1 Quasi-10-day wave activity in the southern high-latitude MLT

2 region and its relation to the large-scale instability and

3 gravity wave drag

4

5 Wonseok Lee¹, In-Sun Song¹, Byeong-Gwon Song¹, Yong Ha Kim²

6

7 ¹Department of Atmospheric Sciences, Yonsei University, Seoul 03722, South Korea

1

8 ²Department of Astronomy and Space Science, Chungnam National University,

9 Daejeon 34134, South Korea

10

11 Correspondence to: In-Sun Song (songi@yonsei.ac.kr)

13	Abstract. Seasonal variation of westward-propagating quasi-10-day wave (Q10DW) in
14	the mesosphere and lower thermosphere of the Southern Hemisphere (SH) high-latitude
15	regions is investigated using meteor radar (MR) observations for the period of 2012-
16	2016 and Specified Dynamics (SD) version of the Whole Atmosphere Community
17	Climate Model (WACCM). The phase difference of meridional winds measured by two
18	MRs located in Antarctica gives observational estimates of the amplitude and phase of
19	Q10DW with zonal wavenumber 1 (W1). The amplitude of the observed Q10DW-W1 is
20	large around equinoxes. In order to elucidate the variations of the observed Q10DW-W1
21	and its possible amplification mechanism, we carry out two SD-WACCM experiments
22	nudged towards the MERRA-2 reanalysis from the surface up to ~ 60 km (EXP60) and
23	${\sim}75$ km (EXP75). Results of the EXP75 indicate that the observed Q10DW-W1 can be
24	amplified around the barotropic/baroclinic instability regions in the middle mesosphere
25	around 60°S–70°S. In the EXP60, it is also found that Q10DW-W1 is amplified around
26	the instability regions, but the amplitude is too large compared with MR observations.
27	The large-scale instability in the EXP60 in the SH summer mesosphere is stronger than
28	that in the EXP75 and Microwave Limb Sounder observation. The larger instability in
29	the EXP60 is related to the large meridional and vertical variations of polar mesospheric
30	zonal winds in association with gravity wave parameterization (GWP). Given
31	uncertainties inherent in GWP, these results can suggest that it is possible for models to
32	spuriously generate traveling planetary waves such as Q10DW, especially in summer,
33	due to the excessively strong large-scale instability in the SH high-latitude mesosphere.

Deleted: associated

35 1 Introduction

36	A series of Rossby normal modes (free oscillations) is the homogeneous solution
37	of the governing equations on a sphere linearized with respect to the isothermal and
38	quiescent reference atmosphere (e.g., Andrews et al., 1987; Forbes et al., 1995; Salby,
39	1984). Traveling normal modes exhibit clear planetary-scale spatiotemporal oscillations
40	throughout the whole atmosphere, and for sufficiently large amplitudes, these traveling
41	planetary waves (PWs) can play an important role in the momentum and energy transfer
42	to the mean flow (Salby, 1984). Three gravest traveling normal modes have been
43	observed: Westward-propagating zonal-wavenumber-1 PWs with periods of
44	approximately 5, 10, and 16 days. The classical wave theory based on the isothermal
45	and quiescent atmosphere gives the theoretical periods of 5, 8.3, and 12.5 day, but the
46	periods in the real atmosphere can be shifted to values close to 5, 10, and 16 days,
47	respectively (Salby, 1981a, b), due to influences of the vertical and meridional variation
48	of the mean horizontal winds and temperature.
49	Among the gravest modes, the quasi-5-day wave (Q5DW) and quasi-16-day
50	wave (Q16DW) have extensively been studied through observations, modeling, and
51	assimilation products: Ground-based observations (e.g., Day and Mitchell, 2010; He et
52	al., 2020b; Mitra et al., 2022), satellite observations (e.g., Forbes and Zhang, 2017;
53	Huang et al., 2022), reanalysis data (e.g., Huang et al., 2017), and simulations (e.g., Qin
54	et al., 2021). Using meteor radars (MRs) located in the northern and southern polar
55	regions, Day and Mitchell (2010) showed that PW activity is strong during winter and
56	the seasonal variation of PW is similar in both polar regions. According to Qin et al.
57	(2021) and Mitra et al. (2022), the barotropic and baroclinic instabilities are the possible

	58	sources of Q5DW and Q16DW in that the waves can draw energy from the mean flow	
	59	in the instability region. The disturbance of zonal-mean flow frequently occurs during	
	60	the large-scale meteorological events such as sudden stratospheric warming (SSW). It	
	61	has been reported that the amplitude of Q5DW or Q16DW increases during SSW events	
	62	(Eswaraiah et al., 2016; Lee et al., 2021; Li et al., 2021; Ma et al., 2022). In addition,	
	63	the amplified PWs can interact with tidal waves through the in-situ nonlinear	Deleted: modulate the periods of tides
I	64	interaction, resulting ionospheric disturbances during SSW (e.g., Goncharenko et al.,	
	65	2020; Forbes et al., 2021; Liu et al., 2021; Qin et al., 2019).	
	66	In contrast, the westward propagating quasi-10-day wave (Q10DW) with zonal	
	67	wavenumber 1 (W1) has received little attention compared to the other gravest normal	
	68	modes. Forbes and Zhang (2015) showed that Q10DW-W1 has a mean period of 9.8 \pm	
	69	0.4 days using the temperature measurements from the Sounding of the Atmosphere	
	70	using Broadband Emission Radiometry (SABER) instrument mounted on NASA's	
	71	TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics) satellite in	
	72	2002–2013. They presented that the large amplitude of Q10DW-W1 is found in the	
	73	mid-latitude (40–50° latitude) mesosphere and lower thermosphere (MLT) region of	Deleted: high
I	74	both hemispheres in equinoxes, although their results are limited to the latitude of 50°	
	75	because of the yaw cycle of the satellite. Hirooka (2000) reported that the global	
	76	structure of Q10DW-W1 using the Improved Stratosphere and Mesospheric Souder	
	77	(ISAMS) instrument aboard Upper Atmosphere Research Satellite (UARS) from	
	78	November 1991 to May 1992. The results also showed that the Q10DW-W1 is active	
	79	during equinoxes and winter at 0.1 hPa (~65 km). In addition, it is found that	
	80	nonuniform and background zonal wind field can influence the structure of the wave in	
	81	the mesosphere. The amplitude of the Q10DW-W1 is uniform or decays in the vertical	

	84	near the mesopause, and it does not increase above the mesosphere, even though the
	85	critical layer is absent. Using the airglow intensities simulated by the global circulation
	86	model assimilated by the reanalysis data from ground to 30 km, Egito et al. (2017) also
	87	found that the 10-day oscillation is dominant from autumn to spring in the mid-latitude
	88	MLT region. More recently, Huang et al. (2021) investigated the Q10DW activity based
	89	on the Modern-Era Retrospective analysis for Research and Applications version 2
	90	(MERRA-2) reanalysis data. They showed that the dominant components of Q10DW
l	91	are westward-propagating waves with zonal wavenumber 1 during winter and spring in
l	92	the stratosphere and mesosphere and eastward-propagating waves with zonal
	93	wavenumber 1 and 2, which are excited in the mesospheric instability region. Although
	94	both westward and eastward Q10DW modes are found, they mainly focus on the
Ì	95	eastward propagating Q10DW
	96	Several studies have investigated the response of Q10DW-W1 to SSWs.
	96 97	Several studies have investigated the response of Q10DW-W1 to SSWs. Matthias et al. (2012) conducted a composite analysis of wave activities during major
	97	Matthias et al. (2012) conducted a composite analysis of wave activities during major
	97 98	Matthias et al. (2012) conducted a composite analysis of wave activities during major Northern Hemisphere (NH) SSWs from 1989 to 1998, revealing an amplification of
	97 98 99	Matthias et al. (2012) conducted a composite analysis of wave activities during major Northern Hemisphere (NH) SSWs from 1989 to 1998, revealing an amplification of Q10DW-W1 in the NH high-latitude MLT region following major SSW events. He et
	97 98 99 100	Matthias et al. (2012) conducted a composite analysis of wave activities during major Northern Hemisphere (NH) SSWs from 1989 to 1998, revealing an amplification of Q10DW-W1 in the NH high-latitude MLT region following major SSW events. He et al. (2022a, 2022b) utilized NH MRs to observe the occurrence of Q10DW-W1 and
	97 98 99 100 101	Matthias et al. (2012) conducted a composite analysis of wave activities during major Northern Hemisphere (NH) SSWs from 1989 to 1998, revealing an amplification of Q10DW-W1 in the NH high-latitude MLT region following major SSW events. He et al. (2022a, 2022b) utilized NH MRs to observe the occurrence of Q10DW-W1 and Q16DW-W1 during four winter major SSWs. They found that these waves persisted for
	97 98 99 100 101 102	Matthias et al. (2012) conducted a composite analysis of wave activities during major Northern Hemisphere (NH) SSWs from 1989 to 1998, revealing an amplification of Q10DW-W1 in the NH high-latitude MLT region following major SSW events. He et al. (2022a, 2022b) utilized NH MRs to observe the occurrence of Q10DW-W1 and Q16DW-W1 during four winter major SSWs. They found that these waves persisted for approximately three to five whole cycles during the events. Chandran et al. (2013)
	 97 98 99 100 101 102 103 	Matthias et al. (2012) conducted a composite analysis of wave activities during major Northern Hemisphere (NH) SSWs from 1989 to 1998, revealing an amplification of Q10DW-W1 in the NH high-latitude MLT region following major SSW events. He et al. (2022a, 2022b) utilized NH MRs to observe the occurrence of Q10DW-W1 and Q16DW-W1 during four winter major SSWs. They found that these waves persisted for approximately three to five whole cycles during the events. Chandran et al. (2013) examined the forcing of secondary PWs-W1 driven by stratospheric instability on zonal
	 97 98 99 100 101 102 103 104 	Matthias et al. (2012) conducted a composite analysis of wave activities during major Northern Hemisphere (NH) SSWs from 1989 to 1998, revealing an amplification of Q10DW-W1 in the NH high-latitude MLT region following major SSW events. He et al. (2022a, 2022b) utilized NH MRs to observe the occurrence of Q10DW-W1 and Q16DW-W1 during four winter major SSWs. They found that these waves persisted for approximately three to five whole cycles during the events. Chandran et al. (2013) examined the forcing of secondary PWs-W1 driven by stratospheric instability on zonal winds as a response to 2012 NH minor SSW. Sassi and Liu (2014) conducted numerical

109	equatorward propagation of secondary PWs was also reported by Qin et al. (2022).	
110	They suggested that secondary PWs-W1 with periods of 10 to 16 days generated in the	
111	high-latitude NH during sudden stratospheric final warming could impact the Southern	
112	Hemisphere (SH) stratosphere, depending on the phase of Quasi-Biennial Oscillation	
113	(QBO). In the SH, studies by Lee et al. (2021) and Wang et al. (2021) using SH MRs	
114	reported that Q10DW was amplified prior to 2019 SH SSW. Yamazaki and Matthias	
115	(2019) reported that the Q10DW-W1 is not only intensified during SSWs but also	
116	affected by seasonal timing of SSWs (i.e., final stratospheric warming) in stratospheric	
117	instability regions.	
118	While the amplification mechanism of Q10DW-W1 generated following SSWs	
119	has been addressed in previous studies (e.g., Qin et al., 2022, Yin et al., 2023), the	
120	specific mechanisms driving their seasonal amplification during equinoxes remain less	
121	explored. In the present study, we focus on the seasonal variation of Q10DW-W1 in the	
122	SH high-latitude MLT region using MRs located in Antarctica. Plus, we carry out	
123	numerical simulations using the Specified Dynamics version of the Whole Atmosphere	
124	Community Climate Model (SD-WACCM) nudged towards MERRA-2 reanalysis data	
125	in order to elucidate the observed Q10DW-W1 and its amplification mechanism.	
126	Section 2 describes two MRs located in the Davis station (68.6°S, 77.9°E) and King	
127	Sejong Station (KSS; 62.2°S, 58.8°W) and how we obtain Q10DW-W1 from the	
128	observations. Also, the SD-WACCM experiments and Microwave Limb Sounder	
129	(MLS) data used for validation are described in Section 2. Results are presented in	
130	Section 3. In Section 3.1, we show seasonal variation of observed and modeled	
131	Q10DW-W1 in the SH high-latitude MLT region. The amplification mechanism of	
132	Q10DW is discussed in Section 3.2. Q10DW activities from SD-WACCM simulations	
	6	

Deleted: not only winter

Deleted: Southern Hemisphere (SH)

Deleted: Some studies have investigated the climatological and general properties of Q10DW-W1 activities in the mid- and low-latitudes, but their seasonal variation in the high-latitude MLT region has not been fully explored. In addition, the amplification mechanism of Q10DW-W1 still has not been investigated.

140 are demonstrated in Section 3.3. In Section 4, the results are summarized, and their

141 implications are discussed.

142

143 2. Data and Method

144 2.1 Meteor Radars

145 In this study, we use two MRs located in the Davis station (68.6°S, 77.9°E) and King Sejong Station (KSS; 62.2°S, 58.8°W), Antarctica from 2012 to 2016. The 146 147 operating frequencies of both Davis and KSS MRs are 33.2 MHz and the peak powers are 6.8 kW and 12 kW, respectively. Details of the operation parameters of Davis and 148 149 KSS are summarized in Holdsworth et al. (2008) and Lee et al. (2018), respectively. A large number of studies has been performed to investigate the PW or tidal activities in 150 the MLT region with a single-station measurements of horizontal winds from an MR 151 (e.g., Eswaraiah et al., 2019; Luo et al., 2021; Wang et al., 2021; Liu et al., 2022; Lee et 152 al., 2021). However, single-station analysis has a limitation in diagnosing the wave 153 154 propagation direction, and thus most of such studies focused on the timing of 155 occurrence and amplitude variations of wave with a particular periodicity. For detailed 156 analysis of PWs based on the Rossby normal modes, propagation directions and 157 wavenumbers need to be considered. Recently, He et al. (2018) developed a method of 158 estimating wave propagation direction and wavenumber as well as amplitude by 159 adopting Phase Differencing Technique (PDT) to longitudinally separated MR 160 observations based on the method of Walker et al. (2004). Since the longitude difference (λ_{Δ}) between Davis and KSS is about 137°, it is appropriate for analyzing 161 PWs with zonal wavenumber 1 by applying the PDT. In order to estimate the zonal 162

163	wavenumber (s), we first make a continuous wavelet transform from the daily-mean
164	Davis and KSS MRs data $(W_{(f,t)}^{Davis}, W_{(f,t)}^{KSS})$, respectively, using the Morlet wavelet
165	function as a mother wavelet function (Torrence and Compo, 1998). Then, the cross
166	wavelet spectrum $C_{(f,t)}$ is derived: $C_{(f,t)} = W_{(f,t)}^{*Davis} W_{(f,t)}^{KSS}$, where * denotes the complex
167	conjugate. Using the phase difference (θ_{Δ}) obtained from $\theta_{\Delta} = \operatorname{Arg}(C_{(f,t)})$ at a given
168	frequency and time, we estimate zonal wavenumber (s): $s = (-\theta_{\Delta}/(2\pi) + C)/\lambda_{\Delta}$. In
169	this study, we focus on the PW activity with $s = 1$, and the number of whole wave cycle
170	(C) between two stations is set to be zero (see He et al., 2018 for detailed PDT analysis).
171	Classical wave theory shows that the latitudinal structures of zonal and
172	meridional wind components for Q10DW normal mode from the Laplace tidal equation
173	are antisymmetric and symmetric with respect to the equator, respectively (e.g., Figure 1
174	in Yamazaki and Matthias, 2019). The magnitude of Q10DW-W1 has maxima at the
175	latitude of 25° and poles for zonal and meridional wind components, respectively.
176	Around the latitude of 65°S close to the latitudes of the two MR observation sites, the
177	normalized amplitude of Q10DW-W1 normal mode for the zonal wind is nearly zero,
178	but the normalized normal mode magnitude for the meridional wind is larger than the
179	half of the maximum magnitude for the meridional wind (Yamazaki and Matthias,
180	2019). For this reason, daily-mean meridional wind data from the MRs is used for the
181	Q10DW analysis.
182	

183 2.2 SD-WACCM

184 In this study, for detailed analysis of the observed Q10DW-W1 activity and its

185 amplification mechanism, we compare observational results with Q10DW-W1

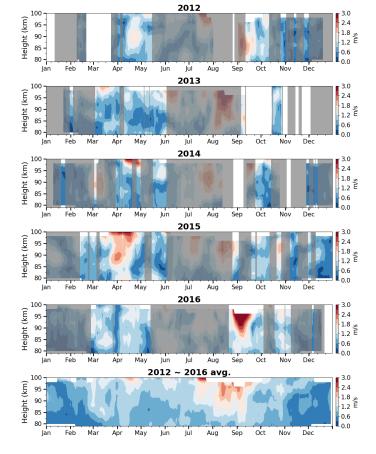
Deleted: wind

187	simulated using the Specified Dynamics (SD) version of WACCM version 4 (Marsh et	
188	al., 2013). WACCM4 is a high-top (up to the lower thermosphere about 140 km)	
189	atmospheric component model of the Community Earth System Model developed at the	
190	National Center for Atmospheric Research. WACCM4 employs Community	
191	Atmospheric Model (CAM) version 4 physics package. The default horizontal	
192	resolution of WACCM4 is $1.9^{\circ} \times 2.5^{\circ}$ (lat. × long.), and it uses the 88 hybrid sigma	
193	vertical levels for the SD mode. Since we focus on the PWs such as Q10DW-W1, daily-	
194	mean values from the SD-WACCM are used. In this study, two SD-WACCM	
195	experiments with two different nudging depths (EXP60 and EXP75) are performed. In	
196	the EXP60 and EXP75, model variables are nudged towards the MERRA-2 reanalysis	
197	data from surface to about 60 km in altitude and 75 km, respectively. The MERRA-2	
198	reanalysis is produced by assimilating various types of observations into the Goddard	
199	Earth Observing System version 6 (GEOS_6) global model (Gelaro et al., 2017). In	
200	addition to conventional meteorological observations and operational satellite	
201	measurements, the Earth Observing System (EOS) Aura MLS temperature and ozone	
202	data are included in the assimilation procedure of the MERRA-2 from 5 hPa (~37 km)	
203	up to 0.02 hPa (~75 km) and from 250 hPa (~10 km) to 0.1 hPa (~65 km), respectively	Deleted: above
204	(Gelaro et al., 2017; McCormack et al., 2021), There is a divergence damping layer near	Deleted: 5 hPa (~37 km)
205	the top boundary of the GEOS-6 model used for production of the MERRA-2 reanalysis	Deleted: , but the use of the sponge is based on the divergence damping in the MERRA-2
206	(Fujiwara et al., 2017). The divergence damping is often used to effectively and	
207	selectively remove high-frequency (noisy) gravity waves keeping the large-scale	
208	circulation and PWs structure less changed (Jablonowski and Williamson, 2011). As a	
209	result, MERRA-2 reanalysis can reflect the <u>large-scale</u> MLT variabilities (c.g.,	Deleted: see
210	McCormack et al., 2021; Harvey et al., 2021). As suggested by Brakebusch et al.	Deleted: ; https://www.sparc-climate.org/sparc-report-no-10

217 (2013), nudging coefficients for EXP60 and EXP75 are 0.01 s⁻¹ below the altitudes of 218 50 km and 65 km, respectively, and they linearly decrease and become zero above the 219 altitudes of 60 km and 75 km, respectively. 220 WACCM simulation requires the data of sea surface temperature, sea ice 221 fraction, solar and geomagnetic indices, and ionization rate by energetic particle precipitation (EPP) for the time period of simulations. The sea surface temperature and 222 sea ice fraction data are produced by the NOAA Optimum Interpolation (Reynolds et 223 al., 2002). The solar and geomagnetic indices are obtained from NASA GSFC/SPDF 224 OMNIWeb interface (https://omniweb.gsfc.nasa.gov/ow.html). The EPP ionization rate 225 226 is provided by the CCMI reference-C2 data for the period of 1960-2100 (Eyring et al., 2013). Regarding MLT dynamics, effects of gravity wave drag (GWD) are crucial. 227 228 WACCM includes a suite of GWD parameterizations (Richter et al., 2010) for effects of 229 unresolved GW momentum transfer from orography (McFarlane, 1987), deep 230 convection (Beres et al., 2005), and frontal activity (Charron and Manzini, 2002). SD-231 WACCM simulations start from January 1, 2011 and end at the end of 2016. First one-232 year results are discarded as a spin-up, and results for 2012-2016 are compared with 233 MR observations.

234

235 2.3 MLS

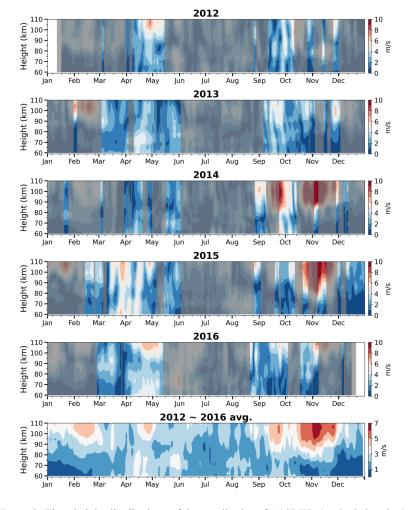

For validation of Q10DW-W1 estimates obtained from MR observations, we
derive the geostrophic winds from geopotential height (GPH) data (version 5.1 product)
measured using MLS onboard the NASA's EOS Aura satellite (Schwartz et al., 2008).
Geostrophic wind components are computed following Matthias and Ern (2018). The

240	Aura satellite launched on July 2004 is in a sun-synchronous orbit with an altitude of
241	705 km. Spatial coverage of MLS instrument is from 82°S to 82°N with a 165 km
242	resolution along the track. The sun-synchronous orbit of Aura satellite can provide a
243	global coverage data per day with about 15 orbits. The global coverage of GPH is
244	produced using daily mean values in $5^{\circ}\times5^{\circ}$ (lat. \times long.) grids. In this process, GPH
245	data is filtered on the basis of the recommended precision, status, quality, and
246	convergence thresholds of Version 5.0 Level 2 and 3 data quality and description
247	document (https://mls.jpl.nasa.gov/data/v5-0_data_quality_document.pdf).
248	
249	3. Results and Discussion
250	3.1 Seasonal variation of Q10DW-W1 in the MLT region
251	The perturbation meridional wind for Q10DW-W1 is symmetric in latitude
	The perturbation meridional wind for Q10DW-W1 is symmetric in latitude about the equator as mentioned earlier. Therefore, in order to extract and analyze
252	
251 252 253 254	about the equator as mentioned earlier. Therefore, in order to extract and analyze
252 253 254	about the equator as mentioned earlier. Therefore, in order to extract and analyze Q10DW-W1, which is potentially related to the Rossby normal mode in the MLT
252 253 254 255	about the equator as mentioned earlier. Therefore, in order to extract and analyze Q10DW-W1, which is potentially related to the Rossby normal mode in the MLT region, it is necessary to confirm whether the latitudinal structure of Q10DW-W1 has
252 253	about the equator as mentioned earlier. Therefore, in order to extract and analyze Q10DW-W1, which is potentially related to the Rossby normal mode in the MLT region, it is necessary to confirm whether the latitudinal structure of Q10DW-W1 has the hemispheric symmetry. Although the KSS and Davis MR observations can provide
 252 253 254 255 256 	about the equator as mentioned earlier. Therefore, in order to extract and analyze Q10DW-W1, which is potentially related to the Rossby normal mode in the MLT region, it is necessary to confirm whether the latitudinal structure of Q10DW-W1 has the hemispheric symmetry. Although the KSS and Davis MR observations can provide information about the longitudinal propagation of Q10DW-W1, it is impossible to
 252 253 254 255 256 257 	about the equator as mentioned earlier. Therefore, in order to extract and analyze Q10DW-W1, which is potentially related to the Rossby normal mode in the MLT region, it is necessary to confirm whether the latitudinal structure of Q10DW-W1 has the hemispheric symmetry. Although the KSS and Davis MR observations can provide information about the longitudinal propagation of Q10DW-W1, it is impossible to estimate the latitudinal structure using these radars alone. In this study, the meridional
 252 253 254 255 256 257 258 	about the equator as mentioned earlier. Therefore, in order to extract and analyze Q10DW-W1, which is potentially related to the Rossby normal mode in the MLT region, it is necessary to confirm whether the latitudinal structure of Q10DW-W1 has the hemispheric symmetry. Although the KSS and Davis MR observations can provide information about the longitudinal propagation of Q10DW-W1, it is impossible to estimate the latitudinal structure using these radars alone. In this study, the meridional geostrophic winds obtained from the MLS geopotential data are used to confirm the
252 253 254 255 256 257 258 259	about the equator as mentioned earlier. Therefore, in order to extract and analyze Q10DW-W1, which is potentially related to the Rossby normal mode in the MLT region, it is necessary to confirm whether the latitudinal structure of Q10DW-W1 has the hemispheric symmetry. Although the KSS and Davis MR observations can provide information about the longitudinal propagation of Q10DW-W1, it is impossible to estimate the latitudinal structure using these radars alone. In this study, the meridional geostrophic winds obtained from the MLS geopotential data are used to confirm the hemispheric symmetry of Q10DW-W1 estimated from MRs. The amplitudes of

26	3 of the amplitude of Q10DW-W1 derived from the MLS geostrophic meridional wind	
26	4 averaged over the height range of 80–90 km is presented in the Supplement (Fig. S1).	
26	5 Hereafter, the Q10DW denotes westward-propagating quasi-10-day normal mode wave	
26	6 with zonal wavenumber 1 and the hemispheric symmetry, where quasi-10-day	
26	7 periodicity means the periods between 9 and 11 days. Unless the hemispheric symmetry	
26	8 is satisfied, the analyzed westward propagating signals with zonal wavenumber 1 are	
26	9 referred to as quasi-10-day-like oscillations (Q10DOs).	
27	0 Figure 1 shows the time-height distributions of the amplitudes of Q10DWs and	
27	1 Q10DOs derived from the daily-mean meridional winds observed at the Davis and KSS	
27	2 MRs using the PDT method. The regions shaded in gray represent the time periods	
27	3 when the hemispheric symmetry is not found in the MLS results as shown in Fig. S1.	
27	4 The time periods of the hemispheric symmetries are defined by the periods when the	
27	5 amplitudes of the MLS meridional geostrophic winds (vertically averaged over 80–90	
27	6 km) with quasi-10-day periodicity exceed 3.5 m s ^{-1} in both 60°N–80°N and 60°S–80°S.	
27	7 The MLS results in solstices are generally shaded in gray (see Fig. S1). This result	
27	8 indicates that Q10DWs in a form of normal modes are found during equinoxes, which is	
27	9 consistent with the results from Forbes and Zhang (2015). Using the periods of the	
28	0 hemispheric symmetry of the Q10DW obtained from the MLS, we identify the normal	
28	1 mode Q10DW from the Davis and KSS MR observations.	
28	2 The 5-yr average (The bottom-most panel of Fig. 1) between 2012 and 2016	
28	3 indicates that the Q10DWs are generally enhanced from late February to April and from	
28	4 late August to September in the altitude range of 82–98 km with the maximum	
28	5 amplitude of 2.6 m s ⁻¹ . The Q10DWs are usually more amplified in early spring from	De
28	6 late August to September with the largest amplitudes around the altitudes of 90–95 km.	

Deleted: 27.2

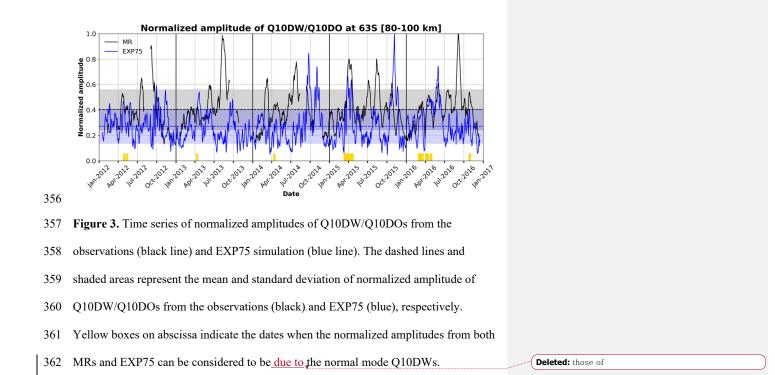
288	Large amplitudes are found in winter (July to mid-August), but they are unlikely to	
289	represent the normal mode Q10DWs, as it is clear from the gray shading in winter.	
290	According to Wang et al. (2021), the nonlinear wave-wave interaction can generate	
291	Q10DOs in southern winter. Their Q10DOs are eastward propagating, interacting with	
292	stationary PWs with zonal wavenumber 1. Meanwhile, the Q10DWs and Q10DOs (Fig.	
293	1) obtained from two MRs using the PDT method are westward propagating.	
294	Understanding of the mechanisms of the winter-time westward-propagating Q10DOs is	
295	beyond the scope of this study, and it requires continuing researches.	
296	For individual years, it is also found that the amplitude of Q10DW is generally	
297	large in equinoxes (see panels for each year in Figs. 1 and S1). During March-April	
298	(autumn), active Q10DWs are identified, and their amplitudes reach up to $\sim 3 m s^{-1}$ in	Deleted: 33
299	2014 and 2015. Particularly, the peak in September (spring) is prominent in 2016. These	
300	MR observation results are remarkably consistent with results obtained using satellite	
201		
301	geopotential height in the SH high-latitude region (Forbes and Zhang, 2015).	
301	geopotential height in the SH high-latitude region (Forbes and Zhang, 2015). Occasionally, large amplitude Q10DWs are observed near the altitude of 98–100 km in	
302	Occasionally, large amplitude Q10DWs are observed near the altitude of 98–100 km in	
302 303	Occasionally, large amplitude Q10DWs are observed near the altitude of 98–100 km in equinoxes (e.g., April 2015), but results around 100 km can be less reliable because the	



308 Figure 1. Time-height distributions of the amplitudes of Q10DWs (unshaded region)

- 309 and Q10DOs (shaded region) derived from meridional winds observed by MRs at Davis
- 310 (<u>68.6°S, 77.9°E</u>) and KSS (<u>62.2°S, 58.8°W</u>) for 2012–2016. The bottom-most panel
- 311 shows the 5-yr average from 2012 to 2016. The gray shading represents time periods
- 312 where the hemispheric symmetry is unclear in the MLS results (see the text for details
- 313 of the unclearness of symmetry)

Deleted:


315	Figure 2 demonstrates the time-height distributions of the amplitudes of	
316	Q10DWs and Q10DOs around the latitude of 63°S in the EXP75 SD-WACCM	
317	simulation for the altitude range of 60–110 km for 2012–2016, along with the	
318	hemispheric symmetry period obtained from the MLS results. The bottom-most panel of	
319	Fig. 2 shows the 5-yr average from 2012 to 2016. The amplitudes are obtained by	
320	decomposing the meridional winds obtained from the simulation into westward	
321	propagating Fourier modes with zonal wavenumber 1 using the 2D FFT in time (30-day	
322	sliding window) and longitude domain around 63°S. From Fig. 2, it is clear that the	
323	seasonal variations of Q10DW amplitudes obtained from the simulation have year-to-	
324	year variations, as in the Q10DW amplitudes derived from the two MRs. However, the	
325	Q10DW activities observed from the MR observations are generally larger than those in	
326	the EXP75 simulation (see Fig. 1).	
327	The 5-yr average in Fig. 2 shows that there are four main time periods	
328	(February, April, September, November) when the modeled Q10DWs and Q10DOs are	
329	active in the EXP75. The time periods of April and September are consistent with the	Deleted: in
330	MR observations in terms of Q10DW amplitudes and the hemispheric symmetry	
331	obtained from the MLS, but the other periods are not. The active signals simulated in	
332	February and November do not appear to be normal mode Q10DWs because the	
333	hemispheric symmetry is not seen in the MLS data during February and November. For	
334	a more comprehensive understanding of the Q10DOs in the EXP75 during February and	
335	November, we will discuss in more detail later in Section 3.3 by comparing between the	
336	EXP75 and EXP60.	

Q10DW/Q10DO Amp. from EXP75 (meridional wind) at 63S

Figure 2. Time-height distributions of the amplitudes of Q10DWs (unshaded region)
and Q10DOs (shaded region) around 63°S for 2012–2016 in the EXP75. The bottommost panel shows the 5-yr average between 2012 and 2016. The gray shaded areas
represent periods where the hemispheric symmetry is not observed in the MLS results.

343 Figure 3 shows time series of the normalized amplitudes of Q10DWs and 344 Q10DOs obtained from the MR observations (black) and EXP75 simulation (blue). 345 Normalization is carried out by averaging the amplitudes in the altitude range between 80 and 100 km and dividing the 5-yr averaged values by the respective maximum 346 347 values in the same altitude range. We select the dates when (i) the amplitudes obtained from both MRs and EXP75 exceed their respective 5-yr mean values, (ii) their 348 correlation is relatively large (> 0.6), and (iii) the hemispheric symmetry occurs in the 349 350 MLS results. The correlation coefficients are computed for sliding 7-day windows with 1-day step. The dates when the three criteria are satisfied are represented by yellow 351 352 boxes on abscissa in Fig. 3. The total number of the dates when the Q10DW was 353 substantially active in both observations and model (EXP75) is 46. Using EXP75 results 354 on the selected dates, the amplification mechanisms of the observed Q10DW will be 355 discussed.

364 3.2 Amplification mechanisms of Q10DW

365	The amplitude of upward propagating PWs grows with height when their	
366	vertical propagation is allowed, but it can decrease with height in the evanescent region	
367	where the square of refractive index n^2 becomes negative. Regions of negative n^2 are	
368	often accompanied by regions of the negative latitudinal gradient of zonal-mean	
369	potential vorticity (q_{ϕ}) , where q is the zonal-mean quasi-geostrophic potential vorticity	
370	(QGPV), the overbar denotes zonal averaging, ϕ is the latitude, and the subscript ϕ	
371	denotes the partial derivative in the latitudinal direction. In the regions of negative q_{ϕ} ,	
372	the barotropic and baroclinic instabilities can occur (Matsuno, 1970), and it is known	
373	that PWs can amplify extracting energy from the mean flow while they pass through the	
374	instability regions (Meyer and Forbes, 1997; Cohen et al., 2013). If PWs somehow	
375	reach their critical lines within an instability region, it is possible for these PWs to	
376	tunnel through the critical lines (Rhodes et al., 2021). In case that the evanescent region	
377	is thin enough, and the PWs can reach their critical lines, it is also possible for the	
378	overreflection to take place, resulting in the amplified PWs and the propagation of the	
379	amplified PWs out of the overreflection region (Lindzen et al., 1980; Rhodes et al.,	Deleted: -
380	2021).	
381	Another possible way of modulating PWs is their excitation by the	
382	nonconservative GW forcing (Song et al., 2020). Nonconservative GWD forcing	Deleted:
383	(NCGWD; Z') can generate PWs as it is clearly seen from the perturbation QGPV	
384	equation given in the form of wave action conservation equation (1) when diabatic	
385	forcing is ignored in Z' [see Andrews et al. (1987) and Palmer (1982) for details]:	
386		

389
$$\frac{\partial A}{\partial t} + \nabla \cdot \mathbf{F} = \rho_0 \overline{Z' q'_{(M)}} / (q_{\phi}/a),$$

391 where a is the earth's mean radius; ρ_0 is the reference density given as an exponentially 392 decreasing function of log-pressure height z; the prime denotes the perturbation from the respective zonal mean; A, defined below using $q'_{(M)^{2}}$ is the wave-activity density in the 393 spherical QG system; $q'_{(M)}$ is the perturbation of modified QGPV, modified to consider 394 the planetary vorticity advection by the isallobaric meridional wind in spherical geometry 395 396 (Matsuno, 1970; Palmer, 1982); Z' is the curl of the horizontal GWD perturbation; $\nabla \cdot \mathbf{F}$ is the divergence of Eliassen-Palm (EP) flux (F), and the flux F is considered to be the 397 wave-activity flux given by $\mathbf{F} = \mathbf{c}_g A$ in the QG framework, where \mathbf{c}_g is the group velocity 398 399 in the latitude-height domain.

400 In (1), the wave-activity density A and the modified QGPV perturbation $q'_{(M)}$ are 401 given in spherical geometry (Palmer, 1982), respectively, as follows:

402

403
$$A = a \cos \phi \frac{1}{2} \rho_0 \frac{\overline{q'_{(M)}^2}}{q_{\phi/a}},$$
 (2)

404
$$q'_{(M)} = \frac{v'_{\lambda}}{a\cos\phi} - \frac{f}{a\cos\phi} \left(\frac{u'\cos\phi}{f}\right)_{\phi} + \frac{f}{\rho_0} \left(\rho_0 \frac{\theta'}{\theta_z}\right)_z,$$
(3)

405

406 where *u* and *v* are zonal and meridional wind components, respectively; λ is the 407 longitude; *f* is the Coriolis parameter; θ is the potential temperature. The subscript λ and 408 *z* mean the partial derivatives in longitude and vertical directions, respectively. Deleted: Where

(1)

For understanding of amplification of PWs around the instability regions, the barotropic and baroclinic instability regions are determined by the negative sign of q_{ϕ} 411 (Andrews et al. 1987) given by: 412

413

414
$$q_{\phi} = 2\Omega \cos \phi - \left[\frac{(u\cos\phi)_{\phi}}{a\cos\phi}\right]_{\phi} - \frac{a}{\rho_0} \left(\frac{\rho_0 f^2}{N^2} u_z\right)_z, \qquad (4)$$

415

416 where Ω is the earth's rotation rate and N is the buoyancy frequency. The negative sign of q_{ϕ} is a necessary condition of the barotropic and baroclinic instabilities. The second 417 (with negative sign) and third (with negative sign) terms on the right-hand side of (4) 418 419 represent the meridional and vertical curvatures of the zonal-mean zonal wind, 420 respectively. If the second or third term is dominant, q_{ϕ} can become negative, and the 421 instabilities can take place.

The square of refractive index n^2 is used to analyze the propagation 422 characteristics of PWs and depends on the mean QGPV gradient as follows: 423

424

425
$$n^2 = \frac{q_\phi}{a(u-c)} - \frac{s^2}{a^2 \cos^2 \phi} - \frac{f^2}{4N^2 H^2},$$
 (5)

426

where c is the zonal phase speed of single PW (i.e., $c = 2\pi a \cos \phi / (s\tau)$; s is the zonal 427 428 wavenumber, and τ is the wave period), and the constant scale height H is set equal to 7 km. The propagation of PWs is possible in regions of positive n^2 . On the other hand, 429 PWs can be reflected or be evanescent in the region where $n^2 < 0$ (Matsuno, 1970). 430

431	In order to analyze the wave propagation and wave activity for the selected dates		
432	for Q10DWs (or Q10DOs) found in MRs and model simulations, we use the EP flux as		
433	diagnostic tools, derived in the Transformed Eulerian-Mean framework for the spherical		
434	QG system (Palmer, 1982; Andrews et al., 1987). In the spherical geometry, the		
435	meridional $[F^{(\phi)}]$ and vertical $[F^{(z)}]$ components of the EP flux $\mathbf{F} \equiv [0, F^{(\phi)}, F^{(\phi)}]$	z)]are	
436	given by		
437			
438	$F^{(\phi)} = -\rho_0 a \cos \phi \overline{u'} \overline{v'} , \qquad (6)$		
439	$F^{(z)} = \rho_0 a \cos \phi f \overline{v}^r \theta^r / \theta_z , \tag{7}$		
440			

De	leted: (
De	leted:)
De	leted: (
De	leted:)
De	leted: (
De	leted:)

441 Figure 4 shows the EP flux **F** and wave activity density normalized by $\rho_0 a\cos\phi$ 442 for Q10DWs in the EXP75. The propagation inhibition region $(n^2 < 0)$ and the contours of zonal-mean zonal wind are overplotted. Thick green and black lines indicate 443 444 the regions of $q_{\phi} = 0$ and of critical lines for Q10DWs, respectively. The critical lines 445 are plotted by computing the zonal phase speed (c) of Q10DW: $c = 2\pi a \cos \phi / (s\tau)$, 446 where s = 1 and $\tau = 10$ day. The wave-activity density is shaded in blue and red depending on its sign [sgn(A)]. For the EP flux vector, $\mathbf{F}/\text{sgn}(A) (= \mathbf{c}_g |A|)$, rather than 447 448 **F** itself (= $\mathbf{c}_g A$), is plotted such that the EP flux can always be parallel to the local 449 group velocity of Q10DWs regardless of the instability regions where $q_{\phi} < 0$ and thus 450 A < 0. For better illustration of the EP flux in the atmosphere where its density 451 decreases exponentially with height, the meridional and vertical components of EP flux

458	are scaled by $(p_s/p)^{0.85}[F^{(\phi)}/(a\pi), F^{(z)}/(3 \times 10^5)]$ (Edmon et al., 1980; Gan et al.,	
459	2018), where p_s and p are the surface and atmospheric pressures, respectively.	
460	For Fig. 4, we select the four dates of (a) 30 April 2012, (b) 11 April 2013, (c) 6	Deleted: Figure
461	April 2015, and (d) 29 October 2016 when the three criteria mentioned in Fig. 3 are	
462	satisfied (see yellow boxes in Fig. 3). That is, the normalized amplitudes of Q10DWs	
463	from both MRs and EXP75 are larger than its average, the correlation coefficient is	
464	larger than 0.6, and the hemispheric symmetry is found in the MLS results. The 30	
465	April 2012 case (Fig. 4a) shows that the stratospheric jet is located around (40°S–60°S,	
466	55 km) in the latitude-height domain and that there is a predominant branch of upward	
467	and equatorward Q10DW EP flux vectors across the center of the stratospheric jet. In	
468	the high-latitude mesosphere, there are two regions where both the large-scale	
469	instability ($q_{\phi} < 0$) and evanescence ($n^2 < 0$) take place, and they are located in	
470	(55°S–65°S, 60–85 km) and (65°S–80°S, 70–110 km), respectively. Along the	
471	instability boundaries (green lines), large positive or negative Q10DW activities are	
472	found. Divergent EP flux vectors in the meridional direction are clearly seen around the	
473	instability region located at (53°S, 65–75 km), which implies the excitation of Q10DWs	
474	in association with the instability. In the region of MR observations (60°S-65°S, 85-	
475	100 km), substantially amplified Q10DW activity appears, and the equatorward	
476	Q10DW EP flux towards the MR sites is found over the amplified Q10DW activity.	
477	Figure, 4b demonstrates the case of 11 April 2013. One major branch of Q10DW	Deleted: s
478	EP flux vectors (Fig. 4b) originates from the stratospheric jet located at (55°S–60°S,	
479	45-60 km). In the southern and upper side of the stratospheric jet, the instability and	
480	evanescent region extends from 45 km to 70 km height in the latitude of 50°S–75°S.	

483	Above the instability region, distinct region of strong wave activity is found around	
484	(50°S-65°S, 65-90 km), and this region is partially overlapped by the MR observation	
485	region. Around this region, the Q10DW EP flux is directed downward and poleward	
486	inside of the instability region (within green line). The Q10DW EP flux is directed	
487	upward and equatorward outside and above the instability region. This diverging pattern	
488	of EP flux around the instability region also shows the possibility of the excitation of	
489	Q10DW in association with the instability.	
490	For 6 April 2015 case (Fig. 4c), the structure of wave-activity density and	
491	instability regions are similar to the 30 April 2012 case (Fig. 4a). The instability and	
492	evanescent regions occur around (60°S-80°S, 70-100 km). Along the instability	
493	boundaries, there are strong positive and negative wave-activity densities, and this	
494	region of strong wave activities includes the MR observation region. Again, the	
494 495	region of strong wave activities includes the MR observation region. Again, the <u>divergence of Q10DW</u> fluxes appears in the upper part of the instability region around	Deleted: divergent
		Deleted: divergent
495	divergence of Q10DW fluxes appears in the upper part of the instability region around	Deleted: divergent
495 496	<u>divergence</u> of Q10DW fluxes appears in the upper part of the instability region around (60°S–70°S, 80–100 km). The Q10DW propagates upward and equatorward outside of	Deleted: divergent
495 496 497	<u>divergence</u> of Q10DW fluxes appears in the upper part of the instability region around (60°S–70°S, 80–100 km). The Q10DW propagates upward and equatorward outside of the instability region and downward inside of the instability region, as in the other dates	Deleted: divergent
495 496 497 498	<u>divergence of Q10DW fluxes appears in the upper part of the instability region around</u> (60°S–70°S, 80–100 km). The Q10DW propagates upward and equatorward outside of the instability region and downward inside of the instability region, as in the other dates shown in Figs. 4a and 4b. <u>Unlike the other events, the propagation of Q10DW is</u>	Deleted: divergent
 495 496 497 498 499 	<u>divergence of Q10DW fluxes appears in the upper part of the instability region around</u> (60°S–70°S, 80–100 km). The Q10DW propagates upward and equatorward outside of the instability region and downward inside of the instability region, as in the other dates shown in Figs. 4a and 4b. <u>Unlike the other events, the propagation of Q10DW is</u> poleward in the stratosphere (30–60 km altitude). This result is consistent with Qin et al.	Deleted: divergent
495 496 497 498 499 500	<u>divergence of Q10DW fluxes appears in the upper part of the instability region around</u> (60°S–70°S, 80–100 km). The Q10DW propagates upward and equatorward outside of the instability region and downward inside of the instability region, as in the other dates shown in Figs. 4a and 4b. <u>Unlike the other events, the propagation of Q10DW is</u> <u>poleward in the stratosphere (30–60 km altitude)</u> . This result is consistent with Qin et al. (2022). They reported that the meridional component of EP flux extends from the	
 495 496 497 498 499 500 501 	<u>divergence of Q10DW fluxes appears in the upper part of the instability region around</u> (60°S–70°S, 80–100 km). The Q10DW propagates upward and equatorward outside of the instability region and downward inside of the instability region, as in the other dates shown in Figs. 4a and 4b. <u>Unlike the other events, the propagation of Q10DW is</u> <u>poleward in the stratosphere (30–60 km altitude). This result is consistent with Qin et al.</u> (2022). They reported that the meridional component of EP flux extends from the stratosphere in the NH across the equator to the SH stratosphere during the westerly	
 495 496 497 498 499 500 501 502 	divergence of Q10DW fluxes appears in the upper part of the instability region around (60°S–70°S, 80–100 km). The Q10DW propagates upward and equatorward outside of the instability region and downward inside of the instability region, as in the other dates shown in Figs. 4a and 4b. Unlike the other events, the propagation of Q10DW is poleward in the stratosphere (30–60 km altitude). This result is consistent with Qin et al. (2022). They reported that the meridional component of EP flux extends from the stratosphere in the NH across the equator to the SH stratosphere during the westerly phase of QBO in the middle stratosphere and during the westerly phase of the semi-	

	508	westward around the altitude of 60 km. Within the region of westward wind, the	
	509	instability and evanescent regions are found. In addition, the critical lines exist inside	
	510	the instability region. The overreflection or transmission process can take place near the	
	511	critical lines as we mentioned. Notably, the significantly large positive and negative	
	512	wave-activity density regions are found around (45°S–70°S, 60–90 km) near the	
	513	instability boundaries, and these regions are partially overlapped by the MR observation	
	514	region. This result suggests that the observed amplification of Q10DW may be	
	515	attributed to the overreflection process. The EP flux of Q10DW predominantly	Deleted
l	516	propagates upward and equatorward away from the strong wave-activity region around	
	517	(60°S, 60-70 km) with weak poleward propagation of Q10DW towards the instability	
	518	region across the critical lines.	
	519	For all the cases shown in Fig. 4, the results indicate that a distinct strong wave-	
	520	activity density region is located within the area observed by the MRs (around $60^{\circ}S$ –	
	521	70°S and 80–100 km in height), associated with the large-scale instability region.	
ļ	522	Considering the wave-activity density A is directly proportional and inverse	
	523	proportional to the $\overline{q'}^2$ and q_{ϕ} , respectively, it can be thought that the small q_{ϕ}	
	524	contributes the large magnitude of A near the instability region. However, we confirm	
	525	that the large $\overline{q'}^2$ is located around the instability region, leading to the overall large	
	526	wave-activity density (not shown in here). In addition, the group velocity of the wave is	
	527	given by $\mathbf{c}_g = \mathbf{F}/A$. For the selected cases (Fig. 4), the EP flux F in the MR observation	
	528	region is relatively small, while the magnitude of A is comparatively large. This	
	529	suggests a small group velocity in this region. These results agree with the study of	

Deleted: or transmitted

531 Thorncroft et al. (1993), which states that during the amplification of baroclinic waves,

532 the group velocity tends to be small.

As previously mentioned, Song et al. (2020) proposed that the NCGWD can
generate PWs. In addition, Forbes and Zhang (2015) suggested that the dissipation of

535 gravity waves filtered by the Q10DW wind field can generate a secondary Q10DW by

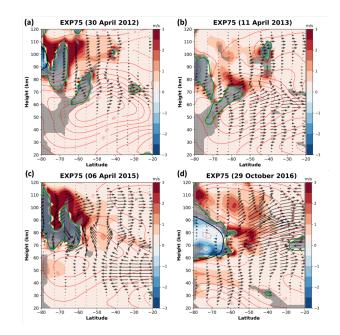
536 momentum deposition. In this regard, the both parameterized GWs and resolved GWs

537 ($s \ge 20$) could also play a role in generating Q10DW. To verify the contribution of

538 NCGWD, we analyze linearized disturbance QGPV equation (Andrews et al., 1987) for

539 the 4 cases shown in Fig. 4. Our analysis shows that the contribution of both NCGWD

540 and resolved GW for the Q10DW is negligible in the MLT region (see Fig. S3 in the


541 Supplement).

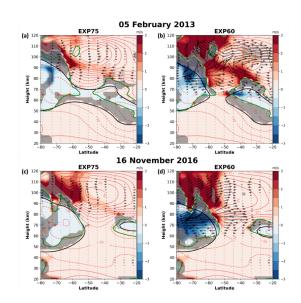
542 These results indicate that the large amplitudes of Q10DW observed in the SH

543 high-latitude region by the Davis and KSS MRs can originate from the high-latitude

544 stratosphere-mesosphere region, where the barotropic/baroclinic instability or

545 overreflection near the critical layer occur.

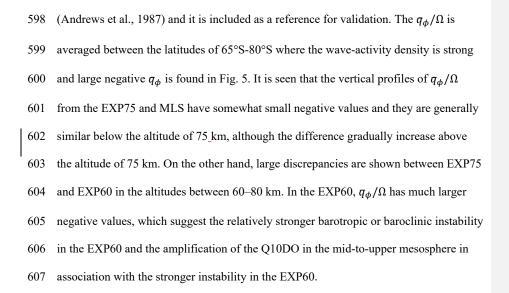
546

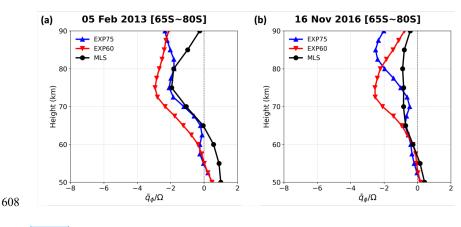

Figure 4. EP flux parallel to local group velocity [F/sgn(A)] and normalized wave 547 activity density $[A(\rho_0 a \cos \phi)^{-1}]$ given in the unit of m s⁻¹ for the Q10DWs in the 548 549 EXP75 on (a) 30 April 2012, (b) 11 April 2013, (c) 6 April 2015, and (d) 29 October 2016. The activity density A is shaded in blue and red depending on its sign. The 550 551 boundaries of the instability regions ($q_{\phi} = 0$, green lines), the negative n^2 regions (grey shading), and the red contours for zonal-mean zonal wind are overplotted. For eastward 552 553 (westward) zonal-mean zonal wind, contours are plotted in solid (dashed) lines, and 554 contour interval is 10 m s⁻¹.

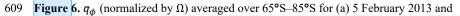
555 3.3 Comparison of Q10DO between SD-WACCM simulations

This section compares the Q10DOs around the mesospheric instability regionsin the two SD-WACCM simulations (EXP75 and EXP60) for February and November.

558	February and November are chosen because the amplitudes of modeled Q10DOs are	
559	substantial. The magnitude of Q10DO in the EXP75 is generally smaller than that in the	
560	EXP60, which is more comparable to the MR and MLS observations in which both	
561	Q10DWs and Q10DOs are weak (see Figs. S1 and S2 in the Supplement). Note that	
562	more realistic meteorological fields are nudged throughout the mesosphere in the	
563	EXP75. In this section, comparison between EXP75 and EXP60 for February and	
564	November is carried out to reveal mechanisms behind weak Q10DOs in the EXP75.	
565	Figure 5 demonstrates the properties of Q10DO and background atmospheric	
566	conditions (as shown in Fig. 4) for 5 February 2013 and 16 November 2016 when the	Deleted: Figure
567	Q10DO activity is found to be large in both simulations. The left and right panels of	
568	Fig. 5 are the results from the EXP75 and EXP60, respectively. In Fig. 5, it is clear that	
569	the strong wave-activity density for Q10DO arise in polar regions above the altitude of	
1		Deleted.
570	70 km in the EXP60, and the magnitude of the EP fluxes in the EXP60 is much larger,	Deleted: stronger
570 571	than that in EXP75. In addition, in 5 February 2013 for the EXP60 (Fig. 5b), a	Dereted: stronger
		Dereted: stronger
571	than that in EXP75. In addition, in 5 February 2013 for the EXP60 (Fig. 5b), a	Dereted: stronger
571 572	than that in EXP75. In addition, in 5 February 2013 for the EXP60 (Fig. 5b), a substantially strong wave-activity density region is located in the mid-latitude	Dereced: stronger
571 572 573	than that in EXP75. In addition, in 5 February 2013 for the EXP60 (Fig. 5b), a substantially strong wave-activity density region is located in the mid-latitude mesospheric region as well. Around the strong wave-activity regions in the polar upper	Deleted: stronger
571 572 573 574	than that in EXP75. In addition, in 5 February 2013 for the EXP60 (Fig. 5b), a substantially strong wave-activity density region is located in the mid-latitude mesospheric region as well. Around the strong wave-activity regions in the polar upper mesosphere, it is seen that the EP fluxes of Q10DWs are divergent. In addition, the	Deleteti stronger
571 572 573 574 575	than that in EXP75. In addition, in 5 February 2013 for the EXP60 (Fig. 5b), a substantially strong wave-activity density region is located in the mid-latitude mesospheric region as well. Around the strong wave-activity regions in the polar upper mesosphere, it is seen that the EP fluxes of Q10DWs are divergent. In addition, the distinct wave-activity density of Q10DO regions in the EXP60 occur along the	Deleteti stronger
571 572 573 574 575 576	than that in EXP75. In addition, in 5 February 2013 for the EXP60 (Fig. 5b), a substantially strong wave-activity density region is located in the mid-latitude mesospheric region as well. Around the strong wave-activity regions in the polar upper mesosphere, it is seen that the EP fluxes of Q10DWs are divergent. In addition, the distinct wave-activity density of Q10DO regions in the EXP60 occur along the instability regions and critical lines around (50°S–70°S, 70–110 km) and (20°S–40°S,	Deleteti stronger
571 572 573 574 575 576 577	than that in EXP75. In addition, in 5 February 2013 for the EXP60 (Fig. 5b), a substantially strong wave-activity density region is located in the mid-latitude mesospheric region as well. Around the strong wave-activity regions in the polar upper mesosphere, it is seen that the EP fluxes of Q10DWs are divergent. In addition, the distinct wave-activity density of Q10DO regions in the EXP60 occur along the instability regions and critical lines around (50°S–70°S, 70–110 km) and (20°S–40°S, 65–80 km). On the other hand, the wave-activity density of Q10DO in the EXP75 (Fig.	Deleteti stronger
571 572 573 574 575 576 577 578	than that in EXP75. In addition, in 5 February 2013 for the EXP60 (Fig. 5b), a substantially strong wave-activity density region is located in the mid-latitude mesospheric region as well. Around the strong wave-activity regions in the polar upper mesosphere, it is seen that the EP fluxes of Q10DWs are divergent. In addition, the distinct wave-activity density of Q10DO regions in the EXP60 occur along the instability regions and critical lines around (50°S–70°S, 70–110 km) and (20°S–40°S, 65–80 km). On the other hand, the wave-activity density of Q10DO in the EXP75 (Fig. 5a and 5c) is located at relatively higher altitudes (80–100 km), and the strength of	Deleteti stronger
571 572 573 574 575 576 577 578 579	than that in EXP75. In addition, in 5 February 2013 for the EXP60 (Fig. 5b), a substantially strong wave-activity density region is located in the mid-latitude mesospheric region as well. Around the strong wave-activity regions in the polar upper mesosphere, it is seen that the EP fluxes of Q10DWs are divergent. In addition, the distinct wave-activity density of Q10DO regions in the EXP60 occur along the instability regions and critical lines around (50°S–70°S, 70–110 km) and (20°S–40°S, 65–80 km). On the other hand, the wave-activity density of Q10DO in the EXP75 (Fig. 5a and 5c) is located at relatively higher altitudes (80–100 km), and the strength of Q10DO EP flux and wave-activity density are weaker than EXP60. Moreover, the	


- 584 Our analysis reveals that the larger wave-activity density and EP fluxes in the
- 585 EXP60 along the large-scale instability region in the polar upper mesosphere compared
- 586 to the EXP75. This indicates that the stronger large-scale instability in the EXP60 can
- 587 amplify Q10DO activities, which is consistent with the analysis result that the
- 588 barotropic and baroclinic instabilities can be the major sources of the amplification of
- 589 traveling PWs (Harvey et al., 2019).

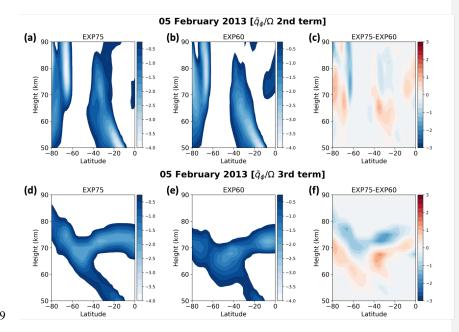



- 591 Figure 5. Same as Fig. 4 but for (a and b) 5 February 2013 and (c and d) 15 November
- 592 2016. The left and right columns represent the results from EXP75 and EXP60,
- 593 respectively.
- 594 Figure 6 shows the q_{ϕ} (normalized by Ω) for 5 February 2013 and 16 November
- 595 2016 from the EXP75 (blue), EXP60 (red), and MLS (black). The normalization makes

Deleted: yellow

596 q_{ϕ} dimensionless. The q_{ϕ}/Ω from MLS is derived in the quasi-geostrophic framework

610 (b) 16 November 2016 from the EXP75 (blue), EXP60 (red), and MLS (black).


611 The negative q_{ϕ} can be induced by latitudinal and vertical curvatures of zonal-

612 mean zonal wind that correspond to the second and third terms (with negative signs) in

613 the right side of (4), respectively. Figure 7 shows the second (top panels) and third

Commented [WLee1]: Revise the color schemes according to the Coblis – Color Blindness Simulator (https://www.colorblindness.com/coblis-color-blindness-simulator/). Deleted: yellow

615	(bottom panels) terms, respectively, for 5 February 2013. The differences shown in
616	Figs. 7c and 7f indicate that the larger negative q_{ϕ} is located in the lower altitudes in the
617	EXP60 than in EXP75, inducing the larger instability at 65–75 km in height around
618	70°S-80°S in the EXP60, which is consistent with Fig. 6. Note that the positive
619	differences seen at about 65–75 km in the high-latitude regions in Figs. 7c and 7f mean
620	the larger negative q_{ϕ} in the EXP60. Also, it is clear that both vertical and horizontal
621	shear contribute the stronger barotropic/baroclinic instability in the EXP60 in the mid-
622	to-upper mesosphere, as shown in Figs. 7a-b and 7d-e. This analysis demonstrates the
623	mesospheric dynamics specified by the MERRA-2 data up to the altitude of 75 km
624	reduces the large-scale instability in the mid-to-upper mesosphere in the EXP75. This is
625	consistent with Sassi et al. (2021) proposed the absence of specification of middle
626	atmosphere dynamics induce the instability in summer mesospheric westward jet,
627	leading large traveling PWs.
628	The wind structure in the MLT region is mainly driven by momentum
629	deposition from PWs and GWs. Harvey et al. (2019) reported that GWs can change
630	significantly the vertical shears, leading enhanced instability and larger traveling PWs in
631	the mesospheric region based on the satellite observations and SD-WACCM
632	simulations. GW forcing is one of the main factors to maintain the necessary conditions
633	of barotropic/baroclinic instability in the modeled mesosphere (Sato et al., 2018).
634	Therefore, in order to better understand the mechanisms underlying the discrepancies in
635	zonal wind fields and the resulting instability in the model, it is important to examine
636	the contribution of resolved wave forcing (EPFD) and GWD forcing on the zonal wind
637	structure in the mesosphere.

Figure 7. Contributions of (top) the meridional variation of the zonally-averaged mean flow and (bottom) its vertical variation to the instability condition (negative q_{ϕ}) shown in (2), respectively, for 5 February 2013. Panels in each column present the results from (a and d) the EXP75, (b and e) the EXP60, and (c and f) difference between EXP75 and EXP60, respectively. Only negative values are plotted except for two panels for difference.

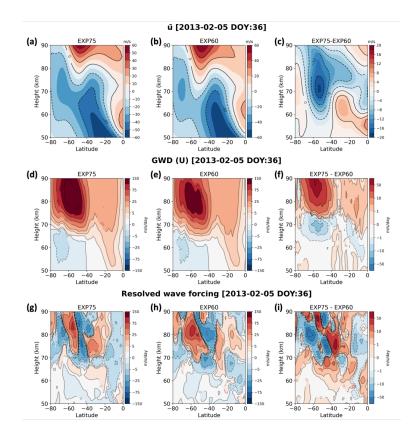
646 Figure 8 shows the latitude-height distributions of zonal-mean zonal wind, zonal

647 component of GWD and resolved wave forcing (EPFD) in 5 February 2013 for the

648 EXP75, the EXP60, and the difference between EXP75 and EXP60 (EXP75–EXP60).

649 The zonal-mean zonal wind, zonal component of GWD, and resolved wave forcing

650 (EPFD) are calculated through the 21-day averaging (central date \pm 10 days). For GWD,


651 the orographic and nonorographic values are added. In Figs. 8a-b, zero-wind lines are

	Deleted: in
(Deleted: E
·····(1	Deleted: s

655 located around 80 km height in the SH mid-latitude region, indicating the reversal of the 656 zonal-mean zonal wind due to the eastward momentum forcing from the GWs and resolved waves. It is clear that the zero-wind line in the EXP60 is located at lower 657 altitudes by about 5 km compared to the EXP75, which means that eastward GWD and 658 659 eastward EPFD from the EXP60 can be larger below the altitude of ~80 km than that 660 from EXP75. Indeed, the difference field between EXP75 and EXP60 for GWD (Fig. 8f) shows that the eastward GWD from the EXP60 is larger around (60°S, 70 km) than 661 that from EXP75 as indicated by the negative difference field in those regions. In 662 addition, the resolved wave forcing (EP flux divergence) is more eastward above the 663 altitude of 70 km in the mid-to-high latitude regions in the EXP60 than in the EXP75. 664 665 This result indicates that the eastward resolved wave forcing also contributes more in the mid-to-upper mesosphere in the EXP60, resulting in the zonal-mean zonal wind 666 667 reversal (westward to eastward wind) in the lower altitude in the EXP60, as shown 668 around 60°S in Fig. 8b.

669 As mentioned before, the amplification or modulation of westward-propagating 670 PWs with zonal wavenumber 1 and a quasi-10-day period due to NCGWD and resolved GW is negligible (Fig. S3 in Supplement), indicating that the amplification of Q10DW 671 672 or Q10DO is mainly related to the baroclinic/barotropic instability. The stronger 673 instability in the EXP60 around the altitude of 70 km indicates that WACCM simulates a large meridional and vertical variation of zonal winds compared to the observations in 674 the mid-to-upper mesosphere, which is likely due to the stronger eastward GWD and 675 676 eastward EPFD forcing near 70 km altitude in the EXP60, as shown in Fig. 8. Cohen et al. (2013) reported that parameterized GWs can generate instability that can generate 677

678	resolved waves of which forcing (i.e., EPFD) can compensate GWD. Our results show		Deleted: also
679	that the increased eastward GWD at 70 km altitude generates instability and it leads		
680	more Q10DO. The EPFD in the EXP60 gives the more eastward forcing above 70 km		
681	enhancing the wind reversal in the mid-to-high latitudes, However, comparison of Figs.		Deleted: , but
682	8f and 8i indicates that the structures of GWD and EPFD are roughly 90°-180° shifted,	<	Deleted: compensation between
683	in the vertical direction, approximately consistent with the compensation between GWD		Deleted: is Deleted: valid with slight shift
684	and EPFD. Raising the nudging altitude of MERRA-2 reanalysis data to 75 km from 60		
685	km reduces the instability in the mid-to-upper mesosphere, leading to decreased the		
686	Q10DO activity in the EXP75. Therefore, we suggest that strong eastward GWD in the		
687	mid-to-upper mesosphere in summer need to be alleviated, which can generate more		
688	instability in the SH high-latitude mesosphere region that can lead to discrepancy from		
689	observations.		

696 Figure 8. Latitude-height distributions of (a-c) zonal-mean zonal wind, (d-f) zonal

697 component of GWD and (g-i) resolved wave forcing (EP flux divergence) in 5 February

- 698 2013 for (left) the EXP75, (middle) the EXP60, and (right) difference between EXP75
- 699 and EXP60 (EXP75–EXP60).

700

4. Summary

702	In this paper, the seasonal variation and the amplification mechanism of	
703	Q10DW during 2012–2016 in the SH high-latitude regions are investigated using two	
704	MRs located in Antarctica, and SD-WACCM simulations. Using the phase difference of	Deleted:
705	meridional winds measured by two MRs, we extract westward-propagating Q10DW	Formatted: Font: (Default) +Body (Times New Roman)
706	with zonal wavenumber 1. The seasonal variation of the observed Q10DW shows that	
707	the amplitude is strong during equinoxes, which is consistent with previous studies. In	Deleted: 1
708	order to elucidate the amplification mechanism of Q10DW observed by MRs during	
709	equinoxes, two SD-WACCM experiments are carried out using the MERRA-2	
710	reanalysis data from surface to ~60 km (EXP60) and ~75 km (EXP75), respectively.	
711	The temporal variation of the averaged amplitude of Q10DW in the EXP75 during	Deleted:
712	2012-2016 is in better agreement with the MR observations. Meanwhile, the amplitude	
713	of Q10DW in the EXP60 is excessively large compared with the observations. Based on	Deleted:
714	the analysis of meridional gradient of the QGPV and wave-activity density, the Q10DW	Formatted: Font: (Default) +Body (Times New Roman)
715	observed in the SH high-latitude region by the MRs originated in situ around the high-	
716	latitude stratosphere-mesosphere region, where the large-scale instability or	
717	overreflection near the critical lines occur. The unrealistically large magnitude of	Deleted: 1
718	Q10DO (quasi-10-day-like oscillations without satisfying the hemispheric symmetry	
719	unlike Q10DW) is simulated in the EXP60 during February and November. In order to	
720	understand mechanisms of the large amplitude of Q10DO in the EXP60 during the SH	Deleted: reveal
721	summer, we compare the meridional gradient of QGPV from EXP75 and EXP60. The	Formatted: Font: (Default) +Body (Times New Roman)) Deleted: ¶ 1 <td< td=""></td<>
722	results show that specified dynamics with MERRA-2 reanalysis data mitigate the	

723 meridional and vertical variation of zonal winds in the polar mid-to-upper mesosphere

- 731 in the EXP75, leading reduction in the large-scale instability. On the other hand, the
- 732 large amplitude of Q10DO in the EXP60 is attributed to the large-scale instability
- related to the GWD and partially to the EPFD in the polar mid-to-upper mesosphere.
- 734 The polar mesospheric GWD can lead to strong large-scale instability in the SH high-
- 735 latitude mesosphere and unrealistically large amplitude of Q10DO in summer. The
- 736 present study on the amplification mechanism of Q10DW during equinoxes, and the
- 737 unrealistic Q10DO amplitude in summer provide potential importance of large-scale
- 738 instability, which can be to a substantial degree caused by parameterized GWD, during
- summer in the polar mesosphere for numerical models. In this paper, we focus on the
- 740 Q10DW relating to the large-scale instability and polar mesospheric GWD, but other
- 741 normal modes of PW will be considered for future studies.

742 Code and Data availability

- 743 The source code of Community Earth System Model 2 (CESM2) developed at
- 744 the National Center for Atmospheric Research (NCAR) is available at
- 745 https://www.cesm.ucar.edu/models/cesm2. The atmospheric forcing data for specified
- 746 dynamics are available from NCAR Research Data Archive (RDA) at
- 747 https://rda.ucar.edu.
- 748 The Davis station meteor radar data are available from the Australian Antarctic
- 749 Data Centre at https://data.aad.gov.au/metadata/records/Davis_33MHz_Meteor_Radar.
- 750 The King Sejong Station meteor radar data are available from Korea Polar Data Center
- 751 (KPDC) at https://kpdc.kopri.re.kr. The GPH data from the MLS onboard the NASA's
- 752 EOS Aura satellite are available from Goddard Earth Science Data and Information
- 753 Services Center (GES DISC) at <u>https://daac.gsfc.nasa.gov</u>.

Deleted: a

Deleted:

756 Author contributions

- 757 WL and ISS designed the study, together with YHK, and wrote the manuscript.
- 758 WL performed the analysis of the observational (MR and satellite) data in collaboration
- 759 with ISS. ISS designed the SD-WACCM experiments. WL and ISS carried out the SD-
- 760 WACCM experiments, JSS and BGS aided in interpreting the analysis of action
- 761 conservation equation for Rossby waves. All authors discussed the results and
- 762 contributed to the final manuscript.

763 Competing interests

The authors declare that they have no conflict of interest.

765 Acknowledgements

- 766 This research was supported by the Korea Astronomy and Space Science
- 767 Institute under the R&D program (Project No. 2023-1-850-07) supervised by the
- 768 Ministry of Science and ICT.

769

770 References

- 771 Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics,
- 772 Elsevier, New York, USA, 489 pp., 1987.
- 773 Beres, J. H., Garcia, R. R., Boville, B. A., and Sassi, F.: Implementation of a gravity
- 774 wave source spectrum parameterization dependent on the properties of convection in the

Deleted: ISS, and YHK designed the study. WL and ISS carried out the SD-WACCM experiments and analysis the observational data. WL wrote the manuscript.

Deleted: results
Deleted: and worked on the manuscript

- 780 Whole Atmosphere Community Climate Model (WACCM), J. Geophys. Res.-Atmos.,
- 781 110, https://doi.org/10.1029/2004jd005504, 2005.
- 782 Brakebusch, M., Randall, C. E., Kinnison, D. E., Tilmes, S., Santee, M. L., and
- 783 Manney, G. L.: Evaluation of Whole Atmosphere Community Climate Model
- 784 simulations of ozone during Arctic winter 2004–2005, J. Geophys. Res.-Atmos., 118,
- 785 2673–2688, https://doi.org/10.1002/jgrd.50226, 2013.
- 786 Chandran, A., Garcia, R. R., Collins, R. L., and Chang, L. C.: Secondary planetary
- 787 waves in the middle and upper atmosphere following the stratospheric sudden warming
- 788 event of January 2012, Geophys. Res. Lett., 40, 1861–1867,
- 789 https://doi.org/10.1002/grl.50373, 2013.
- 790 Charron, M. and Manzini, E.: Gravity waves from fronts: Parameterization and middle
- 791 <u>atmosphere response</u> in a <u>general circulation model</u>, J. Atmos. Sci., 59, 923–941,
- 792 <u>https://doi.org/10.1175/1520-0469(2002)059<;</u>0923:gwffpa>2.0.co;2, 2002.
- 793 Cohen, N. Y., Gerber, E. P. and Bühler, O.: Compensation between resolved and
- 794 <u>unresolved wave driving in the stratosphere</u>: Implications for <u>downward control</u>, J.
- 795 Atmos. Sci., 70, 3780–3798, https://doi.org/10.1175/jas-d-12-0346.1, 2013.
- 796 Danabasoglu, G., Lamarque, J. -F., Bacmeister, J., Bailey, D. A., DuVivier, A. K.,
- 797 Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C.,
- 798 Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M.,
- 799 Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B.,
- 800 Phillips, A. S., Sacks, W., Tilmes, S., Kampenhout, L., Vertenstein, M., Bertini, A.,

(Deleted:	Waves
(Deleted:	Fronts
\geq	Deleted:	Middle
(Deleted:	Atmosphere
\mathcal{A}	Deleted:	Response
X//	Deleted:	General
$\langle \rangle$	Deleted:	Circulation
) (Deleted:	Model
\geq	Deleted:	E. P. G. and
γ	Deleted:	Resolved
\supset	Deleted:	Unresolved
$\langle \rangle$	Deleted:	Wave
///	Deleted:	Driving
///	Deleted:	Stratosphere
- \{	Deleted:	Downward
) (Deleted:	Control

- 817 Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P.
- 818 J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L.,
- 819 Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version 2
- 820 (CESM2), J. Adv. Model. Earth. Sy., 12, <u>https://doi.org/10.1029/2019ms001916</u>, 2020.
- 821 Day, K. A. and Mitchell, N. J.: The 5-day wave in the Arctic and Antarctic mesosphere
- 822 and lower thermosphere, J. Geophys. Res.-Atmos., 1984-2012, 115,
- 823 https://doi.org/10.1029/2009jd012545, 2010.
- 824 Edmon, H. J., Hoskins, B. J., and McIntyre, M. E.: Eliassen-Palm cross sections for the

Deleted: Cross
Deleted: Sections

Deleted: Troposphere

- 825 <u>troposphere</u>, J. Atmos. Sci., 37, 2600–2616, <u>https://doi.org/10.1175/1520-</u>
- 826 <u>0469(1980)037<;</u>2600:epcsft>2.0.co;2, 1980.
- 827 Egito, F., Takahashi, H., and Miyoshi, Y.: Effects of the planetary waves on the MLT

828 airglow, Ann. Geophys., 35, 1023–1032, https://doi.org/10.5194/angeo-35-1023-2017,

- 829 2017.
- 830 Eswaraiah, S., Kim, Y. H., Hong, J., Kim, J.-H., Ratnam, M. V., Chandran, A., Rao, S.
- 831 V. B., and Riggin, D.: Mesospheric signatures observed during 2010 minor
- 832 stratospheric warming at King Sejong Station (62°S, 59°W), J. Atmos. Sol-Terr. Phy.,
- 833 140, 55-64, https://doi.org/10.1016/j.jastp.2016.02.007, 2016.
- 834 Eswaraiah, S., Ratnam, M. V., Kim, Y. H., Kumar, K. N., Chalapathi, G. V.,
- 835 Ramanajaneyulu, L., Lee, J., Prasanth, P. V., Thyagarajan, K., and Rao, S. V. B.:
- 836 Advanced meteor radar observations of mesospheric dynamics during 2017 minor SSW

- 840 over the tropical region, Adv. Space. Res., 64, 1940–1947,
- 841 https://doi.org/10.1016/j.asr.2019.05.039, 2019.
- 842 Eyring, Veronika, et al.: Overview of IGAC/SPARC Chemistry-Climate Model
- 843 Initiative (CCMI) community simulations in support of upcoming ozone and climate
- assessments, SPARC newsletter, 40, 48–66, <u>https://oceanrep.geomar.de/id/eprint/20227</u>,
- 845 2013.
- 846 Forbes, J. M. and Zhang, X.: Quasi-10-day wave in the atmosphere, J. Geophys. Res.-
- 847 Atmos., 120, 11,079–11,089, https://doi.org/10.1002/2015jd023327, 2015.
- 848 Forbes, J. M. and Zhang, X.: The quasi-6 day wave and its interactions with solar tides,
- 849 J. Geophys. Res.-Space, 122, 4764–4776, https://doi.org/10.1002/2017ja023954, 2017.
- 850 Forbes, J. M., Hagan, M. E., Miyahara, S., Vial, F., Manson, A. H., Meek, C. E., and
- 851 Portnyagin, Y. I.: Quasi 16-day oscillation in the mesosphere and lower thermosphere,
- 852 J. Geophys. Res.-Atmos., 100, 9149–9163, <u>https://doi.org/10.1029/94jd02157</u>, 1995.
- 853 Forbes, J. M., Zhang, X., Heelis, R., Stoneback, R., Englert, C. R., Harlander, J. M.,
- 854 Harding, B. J., Marr, K. D., Makela, J. J., and Immel, T. J.: Atmosphere-Ionosphere (A-
- 855 I) coupling as viewed by ICON: Day-to-day variability due to planetary wave (PW)-tide
- 856 interactions, J. Geophys. Res.-Space, 126, https://doi.org/10.1029/2020ja028927, 2021.
- 857 Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S.,
- 858 Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R., Knox, J. A., Krüger, K.,
- 859 Lambert, A., Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., Santee, M. L.,
- 860 Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jackson, D. R., Polavarapu, S., Compo, G.

De	eleted: Coupling
De	eleted: Viewed
De	eleted: Day
De	eleted: Variability
De	eleted: Due
De	eleted: Planetary
De	eleted: Wave
De	eleted: Tide
De	eleted: Interactions
_	

- 870 P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K.,
- 871 Pawson, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to
- 872 the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis
- 873 systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-

874 <u>2017, 2017.</u>

- 875 Gan, Q., Oberheide, J., and Pedatella, N. M.: Sources, sinks, and propagation
- 876 characteristics of the guasi 6-day wave and its impact on the residual mean circulation,
- 877 J. Geophys. Res.-Atmos., 123, 9152–9170, https://doi.org/10.1029/2018jd028553, 2018.
- 878 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C.
- 879 A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R.,
- 880 Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A. M. da, Gu, W., Kim, G.-K.,
- 881 Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman,
- 882 W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era
- 883 Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J.
- 884 Climate, 30, 5419–5454, <u>https://doi.org/10.1175/jcli-d-16-0758.1</u>, 2017.
- 885 Goncharenko, L. P., Harvey, V. L., Greer, K. R., Zhang, S. -R., and Coster, A. J.:
- 886 Longitudinally dependent low-latitude jonospheric disturbances linked to the Antarctic
- 887 sudden stratospheric warming of September 2019, J. Geophys. Res.-Space, 125,
- 888 <u>https://doi.org/10.1029/2020ja028199</u>, 2020.
- 889 Harvey, V. L., Knox, J. A., France, J. A., Fujiwara, M., Gray, L., Hirooka, T.,
- 890 Hitchcock, P., Hitchman, M., Kawatani, Y., Manney, G. L., McCormack, J., Orsolini,
- 891 Y., Sakazaki, T., and Tomikawa, Y.: Chapter 11: Upper Stratosphere and Lower

Delete	d: Sinks
Delete	d: Propagation
Delete	d: Characteristics
Delete	d: Quasi
Delete	d: Day
Delete	d: Wave
Delete	d: Its
Delete	d: Impact
Delete	d: Residual
Delete	d: Mean
Delete	d: Circulation

~(_(Deleted:	Dependent
	Deleted:	Low
\mathcal{A}	Deleted: 1	Latitude
X/	Deleted: 1	Ionospheric
$\langle \rangle$	Deleted: 1	Disturbances
	Deleted: 1	Linked
	Deleted:	Sudden
	Deleted:	Stratospheric
	Deleted:	Warming

- 912 Mesosphere, SPARC Reanalysis Intercomparison Project (S-RIP) Final Report, edited
- 913 by: Fujiwara, M., Manney, G. L., Gray, L. J., and Wright, J. S., SPARC Report No. 10,
- 914 WCRP-6/2021, SPARC, DLR-IPA, Oberpfaffenhofen, Germany,
- 915 <u>https://doi.org/10.17874/800dee57d13, 2021.</u>
- 916 Harvey, V. L., Randall, C. E., Becker, E., Smith, A. K., Bardeen, C. G., France, J. A.,
- 917 and Goncharenko, L. P.: Evaluation of the mesospheric polar vortices in WACCM, J.
- 918 Geophys. Res.-Atmos., 124, 10626–10645, https://doi.org/10.1029/2019jd030727,
- 919 2019.
- 920 He, M., Chau, J. L., Stober, G., Li, G., Ning, B., and Hoffmann, P.: Relations between
- 921 <u>semidiurnal tidal variants through diagnosing the zonal wavenumber using a phase</u>
- 922 <u>differencing technique based on two ground-based detectors</u>, J. Geophys. Res.-Atmos.,
- 923 <u>123, 4015–4026, https://doi.org/10.1002/2018jd028400, 2018</u>
- 924 He, M., Chau, J. L., Forbes, J. M., Thorsen, D., Li, G., Siddiqui, T. A., Yamazaki, Y.,
- 925 and Hocking, W. K.: Quasi-10-day wave and semidiurnal tide nonlinear interactions
- 926 during the Southern Hemispheric SSW 2019 observed in the Northern Hemispheric
- 927 mesosphere, Geophys. Res. Lett., 47, https://doi.org/10.1029/2020gl091453, 2020a.
- 928 He, M., Yamazaki, Y., Hoffmann, P., Hall, C. M., Tsutsumi, M., Li, G., and Chau, J. L.:
- 929 Zonal wave number diagnosis of Rossby wave-like oscillations using paired ground-
- 930 <u>based radars</u>, J. Geophys. Res.-Atmos., 125, <u>https://doi.org/10.1029/2019jd031599</u>,
- 931 2020<u>b</u>.

Deleted:	Mesospheric	
Deleted:	Polar	<
Deleted:	Vortices	<
Moved (insertion) [1]	~
Deleted:	В	<
Deleted:	S	4
Deleted:	Т	~
Deleted:	V	~
Deleted:	T	<
Deleted:	D	~
Deleted:	Z	<
Deleted:	W	~
Deleted:	U	~
Deleted:	P	~
Deleted:	D	<
Deleted:	T	=
Deleted:	В	<
Deleted:	T	~
Deleted:	G	~
Deleted:	В	4
Deleted:	D	~
Field Co	de Changed	<
Deleted:	1	4
Deleted:	D	~
Deleted:	W	<
Deleted:	S	<
Deleted:	T	~
Deleted:	N	-
Deleted:	I	~
Deleted:	D	<
Deleted:	0	<
Deleted:	M	5
	p [1]: He, M., Chau, J. L., Stober, G., Li, G., Ning, B., nann, P.: Relations Between Semidiurnal Tidal Variants	
Deleted:	Wave	
Deleted:	Number	
Deleted:	Diagnosis	
Deleted:	Wave	
Deleted:	Like	
Deleted:	Oscillations	
Deleted:	Using	
Deleted	Paired	
Deleteu.		
Deleted:	Ground	_
<u> </u>		<

- 982 Hirooka, T.: Normal mode Rossby waves as revealed by UARS/ISAMS observations, J.
- 983 Atmos. Sci., 57, 1277-1285, https://doi.org/10.1175/1520-
- 984 0469(2000)057<1277:NMRWAR>2.0.CO;2, 2000.
- 985 Holdsworth, D. A., Murphy, D. J., Reid, I. M., and Morris, R. J.: Antarctic meteor
- 986 observations using the Davis MST and meteor radars, Adv. Space Res., 42, 143–154,
- 987 https://doi.org/10.1016/j.asr.2007.02.037, 2008.
- 988 Huang, C., Zhang, S., Chen, G., Zhang, S., and Huang, K.: Planetary wave
- 989 characteristics in the lower atmosphere over Xianghe (117.00°E, 39.77°N), China,
- 990 revealed by the Beijing MST radar and MERRA data, J. Geophys. Res.-Atmos., 122,
- 991 9745–9758, https://doi.org/10.1002/2017jd027029, 2017.
- 992 Huang, C., Li, W., Zhang, S., Chen, G., Huang, K., and Gong, Y.: Investigation of
- 993 dominant traveling 10-day wave components using long-term MERRA-2 database,
- 994 Earth Planets Space, 73, 85, <u>https://doi.org/10.1186/s40623-021-01410-7</u>, 2021.
- 995 Huang, Y.-Y., Cui, J., Li, H.-J., and Li, C.-Y.: Inter-annual variations of 6.5-day
- 996 planetary waves and their relations with QBO, Earth Planet. Phys., 6, 135-148,
- 997 <u>https://doi.org/10.26464/epp2022005</u>, 2022.
- 998 Jablonowski, C. and Williamson, D. L.: Numerical techniques for global atmospheric
- 999 models, Lect. Notes Comput. Sci. Eng., 381–493, https://doi.org/10.1007/978-3-642-
- 1000 <u>11640-7_13, 2011.</u>
- 1001 Lee, W., Song, I., Kim, J., Kim, Y. H., Jeong, S., Eswaraiah, S., and Murphy, D. J.: The
- 1002 observation and SD-WACCM simulation of planetary wave activity in the middle

-(Deleted: Mode
(Deleted: Waves
)	Deleted: Revealed
Y(Deleted: Observations

Deleted: Wave

Deleted:	Characteristics
Deleted:	Lower
Deleted:	Atmosphere
Deleted:	Over
Deleted:	Revealed
Deleted:	Radar
Deleted:	Data

Delete	d: T
Delete	d: G
Delete	d: A
Delete	d: M
Delete	d: Observation
Delete	d: Simulation
Delete	d: Planetary
Delete	d: Wave
Delete	d: Activity
Delete	d: Middle

- 1025 <u>atmosphere during</u> the 2019 Southern Hemispheric sudden stratospheric warming, J.
- 1026 Geophys. Res.-Space, 126, https://doi.org/10.1029/2020ja029094, 2021.
- 1027 Lee, W., Lee, C., Kim, J., Kam, H., and Kim, Y. H.: A modeling analysis of the
- 1028 apparent linear relation between mesospheric temperatures and meteor height
- 1029 distributions measured by a meteor radar, J. Geophys. Res.-Space, 127,
- 1030 https://doi.org/10.1029/2021ja029812, 2022.
- 1031 Lee, W., Kim, Y. H., Lee, C., and Wu, Q.: First comparison of mesospheric winds
- 1032 <u>measured</u> with a Fabry-Perot <u>interferometer</u> and <u>meteor radar</u> at the King Sejong Station
- 1033 (62.2°S, 58.8°W), J. Astron. Space Sci., <u>https://doi.org/10.5140/JASS.2018.35.4.235</u>,
- 1034 2018
- 1035 Li, W., Huang, C., and Zhang, S.: Global characteristics of the westward-propagating
- 1036 quasi-16-day wave with zonal wavenumber 1 and the connection with the 2012/2013
- 1037 SSW revealed by ERA-Interim, Earth Planets Space, 73, 113,
- 1038 https://doi.org/10.1186/s40623-021-01431-2, 2021.
- 1039 Lindzen, R. S., Farrell, B., and Tung, K.-K.: The concept of wave overreflection and its
- 1040 application to baroclinic instability, J. Atmos. Sci., 37, 44-63,
- 1041 <u>https://doi.org/10.1175/1520-0469(1980)037<</u>;0044:tcowoa>2.0.co;2, 1980.
- 1042 Liu, G., Janches, D., Lieberman, R. S., Moffat-Griffin, T., Mitchell, N. J., Kim, J., and
- 1043 Lee, C.: Wind variations in the mesosphere and lower thermosphere near 60°S latitude
- 1044 during the 2019 Antarctic sudden stratospheric warming, J. Geophys. Res.-Space, 126,
- 1045 https://doi.org/10.1029/2020ja028909, 2021.

_		
•(Deleted:	Atmosphere
•(Deleted:	During
°(Deleted:	Sudden
Ĭ(Deleted:	Stratospheric
ľ	Deleted:	Warming
•(Deleted:	Modeling
•(Deleted:	Analysis
-(Deleted:	Apparent
•	Deleted:	Linear
Ì	Deleted:	Relation
Ý	Deleted:	Between
Ý	Deleted:	Mesospheric
Ć	Deleted:	Temperatures
C	Deleted:	Meteor
C	Deleted:	Height
(Deleted:	Distributions
(Deleted:	Measured
C	Deleted:	Meteor
C	Deleted:	Radar
C	Deleted:	С
$\left(\right)$	Deleted:	Mesospheric
C	Deleted:	Winds
Ć	Deleted:	Measured
C	Deleted:	Interferometer
C	Deleted:	Meteor
1	Deleted:	Radar
C	saleteu.	Tradui

Deleted:	С
Deleted:	Wave
Deleted:	Overreflection
Deleted:	Its
Deleted:	Application
Deleted:	Baroclinic
Deleted:	Instability
Deleted:	Variations
Deleted:	Mesosphere
Deleted:	Lower
Deleted:	Thermosphere
Deleted:	Near
Deleted:	Latitude
Deleted:	During
Deleted:	Sudden
Deleted:	Stratospheric
Deleted:	Warming

- 1089 Liu, G., Janches, D., Ma, J., Lieberman, R. S., Stober, G., Moffat-Griffin, T., Mitchell,
- 1090 N. J., Kim, J., Lee, C., and Murphy, D. J.: Mesosphere and <u>Jower thermosphere winds</u>
- and tidal variations during the 2019 Antarctic sudden stratospheric warming, J.
- 1092 Geophys. Res.-Space, 127, https://doi.org/10.1029/2021ja030177, 2022.
- 1093 Luo, J., Gong, Y., Ma, Z., Zhang, S., Zhou, Q., Huang, C., Huang, K., Yu, Y., and Li,
- 1094 G.: Study of the quasi 10-day waves in the MLT region during the 2018 February SSW
- 1095 by a meteor radar chain, J. Geophys. Res.-Space, 126,
- 1096 <u>https://doi.org/10.1029/2020ja028367</u>, 2021.
- 1097 Ma, Z., Gong, Y., Zhang, S., Xiao, Q., Xue, J., Huang, C., and Huang, K.:
- 1098 Understanding the excitation of quasi-6-day waves in both hemispheres during the
- 1099 September 2019 Antarctic SSW, J. Geophys. Res.-Atmos., 127,
- 1100 https://doi.org/10.1029/2021jd035984, 2022.
- 1101 Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and Polvani, L.
- 1102 M.: Climate change from 1850 to 2005 simulated in CESM1(WACCM), J. Climate, 26,
- 1103 130509150556003, https://doi.org/10.1175/jcli-d-12-00558.1, 2013.
- 1104 Matsuno, T.: Vertical propagation of stationary planetary waves in the winter Northern
- 1105 Hemisphere, J. Atmos. Sci., 27, 871-883, https://doi.org/10.1175/1520-
- 1106 <u>0469(1970)027<</u>;0871:vpospw>2.0.co;2, 1970.
- 1107 Matthias, V. and Ern, M.: On the origin of the mesospheric quasi-stationary planetary
- 1108 waves in the unusual Arctic winter 2015/2016, Atmos. Chem. Phys., 18, 4803–4815,
- 1109 https://doi.org/10.5194/acp-18-4803-2018, 2018.

-(Deleted:	Lower
•(Deleted:	Thermosphere
•(Deleted:	Winds
•(Deleted:	Tidal
•(Deleted:	Variations
(Deleted:	During
(Deleted:	Sudden
(Deleted:	Stratospheric
(Deleted:	Warming
(Deleted:	Q
(Deleted:	Day
(Deleted:	Waves
(Deleted:	Region
Ć	Deleted:	During
(Deleted:	Meteor
ĺ	Deleted:	Radar
(Deleted:	Chain
(Deleted:	Excitation
(Deleted:	Quasi
(Deleted:	Day
Ć	Deleted:	Waves
Ć	Deleted:	Both
(Deleted:	Hemispheres
Y	Deleted:	During

Deleted: P	 	
Deleted: Stationary		

Deleted: Change Deleted: Simulated

Deleted: Planetary

Deleted: Winter

- 1141 Matthias, V., Hoffmann, P., Rapp, M., and Baumgarten, G.: Composite analysis of the
- 1142 temporal development of waves in the polar MLT region during stratospheric
- 1143 warmings, J. Atmos. Sol.-Terr. Phys., 90, 86–96,
- 1144 https://doi.org/10.1016/j.jastp.2012.04.004, 2012.
- 1145 McCormack, J. P., Harvey, V. L., Randall, C. E., Pedatella, N., Koshin, D., Sato, K.,
- 1146 Coy, L., Watanabe, S., Sassi, F., and Holt, L. A.: Intercomparison of middle
- 1147 atmospheric meteorological analyses for the Northern Hemisphere winter 2009-2010,
- 1148 Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021,
- 1149 <u>2021.</u>
- 1150 McFarlane, N. A .: The effect of orographically excited gravity wave drag on the general
- 1151 <u>circulation</u> of the <u>lower stratosphere</u> and <u>troposphere</u>, J. Atmos. Sci., 44, 1775–1800,
- 1152 <u>https://doi.org/10.1175/1520-0469(1987)044<;</u>1775:teooeg>2.0.co;2, 1987.
- 1153 Meyer, C. K. and Forbes, J. M.: A 6.5-day westward propagating planetary wave:
- 1154 Origin and characteristics, J. Geophys. Res.-Atmos., 102, 26173-26178,
- 1155 https://doi.org/10.1029/97jd01464, 1997.
- 1156 Mitra, G., Guharay, A., Batista, P. P., and Buriti, R. A.: Impact of the September 2019
- 1157 minor sudden stratospheric warming on the low-latitude middle atmospheric planetary
- 1158 wave dynamics, J. Geophys. Res.-Atmos., 127, https://doi.org/10.1029/2021jd035538,
- 1159 2022.

Deleted:	Effect
Deleted:	Orographically
Deleted:	Excited
Deleted:	Gravity
Deleted:	Wave
Deleted:	Drag
Deleted:	General
Deleted:	Circulation
Deleted:	Lower
Deleted:	Stratosphere
Deleted:	Troposphere

Deleted:	M
Deleted:	Sudden
Deleted:	Stratospheric
Deleted:	Warming
Deleted:	Low
Deleted:	Latitude
Deleted:	Middle
Deleted:	Atmospheric
Deleted:	Planetary
Deleted:	Wave
Deleted:	Dynamics

- 1182 Palmer, T. N.: Properties of the Eliassen-Palm <u>flux for planetary scale motions</u>, J.
- 1183 Atmos. Sci., 39, 992-997, https://doi.org/10.1175/1520-
- 0469(1982)039<;0992:potepf>2.0.co, 1982. 1184
- 1185 Qin, Y., Gu, S., Dou, X., Gong, Y., Chen, G., Zhang, S., and Wu, Q.: Climatology of
- 1186 the guasi-6-day wave in the mesopause region and its modulations on total electron
- 1187 content during 2003-2017, J. Geophys. Res.-Space, 124, 573-583,
- 1188 https://doi.org/10.1029/2018ja025981, 2019.
- 1189 Qin, Y., Gu, S., Dou, X., Teng, C., Yang, Z., and Sun, R.: Southern Hemisphere
- 1190 response to the secondary planetary waves generated during the Arctic sudden
- 1191 stratospheric final warmings: Influence of the quasi-biennial oscillation, J. Geophys
- Res.-Atmos., 127, https://doi.org/10.1029/2022jd037730, 2022. 1192

1193 Qin, Y., Gu, S., Teng, C., Dou, X., Yu, Y., and Li, N.: Comprehensive study of the

- 1194 climatology of the quasi-6-day wave in the MLT region based on Aura/MLS
- 1195 observations and SD-WACCM-X simulations, J. Geophys. Res.-Space, 126,
- 1196 https://doi.org/10.1029/2020ja028454, 2021.
- 1197 Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An
- 1198 improved in situ and satellite SST analysis for climate, J. Climate, 15, 1609-1625,
- 1199 https://doi.org/10.1175/1520-0442(2002)015<;1609:aiisas>2.0.co;2, 2002.
- 1200 Rhodes, C. T., Limpasuvan, V., and Orsolini, Y. J.: Eastward-propagating planetary
- 1201 waves prior to the January 2009 sudden stratospheric warming, J. Geophys. Res.-
- 1202 Atmos., 126, https://doi.org/10.1029/2020jd033696, 2021.

Deleted: R...esponse to the S...econdary P...lanetary W...aves G...enerated D...uring the Arctic S...udden S...tratospheric F...inal W...armings: Influence of the Q...uasi-B...iennial O ... [3]

Deleted: Quasi...uasi-6-Day ...ay Wave ...ave in the Mesopause mesopause Region ...egion and Its ...ts Modulations ...odulations on ...otal Electron ...lectron Content ...ontent During

(....[2])

Total

Deleted: Study ...tudy of the Climatology ...limatology of the Quasi...uasi-6-Day ...ay Wave ...ave in the MLT Region ...egion Based ...ased on Aura/MLS Observations ...bservations and SD-WACCM-X Simulations ... [4]

Deleted: I...mproved In ...n Situ ...itu and Satellite ...atellite SST Analysis ...nalysis for Climate (... [5]

Deleted: Propagating ...ropagating Planetary ...lanetary Waves waves Prior ... rior to the January 2009 Sudden ... udden Stratospheric ... tratospheric Warming ... [6]

Deleted: Flux ...lux for Planetary ...lanetary Scale ...cale N ... [1]

- 1269 Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a physically based gravity wave
- 1270 source parameterization in a general circulation model, J. Atmos. Sci., 67, 136–156,
- 1271 https://doi.org/10.1175/2009jas3112.1, 2010.
- 1272 Salby, M. L.: Rossby normal modes in nonuniform background configurations. Part I:
- 1273 Simple <u>fields</u>, J. Atmos. Sci., 38, 1803–1826, <u>https://doi.org/10.1175/1520-</u>
- 1274 <u>0469(1981)038<</u>;1803:rnminb>2.0.co;2, 1981a.
- 1275 Salby, M. L.: Rossby normal modes in nonuniform background configurations. Part II.
- 1276 Equinox and solstice conditions, J. Atmos. Sci., 38, 1827–1840,
- 1277 https://doi.org/10.1175/1520-0469(1981)038<;1827:rnminb>2.0.co;2, 1981b.
- 1278 Salby, M. L.: Survey of planetary-scale traveling waves: The state of theory and
- 1279 observations, Rev. Geophys., 22, 209–236, <u>https://doi.org/10.1029/rg022i002p00209</u>,
- 1280 1984.
- 1281 Sassi, F., McCormack, J. P., Tate, J. L., Kuhl, D. D., and Baker, N. L.: Assessing the
- 1282 impact of middle atmosphere observations on day-to-day variability in lower
- 1283 thermospheric winds using WACCM-X, J. Atmos. Sol.-Terr. Phys., 212, 105486,
- 1284 https://doi.org/10.1016/j.jastp.2020.105486, 2021.
- 1285 Sassi, F. and Liu, H.-L.: Westward traveling planetary wave events in the lower
- 1286 thermosphere during solar minimum conditions simulated by SD-WACCM-X, J.
- 1287 Atmos. Sol.-Terr. Phys., 119, 11–26, https://doi.org/10.1016/j.jastp.2014.06.009, 2014.
- 1288 Sato, K., Yasui, R., and Miyoshi, Y.: The momentum budget in the stratosphere,
- 1289 mesosphere, and lower thermosphere. Part I: Contributions of different wave types and

Deleted:	Physically
Deleted:	Based
Deleted:	Gravity
Deleted:	Wave
Deleted:	Source
Deleted:	Parameterization
Deleted:	General
Deleted:	Circulation
Deleted:	Model
Deleted:	Normal
Deleted:	Modes
Deleted:	Nonuniform
Deleted:	Background
Deleted:	Configurations
Deleted:	Fields
Deleted:	Normal
Deleted:	Modes
Deleted:	Nonuniform
Deleted:	Background
Deleted:	Configurations
Deleted:	Solstice
Deleted:	Conditions

<u></u>	
Deleted:	Momentum
Deleted:	Budget
Deleted:	Stratosphere
Deleted:	Mesosphere
Deleted:	Lower
Deleted:	Thermosphere
Deleted:	Different
Deleted:	Wave
Deleted:	Types

- 1321 in situ generation of Rossby waves, J. Atmos. Sci., 75, 3613-3633,
- 1322 https://doi.org/10.1175/jas-d-17-0336.1, 2018.
- 1323 Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux,
- 1324 L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E., Daffer, W. H., Drouin, B. J.,
- 1325 Fetzer, E. J., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W.,
- 1326 Krüger, K., Li, J. -L. F., Mlynczak, M. G., Pawson, S., Russell, J. M., Santee, M. L.,
- 1327 Snyder, W. V., Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker,
- 1328 K. A., Waters, J. W., and Wu, D. L.: Validation of the Aura Microwave Limb Sounder
- 1329 temperature and geopotential height measurements, J. Geophys. Res.-Atmos. 1984
- 1330 2012, 113, https://doi.org/10.1029/2007jd008783, 2008.
- 1331 Song, B.-G., Chun, H.-Y., and Song, I.-S.: Role of gravity waves in a vortex-split
- 1332 sudden stratospheric warming in January 2009, J. Atmos. Sci., 77, 3321–3342,
- 1333 https://doi.org/10.1175/jas-d-20-0039.1, 2020.
- 1334 Thorncroft, C. D., Hoskins, B. J., and McIntyre, M. E.: Two paradigms of baroclinic-
- 1335 wave life-cycle behaviour, Q. J. Roy. Meteor. Soc., 119, 17-55,
- 1336 https://doi.org/10.1002/qj.49711950903, 1993.
- 1337 Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol.

1338 Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2,
1339 1998.

- 1340 Walker, S. N., Sahraoui, F., Balikhin, M. A., Belmont, G., Pinçon, J. L., Rezeau, L.,
- 1341 Alleyne, H., Cornilleau-Wehrlin, N., and André, M.: A comparison of wave mode

Deleted: In	
Deleted: Situ	
Deleted: Generation	
Deleted: Waves	

Deleted: Gravity	
Deleted: Waves	
Deleted: Vortex	
Deleted: Split	
Deleted: Sudden	
Deleted: Stratospheric	
Deleted: Warming	

(Deleted: Practical
(Deleted: Guide
)	Deleted: Wavelet
Y	Deleted: Analysis

- 1357 identification techniques, Ann. Geophys., 22, 3021-3032,
- 1358 https://doi.org/10.5194/angeo-22-3021-2004, 2004.
- 1359 Wang, J. C., Palo, S. E., Forbes, J. M., Marino, J., Moffat-Griffin, T., and Mitchell, N.
- 1360 J.: Unusual Quasi 10-Day Planetary wave activity and the jonospheric response during
- 1361 the 2019 Southern Hemisphere sudden Stratospheric Warming, J. Geophys. Res.-Space,
- 1362 126, https://doi.org/10.1029/2021ja029286, 2021.
- 1363 Yamazaki, Y. and Matthias, V.: Large-amplitude quasi-10-day waves in the middle
- 1364 atmosphere during final warmings, J. Geophys. Res.-Atmos., 124, 9874-9892,
- 1365 <u>https://doi.org/10.1029/2019jd030634</u>, 2019.
- 1366 Yin, S., Ma, Z., Gong, Y., Zhang, S., and Li, G.: Response of quasi-10-day waves in the
- 1367 MLT region to the sudden stratospheric warming in March 2020, Adv. Space Res., 71,
- 1368 <u>298–305</u>, https://doi.org/10.1016/j.asr.2022.10.054, 2023.

Deleted: Wave	
Deleted: Activity	
Deleted: Ionospheric	
Deleted: Response	
Deleted: During	
Deleted: Sudden	
Deleted: Amplitude	
Deleted: Quasi	
Deleted: Day	
Deleted: Waves	
Deleted: Middle	
Deleted: Atmosphere	\square
Deleted: During	
Deleted: Final	
Deleted: Warmings	

Page 48: [1] Deleted	In-Sun Song	1/1/24 3:35:00 PM	
۲			4
A			
Page 48: [1] Deleted	In-Sun Song	1/1/24 3:35:00 PM	
			<
_			
Page 48: [1] Deleted	In-Sun Song	1/1/24 3:35:00 PM	
Page 46: [1] Deleted	III-Sull Solig	1/1/24 5:55:00 PM	
			٩
▼			
A			
Page 48: [1] Deleted	In-Sun Song	1/1/24 3:35:00 PM	
▼			<
A			
Page 48: [2] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
•			◄
A			
Dama 49: [2] Dalatad	In Cun Cong	1/1/24/2-200 DM	
Page 48: [2] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
			_
▼			
A			
Page 48: [2] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
۷			4
•			
-			

Page 48: [2] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
▼			
A			
Page 48: [2] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
		,,_	
▼			<
A			
Page 48: [2] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
			<
▼			
A			
Page 48: [2] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
▼			<
A			
Page 48: [2] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
Page 40: [2] Deleted	III-Sull Solig	1/1/24 5:50:00 PM	
•			<
A			
Page 48: [2] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
			4
▼			
A			
Page 48: [2] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
▼			<
A			

Page 48: [2] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
▼			
A			
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
			<
▼			
A			
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
▼			4
A			
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
▼			4
<u>▲</u>			
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
Page 40: [5] Deleted	III-Sull Solig	1/1/24 5:50:00 PM	
•			4
*			
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
▼			
A			
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
			4
▼			
<u>۸</u>			

Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
▼			
A			
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
Tage 40. [5] Deleted	In Sun Song	1/1/24 5.56.66 111	
•			<
.			
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
▼			
A			
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
		· · ·	
▼			4
A			
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
			4
▼			
•			
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
▼			4
A			
Dage 49: [2] Deleted	In Sun Song	1/1/24 2-26-00 DM	
Page 48: [3] Deleted	In-Sun Song	1/1/24 3:36:00 PM	
•			
•			
A			

Page 48: [4] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
▼			
A			
Page 48: [4] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
			<
▼			
A			
Page 48: [4] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
▼			٩
A			
Page 48: [4] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
۲			•
A			
Page 48: [4] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
Page 40: [4] Deleted	III-Sull Solig	1/1/24 5:57:00 PM	
-			<
•			
Page 48: [4] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
▼			
A			
Page 48: [4] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
▼			•
▲			

Page 48: [4] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
			4
A			
Page 48: [4] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
۲			4
Page 48: [5] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
			٩
▼			
▲			
Page 48: [5] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
▼			4
.			
De see 40. [5] Delete d	T C C	1/1/24 2.27.00 PM	
Page 48: [5] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
-			<
v			
Page 48: [5] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
۲			
A			
Page 48: [5] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
rage to. [5] Deleted	III-Sull Solig	1/1/24 5.57.00 PM	
•			<
.			

Page 48: [5] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
.			
Page 48: [6] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
		,,_	
۲			4
.			
Page 48: [6] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
			4
Υ			
_			
Page 48: [6] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
۲			4
Page 48: [6] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
_			
Page 48: [6] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
			4
A			
Page 48: [6] Deleted	In-Sun Song	1/1/24 3:37:00 PM	
			4
▼			
.			

Page 48: [6] Deleted	In-Sun Song	1/1/24 3:37:00 PM
-		<
•		
A		