phase diagrams.

4 Discussion

The results presented here show that TROPOMI provides high quality daily SNO_{2} data for monitoring variations in SNO_{2} both inside and outside the Antarctic stratospheric vortex. It allows for studying the "nitrogen hole" - the denitrification process, as well as the "Noxon cliff" - the sharp gradient in trace gas amounts along the vortex edge, and associated seasonal changes during Antarctic springtime and interannual variability. Furthermore, combining the SNO_{2} data with high quality TCO_{3} data in phase diagrams reveals coherent patterns - "mixing lines" - linking the Antarctic stratospheric air inside and outside the vortex.

A clear discrepancy was found between the location of the SNO_{2} Noxon Cliff and the TCO_{3} Noxon cliffcross vortex gradient. The few studies that provide information on the joint vertical distributions of NO_{2} and O_{3} suggest that the bulk of stratospheric NO_{2} is found at higher altitudes than the bulk of stratospheric O_{3} (Ridley et al., 1984; Lindenmaier et al., 2011). Differences in bulk heights which mostly determine total column variability link to differences in advection processes and might explain differences in the location of the NO_{2} and O_{3} - Noxon cliff and the cross-vortex TCO_{3} gradients. Explorative studies using stratospheric chemistry models likely should help unraveling these issues. This in turn may contribute to developing applications and metrics for stratospheric NO_{2}-column-based Antarctic ozone hole monitoring. In addition, the

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

notion of different bulk heights is consistent with the notion that the break-up dates or final warming of the Antarctic stratospheric vortex occurs later for lower stratospheric altitudes (higher pressure levels) (Butler et al., 2021; Lecouffe et al., 2022). For example, by late November 2018 there still is well defined area with reduced TCO_{3} for which reduced SNO_{2} has already vanished (see animation in the Supplementary Information). A lower bulk height for TCO_{3} compared to SNO_{2} would mean that SNO_{2} anomalies would vanish earlier, as observed.

Furthermore, a strong inner-vortex correlation between SNO_{2} and TCO_{3} was found which was absent outside of the vortex. The $\mathrm{SNO}_{2}-\mathrm{TCO}_{3}$ phase diagrams display a clear dynamical cycle reflecting springtime changes in chemistry and dynamics. This cycle was consistently seen in multiple years (2018-2020-2021) but was significantly different in 2019, a year with a strongly perturbed Antarctic springtime vortex. Qualitatively the coherent patterns in the phase diagrams can be explained by spatiotemporal differences in the phases of SNO_{2} and TCO_{3}, i.e. where and when minima and maxima occur in SNO_{2} and $\mathrm{TCO}_{3} . \mathrm{SNO}_{2}$ and TCO_{3} are clearly not always and not everywhere in sync. This in part appears to be associated with the differences in Antarctic stratospheric denitrification and O_{3} depletion. Denitrification is a wintertime process starting already by early winter and causing the Antarctic stratosphere to be significantly depleted of nitrogen by the time sunlight returns (and thus TROPOMI starts to provide inner-vortex observations). The O_{3} destruction cycle on the other hand critically depends on the presence of sunlight. At the start of springtime O_{3} depletion has yet to speed up. During the month of September the amount of sunshine and duration of sunshine rapidly increase causing a rapid deepening of the Antarctic Ozone Hole. Hence, the denitrification and O_{3} depletion cycles differ significantly in their timing. Similarly, the results also revealed an earlier disappearance of the " NO_{2} hole" relative the "Ozone hole", further supporting the notion that differences in chemistry and dynamics govern the differences in SNO_{2} and TCO_{3} behavior.

The observation of coherent spatial line structures ("mixing lines") in relation to stratospheric transport and mixing including stratosphere-troposphere exchange - is not new. The presence of layered trace gas structures in the stratosphere (laminae, filamentation, contour advection (Waugh and Plumb, 1994; Newman et al., 1996; Appenzeller and Holton, 1997; Orsolini and Grant, 2000; Who and Lagras, 2002)) is closely associated with the stability of the stratosphere, the conservation of potential vorticity and isentropic mixing (Waugh and Polvani, 2010). Stratospheric air masses often organize themselves in such long-lived laminae. For example, satellite observations of direct injection of volcanic material directly into the (lower) stratosphere have provided many examples of laminae development and filamentation because of the ability of satellites to observe sulfur dioxide and volcanic ash (Krotkov et al., 2021; de Leeuw et al., 2021; Kahykin et al., 2022). Satellite observations of aerosols from wildfires have started to be used for similar purposes for stratospheric smoke (Khaykin et al., 2020; Magaritz-Ronen and Raveh-Rubin, 2021). And complex relationships between-among (long-lived) stratospheric trace gases have been used for understanding stratospheric dynamics (e.g. Hoor et al., 2002; Plumb, 2007; Barre et al., 2012; Hoffmann et al., 2017; Krasauskas et al., 2021). How exactly these processes and concepts relate to the observed "mixing lines" would make a relevant topic of future research.

Furthermore, model simulations could be used to assess (1) whether model simulations show similar phase diagrams and if so, (2) whether the model simulations contain clues for explaining the differences in spatiotemporal SNO_{2} and TCO_{3}

Formatted: Subscript
Formatted: Subscript

Formatted: Subscript

Formatted: Subscript
behavior. The model simulations might also reveal caveats and missing processes in the model representation of stratospheric chemistry and Antarctic stratospheric vortex dynamics. In addition, the results can also be further explored towards a more thorough conceptual explanation of SNO_{2} variability. Comparison with IASI HNO_{3} total columns might help there as well, just like a comparison and evaluation of SNO_{2} with satellite NO_{2} profile measurements from for example the OSIRIS, ACE-FTS or MAESTRO satellite instruments. A comparison with IASI HNO_{3} could for example be used to explore whether both are more in sync than SNO_{2} is with TCO_{3}. Comparison with limb satellite NO_{2} profile measurements in conjunction with O_{3} profile measurements should provide indications of which altitudes mostly determine column observations of NO_{2} and O_{3}. In addition, evaluation of results from a different dynamical framework of the equivalent latitude might help improve understanding of Antarctic stratospheric vortex edge dynamics. This links to the important question of where and when vortex mixing takes place. It is well established that the Antarctic stratospheric vortex can be the combination of SNO_{2} and $\mathrm{TCO}_{\mathbb{k}}$ (possibly extended with IASI HNO_{3}) might help identifying mixing regions.

An additional question is whether satellites other than TROPOMI that also measure $\mathrm{SNO}_{\mathbb{2}}$ might help extend the $\mathrm{SNO}_{\mathbb{R}}$ southern hemisphere record further back in time. A dataset going back to 2003 already exists via the QA4ACV NO \mathbb{R}_{2} data (Boersma et al., 2018). The combination of GOME (1995-2011), SCIAMACHY (2002-2012), OMI (2003-now), GOME-2 (2007-now), and OMPS (2012-now) potentially allows for reconstructing an almost 30-year record of Southern Hemisphere mid-latitude and Antarctic SNO_{2}. Such a record could be probed for finding hints and clues of (Antarctic) stratospheric ozone recovery, as TCO_{2} is expected to change much faster due to decreasing O_{3} depleting substances than $\mathrm{SNO}_{\mathbb{2}}-$ mostly due to emissions of $\mathrm{N}_{2} \mathrm{O}$ and slowly increasing atmospheric $\mathrm{N}_{2} \mathrm{O}$ concentrations (Struthers et al., 2004). Other processes relevant for Antarctic stratospheric NO_{2} and O_{3} are production of (upper) stratospheric NO_{x} by energetic electron precipitation and by increased downwelling of upper stratospheric air by the expected speeding up of the Brewer-Dobson circulation (Gordon et al., 2020; Maliniemi et al., 2021; Müller, 2021).

Furthermore, there are some other aspects for further exploration. The validation could be extended to more groundbased comparison and more detailed evaluations. It could be assessed whether it matters if TNO_{2} is used (based on data assimilation) rather than SNO_{2}. The assimilation SNO_{2} data is important for deriving tropospheric NO_{2} but not necessarily the best estimate of TNO_{2}. Note that there is no reason to assume that SNO_{2} and/or TCO_{3} data quality issues will change the findings of this paper, but only in-depth analyses will provide support for that assumption. In addition, although the diurnal cycle in SNO_{2} is relatively small compared to its seasonal cycle it nevertheless can affect satellite retrievals and validation results. Dubé et al. [2021] reported order of magnitude 10-20\% diurnal cycle effects for SAGE III/ISS solar occultation limb retrievals with the largest effects found at higher latitudes. Although their results are not one-on-one applicable to the results presented here they clearly indicate the need for properly assessing diurnal cycle effects on TROPOMI SNO ${ }_{2}$ measurements and validation.

In this study gridded SNO_{2} was used to allow easy comparison with other data as Sentinel-5p data quality is still improving and reprocessing of data is ongoing. A key question is whether results would differ for a Sentinel-5p pixel-level

Formatted: Subscript
 Formatted: Subscript

Formatted: Subscript
Formatted: Subscript

Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript

Formatted: Subscript
Formatted: Subscript
Formatted: Subscript

Formatted: Subscript
Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

comparison of $\mathrm{SNO}_{2^{2}}$ and TCO_{2}. A first brief assessment of using Sentinel-5p pixel-level comparison of SNO_{2} and TCO_{k} (see appendix Figure A3) yielded very similar results, indicating that results presented here are robust relative to using gridded data or pixel data or even data from different satellites.

Finally, limited use of nadir-viewing satellite measurements of NO_{2} for studying the Noxon Cliff and the Antarctic stratospheric denitrification process is somewhat surprising. The potential for their use to explore polar stratospheric chemistry and dynamics is evident from Wenig et al. (2004), Richter et al. (2005) and Adams et al. (2013). Satellite measurements of NO_{2} - and tropospheric NO_{2} column measurements - have been widely used for approximately two decades now. Total stratospheric NO_{2} columns play an important role in deriving tropospheric NO_{2} columns, as the stratospheric part needs to be removed from the total part (Boersma et al., 2003; Boersma et al., 2007; Boersma et al., 2018). This is typically done by assimilating the satellite measurements of total NO_{2} over clean regions into a numerical chemistry transport model to reconstruct the stratospheric column globally (Eskes et al., 2003; Boersma et al., 2004; Boersma et al., 2007). The assimilation therefore allows to determine the stratospheric column over polluted regions with sufficient accuracy and precision to subtract it from the total column to arrive at an accurate tropospheric column. This approach requires also sufficiently accurate measurements of stratospheric NO_{2}. Hence the quality of stratospheric NO_{2} has for a long time been assessed for various satellites (e.g. Boersma et al., 2004; Dirksen et al., 2011; Valks et al., 2011; Verhoelst et al., 2021; Lambert et al., 2023). Nevertheless, despite the fact that nadir stratospheric NO_{2} column TROPOMI measurements turn out to be of very good quality their intrinsic value for stratospheric research has remained largely unrecognized.

5. Conclusions

This paper presents a first assessment of the use of Sentinel-5p SNO_{2} measurements for studying Southern Hemisphere middle latitude and Antarctic stratospheric processes including the Antarctic Ozone Hole.

Comparison of gridded SNO_{2} and assimilated TCO_{3} via phase diagrams reveals intricate patterns. Three different regimes could be clearly identified: the inner vortex, the vortex edge and the extra-vortex region. Each regime is associated with its own $\mathrm{SNO}_{2} / \mathrm{TCO}_{3}$ characteristics. The vortex edge was characterized by so-called "mixing lines" in $\mathrm{SNO}_{2}-\mathrm{TCO}_{3}$ phase diagrams. A certain misalignment of the SNO_{2} and TCO 3 - different locations of the so-called-Noxon cliff and crossvortex TCO_{3} gradient- was found along the Antarctic stratospheric vortex pointing to vortex-edge dynamics as the root case. A possible explanation could be differences in bulk heights of SNO_{2} and TCO_{2} so that their respective total columns reflect processes occurring at different heights.

Springtime $\mathrm{SNO}_{2}-\mathrm{TCO}_{2}$ variations/changes are robust throughout single-day to multi-day statistics. Throughout spring the $\mathrm{SNO}_{\mathbf{R}^{2}}-\mathrm{TCO}_{\mathbf{R}^{2}}$ distributions change significantly as a result of chemistry and vortex dynamics including mixing of air inside and outside the vortex. Regarding interannual variability the distributions are very similar for 2018-2020-2021 but significantly different from 2019 which was a year with an anomalously weak Antarctic stratospheric vortex and only weak O_{3} depletion.

Formatted: Subscript

Formatted: Subscript
Formatted: Subscript
Formatted: Subscript

Formatted: Subscript

Formatted: Subscript
Formatted: Subscript Subscript
Formatted: Subscript
Formatted: Subscript Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript

Seasonal changes in the phase diagrams indicate that both total column data products are sensitive to different heights and thus different processes. In general the vortex remains longer visible in $\mathrm{TCO}_{\mathbf{3}}$ data than in SNO_{2} data. SNO_{2} is less sensitive to the lower stratosphere- where the stratospheric vortex remains intact longer - than SNO_{2} so the nitrogen hole will disappear earlier than the ozone hole. Vertical tilting of the vortex edge combined with different vertical sensitivities processing and participated also in the data analysis. P.S. is the instigator of this piece of research, J.P.V. is the PI of Sentinel-5p/TROPOMI, H.E. is responsible for the TNO_{2} data assimilation product and R.v.d.A. maintains the TCO_{3} data assimilation and data dissemination. All authors contributed to the discussion and interpretation of results.

Competing interests. The authors declare that they have no conflicts of interest. likewise explains the presence of the third regime that in the phase diagrams linking the inner vortex regime with the outer vortex regime.

This study only presents a first glimpse of the great potential of high quality spatiotemporal satellite $\mathrm{SNO}_{\mathbb{Z}}$ measurements for studying stratospheric chemistry and stratospheric dynamics as well as long term changes in stratospheric composition extending the SNO_{2} record back in time in combination with for example the MSR-2 total ozone reanalysis (van der A et al., 2015). The ability to monitor stratospheric nitrogen is also more than welcome given that an important piece of stratospheric observational remote sensing capacity by way of the Microwave Limb Sounder (MLS) will end by 2025 or at the latest 2026 and no satellite missions are planned to fill the gap created by the end of the MLS mission.

Author contributions. AJ.d.L. wrote the paper and did the majority of data analysis and interpretation. J.v.G. did the data

Data availability. Data used in this paper is available via the ESA Sentinel-5p hub $\left(\mathrm{SNO}_{2}\right)$, the TEMIS web portal $\left(\mathrm{TCO}_{3}\right)$ and the TROPOMI validation data facility (SAOZ data and collocated TROPOMI TNO \mathcal{L}_{2} and TROPOMI assimilated SNO_{2})
https://s5phub.copernicus.eu/dhus/\#/home
http://www.temis.nl
http://mpc-vdaf.tropomi.eu/index.php/nitrogen-dioxide/

Acknowledgements. Sentinel-5 Precursor is a European Space Agency (ESA) mission on behalf of the European Commission (EC). The TROPOMI payload is a joint development by ESA and the Netherlands Space Office (NSO). The Sentinel-5

Formatted: Subscript
 Formatted: Subscript
 Formatted: Subscript
 Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript
 Formatted: Subscript

Formatted: Subscript
 Formatted: Subscript
 Formatted: Subscript
 Formatted: Subscript

Precursor ground-segment development has been funded by ESA and with national contributions from The Netherlands, 480 Germany, and Belgium. This work contains modified Copernicus Sentinel-5P TROPOMI data (2018-2022), processed in the operational framework or locally at KNMI.

Figures

485

Figure 1A.
Comparison of $\mathrm{S} 5 \mathrm{p} \mathrm{TNO}_{2}$ and SAOZ sunrise TNO_{2} for the location of Dumont d'Urville. Data was directly obtained from the Sentinel-5p validation facility where also more details can be found about the SAOZ data as well as similar data 490 visualizations (http://mpc-vdaf.tropomi.eu/index.php/nitrogen-dioxide/ accessed 21 November 2022). Data markers are semi-transparent to allow for visually discriminating between overlapping SAOZ and TROPOMI data points. Note that for each SAOZ data point there is a corresponding TROPOMI data point.

Formatted: Subscript

Formatted: Subscript

Figure 1B.

495 Scatterplot of TROPOMI total NO_{2} and SAOZ sunrise NO_{2} as presented in Figure 1A. Regression coefficients are for an ordinary linear regression (OLR; grey line) and the orthogonal distance regression (ODR; red line) with 1:1 line shown by the grey dashed line. Colors represent different times of the year (see appendix Figure A1 for the corresponding colored version of Figure 1A).

Maps of globally gridded TROPOMI-based stratospheric NO_{2} (top; in $\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2}$) and globally gridded local solar noon assimilated TCO_{3} (bottom; in Dobson Units or DU) on 1 November 2018. The location of the 200 DU ozone contour is 505 indicated by a black line in both panels. Greys denote areas without TROPOMI data.

Figure 3.
As figure 2 (1 November 2018) but from an Antarctic polar view and with a different color scale. Panel C shows the $510 \quad \mathrm{SNO}_{2} / \mathrm{TCO}_{3}$ ratio of panels A+B.

Formatted: Subscript
Formatted: Subscript

Figure 4.

Maps of the Southern Hemisphere daily zonal average SNO_{2} for four Southern Hemisphere summers (July-July) from 2018 to 2022. The location of the 200 DU ozone contour is indicated by a black line in all panels. Greys denote areas and times within TROPOMI data.

Formatted: Subscript

Figure 5.
Left column:[A] 2D histogram (phase diagram) of TROPOMI SNO_{2} vs assimilated $\mathrm{TCO}_{\mathcal{3}}$ for 1 November 2018 and corresponding spatial distribution of SNO_{2} (panel B) and TCO_{2} (panel C) as in Figure 3. The phase diagram is color coded according to the logarithm of the number of counts. The phase diagram is a 100×100 pixel grid ranging between $0.0-6.0$ 10^{15} molecules $\mathrm{cm}^{-2} \mathrm{SNO}_{2}$ and $0-500 \mathrm{DU} \mathrm{TCO}_{3}$. Right column: [D], [E], [F]: spatial distribution of TCO_{3} as in the lowest
plot of the left column but filtered on the masking in the phase diagram in the upper left plot $(\mathrm{D}=$ MASK-1; $\mathrm{E}=$ MASK-2; F $=$ MASK-3.

Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript

Formatted: Subscript

Formatted: Subscript
Formatted: Subscript

Figure 6.

Phase diagrams of TROPOMI $\mathrm{SNO}_{\mathbb{2}}$ and assimilated GOME-2 $\mathrm{TCO}_{\mathbb{k}}$ Similar to the phase diagram in Figure 5 (panel [A])
but for daily gridded data combining either 5, 10, 15 or 30 days starting at 31 October 2018.

Formatted: Subscript

Formatted: Subscript

Figure 7.
As Figure 6 but for 5-day periods starting at 1 September, 1 October, 31 October and 30 November 2018.

530

Figure 8.

As Figure 6 but for 1-30 October of each year between 2018-2021.

Figure 9.
535 Left panel: latitudinal $\underline{S_{s}} \mathrm{NO}_{2}$ and $\underline{\mathrm{T}}_{\mathrm{t}} \underline{C O}_{\underline{3}}$ variations between 30 S and 90 S . The functions for $\underline{\underline{\mathrm{S}}} \mathrm{NO}_{2}$ and $\underline{\mathrm{TC}}^{2} \mathrm{O}_{3}$ are slightly shifted in the latitudinal direction, with $\underline{S} s \mathrm{NO}_{2}$ peaking earlier and decreasing faster towards the equator after the peak. The result of these two functions is indicated by the black line in the right panel. Right panel: longitudinal data and phase diagram of a data series (sine wave) for $\underline{S}_{s} \mathrm{NO}_{2}$ (red) and $\mathrm{TC}_{2} \mathrm{O}_{3}$ (blue) with a longitudinal phase shift of 90 degrees. The amplitude of the sine wave is chosen to represent observed values but otherwise just a scaling factor. The result for these two functions is indicated by the grey line in the right panel.

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Tables

	\mathbf{R}^{2} [P] [S]	Bias 10^{15} [mean] [median]	Bias \% [mean] [median]	RMS 10^{15} (err)	RMS \% (err)	Fit [OLR] [ODR]
Kerguellen $\left(49.35^{\circ} \mathrm{S} / 70.26^{\circ} \mathrm{E}\right)$	$\begin{aligned} & \underline{0.906} \\ & \underline{0.914} \end{aligned}$	$\begin{aligned} & \underline{-0.038} \\ & -0.065 \end{aligned}$	$\begin{aligned} & -2.51 \\ & -2.54 \end{aligned}$	$\begin{aligned} & \underline{0.291} \\ & (0.009) \end{aligned}$	$\begin{aligned} & \underline{10.23} \\ & \underline{(0.31)} \end{aligned}$	$\begin{aligned} & \underline{0.786} \\ & \underline{0.818} \end{aligned}$
Rio Gallegos $\left(51.60^{\circ} \mathrm{S} / 69.32^{\circ} \mathrm{W}\right)$	$\begin{aligned} & \underline{0.925} \\ & 0.925 \end{aligned}$	$\begin{aligned} & -0.282 \\ & -0.295 \end{aligned}$	$\begin{aligned} & \underline{-11.39} \\ & -11.62 \end{aligned}$	$\begin{aligned} & \underline{0.244} \\ & (0.007) \end{aligned}$	$\begin{aligned} & \underline{9.80} \\ & (0.27) \end{aligned}$	$\begin{aligned} & \underline{0.899} \\ & \underline{0.944} \end{aligned}$
Dumont d'Urville $\left(66.67^{\circ} \mathrm{S} / 140.02^{\circ} \mathrm{E}\right)$	$\begin{aligned} & \underline{0.884} \\ & \underline{0.882} \end{aligned}$	$\begin{aligned} & -\underline{-0.039} \\ & \underline{-0.056} \end{aligned}$	$\begin{aligned} & \underline{-0.88} \\ & -1.67 \end{aligned}$	$\begin{aligned} & \underline{0.371} \\ & (0.013) \end{aligned}$	$\begin{aligned} & \underline{10.48} \\ & (0.36) \end{aligned}$	$\begin{aligned} & \underline{0.938} \\ & \underline{0.999} \end{aligned}$
Neumayer $\left(70.65^{\circ} \mathrm{S} / 8.24^{\circ} \mathrm{W}\right)$	$\begin{aligned} & \underline{0.962} \\ & \underline{0.960} \end{aligned}$	$\begin{aligned} & \underline{0.091} \\ & \underline{0.091} \end{aligned}$	$\begin{aligned} & \underline{4.64} \\ & 4.23 \\ & \hline \end{aligned}$	$\begin{gathered} \underline{0.240} \\ (0.012) \\ \hline \end{gathered}$	$\begin{aligned} & \underline{14.01} \\ & \underline{(0.72)} \end{aligned}$	$\begin{aligned} & \underline{0.910} \\ & \underline{0.926} \end{aligned}$
Concorde Dome $\left(75.1^{\circ} \mathrm{S}, 123.35^{\circ} \mathrm{E}\right)$	$\begin{aligned} & \hline 0.834 \\ & 0.821 \end{aligned}$	$\begin{aligned} & \hline-0.035 \\ & -0.130 \end{aligned}$	$\begin{aligned} & -2.36 \\ & -3.64 \end{aligned}$	$\begin{gathered} \hline 0.466 \\ (0.023) \end{gathered}$	$\begin{aligned} & 18.75 \\ & (0.93) \end{aligned}$	$\begin{aligned} & \hline 0.808 \\ & 0.875 \end{aligned}$
Dumont d'Urville $\left(66.67^{\circ} \mathrm{S} / 140.02^{\circ} \mathrm{E}\right)$	$\begin{aligned} & 0.884 \\ & 0.882 \end{aligned}$	$\begin{aligned} & -0.039 \\ & -0.056 \end{aligned}$	$\begin{array}{r} -0.88 \\ -1.67 \end{array}$	$\begin{aligned} & 0.371 \\ & (0.013) \end{aligned}$	$\begin{aligned} & 10.48 \\ & (0.36) \end{aligned}$	$\begin{aligned} & 0.938 \\ & 0.999 \end{aligned}$
Kerguellen $\left(49.35^{\circ} \mathrm{S} / 70.26^{\circ} \mathrm{E}\right)$	$\begin{aligned} & 0.906 \\ & 0.914 \end{aligned}$	$\begin{aligned} & -0.038 \\ & -0.065 \end{aligned}$	$\begin{aligned} & -2.51 \\ & -2.54 \end{aligned}$	$\begin{aligned} & 0.294 \\ & (0.009) \end{aligned}$	$\begin{aligned} & 10.23 \\ & (0.31) \end{aligned}$	$\begin{aligned} & 0.786 \\ & 0.818 \end{aligned}$
Neumayer $\left(70.65^{\circ} \mathrm{S} / 8.24^{\circ} \mathrm{W}\right)$	$\begin{aligned} & 0.962 \\ & 0.960 \end{aligned}$	$\begin{aligned} & 0.094 \\ & 0.091 \end{aligned}$	$\begin{aligned} & 4.64 \\ & 4.23 \end{aligned}$	$\begin{aligned} & 0.24 \theta \\ & (0.012) \end{aligned}$	$\begin{aligned} & 14.01 \\ & (0.72) \end{aligned}$	$\begin{aligned} & 0.910 \\ & 0.926 \end{aligned}$
Rio-Galleges	0.925	0.282	+11.39	0.244	9.80	0.899

$\left(51.60^{\circ} \mathrm{S} / 69.32^{\circ} \mathrm{W}\right)$	0.925	-0.295	41.62	(0.007)	(0.27)	0.944

Table 1.
Comparison of southern hemisphere and Antarctic SAOZ sunrise measurements of $\mathrm{SNO}_{2}\left(\mathrm{TNO}_{2}\right)$ with TROPOMI SNO ${ }_{2}$ observations. Correlations display the Pearson coefficient (P) and the Spearman coefficient (S). Fit coefficients are provided for the ordinary linear regression (OLR; top value) and the orthogonal distance regression (ODR; bottom balue).

References

van der A, R.J., Allaart, M.A.F., and Eskes, H.J. (2010): Multi sensor reanalysis of total ozone, Atmos. Chem. Phys., 10, 11277-11294, https://doi.org/10.5194/acp-10-11277-2010
van der A, R.J., Allaart, M.A.F., and Eskes, H.J. (2015): Extended and refined multi sensor reanalysis of total ozone for the period 1970-2012, Atmos. Meas. Tech., 8, 3021-3035, https://doi.org/10.5194/amt-8-3021-2015
Adams, C., Strong, K., Zhao, X., Bourassa, A.E., Daffer, W.H., Degenstein, D., Drummond, J.R., Farahani, E.E., Fraser, A., Lloyd, N.D., Manney, G.L., McLinden, C.A., Rex, M., Roth, C., Strahan, S.E., Walker, K.A., and Wohltmann, I. (2013): The spring 2011 final stratospheric warming above Eureka: anomalous dynamics and chemistry, Atmos. Chem. Phys., 13, 611-624, https://doi.org/10.5194/acp-13-611-2013
Appenzeller, C., and Holton, J.R. (1997): Tracer lamination in the stratosphere: A global climatology, J. Geophys. Res., 102(D12), 13555-13569, https://doi.org/10.1029/97JD0006
Barbero, A., Savarino, J., Grilli, R., Blouzon, C., Picard, G., Frey, M.M., Huang, Y., and Caillon, N. (2021): New estimation of the NOx snow-source on the Antarctic Plateau, Journal of Geophysical Research: Atmospheres, 126, e2021JD035062, https://doi.org/10.1029/2021JD035062
Barré, J., Peuch, V.-H., Attié, J.-L., El Amraoui, L., Lahoz, W. A., Josse, B., Claeyman, M., and Nédélec, P. (2012): Stratosphere-troposphere ozone exchange from high resolution MLS ozone analyses, Atmos. Chem. Phys., 12, 6129-6144, https://doi.org/10.5194/acp-12-6129-2012.
Beirle, S., Hörmann, C., Jöckel, P., Liu, S., Penning de Vries, M., Pozzer, A., Sihler, H., Valks, P., and Wagner, T. (2016): The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO_{2} from nadir-viewing satellites by weighted convolution, Atmos. Meas. Tech., 9, 2753-2779, https://doi.org/10.5194/amt-9-2753-2016
Belmonte Rivas, M., Veefkind, P., Boersma, F., Levelt, P., Eskes, H., and Gille, J. (2014): Intercomparison of daytime stratospheric NO_{2} satellite retrievals and model simulations, Atmos. Meas. Tech., 7, 2203-2225, https://doi.org/10.5194/amt-7-2203-2014

Formatted: Subscript
Formatted: Subscript
Formatted: Subscript

Bodeker, G.E., Struthers, H., and Connor, B.J. (2002): Dynamical containment of Antartic ozone depletion, Geophys. Res. Lett., 29 (7), https://doi.org/10.1029/2001GL014206.
575 Boersma, K.F., Eskes, H.J., and Brinksma, E.J. (2004): Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311, doi:10.1029/2003JD003962.

Boersma, K.F., Eskes, H.J., Veefkind, J.P., Brinksma, E.J., Van der A, R.J., Sneep, M., Van den Oord, G.H.J., Levelt, P.F., Stammes, P., Gleason J.F., and Bucsela, E.J. (2007): Near-real time retrieval of tropospheric NO_{2} from OMI, Atmos. Chem. Phys., 7, 2013-2128, https://doi.org/10.5194/acp-7-2103-2007
580 Boersma, K.F., Eskes, H.J., Dirksen, R.J., Van der A, R.J., Veefkind, J P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y. and Brunner, D. (2011): An improved retrieval of tropospheric NO_{2} columns from the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 19051928, https://doi.org/10.5194/amt-4-1905-2011
Boersma, K.F., Eskes, H.J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J.H.G.M., Zara, M., Peters, E., Van Roozendael, M., Wagner, T., Maasakkers, J.D., van der A, R.J., Nightingale, J., De Rudder, A., Irie, H., Pinardi, G., Lambert, J.-C., and Compernolle, S.C. (2018): Improving algorithms and uncertainty estimates for satellite NO_{2} retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project, Atmos. Meas. Tech., 11, 66516678, https://doi.org/10.5194/amt-11-6651-2018
Bortoli, D., Ravegnani, F., Giovanelli, G., Kulkarni, P.S., Anton, M., Costa, M.J., and Silva, A.M. (2013)). Fifteen years of stratospheric nitrogen dioxide and ozone measurements in Antarctica. In AIP Conference Proceedings (Vol. 1531, No. 1, pp. 300-303). American Institute of Physics.
Bortoli, D., Giovanelli, G., Ravegnani, F., Kostadinov, I., and Petritoli, A. (2005): Stratospheric nitrogen dioxide in the Antarctic, International Journal of Remote Sensing, 26:16, 3395-3412, https://doi.org/10.1080/01431160500076418
Bourassa, A.E., McLinden, C.A., Sioris, C.E., Brohede, S., Bathgate, A.F., Llewellyn, E.J., and Degenstein, D.A. (2011): Fast NO_{2} retrievals from Odin-OSIRIS limb scatter measurements, Atmos. Meas. Tech., 4, 965-972, https://doi.org/10.5194/amt-4-965-2011
Butler, A.H. and Domeisen, D.I.V. (2021): The wave geometry of final stratospheric warming events, Weather Clim. Dynam., 2, 453-474, https://doi.org/10.5194/wcd-2-453-2021
Butz, A., Bösch, H., Camy-Peyret, C., Chipperfield, M., Dorf, M., Dufour, G., Grunow, K., Jeseck, P., Kühl, S., Payan, S., Pepin, I., Pukite, J., Rozanov, A., von Savigny, C., Sioris, C., Wagner, T., Weidner, F., and Pfeilsticker, K. (2006): Intercomparison of stratospheric O 3 and NO_{2} abundances retrieved from balloon borne direct sun observations and Envisat/SCIAMACHY limb measurements, Atmos. Chem. Phys., 6, 1293-1314, https://doi.org/10.5194/acp-6-1293-2006
Callis, L.B., Russell, J.M., III, Haggard, K.V. and Natarajan, M. (1983): Examination of wintertime latitudinal gradients in stratospheric No2 using theory and LIMS observations. Geophys. Res. Lett., 10: 945-948. https://doi.org/10.1029/GL010i010p00945
605 von Clarmann, T. (2013): Chlorine in the stratosphere. Atmósfera, 26 (3), 415-458, https://doi.org/10.1016/S0187-6236(13)71086-5.

Compernolle, S., Verhoelst, T., Pinardi, G., Granville, J., Hubert, D., Keppens, A., Niemeijer, S., Rino, B., Bais, A., Beirle, S., Boersma, F., Burrows, J. P., De Smedt, I., Eskes, H., Goutail, F., Hendrick, F., Lorente, A., Pazmino, A., Piters, A., Peters, E., Pommereau, J.-P., Remmers, J., Richter, A., van Geffen, J., Van Roozendael, M., Wagner, T., and Lambert, J.C. (2020): Validation of Aura-OMI QA4ECV NO2 climate data records with ground-based DOAS networks: the role of measurement and comparison uncertainties, Atmos. Chem. Phys., 20, 8017-8045, https://doi.org/10.5194/acp-20-8017$\underline{2020}$

Cook, P.A. and Roscoe, H.K. (2009): Variability and trends in stratospheric NO_{2} in Antarctic summer, and implications for stratospheric NOy, Atmos. Chem. Phys., 9, 3601-3612, https://doi.org/10.5194/acp-9-3601-2009
615 Davies, S., Mann, G.W., Carslaw, K.S., Chipperfield, M.P., Remedios, J.J., Allen, G., Waterfall, A.M., Spang, R., and Toon, G.C. (2006): Testing our understanding of Arctic denitrification using MIPAS-E satellite measurements in winter 2002/2003, Atmos. Chem. Phys., 6, 3149-3161, https://doi.org/10.5194/acp-6-3149-2006.
Dessler, A. (2000), Chemistry and Physics of Stratospheric Ozone, Elsevier, ISBN 9780080500966.
Dirksen, R.J., Boersma, K.F., Eskes, H.J., Ionov, D.V., Bucsela, E.J., Levelt, P.F. and Kelder, H.M. (2011): Evaluation of stratospheric NO_{2} retrieved from the Ozone Monitoring Instrument: Intercomparison, diurnal cycle, and trending, J. Geophys. Res. 116, D08305, 22 pp., https://doi.org/10.1029/2010JD014943
Dubé, K., Randel, W., Bourassa, A., Zawada, D., McLinden, C., and Degenstein, D. (2020): Trends and variability in stratospheric NOx derived from merged SAGE II and OSIRIS satellite observations. Journal Geophysical Research: Atmospheres, 125, e2019JD031798. https://doi.org/10.1029/2019JD031798
Dubé, K., Bourassa, A., Zawada, D., Degenstein, D., Damadeo, R., Flittner, D., and Randel, W. (2021): Accounting for the photochemical variation in stratospheric NO2 in the SAGE III/ISS solar occultation retrieval, Atmos. Meas. Tech., 14, 557-566, https://doi.org/10.5194/amt-14-557-2021
Errera, Q., and D. Fonteyn (2001), Four-dimensional variational chemical assimilation of CRISTA stratospheric measurements, J. Geophys. Res., 106(D11), 12253-12265, doi:10.1029/2001JD900010
Eskes, H., van Velthoven, P., Valks, P. and Kelder, H. (2003): Assimilation of GOME total ozone satellite observations in a three-dimensional tracer transport model, Q.J.R. Meteorol. Soc. 129, 1663-1681, v/10.1256/qj.02.14
Eskes, H.J. and Eichmann K.-U. (2022): S5P MPC Product Readme Nitrogen Dioxide, Report S5P-MPC-KNMI-PRF-NO ${ }_{2}$, version 2.2, 2022-07-20, ESA, http://www.tropomi.eu/data-products/ nitrogen-dioxide/ (last access: 06 Dec. 2022)
Eskes, H. , van Geffen, J., Sneep, M., Veefkind, P., Niemeijer, S. and Zehner, C. (2021): S5P Nitrogen Dioxide v02.03.01 intermediate reprocessing on the S5P-PAL system: Readme file Report, version 1.0, 2021-12-15, ESA, https://data-portal.s5p-pal.com/products/ NO_{2}. html (last access: 06 Dec. 2022)
Eskes, H.J., van Geffen, J.H.G.M., Boersma, K.F., Eichmann K.-U.. Apituley, A., Pedergnana, M., Sneep, M., Veefkind, J.P., and Loyola, D. (2021): S5P/TROPOMI Level-2 Product User Manual Nitrogen Dioxide, Report S5P-KNMI-L2-0021-MA, version 4.0.2, ESA, http://www.tropomi.eu/data-products/nitrogen-dioxide/

Formatted: Default Paragraph Font, English (United Kingdom) Chan, K.R. (1989): Measurements of nitric oxide and total reactive nitrogen in the Antarctic stratosphere: Observations and chemical implications, J. Geophys. Res., 94(D14), 16665-16681, https://doi.org/10.1029/JD094iD14p16665
Fahey, D., Solomon, S., Kawa, S., Lowenstein, M., Podolske, J.J., Strahan, S.E., and Chan, K.R. (1990): A diagnostic for denitrification in the winter polar stratospheres, Nature, 345, 698-702, https://doi.org/10.1038/345698a0

645 Farman, J., Gardiner, B., and Shanklin, J. (1985): Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207-210, https://doi.org/10.1038/315207a0
France, J.L., King, M.D., Frey, M.M., Erbland, J., Picard, G., Preunkert, S., MacArthur, A., and Savarino, J. (2011): Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen, Atmos. Chem. Phys., 11, 9787-9801, https://doi.org/10.5194/acp-11-9787-2011.
Frey, M.M., Brough, N., France, J.L., Anderson, P.S., Traulle, O., King, M.D., Jones, A.E., Wolff, E. W., and Savarino, J. (2013): The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions, Atmos. Chem. Phys., 13, 3045-3062, https://doi.org/10.5194/acp-13-3045-2013 Frey, M.M., Roscoe, H.K., Kukui, A., Savarino, J., France, J.L., King, M.D., Legrand, M., and Preunkert, S. (2015): Atmospheric nitrogen oxides (NO and NO2) at Dome C, East Antarctica, during the OPALE campaign, Atmos. Chem. 655 Phys., 15, 7859-7875, https://doi.org/10.5194/acp-15-7859-2015

Funke, B., López-Puertas, M., Gil-López, S., von Clarmann, T., Stiller, G.P., Fischer, H., and Kellmann, S. (2005): Downward transport of upper atmospheric NOx into the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters, J. Geophys. Res., 110, D24308, https://doi.org/10.1029/2005JD006463
Garcia, R.R., and Solomon, S. (1994): A new numerical model of the middle atmosphere: 2. Ozone and related species, J. Geophys. Res., 99(D6), 12937-12951, https://doi.org/10.1029/94JD00725
van Geffen, J.H.G.M., Eskes, H.J., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J.-C., Sneep, M., ter Linden, M., Ludewig, A., Boersma, K.F. and Veefkind, J.P.: Sentinel-5P TROPOMI NO 2 retrieval (2022a): impact of version v2.2 improvements and comparisons with OMI and ground-based data, Atmos. Meas. Tech., 15, 2037-2060, https://doi.org/10.5194/amt15-2037-2022, 2022a.
665 van Geffen, J.H.G.M., Eskes, H.J., Boersma, K.F., and Veefkind, J.P. (2022b): TROPOMI ATBD of the total and tropospheric NO_{2} data products, Report S5P-KNMI-L2-0005-RP, version 2.4.0, 202207-11, KNMI, De Bilt, The Netherlands, http://www.tropomi. eu/data-products/nitrogen-dioxide/ (last access: 06 Dec. 2022)
Gil, M., and Cacho, J. (1992): NO_{2} total column evolution during the 1989 spring at Antarctica Peninsula. J Atmos Chem 15, 187-200, https://doi.org/10.1007/BF00053759
670 Goldman, A., Fernald, F.A., Williams, W.J., and Murcray, D.G. (1978), Vertical distribution of NO_{2} in the stratosphere as determined from balloon measurements of solar spectra in the $4500 \AA$ region, Geophys. Res. Lett., 5, 257, https://doi.org/10.1029/GL005i004p00257

Gordon, E.M., Seppälä, A., and Tamminen, J. (2020): Evidence for energetic particle precipitation and quasi-biennial oscillation modulations of the Antarctic NO2 springtime stratospheric column from OMI observations, Atmos. Chem. Phys., 20, 6259-6271, https://doi.org/10.5194/acp-20-6259-2020

Haley, C., Brohede, S., Sioris, C., Griffioen, E., Murtagh, D., Mcdade, I., Eriksson, P., Llewellyn, E., Bazureau, A., and Goutail, F. (2004): Retrieval of stratospheric O 3 and NO_{2} profiles from Odin Optical Spectrograph and Infrared Imager System (OSIRIS) limb-scattered sunlight measurements. Journal of Geophysical Research, 109, D16303, https://doi.org/10.1029/2004JD004588
680 Hendrick, F., Barret, B., Van Roozendael, M., Boesch, H., Butz, A., De Mazière, M., Goutail, F., Hermans, C., Lambert, J.C., Pfeilsticker, K., and Pommereau, J.-P. (2004): Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: validation of the technique through correlative comparisons, Atmos. Chem. Phys., 4, 2091-2106, https://doi.org/10.5194/acp-4-2091-2004
Hendrick, F., Pommereau, J.-P., Goutail, F., Evans, R.D., Ionov, D., Pazmino, A., Kyrö, E., Held, G., Eriksen, P., Dorokhov, 685 V., Gil, M., and Van Roozendael, M. (2011): NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations, Atmos. Chem. Phys., 11, 5975-5995, https://doi.org/10.5194/acp-11-5975-2011

Hilboll, A., Richter, A., Rozanov, A., Hodnebrog, Ø., Heckel, A., Solberg, S., Stordal, F., and Burrows, J.P. (2013): Improvements to the retrieval of tropospheric NO_{2} from satellite - stratospheric correction using SCIAMACHY limb/nadir matching and comparison to Oslo CTM2 simulations, Atmos. Meas. Tech., 6, 565-584, https://doi.org/10.5194/amt-6-565-2013

Hoffmann, L., Rößler, T., Stein, O., Wu, X., and Hertzog, A. (2017): Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations. Atmospheric Chemistry \& Physics, 17(13), 8045-8061, https://doi.org/10.5194/acp-17-8045-2017
Hoor, P., Fischer, H., Lange, L., Lelieveld, J., and Brunner, D. (2002): Seasonal variations of a mixing layer in the lowermost stratosphere as identified by the CO-O3 correlation from in situ measurements, J. Geophys. Res., 107(D5), https://doi.org/10.1029/2000JD000289
Hurwitz, M.M., Fleming, E.L., Newman, P.A., Li, F., Mlawer, E., Cady-Pereira, K., and Bailey, R. (2015): Ozone depletion by hydrofluorocarbons, Geophys. Res. Lett., 42, 8686-8692, https://doi.org/10.1002/2015GL065856
Joseph, B., and B. Legras (2002), Relation between Kinematic Boundaries, Stirring, and Barriers for the Antarctic Polar Vortex. J. Atmos. Sci., 59, 1198-1212, doi:10.1175/1520-0469(2002)059<1198:RBKBSA>2.0.CO;2.
Kerzenmacher, T., Wolff, M.A., Strong, K., Dupuy, E., Walker, K.A., Amekudzi, L.K., Batchelor, R. L., Bernath, P.F., Berthet, G., Blumenstock, T., Boone, C.D., Bramstedt, K., Brogniez, C., Brohede, S., Burrows, J.P., Catoire, V., Dodion, J., Drummond, J.R., Dufour, D.G., Funke, B., Fussen, D., Goutail, F., Griffith, D.W.T., Haley, C.S., Hendrick, F., Höpfner, M., Huret, N., Jones, N., Kar, J., Kramer, I., Llewellyn, E.J., López-Puertas, M., Manney, G., McElroy, C.T., McLinden, C.A., Melo, S., Mikuteit, S., Murtagh, D., Nichitiu, F., Notholt, J., Nowlan, C., Piccolo, C., Pommereau, J.-P.,

Randall, C., Raspollini, P., Ridolfi, M., Richter, A., Schneider, M., Schrems, O., Silicani, M., Stiller, G.P., Taylor, J., Tétard, C., Toohey, M., Vanhellemont, F., Warneke, T., Zawodny, J.M., and Zou, J. (2008): Validation of NO_{2} and NO from the Atmospheric Chemistry Experiment (ACE), Atmos. Chem. Phys., 8, 5801-5841, https://doi.org/10.5194/acp-8-5801-2008.

Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tencé, F., Bekki, S., Bourassa, A., Rieger, L., Zawada, D., Jumelet. J., and Godin-Beekmann, S. (2020): The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Communications Earth \& Environment, 1(1), 1- 12, https://doi.org/10.1038/s43247-020-00022-5

715 Khaykin, S.M., de Laat, A.T.J., Godin-Beekmann, S.. Hauchecorne, A., and M. Ratynski (2022): Unexpected self-lofting and dynamical confinement of volcanic plumes: the Raikoke 2019 case. Sci Rep 12, 22409 https://doi.org/10.1038/s41598-022-27021-0
Khosrawi, F., Urban, J., Pitts, M.C., Voelger, P., Achtert, P., Kaphlanov, M., Santee, M.L., Manney, G. L., Murtagh, D., and Fricke, K.-H. (2011): Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010, Atmos. Chem. Phys., 11, 8471-8487, https://doi.org/10.5194/acp-11-8471-2011
Khosrawi, F., Kirner, O., Sinnhuber, B.-M., Johansson, S., Höpfner, M., Santee, M.L., Froidevaux, L., Ungermann, J., Ruhnke, R., Woiwode, W., Oelhaf, H., and Braesicke, P. (2017): Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter, Atmos. Chem. Phys., 17, 12893-12910, https://doi.org/10.5194/acp-17-12893-2017

Koh, T.Y., and Legras, B. (2002); Hyperbolic lines and the stratospheric polar vortex, Chaos, 1 June 2002, 12 (2), 382-394, https://doi.org/10.1063/1.1480442

Kondo, Y., Matthews, W.A., Solomon, S., Koike, M., Hayashi, M., Yamazaki, K., Nakajima, H., and Tsukui, K. (1994): Ground-based measurements of column amounts of NO_{2} over Syowa Station, Antarctica, J. Geophys. Res., 99(D7), 14535-14548, https://doi.org/10.1029/94JD00403
Krasauskas, L., Ungermann, J., Preusse, P., Friedl-Vallon, F., Zahn, A., Ziereis, H., Rolf, C., Plöger, F., Konopka, P., Vogel, B., and Riese, M. (2021): 3-D tomographic observations of Rossby wave breaking over the North Atlantic during the WISE aircraft campaign in 2017, Atmos. Chem. Phys., 21, 10249-10272, https://doi.org/10.5194/acp-21-10249-2021.
Kritten, L., Butz, A., Dorf, M., Deutschmann, T., Kühl, S., Prados-Roman, C., Puk̦īte, J., Rozanov, A., Schofield, R., and Pfeilsticker, K. (2010): Time dependent profile retrieval of UV/vis absorbing radicals from balloon-borne limb measurements - a case study on NO_{2} and O3, Atmos. Meas. Tech., 3, 933-946, https://doi.org/10.5194/amt-3-933-2010
Krotkov N, Realmuto, V., Li, C., Seftor, C., Li, J., Brentzel, K., Stuefer, M., Cable, J., Dierking, C., Delamere, J., Schneider, D., Tamminen, J., Hassinen, S., Ryyppö, T., Murray, J., Carn, S., Osiensky, J., Eckstein, N., Layne, G., and Kirkendall, J. (2021): Day-Night Monitoring of Volcanic SO2 and Ash Clouds for Aviation Avoidance at Northern Polar Latitudes. Remote Sensing. 13(19):4003, https://doi.org/10.3390/rs13194003

Kühl, S., Wilms-Grabe, W., Frankenberg, C., Grzegorski, M., Platt, U., and Wagner, T. (2006): Comparison of OClO nadir measurements from SCIAMACHY and GOME, Adv. Space Res., 37, 2247-2253, https://doi.org/10.1016/j.asr.2005.06.061
Kühl, S., Pukite, J., Deutschmann, T., Platt, U., and Wagner, T. (2008): SCIAMACHY limb measurements of NO_{2}, BrO and OClO. Retrieval of vertical profiles: Algorithm, first results, sensitivity and comparison studies, Advances in Space Research, 42(10), 1747-1764
5 de Laat, A., van Weele, M. (2011): The 2010 Antarctic ozone hole: Observed reduction in ozone destruction by minor sudden stratospheric warmings. Sci Rep 1, 38), https://doi.org/10.1038/srep00038
Lambert, J.-C., Compernolle, S., Eichmann, K.-U., de Graaf, M., Hubert, D., Keppens, A., Kleipool, Q., Langerock, B., Sha, M.K., Verhoelst, T., Wagner, T., Ahn, C., Argyrouli, A., Balis, D., Chan, K.L., De Smedt, I., Eskes, H., Fjæraa, A. M., Garane, K., Gleason, J.F., Goutail, F., Granville, J., Hedelt, P., Heue, K.-P., Jaross, G., Koukouli, M.-L., Landgraf, J., Lutz, R., Nanda, S., Niemeijer, S., Pazmiño, A., Pinardi, G., Pommereau, J.-P., Richter, A., Rozemeijer, N., Sneep, M., Stein Zweers, D., Theys, N., Tilstra, G., Torres, O., Valks, P., van Geffen, J., Vigouroux, C., Wang, P. and Weber, M. (2023): Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products, \#16: April 2018 August 2022, S5P MPC Routine Operations Consolidated Validation Report series, Issue 16.01.00, 189 pp., 2022-09-23, http://mpc-vdaf.tropomi.eu/index.php/nitrogen-dioxide/ (last access: June 2023)
Lecouffe, A., Godin-Beekmann, S., Pazmiño, A., and Hauchecorne, A. (2022): Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979-2020, Atmos. Chem. Phys., 22, 4187-4200, https://doi.org/10.5194/acp-22-4187-2022
de Leeuw, J., Schmidt, A., Witham, C.S., Theys, N., Taylor, I.A., Grainger, R.G., Pope, R.J., Haywood, J., Osborne, M., and Kristiansen, N.I. (2021): The 2019 Raikoke volcanic eruption - Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide, Atmos. Chem. Phys., 21, 10851-10879, https://doi.org/10.5194/acp-21-10851-2021
Lindenmaier, R., Strong, K., Batchelor, R.L., Bernath, P.F., Chabrillat, S., Chipperfield, M.P., Daffer, W. H., Drummond, J.R., Feng, W., Jonsson, A.I., Kolonjari, F., Manney, G.L., McLinden, C., Ménard, R., and Walker, K.A. (2011): A study of the Arctic NOy budget above Eureka, Canada, J. Geophys. Res., 116, D23302, https://doi.org/10.1029/2011JD016207
Magaritz-Ronen, L., and Raveh-Rubin, S. (2021): Wildfire smoke highlights troposphere-to-stratosphere pathway. Geophysical Research Letters, 48, e2021GL095848. https://doi.org/10.1029/2021GL095848
Maliniemi, V., Nesse Tyssøy, H., Smith-Johnsen, C., Arsenovic, P., and Marsh, D.R. (2021): Effects of enhanced downwelling of NOx on Antarctic upper-stratospheric ozone in the 21st century, Atmos. Chem. Phys., 21, 11041-11052, https://doi.org/10.5194/acp-21-11041-2021
Manney, G.L., Santee, M.L., Livesey, N.J., Froidevaux, L., Read, W.G., Pumphrey, H.C., Waters, J.W., and Pawson, S. (2005): EOS Microwave Limb Sounder observations of the Antarctic polar vortex breakup in 2004, Geophys. Res. Lett., 32, L12811, doi:10.1029/2005GL022823

Mount, G.H., Rusch, D.W., Noxon, J.F., Zawodny, J.M., and Barth, C.A. (1984): Measurements of stratospheric NO ${ }_{2}$ from the Solar Mesosphere Explorer satellite: 1. An overview of the results, J. Geophys. Res., 89 (D1), 1327- 1340, doi:10.1029/JD089iD01p01327

775 Müller, R. (2021): The impact of the rise in atmospheric nitrous oxide on stratospheric ozone. Ambio 50, 35-39, https://doi.org/10.1007/s13280-020-01428-3

Müller, R., Grooß, J.-U., Lemmen, C., Heinze, D., Dameris, M., and Bodeker, G. (2008): Simple measures of ozone depletion in the polar stratosphere, Atmos. Chem. Phys., 8, 251-264, https://doi.org/10.5194/acp-8-251-2008
Munro, R., Eisinger, M., Anderson, C., Callies, J., Corpaccioli, E. Lang, R., Lefebvre, A., Livschitz, Y. and Albinana (2006), GOME-2 on MetOp, Proceedings of the 2006 EUMETSAT Meteorological Satellite Conference, Helsinki, Finland. Vol. 1216, ESA publication SP 628, Paris, 2006
Munro, R., Lang, R., Klaes, D., Poli, G., Retscher, C., Lind-strot, R., Huckle, R., Lacan, A., Grzegorski, M., Holdak, A.,Kokhanovsky, A., Livschitz, J. and Eisinger, M. (2016): The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing - an overview, Atmos. Meas. Tech., 9, 1279-1301, https://doi.org/10.5194/amt-9-1279-2016,
Newman, P.A., Lait, L.R., Schoeberl, M.R., Seablom, M., Coy, L., Rood, R., Swinbank, R., Proffitt, M., Loewenstein, M., Podolske, J.R., Elkins, J.W.,Webster, C.R., May, R.D., Fahey, D.W., Dutton, G.S., and Chan, K.R. (1996), Measurements of polar vortex air in the midlatitudes, J. Geophys. Res., 101 (D8), $12879 \mathrm{https}: / /$ doi.org/10.1029/95JD03387.

Noxon, J.F. (1978): Stratospheric NO_{2} in the Antarctic winter. Geophys. Res. Lett., 5, 1021-1022, https://doi.org/10.1029/GL005i012p01021
Noxon, J.F. (1979): Stratospheric NO_{2} : 2. Global behavior, J. Geophys. Res. 84 (C8), 5067-5076, https://doi.org/10.1029/JC084iC08p05067
Oetjen, H., Wittrock, F., Richter, A., Chipperfield, M.P., Medeke, T., Sheode, N., Sinnhuber, B.-M., Sinnhuber, M., and Burrows, J.P. (2011): Evaluation of stratospheric chlorine chemistry for the Arctic spring 2005 using modelled and measured OClO column densities, Atmos. Chem. Phys., 11, 689-703, https://doi.org/10.5194/acp-11-689-2011
Oppenheimer, C., Kyle, P.R., Tsanev, V.I., McGonigle, A.J.S., Mather, T.A. and Sweeney, D., (2005): Mt. Erebus, the largest point source of NO 2 in Antarctica. Atmospheric Environment, 39 (32), pp.6000-6006, https://doi.org/10.1016/j.atmosenv.2005.06.036
Orsolini, Y.J., and Grant, W.B. (2000): Seasonal formation of nitrous oxide laminae in the mid and low latitude stratosphere. Geophysical research letters, 27(8), 1119-1122. https://doi.org/10.1029/95JD03387.
Pinardi, G., Van Roozendael, M., Hendrick, F., Richter, A., Valks, P., Alwarda, R., Bognar, K., Frieß, U., Granville, J., Gu, M., Johnston, P., Prados-Roman, C., Querel, R., Strong, K., Wagner, T., Wittrock, F., and Yela Gonzalez, M. (2022): Ground-based validation of the MetOp-A and MetOp-B GOME-2 OClO measurements, Atmos. Meas. Tech., 15, 34393463, https://doi.org/10.5194/amt-15-3439-2022

Plumb, R.A. (2007): Tracer interrelationships in the stratosphere, Rev. Geophys., 45, RG4005, https://doi.org/10.1029/2005RG000179.
Pommereau, J. P., and Goutail, F. (1988): O3 and NO_{2} ground-based measurements by visible spectrometry during Arctic winter and spring 1988. Geophysical Research Letters, 15(8), 891-894, https://doi.org/10.1029/GL015i008p00891

Puķīte, J., Borger, C., Dörner, S., Gu, M., Frieß, U., Meier, A.C., Enell, C.-F., Raffalski, U., Richter, A., and Wagner, T. (2021): Retrieval algorithm for OClO from TROPOMI (TROPOspheric Monitoring Instrument) by differential optical absorption spectroscopy, Atmos. Meas. Tech., 14, 7595-7625, https://doi.org/10.5194/amt-14-7595-2021
Randall, C.E., Rusch, D.W., Bevilacqua, R.M., Hoppel, K.W., and Lumpe, J.D. (1998): Polar Ozone and Aerosol Measurement (POAM) II stratospheric $\mathrm{NO}_{2}, 1993-1996$, J. Geophys. Res., 103(D21), 28361- 28371, https://doi.org/10.1029/98JD02092
, Lentagn, D., Llewellyn, E.J., Mégie, G., Kyröla, E., Leppelmeir, G.W., Auvinen, H., Boonne, C., Brohede, S., Degenstein, D.A., de La Noë, J., Dupuy, E., El Amraoui, L., Eriksson, P., Evans, W.F.J., Frisk, U., Gattinger, R.L., Girod, F., Haley, C.S., Hassinen, S., Hauchecorne, A., Jimenez, C., Kyrö, E., Lautié, N., Le Flochmoën, E., Lloyd, N.D., McConnell, J.C., McDade, I.C., Nordh, L., Olberg, M., Pazmino, A., Petelina, S.V., Sandqvist, A., Seppälä, A., Sioris, C.E., Solheim, B.H., Stegman, J., Strong, K., Taalas, P., Urban, J., von Savigny, C., von Scheele, F., and Witt, G. (2005): Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite, J. Geophys. Res., 110, D05302, https://doi.org/10.1029/2004JD005018
Richter, A., Wittrock, F., Weber, M., Beirle, S., Kühl, S., Platt, U., Wagner, T., Wilms-Grabe, W. and Burrows, J.P. (2005). GOME observations of stratospheric trace gas distributions during the splitting vortex event in the Antarctic winter of 2002. Part I: Measurements. Journal of the atmospheric sciences, 62(3), 778-785, https://doi.org/10.1175/JAS-3325.1

Ridley, B.A., Luu, S.H., Hastie, D.R., Schiff, H.I., McConnell, J.C., Evans, W.F. J., McElroy, C.T., Kerr, J.B., Fast, H., and O'Brien, R.S. (1984): Stratospheric odd nitrogen: Measurements of HNO3, NO, NO2, and O3 near $54^{\circ} \mathrm{N}$ in winter, J. Geophys. Res., 89(D3), 4797-4820, doi:10.1029/JD089iD03p04797
Rinsland, C.P., Gunson, M.R., Salawitch, R.J., Michelsen, H.A., Zander, R., Newchurch, M.J., Abbas, M.M., Abrams, M.C., Manney, G.L., Chang, A.Y., Irion, F.W., Goldman, A., and Mahieu, E. (1996): ATMOS/ATLAS-3 measurements of stratospheric chlorine and reactive nitrogen partitioning inside and outside the November 1994 Antarctic vortex. Geophysical research letters, 23(17), 2365-2368, https://doi.org/10.1029/96GL01474
Ronsmans, G., Langerock, B., Wespes, C., Hannigan, J.W., Hase, F., Kerzenmacher, T., Mahieu, E., Schneider, M., Smale, D., Hurtmans, D., De Mazière, M., Clerbaux, C., and Coheur, P.-F. (2016): First characterization and validation of FORLI- HNO_{3} vertical profiles retrieved from IASI/Metop, Atmos. Meas. Tech., 9, 4783-4801, https://doi.org/10.5194/amt-9-4783-2016
Russell, J.M., Solomon, S., Gordley, L.L., Remsberg, E.E., and Callis, L.B. (1984): The variability of stratospheric and mesospheric NO_{2} in the polar winter night observed by LIMS, J. Geophys. Res., 89(D5), 7267- 7275, doi:10.1029/JD089iD05p07267

Stone, K.A., Solomon, S., Kinnison, D.E., and Mills, M.J. (2021): On recent large Antarctic ozone holes and ozone recovery metrics. Geophysical Research Letters, 48, e2021GL095232. https://doi.org/10.1029/2021GL095232
Salawitch, R., Gobbi, G., Wofsy, S., and McElroy, M.B. (1989): Denitrification in the Antarctic stratosphere, Nature, 339, 525-527, https://doi.org/10.1038/339525a0
Santee, M.L., MacKenzie, I.A., Manney, G.L., Chipperfield, M.P., Bernath, P.F., Walker, K.A., Boone, C.D., Froidevaux, L., Livesey, N.J., and Waters, J.W. (2008): A study of stratospheric chlorine partitioning based on new satellite measurements and modeling, J. Geophys. Res., 113, D12307, https://doi.org/10.1029/2007JD009057
Sato, K., Tomikawa, Y., Hashida, G., Yamanouchi, T., Nakajima, H., and Sugita, T. (2009): Longitudinally Dependent Ozone Increase in the Antarctic Polar Vortex Revealed by Balloon and Satellite Observations, J. Atmos. Sci., 66, 18071820, https://doi.org/10.1175/2008JAS2904.1.
Schoeberl, M.R., Lait, L.R., Newman, P.A., and Rosenfield, J.E. (1992): The structure of the polar vortex, J. Geophys. Res., 97 (D8), 7859-7882, https://doi.org/10.1029/91JD02168
Sanders, R.W., Solomon, S., Kreher, K., and Johnston, P.V. (1999): An Intercomparison of NO_{2} and OClO Measurements at Arrival Heights, Antarctica during Austral Spring 1996. Journal of Atmospheric Chemistry 33, 283-298, https://doi.org/10.1023/A:1006185027584
von Savigny, C., Rozanov, A., Bovensmann, H., Eichmann, K.-U., Noel, S., Rozanov, V. V., Sinnhuber, B.-M., Weber, M., Burrows, J. P., and Kaiser, J. (2005): The ozone hole break-up in September 2002 as seen by SCIAMACHY on ENVISAT, J. Atmos. Sci., 62, 721-734, https://doi.org/10.1175/JAS-3328.1
Smale, D., Strahan, S.E., Querel, R., Frieß, U., Nedoluha, G.E., Nichol, S.E., Robinson, J., Boyd, I., Kotkamp, M., Gomez, R.M., Murphy, M., Tran, H., and McGaw, J. (2021): Evolution of observed ozone, trace gases, and meteorological variables over Arrival Heights, Antarctica ($77.8^{\circ} \mathrm{S}, 166.7^{\circ} \mathrm{E}$) during the 2019 Antarctic stratospheric sudden warming, Tellus B: Chemical and Physical Meteorology, 73:1, 1-18, https://doi.org/10.1080/16000889.2021.1933783
Sofieva, V.F., Kalakoski, N., Verronen, P.T., Päivärinta, S.-M., Kyrölä, E., Backman, L., and Tamminen, J. (2012): Polarnight O3, NO_{2} and NO3 distributions during sudden stratospheric warmings in 2003-2008 as seen by GOMOS/Envisat, Atmos. Chem. Phys., 12, 1051-1066, https://doi.org/10.5194/acp-12-1051-2012
Solomon, S., and Garcia, R.R. (1983): On the distribution of nitrogen dioxide in the high-latitude stratosphere, J. Geophys. Res., 88(C9), 5229-5239, https://doi.org/10.1029/JC088iC09p05229
Solomon, S. (1990): Nitrogen chemistry in Antarctica: A brief review. Dynamics, Transport and Photochemistry in the Middle Atmosphere of the Southern Hemisphere, NATO ASI Series book series (ASIC) volume 321, 191-201
Solomon, S., and Keys, J.G. (1992): Seasonal variations in Antarctic NO x chemistry, J. Geophys. Res., 97(D8), 79717978, https://doi.org/10.1029/91JD01707
870 Solomon, S., Ivy, D.J., Kinnison, D., Mills, M.J., Neely III, R.R., and Schmidt, A. (2016): Emergence of healing in the Antarctic ozone layer, Science, 353, 269-274, https://doi.org/ 10.1126/science.aae0061

Solomon, S., Smith, J.P., Sanders, R.W., Perliski, L., Miller, H.L., Mount, G.H., Keys, J.G., and Schmeltekopf, A.L. (1993): Visible and near-ultraviolet spectroscopy at McMurdo Station, Antarctica: 8. Observations of nighttime NO_{2} and NO 3 from April to October 1991, J. Geophys. Res., 98(D1), 993-1000, https://doi.org/10.1029/92JD02390
875 Stone, K.A., Solomon, S., Kinnison, D.E., and Mills, M.J. (2021): On recent large Antarctic ozone holes and ozone recovery metrics. Geophysical Research Letters, 48, e2021GL095232. https://doi.org/10.1029/2021 GL095232

Strahan, S.E., Douglass, A.R., Newman, P.A., and Steenrod, S.D. (2014): Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery, J. Geophys. Res. Atmos., 119, 14,098- 14,109, https://doi.org/:10.1002/2014JD022295
880 Strahan, S.E., Douglass, A.R., and Damon, M.R. (2019): Why do Antarctic ozone recovery trends vary?. Journal of Geophysical Research: Atmospheres, 124, 8837 - 8850. https://doi.org/10.1029/2019JD030996
Strode, S.A., Taha, G., Oman, L.D., Damadeo, R., Flittner, D., Schoeberl, M., Sioris, C.E., and Stauffer, R. (2022): SAGE III/ISS ozone and NO_{2} validation using diurnal scaling factors, Atmos. Meas. Tech., 15, 6145-6161, https://doi.org/10.5194/amt-15-6145-2022
Struthers, H., Kreher, K., Austin, J., Schofield, R., Bodeker, G., Johnston, P., Shiona, H., and Thomas, A. (2004): Past and future simulations of NO_{2} from a coupled chemistry-climate model in comparison with observations, Atmos. Chem. Phys., 4, 2227-2239, https://doi.org/10.5194/acp-4-2227-2004
Tabazadeh, A., Santee, M.L., Danilin, M.Y., Pumphrey, H.C., Newman, P.A., Hamill, P.J., and Mergenthaler, J.L. (2000): Quantifying Denitrification and Its Effect on Ozone Recovery, Science 288, 1407-1411, https://doi.org/10.1126/science.288.5470.1407

Toon, G.C., Farmer, C.B., Lowes, L.L., Schaper, P.W., Blavier, J.-F., and Norton, R.H. (1989): Infrared aircraft measurements of stratospheric composition over Antarctica during September 1987, J. Geophys. Res., 94(D14), 1657116596, doi:10.1029/JD094iD14p16571
Valks, P., Pinardi, G., Richter, A., Lambert, J.-C., Hao, N., Loyola, D., Van Roozendael, M., and Emmadi, S. (2011): Operational total and tropospheric NO2 column retrieval for GOME-2, Atmos. Meas. Tech., 4, 1491-1514, https://doi.org/10.5194/amt-4-1491-2011
van Geffen, J., Van Weele, M., Allaart, M. and Van der A, R. (2017): TEMIS UV index and UV dose operational data products, version 2, Royal Netherlands Meteorological Institute (KNMI), Dataset, https://doi.org/10.21944/temis-uv-operv2
900 van Geffen, J.H.G.M., Boersma, K.F., Eskes, H.J., Sneep, M., ter Linden, M., Zara, M. and Veefkind, J.P. (2020): S5P/TROPOMI NO_{2} slant column retrieval: method, stability, uncertainties and comparisons with OMI, Atmos. Meas. Tech., 13, 1315-1335, https://doi.org/10.5194/amt-13-1315-2020,

Veefkind, J.P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H.J., de Haan, J.F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H. and Levelt, P.F. (2012): TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global
observations of the atmospheric composition for climate, air quality and ozone layer applications, Rem. Sens. Environment, 120, 70-83, https://doi.org/10.1016/j.rse.2011.09.027
Veefkind, P. and Loyola, D. (2022): S5P/TROPOMI Level-2 Product User Manual Nitrogen Dioxide, Report S5P-KNMI-L2-0021-MA, version 4.1.0, 2022-07-11, ESA, http://www.tropomi.eu/data-products/ nitrogen-dioxide/ (last access: 06 Dec. 2022)
Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H. J., Eichmann, K.-U., Fjæraa, A.M., Granville, J., Niemeijer, S., Cede, A., Tiefengraber, M., Hendrick, F., Pazmiño, A., Bais, A., Bazureau, A., Boersma, K.F., Bognar, K., Dehn, A., Donner, S., Elokhov, A., Gebetsberger, M., Goutail, F., Grutter de la Mora, M., Gruzdev, A., Gratsea, M., Hansen, G.H., Irie, H., Jepsen, N., Kanaya, Y., Karagkiozidis, D., Kivi, R., Kreher, K., Levelt, P.F., Liu, C., Müller, M., 915 Navarro Comas, M., Piters, A.J.M., Pommereau, J.-P., Portafaix, T., Prados-Roman, C., Puentedura, O., Querel, R., Remmers, J., Richter, A., Rimmer, J., Rivera Cárdenas, C., Saavedra de Miguel, L., Sinyakov, V.P., Stremme, W., Strong, K., Van Roozendael, M., Veefkind, J.P., Wagner, T., Wittrock, F., Yela González, M., and Zehner, C. (2021): Groundbased validation of the Copernicus Sentinel-5P TROPOMI NO ${ }_{2}$ measurements with the NDACC ZSL-DOAS, MAXDOAS and Pandonia global networks, Atmos. Meas. Tech., 14, 481-510, https://doi.org/10.5194/amt-14-481-2021
920 Wargan, K., Weir, B., Manney, G.L., Cohn, S.E., and Livesey, N.J. (2020): The anomalous 2019 Antarctic ozone hole in the GEOS Constituent Data Assimilation System with MLS observations, J. of Geoph. Res. Atm., 125, e2020JD033335. https://doi.org/10.1029/2020JD033335
Waugh, D.W., and Plumb, R.A. (1994): Contour advection with surgery: A technique for investigating finescale structure in tracer transport, Journal of atmospheric sciences, 51 (4), 530-540, https://doi.org/10.1175/15200469(1994)051<0530:CAWSAT>2.0.CO;2
Waugh, D.W., and Polvani, L.M. (2010), Stratospheric polar vortices. in: The Stratosphere: Dynamics, Transport, and Chemistry, L M. Polvani (Editor), A.H. Sobel (Editor), D.W. Waugh (Editor), ISBN: 978-0-875-90479-5
Weimer, M., Kinnison, D.E., Wilka, C., and Solomon, S. (2022): Effects of denitrification on the distributions of trace gas abundances in the polar regions: a model-data comparison, EGUsphere (preprint), doi: 10.5194/egusphere-2022-1422
930 Wenig, M., Ku"hl, S., Beirle, S., Bucsela, E., Ja"hne, B., Platt, U., Gleason, J., and Wagner, T. (2004): Retrieval and analysis of stratospheric NO_{2} from the Global Ozone Monitoring Experiment, J. Geophys. Res., 109, D04315, https://doi.org/10.1029/2003JD003652.
Wespes, C., Hurtmans, D., Clerbaux, C., Santee, M.L., Martin, R.V., and Coheur, P.F. (2009), Global distributions of nitric acid from IASI/MetOP measurements, Atmos. Chem. Phys., 9, 7949-7962, https://doi.org/10.5194/acp-9-7949-2009
935 Wespes, C., Ronsmans, G., Clarisse, L., Solomon, S., Hurtmans, D., Clerbaux, C., and Coheur, P.-F. (2022): Polar stratospheric nitric acid depletion surveyed from a decadal dataset of IASI total columns, Atmos. Chem. Phys., 22, 1099311007, https://doi.org/10.5194/acp-22-10993-2022

Yela, M., Parrondo, C., Gil, M., Rodríguez, S., Araujo, J., Ochoa, H., Deferrari, G., and Díaz, S. (2005): The September 2002 Antarctic vortex major warming as observed by visible spectroscopy and ozone soundings, International Journal of 940 Remote Sensing, 26:16, 3361-3376, https://doi.org/10.1080/01431160500076285

Yela, M., Gil-Ojeda, M., Navarro-Comas, M., Gonzalez-Bartolomé, D., Puentedura, O., Funke, B., Iglesias, J., Rodríguez, S., García, O., Ochoa, H., and Deferrari, G. (2017): Hemispheric asymmetry in stratospheric NO_{2} trends, Atmos. Chem. Phys., 17, 13373-13389, https://doi.org/10.5194/acp-17-13373-2017

Zempila, M.M., Van Geffen, J.H.G.M., Taylor, M., Fountoulakis, I., Koukouli, M.E., Van Weele, M., Van der A, R.J., Bais, 945 A., Meleti, C. and Balis, D. (2017): TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece, Atmos. Chem. Phys., 17, 7157-7174, https://doi.org/10.5194/acp-17-7157-2017

Appendix

Figure A1.
As Figure 1A but color coded according to time of the year (color coding also used in Figure 1B).

Figure A2A.
As Figure 1A but for the other surface measurement stations in table 1.

Figure A2B.
As Figure 1B but for the other surface measurement stations in table 1.

Figure 43.
As Figure 5 but for TROPOMI $\mathrm{TCO}_{\mathbb{1}}$ pixel data collocated with TROPOMI SNO_{2} pixel data.

Formatted: Subscript
Formatted: Subscript

