
Stochastic properties of coastal flooding events – Part 2:
Probabilistic analysis
Byungho Kang1,2, Rusty A. Feagin3,1,*, Thomas Huff3,*, and Orencio Durán Vinent1

1Department of Ocean Engineering, Texas A&M University, College Station, TX, USA
2Present address: Department of Civil and Environmental Engineering, University of Houston, Houston, TX, USA
3Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
*These authors contributed equally to this work.

Correspondence: Orencio Durán Vinent (oduranvinent@tamu.edu)

Abstract. Low-intensity but high-frequency coastal flooding, also known as nuisance flooding, can negatively affect low-lying

coastal communities with potentially large socioeconomic effects. This flooding also can greatly affect post-storm coastal dune

recovery and reduce the long-term resilience of the back-barrier ecosystem. Recent analytical work has hypothesized that

these frequent flooding events are uncorrelated in time and can be modeled as a marked Poisson process with exponentially

distributed sizes, a result with important implications for the prediction of coastal flooding. Here we test this proposition using5

high-temporal-resolution field measurements of an eroding beach on
:::::::
Partially

::::::
driven

::
by

:::::
wave

::::::
runup,

:::
this

::::
type

:::
of

:::::::
flooding

::
is

::::::
difficult

:::
to

::::::
predict

:::
due

:::
to

:::
the

:::::::::
complexity

:::
of

:::
the

::::::::
processes

::::::::
involved.

:::::
Here,

:::
we

:::::::
present

:::
the

::::::
results

::
of

::
a
:::::::::::
probabilistic

:::::::
analysis

::
of

:::::::
flooding

::::::
events

::::::::
measured

:::
on

::
an

:::::::
eroded

:::::
beach

::
at

:
the Texas coast. A

::::::::::::
high-resolution

:
time series of the flooded area was

obtained from pictures using Convolutional Neural Network (CNN)-based semantic segmentation methods
:
,
::
as

::::::::
described

:::
in

::
the

::::
first

::::
part

::
of

::::
this

::::::::::
contribution. After defining the flooding events using a peak-over-threshold method, we found that the10

size of the flooding events indeed followed
::::
their

::::
size

::::::
follows

:
an exponential distributionas hypothesized. Furthermore, the

:::::::::
consecutive

:
flooding events were uncorrelated with one another at daily time scales , but correlated at hourly time scales.

Finally,
:::
as

:::::::
expected

:::::
from

::::
tidal

::::
and

::::::::
day-night

::::::
cycles.

::::
Our

::::::::::::
measurements

:::::::
confirm

:::
the

:::::::
broader

:::::::
findings

::
of

::
a
:::::
recent

:::::::::
multi-site

::::::::::
investigation

::
of

:::
the

:::::::::::
probabilistic

:::::::
structure

::
of

:::::::::
high-water

::::::
events

:::
that

:::::
used

:
a
::::::::::::
semi-empirical

::::::::::
formulation

:::
for

:::::
wave

:::::
runup.

::::::
Indeed,

we found
:
a relatively good statistical agreement between our CNN-based empirical flooding data and run-up predictions . Our15

results formalize the first
:::::::::
predictions

:::::
using

::::::::::::::
total-water-level

::::::::::
estimations.

::
As

::
a

:::::::::::
consequence,

:::
our

:::::
work

:::::::
supports

:::
the

::::::
validity

::
of

::
a

:::::::
relatively

::::::
simple

:
probabilistic model of coastal flooding events

::::::::::::
high-frequency

::::::
coastal

::::::::
flooding driven by wave run-up which

:::::
runup,

::::
that can be used in coastal risk management and landscape evolution models.

1 Introduction

Most coastal20

::::::
Coastal

:
flooding is induced by a short-term rise in water levels caused by a mix of stochastic and deterministic events such

as storm surges, wave runup, tides or river discharge due to heavy precipitation (Muis et al., 2016; Ward et al., 2018; Bevacqua

et al., 2019). In addition to the extreme coastal
::::::
extreme

::::::::::::::
hurricane-driven flooding events with return periods in the order of ten
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or more years, the importance of low-intensity high-frequency coastal flooding
:::::::
flooding

:::::
events, with return periods in the order

of months, has recently became clear
::::::::::::::::::::::::::::::::::::::::
(Sweet et al., 2014; Moftakhari et al., 2017, 2018a). When accumulated over time, the so-25

cial cost of nuisance flooding can outweigh the costs from the large-scale flooding (Kriebel and Dean, 1993; Moftakhari et al., 2018b)

::::::::::::::::::::::::::
(Moftakhari et al., 2017, 2018a). This low-intensity flooding also control the formation and post-storm recovery of coastal

dunes, which are essential for the stability of barrier islands (Durán Vinent et al., 2021).

:::::::::::::
High-frequency

:::
and

:::::::::::
low-intensity

::::::
coastal

::::::::
flooding

::
is

::::::
mostly

:::::
driven

:::
by

:::::::
extreme

::::::
values

::
of

:::::
wave

:::::
runup

::::::::::::
superimposed

::
to

:::
the

::::
tidal

:::::
signal

::::::::::::::::::::::::::::::::::::::::
(Serafin and Ruggiero, 2014; Serafin et al., 2017)

::::::::::
overtopping

:
a
:::::::::::
characteristic

:::::
beach

:::::::::
elevation,

::
or

:::
any

:::::
other

::::::
feature30

::::
close

::
to

:::
the

::::::::
shoreline.

:::
As

:::
the

:::::::::::
characteristic

::::::::
elevation

::
of

::::::
natural

::::::
beaches

::::::::
typically

::::::
adjusts

::
to

:::
the

::::::
average

:::::
wave

:::::
runup

::::::
during

::::
high

:::
tide,

::::
they

:::
are

::::
only

:::::::
flooded

:::::
during

:::::::
extreme

::::::
events

:::::::::::::::::
(Rinaldo et al., 2021)

:
.
::::::::
Therefore

::
it

::
is

::::
very

::::::
difficult

::
to

::::::
predict

::
in

:::::
detail

::::
and

:::
has

::
to

::
be

::::::::
described

::::::::::
statistically.

::::
This

:::::::::::
probabilistic

:::::::::
description

:::
can

::::::
ideally

::::
lead

::
to

:::
the

:::::::::
estimation

::
of

::::
both,

:::
the

::::::::::
overtopping

:::::::::
frequency

::::
λ(Z)

:::
(or

:::::
return

::::::
period

::::::::
T = λ−1)

::
of

::
a
:::::
given

:::::::
elevation

:::
Z;

:::
and

:::
the

:::::::
average

::::
size

::::
S̄(Z)

:::
of

:::::
events

::::::::::
overtopping

:::
Z.

::::
This

::::::::::
information

:::
can

::::
then

::
be

::::
used

::
to

::::::
assess

:::
the

::::::::::
vulnerability

:::
of

::::::
coastal

::::::
features

::::
and

::::::
coastal

:::::::::::
infrastructure

::::
and

:::
plan

:::::::::::
accordingly.35

Recently, Rinaldo et al. (2021) studied
:::::::::
investigated

:
the stochastic properties of high-water events

:::::::
(HWEs),

:::::
which

:::
are

:
asso-

ciated with coastal floodingon a beach, defined as cluster ,
:::
on

::::::
several

::::::::
locations

:::::
along

:::
the

:::
US

:::
and

:::
the

::::::
world.

:::::
These

:::::
events

:::::
were

::::::
defined

::
as

:::::::
clusters of consecutive days when total water levels exceeded a given threshold. In this work, the

::::
The total water

level was calculated by adding the still water level from a buoy dataset to the wave runup estimated from an empirical formula

based on
::::
data,

:::::::::
containing

::::
tides

:::
and

:::::::
surges,

::
to

::::::::
predicted

:::::
wave

:::::
runup

::::
data.

:::::
Wave

::::::
runup

:::
was

::::::::
estimated

::::::::::
empirically

::
as

::::::::
function40

::
of the deep-water significant wave height and wavelength (Stockdon et al., 2006, 2014). They found that the high-water events

overtopping the beach (i.e. floodingevents
:::::
HWEs

::::::::::
overtopping

::
a
:::::::::::
characteristic

::::::
beach

::::::::
elevation

::::
(and

::::
thus

:::::::
leading

::
to
:::::::

coastal

:::::::
flooding) were uncorrelated and occurred randomly in time; by definition, these events can

:
,
:::
and

::::
can

::::
thus be modeled as a

Poisson process. They also found that the sizeand intensity of an event, defined by
::::
their

::::
size,

::::::
defined

:::
as the maximum total

water level during the event , does not vary with increasing elevation
::::::
relative

::
to

:::
the

:::::
beach

:::::::::
elevation,

::::::
follows

:::
an

::::::::::
exponential45

::::::::::
distribution.

:::::
These

:::::::
findings

::::
can

:::
be

::::::::::
summarized

:::
in

::
an

::::::::
equation

:::
for

:::
the

:::::::::::
overtopping

::::::::
frequency

:::
of

::
a

::::::::
threshold

::::::::
elevation

:::
Z:

:::::::::::::::::::::::::
λ(Z) = λb exp[−(Z −Zr)/S̄],::::::

where
:::::::::::
λb = 18yr−1,

::
S̄
::

is
:::

the
:::::::::::::

site-dependent
:::::::
average

:::
size

:::
of

::::::
HWEs

::::::::::
(S̄ ≈ 0.3m)

:::
and

:::
Zr::

is
::
a

:::::::
reference

::::::::
elevation

::::
that

:::::::
depends

::
on

:::
the

::::
tidal

::::::::
amplitude

::::
and

::::::
average

:::::
wave

:::::
runup

:::
and

::::
can

::
be

:::::::::
interpreted

::
as

:
a
::::::::::::
characteristic

:::::
beach

:::::::
elevation

::::::::::::::::::
(Rinaldo et al., 2021).

:

::::::::
However,

::
in

::::
spite

::
of

:::
the

::::::::
generality

::::
and

::::::::
simplicity

::
of

:::::::::::::::::
Rinaldo et al. (2021)

:
’s
:::::::
results,

:::
they

:::::
were

:::::
based

::
on

::::::::::
empirically

::::::::
estimated50

::::
wave

:::::
runup

::::
data,

::::
and

:::::::
therefore

::
it
::
is

:::
not

::::
clear

::::
how

::::
they

:::::::
compare

::
to

:::::
direct

::::::::::::
measurements

::
of

::::::
coastal

:::::::
flooding. Given the empirical

nature of the wave runup model underpinning the data, which does not take into account the detailed onshore wave propagation

nor the varying nearshore profile, the stochastic properties outlined by Rinaldo et al. (2021)were only as good as the quality of

the wave runup predictions.

In
:::
The

::::::::
primary

::::
goal

::
of

:
the present study , we aim to test the predictions made by Rinaldo et al. (2021) by applying the55

same
:
is

::
to

:::::::
describe

:::
the

::::::::::
probabilistic

::::::::
structure

::
of

:::::::
flooding

::::::
events

::::::::
measured

::
at

:
a
:::::::
recently

::::::
eroded

:::
site

::
in

:::::::
northern

::::::
Texas.

::::::::
Flooding

:::::
events

:::::
were

::::::
defined

::::::::
applying

:::
the

:
peak-over-threshold technique

::::::
method

:
to a high-resolution time series of camera images

captured at a beach site on the Texas coast. The image analysis was done
::::
water

::::
area

:::::::
fraction,

::::::::
obtained

::::
from

::::::
coastal

:::::::
images
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using Convolution Neural Network (CNN)-based image segmentation as explained in a companion contribution to this journal

volume (Kang et al., in review). In the present study , we
:
A

::::::
central

::::::::
outcome

::
of

:::
our

::::::::
research

::
is

:::
the

::::::::
validation

:::
of

:::
the

::::::
results60

::
of

:::::::::::::::::
Rinaldo et al. (2021).

:::
As

::::::
shown

::
in

::::
Fig.

::
1,

:::::::
although

::::
our

:::::
study

:::::::::::
complements

:::
the

::::::
spatial

:::
and

::::::::
temporal

:::::
range

::::::::::
investigated

:::
by

:::::::::::::::::
Rinaldo et al. (2021),

::
it

::
is

::::::
limited

::
to

:
a
::::::
single

:::
site

::::
and

::::::
roughly

::::::::
half-year

::::
data.

:::::::::
However,

:::
we

:::
can

:::
use

:::
our

::::::
results

::
to

::::::::
establish

:::
the

::::::
validity

::
of

:::::::::::::::::
Rinaldo et al. (2021)

::
’s

::::
more

:::::::
general

:::::::::
predictions.

:

::
In

::::
what

::::::
follows

:::
we

:
introduce and correct the time series of water data; define flooding events; perform the statistical analysis

of both the size and inter-arrival of flooding events, and finally compare it to the results of Rinaldo et al. (2021).
::
We

:::::::
finalize65

::::
with

:
a
::::::::::
presentation

:::
of

:::
the

::::::::::
probabilistic

::::::
model

:::
for

:::::::::::
low-intensity

:::
and

:::::::::::::
high-frequency

::::::
coastal

:::::::
flooding

::::::
events

:::::::::::
summarizing

::::
both

:::
our

:::::
results

::::
and

:::::::::::::::::
Rinaldo et al. (2021)

::
’s.

time

space

minutes hours days months years

m
et

er
s

de
ca

m
et

er
s

kil
om

et
er

s

Rinaldo et al. (2021) 
Remote and model data, 

multiple sites

This study  
Field measurements, single site

Figure 1.
:::::::::
Comparison

:::::::
between

:::
this

::::
study

:::
and

:::::::::::::::
Rinaldo et al. (2021)

:
.

2 Defining and measuring flooding events

2.1 Field data

As explained in a companion contribution to this journal volume (Kang et al., in review)
::::::::::::::::::
Kang et al. (in review), we installed70

three solar-powered stationary GoPro cameras, each with a different field of view, on a beach near Cedar Lakes, Texas to

monitor
::
the

:
recovery after Hurricane Harvey in 2017. This site is

::::
2017

:::::::::
completely

::::::
eroded

:::
the

::::::
coastal

:::::
dunes

:::
and

:::
the

::::::::::
back-beach

:::::
region

::::
(see

::::::
Figure

:::
2).

::::
This

:::
site

::::
was

:
subject to frequent wave runup events due to its low-lying , yet complex, bathymetric-

topographic profile. Each camera captured pictures every 5 minutes during a 6 A.M–6 P.M. observation period and turned off

automatically during the night. From November 2017 to May 2018, we captured more than 51,000 images.75
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Figure 2.
:::::::
Location

:
of
::::
field

:::::::::
observations

::::
(A).

::::
Three

:::::::::::
solar-powered

::::::
cameras

:::::
(B-D)

::::
were

::::::
installed

::
in

:::::
Cedar

:::::
Lakes,

:::::
Texas,

:
a
:::
site

:::::::
breached

:::::
during

:::::::
hurricane

:::::
Harvey

::::
that

::::::::
experience

::::::
frequent

::::
wave

:::::
runup

:::::::
flooding.

2.2 Time series of water area fraction

In Kang et al. (in review), we applied CNN-based image segmentation to identify water pixels with an accuracy of more

than 90%. Here we use
::::
used

:
the CNN to generate a time series of the number of water pixels from 24,793 consecutive non-

overlapping daylight pictures, while filling the non-observation periods with zeros. For convenience, the number of water pixels

was normalized by the total number of pixels in an image to obtain a water area fraction A(t) (
:
(Fig. 3).80

Since our observation period was about six months, we ignored the effect of seasonality and only corrected the images to

account for three camera rotation events . These events were relatively mild in the angle of deflection, but were due to relatively

strong winds . We also corrected for
:::::
minor

::::::
camera

:::::::
rotations

::::
due

::
to

:::::
strong

:::::
winds

::::
and a change in position following one camera

replacement on March 12th.These four
::::
(Fig.

::::
4A).

:::::
These

:
changes of the camera field-of-view led to different base levels of water

area fraction during non-flooding conditions (Fig. 4A). We identified this base level as the most probable value of the water85

area between camera rotations (or replacements) and thus estimated it from the mode of the water area distribution during that

time period (Fig. 5). We then subtracted the base level (horizontal lines in Fig. 4) from A(t)
::
A)

:::::
from

:::
the

::::
area

::::::
fraction

:
to obtain

the excess water area fraction
::::
A(t) (Fig. 4B). We used A(t) to denote the time series of this excess

:::
For

:::::::::
simplicity,

::
in

:::::
what

::::::
follows

:::
we

::::
refer

::
to

::::
A(t)

:::
as

::::::
simply

::
the

:
water area fraction .

::
or

:::
just

:::::
water

:::::
area.

In order to study the stochastic properties of flooding events at different timescales, we found the
::::::
defined

::
a
::::
new time series90

of water area A|τ (t) at the timescale τ , by taking the maximum of A(t) over a time window τ . For example, A|1h corresponded

::::::::::
corresponds to an hourly time series , A|1d :::

and
:::::
A|24h to a daily time series, etc. Note that by definition, A|5min was

:
is equivalent

to A(t) as pictures were taken every 5 minutes.
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Figure 3. (A) Examples of non-flooding and flooding images captured from the camera. Two points at November 26th, 2017, 17:29 (point 1)

and December 4th, 2017, 16:49 (point 2) are selected to illustrate the area fraction extraction process. (B) Semantic
:::::
Results

::
of

:::
the

:::::::
semantic

segmentation results using the convolutional neural network. Area fraction of the
:::::::::::
Convolutional

:::::
Neural

:::::::
Network

::
to

::::::
identify waterregion is

based on the number of water-labeled pixels,
:::

sky
::::

and
:::::::::
background

::::::
regions. (C) The illustration

:::
Time

:::::
series

:
of the time series generation

is based on water area fractioncalculation using ,
::::::
defined

::
as

:
the captured images

:::::
fraction

:::
of

::::::::::
water-labeled

:::::
pixels

::
in

:::
the

::::
water

:::::
region

::
of
::

a

::::::::
segmented

:::::
image

::::
(dark

:::
blue

:::::
region

::
in

:::
B), from November 23rd to December 23rd, 2017.

2.3 Definition of flooding events

We defined a flooding event as the set of consecutive values of the water area fraction A|τ (t) that exceeded the 2% threshold95

(Fig. 6). This threshold was about twice the standard deviation of the water area distribution (Fig. 5) and allowed a clear

separation between typical fluctuations in water area and the extreme events that characterized flooding conditions .
:::::
values

:::
that

::::::::::
characterize

::::::::
flooding

:::::::::
conditions

::::
(Fig.

::::
5B)

:::
and

:::
can

:::
be

:::::::::
associated

::
to

:
a
::::::::::::

characteristic
:::::
beach

::::::::
elevation

:::::
above

:::
the

:::::::::
shoreline.

From the definition, flooding events depended
::::::
depend

:
on the time window τ , as the consecutive threshold crossings at the

sub-hour timescale merged at the daily timescale (
:
it
::
is
:::::::
enough

::
for

:::
the

:::::
water

::::
area

::
to

:::
be

:::::
above

:::
2%

:::
for

:
a
::::
few

:::::::
minutes

::
to

:::::
count

::
as100

:
a
:::::::::::::::
threshold-crossing

::
at

:::
any

::::::
larger

::::::::
timescale

:::
(see

:
Fig. 6).

Following Rinaldo et al. (2021), we characterized a flooding event i (for a given τ ) by its starting time ti, i.e. the time water

area increased above 2%,
:
; its duration di, ;

:
and its size Si, defined as the maximum water area relative to the 2% threshold

during the duration of the event (Fig. 6). Furthermore, we defined the inter-arrival time ∆ti as the time between consecutive

5
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Figure 4. (A) Time series of original water area fraction. Red dashed
::::::
Dashed lines indicate the camera rotation

::::::
rotations

:
and replacement

points that separate each
:::

times
:::::::

dividing
:::
the time series segment, while solid

:::
into

::
5

:::
time

:::::
spans

::::
with

:
a
:::::::
relatively

:::::
stable

::::::::::
field-of-view.

:::::
Solid

lines show the offsets
::::
‘base

::::
level’

:
for each time segment. (B) Time series of the excess water area fraction A(t)after deducting

:
,
::::::
obtained

:::
by

::::::::
subtracting the offset

::::
base

::::
level

:
in
:
(
::
A)

::
to

:::
the

:::
area

::::::
fraction

:
(negative values were neglected).

:::
The

:::::
dashed

:::
line

:::::
shows

:::
the

::::::
selected

:::
2%

:::::::
threshold

:::::::
separating

:::
the

::::::
extreme

::::::
values,

::::::::::
characterizing

:::::::
flooding

::::::::
conditions,

::::
from

::::::::::
non-flooding

::::::::
conditions.

flooding events ti+1−ti. Below, we analyze the probability distribution function of the duration d, size S and inter-arrival time105

∆t of flooding events at different timescales τ .

3 Statistical analysis of measured flooding events

3.1 Duration of flooding events

At the lowest timescale (and higher time resolution, τ = 5 min), the probability density function f(d) of the duration d of

flooding events lasting up to 2 hours seems followed
:::
can

:::
be

:::::::::::
approximated

:::
by a power-law distribution (Fig. 7),110

f(d) =
β

dmin

(
dmin

d

)1+β

(1)

with minimum duration dmin = 3 minutes and β = 0.7 .
:::
and

:::::
lower

::::
limit

::::::::
dmin = 3

::::
min.

::::
The

:::
fact

::::
that

:::
this

:::::
lower

::::
limit

::
is
::::::
below

::
the

:::::::::
5-minutes

::::::::
temporal

::::::::
resolution

::
of

:::
our

::::
data

:::::::
suggests

::::
that

:::
we

:::
are

::::::
missing

:::::
many

::::::::
relatively

:::::
short

:::::::
flooding

::::::
events.

:::::::::::
Interestingly,

::::
from

::::
Fig.

::
8,

::::
short

:::::::
flooding

::::::
events

:::
are

:::
not

:::::::::
necessarily

::
of

:::::
small

::::
size.

:

6
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Figure 5.
:::
(A) Probability density function (PDF) of water area fractions for each time spans in between camera rotations and/or replacements

(see Fig. 4A).
:::
The

::::
‘base

:::::
level’

::
of

::
the

:::::
water

:::
area

:::::::
fraction

:::::
shown

::
in

:::
Fig.

:::
4A

:::::::::
corresponds

::
to
:::
the

:::::
mode

::
of

:::
the

::::
PDFs

:::
for

::::
each

:::
time

:::::
span.

:::
(B)

::::::::::::
Complementary

::::::::
cumulative

:::::::::
distribution

::::::
function

:::::::
(CCDF)

::
of

:::
the

:::::
excess

:::
area

:::::::
fraction,

::::::
defined

::
as

::
the

::::
area

::::::
fraction

:::::
minus

:::
the

:::
base

::::
level

::::
(see

:::
Fig.

:::
4B),

:::::
where

:::
the

:::
2%

:::::::
threshold

::::::
(dashed

:::
line)

:::::::
separates

:::
the

:::
tail,

::
or

::::::
extreme

:::::
values

::::::::
associated

:::
with

::::::
coastal

:::::::
flooding,

:::
from

:::
the

::::
bulk.

::::::::
CCDF(A)

:::::::
quantifies

:::
the

::::::::
probability

::
of

:::::
having

::
an

::::::
excess

:::
area

::::::
fraction

:::::
larger

:::
than

::
A.

:

Above 2 hours, the
::::
event

:::::::
duration

:
data drastically deviated from the power-law distribution with no event lasting more than115

3 hours , which suggested a physical upper-limit for sustained flooding conditions in the absence of a large storm, such as a

hurricane.

::
in

:::
our

:::::
nearly

:::::::::::::
six-month-long

:::::::::::
measurement

::::::
period

::::
(Fig.

:::
7). Furthermore, the size and duration of flooding events was poorly

correlated (Fig. 8), as events where water covered around 10% of the images’ pixels (above normal coverage
:::
the

:::
2%

::::::::
threshold),

i.e. S > 10%, can lasted
:::
last

:::::::
anything

:
from 10 minutes to 2 hours. However, there was a lower temporal bound

:::::
seems

::
to

::
be

::
a120

:::::
lower

::::
limit for the size of the events

:::::
events

::::::
lasting

:::::
more

::::
than

::
10

:::::::
minutes

:
(Fig. 8).

:

3.2 Distribution of flooding size

The distribution of the size S of flooding events , obtained from the time series of water area at the lowest timescale (τ = 5

min), was
::::::
obtained

:::::
from

:::::::::
A|5min(t),::

is
:
well approximated by the

::
an exponential distribution e−S/S̄/S̄

::::
with

::::::
average

::::::::
flooding

:::
size

::::::::::
S̄ = 3.36% (Fig. 9a), with an average flooding size S̄ = 3.36%. The flooding size distribution remained

::
A).

:::
As

::::::
shown

::
in125

:::
Fig.

::::
9B,

::
the

::::::::
flooding

:::
size

::::::::::
distribution

:::::::
remains exponential for timescales τ up to the maximum value investigated (1.5 days

::
36

::::
hours), with p-values higher than rejection range for both Lilliefors test (6.28 % to 45.4%) and

::
the

::::::::
rejection

::::::::
threshold

:::
for

::::
both

7
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Figure 6. Definition of the flooding events, their size (S) and inter arrivals (∆t) from the excess water area fraction A(t). Examples shown for

the original timescale τ = 5min (A), and for a daily timescale (τ = 1day
:::::::::
τ = 24hours) (B).

::::
Note

::
all

:::
the

:::::
events

:::::
shown

::
in

:::
(A)

::::
were

:::::::
clustered

:
in
::
a
::::
single

:::::
event

::
in

::
(B)

::::::
(shaded

::::::
region).

::
the

::::::::
Lilliefors

::::
and

:::
the Cramér-von Mises test (34.1% to 79.4 %), commonly used test for the

:::
tests

:::
of exponential fit (Lilliefors,

1969; Cramér, 1928).

The exponential distribution of flooding size S agreed with findings by Rinaldo et al. (2021) for the size of beach overtopping130

events (referred to as high-water-events) obtained from the daily time series of total water levels. This agreement suggested that

the distribution type was robust with respect to potential variations of the local beach slope during the measurement period and

alongshore flooding variations at the spatial scale defined by the camera field-of-view.
:::
The

:::::::
average

:::::::
flooding

::::
size

::
S̄

::::::::
increases

::::
with

::
the

:::::::::
timescale

:
τ
:::
but

::::::
seems

::
to

::::::
saturate

::
to
::::::
∼ 8%

::
at

::::
daily

::
or

:::::
larger

:::::::::
timescales

::::
(Fig.

::::
9C).

:

3.3 Distribution of inter-arrivals135

The distribution of inter-arrivals ∆t strongly depended
:::::::
depends on the timescale τ and seemed to have converged

:::::
seems

::
to

:::::::
converge

:
towards an exponential distribution for timescales above ∼ 10 hours (Fig.10A and B). This was

:
is
:
evidenced by

the sharp increase in the p-values of both the Lilliefors and the Cramér-von Mises tests from around 10% to about 60% for

timescales between 10 and 12 hours (Fig.10B). P-values remained
::::::
remain above 30% for larger timescales.

In these statistical tests, the time at which the time-window analysis started was corrected for the time at which the140

time-window analysis starts
::::::
changed

:::
to

:::::
avoid

:::::
biases. For a given timescale τ , we calculated the goodness of the exponen-

tial fit n times, where n= τ/5min is the number of every possible initial time
::::::
possible

::::::
initial

::::
times

:
at which the time-window

8
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Figure 7. Complementary cumulative distribution function 1−F (d) (F is the cumulative distribution function) of the duration d of flooding

events. Line
:::
The

:::
line

:
shows the

:
a
:
power-law

:
fit
:
(dmin/d)

β ,
:
with minimum duration dmin = 3 min and exponent β = 0.7

:::
and

:
a
:::::
lower

::::
limit

:::::::
dmin = 3

:::
min. The time resolution of the data sets a lower cutoff at d= 5min.
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Figure 8. Relation between the size S and duration d of flooding events. Note that the
::::
event

:::
size

::
S

:
is
::::::

defined
::
as

:::
the

::::::::
maximum

::::
value

::
of

:::
the

::::
water

:::
area

::::::
fraction

::::::
during

::
the

:::::
event

:::::
relative

::
to

:::
the

:::
2%

:::::::
threshold.

::::
The time resolution of the data is 5 minutes.

of size τ could start. For example, the statistical tests were conducted only once for A|5min(t)
::::::::
A|5min(t), but 12 times for

A|1h(t)
::::::
A|1h(t):and 288 times for A|1d(t):::::::

A|24h(t).
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Figure 9. (A) Complementary cumulative distribution function 1−F (S/S̄) of the flooding event size S normalized by the mean
:::::
average

:
S̄ at

three different timescales: τ = 5min, 1 hour and 1 day
::
24

::::
hours. The exponential distribution e−S/S̄/S̄ is shown for reference

::::::
(dashed

:::
line).

(B) P-values testing compatibility with the exponential distribution at different timescales (τ ) — 0% (100%) indicate perfect incompatibility

(compatibility) with 5% as the typical threshold for passing the test. (C) Average size S̄ of flooding events (%) for different timescales τ .

Given that the exponential distribution of inter-arrivals implied that the events were
::::::
implies

:::
the

::::::
events

:::
are

:
random and145

independent, indicating a Poisson process. We interpreted that
:::
we

:::::::::
interpreted

:
the large deviations from the exponential distri-

bution for timescales less than 10 hours as evidence of correlation between consecutive events (Fig. 10B). At larger timescales,

consecutive flooding events seemed to have become independent and could be modelled
::
did

:::::::
become

:::::::::::
independent

:::
(i.e.

:::::
their

:::::::::
inter-arrival

::::::::
followed

::
an

::::::::::
exponential

:::::::::::
distribution)

:::
and

:::
can

:::
be

:::::::
modeled

:
as a Poisson process, in agreement with the findings of

Rinaldo et al. (2021) for beach overtopping events. This change in temporal correlation seemed to be related to the timescale150

of local weather patterns affected by the daily cycle.
:
.

3.4 Frequency of flooding events

The frequency λ of flooding events is by definition the inverse of the average inter-arrival λ= 1/∆t or equivalently λ=N/T ,

where N is the total number of flooding events obtained from A|τ (t):::
the

::::::::
condition

:::::::::::
A|τ (t)> 2%,

:
and T = 167 days is the

::::
total

duration of the time series. As expected, λ decreased
:::::::
decreases

:
with the timescale τ as flooding events are merged, reached155

:::::::
reaching a plateau at the daily scale of 2.5 events per month, from about 6 events per month at the hourly scale (Fig. 10C). The

::::
Most

::
of

:::
the

:
decrease in λ mirrored

:::::::
roughly

::::
takes

:::::
place

::
at the transition from correlated to uncorrelated events taking place for

timescales between 6 to 12 hours (Fig. 10B).

10



Figure 10. (A) Complementary cumulative distribution function 1−F (λ∆t) of the inter arrivals (∆t) of flooding events normalized by

the flooding frequency λ= 1/∆t, at timescales τ =5 min, 12 hours and 1 day
:
24

:::::
hours. The exponential distribution is shown for reference

(dashed line). (B) Mean P-values with confidence bound (±σ) testing compatibility with the exponential distribution at different timescales

(τ ) — 0% (100%) indicate perfect incompatibility (compatibility) with 5% as the typical threshold for passing the test. Passing the test, i.e.

inter-arrivals are exponentially distributed, means the events are independent, whereas failing the test suggests the events are correlated. (C)

Frequency λ of flooding events at different timescales (τ ), including the 95% confidence interval obtained by λ× [clower, cupper], where

clower = χ2
0.025,2n/2n, cupper = χ2

0.975,2n/2n.

4 Comparison with run-up model predictions

The stochastic model of flooding events measured over timescales exceeding160

:::
The

::::::::::
exponential

::::::::::
distribution

:::
of

:::::
both,

:::
the

::::::::
flooding

::::
size

::
S

::::
and

:::
the

::::::::::
inter-arrival

:::
∆t

:::
of

::::::
events

::::
over

:::::::::
timescales

::::::
above

:
10

hourswere
:
,
::
is in agreement with previous findings for high-water-events (HWEs) that cause overtopping of the beach, as

stated in a previous section (Rinaldo et al., 2021)
:::
the

:::::::
findings

::
of

::::::::::::::::::
Rinaldo et al. (2021)

::
for

:::
the

::::
size

::::
and

::::::::::
inter-arrival

::
of

::::::
events

::::::::::
overtopping

:
a
::::::::::::
characteristic

:::::
beach

::::::::
elevation

::::::::
(referred

::
to

::
as

::::::::::
high-water

:::::
events

:::
or

::::::
HWEs)

::::::::
obtained

:::::
from

:::
the

::::::::
predicted

:::::
daily

::::
time

:::::
series

::
of

:::::
total

:::::
water

:::::
levels. However, we sought to ask: Can the HWE predictions also match the measured flooding165

frequency
::::
how

:::
the

:::::::::
predictions

:::::::
compare

::
to
:::
the

::::::::::::
measurements

:::::::
beyond

::::
these

:::::::
general

::::::::
stochastic

:::::::::
properties?

::
In

:::::::::
particular,

::::
how

:::
the

:::::::
predicted

:::::::::
frequency

::
of

::::::
HWEs

:::::::::
compares

::::
with

:::
the

:::::::
flooding

:::::::::
frequency

::::::::
measured from the camera observations, and, if so, are

HWE predictions correlated with the
:
?

::::
Also,

:::
are

:::
the

::::::::
predicted

:::::::
flooding

:::::
from

:::::
HWEs

:::::::::
correlated

::
to

:::::::
flooding measurements at the

daily level
::::::::
timescale?

According to Rinaldo et al. (2021), we obtained HWEs from the daily
::::::::
Following

:::
the

::::::::::
methodology

:::::
from

:::::::::::::::::
Rinaldo et al. (2021)170

:
,
:::::
which

:::::::
involved

::::::::::
calculating

:::
the

:::::
hourly

:
time series of total water levels defined as the sum of

:::::::
elevation

:::
for

:::
the

:::::
same

:::
site

:::::
using

:
a
:::::
beach

:::::
slope

:::
of

::::
0.02,

:::
we

:::::::::
generated

:
a
::::

new
:::::

time
:::::
series

::
of

:::::
daily

::::
total

:::::
water

::::::
levels

::::::
relative

:::
to

:::::
MSL.

::::
This

::::::::
required

::::::::
summing
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the still water level measured by the tidal gauge
:
as

:::::::::
measured

::
by

::
a
::::
tidal

::::::
gauge,

:
and a semi-empirical estimation of the 2%-

exceedance wave run-up(Rinaldo et al., 2021). This semi-empirical estimation
:
.
:::
The

:::::
latter relied on off-shore data of

:::::
values

::
of

::
the

:
significant wave height and peak wave frequency,

:
and the local beach slope (Stockdon et al., 2006, 2014). We used tidal175

gauge and buoy wave data

:::
Our

::::
data

::::::
sources

:::::::
included

:::
the

::::
tidal

:::::
gauge

::
at

:::::::::
Galveston

:::
Pier

:::
21

::::::
(29.31°

::
N,

:::::::::
94.793W),

::::
and

::::
wave

::::
buoy

::::::
station

:::::
42035

::::::::::
(29.236°N,

:::::::::
94.403°W).

:::::
Both

::::::
located in Galveston, Texas, the closest site. Rinaldo et al. (2021) already estimated the hourly time series of

total waterelevation for this site using a beach slopeof
::::
they

:::::::
provided

::::::
hourly

::::::::::::
measurements

::
of

:::::
water

:::::
levels

:::
and

:::::::::
significant

:::::
wave

::::::
heights

:::
and

:::::
peak

::::::
period.

::::::
While

:::
the

:::::
water

:::::
depth

::
of

:::
the

:::::
wave

:::::
buoy

:::
was

:::::
15m,

:::
we

:::
did

:::
not

::::::::
consider

::::::
reverse

::::::::
shoaling

::
to

::::::
deeper180

:::::
water,

::
as

::::::::::::
recommended

::
by

::::::::::::::::::
Stockdon et al. (2006)

:
,
::
to

:::::::
maintain

:::
the

:::::::::
simplicity

::
of

:::
our

:::::::
analysis

:::
and

:::::::
directly

:::::::
compare

::
to

:::
the

::::::
results

::
of

:::::::::::::::::
Rinaldo et al. (2021).

:::::
Since

:::
we

:::
did

:::
not

:::::::
perform

::::::::::::
measurements

::
of

:::
the

:::::
beach

:::::
profile

::
at

:::
the

:::::
study

:::
site

::
in

:::
the

::::::::::
observation

::::::
period,

::
we

::::::::
assumed

:::
the

:::::
beach

:::::
slope,

::::::
which

::
is

::::::
needed

::
to

::::::::
calculate

:::::
wave

:::::
runup,

::::
was

:::::::
constant

::::
and

:::::
equal

::
to

:
0.02 (Houser et al., 2015).

:::::::::::::::::
(Rinaldo et al., 2021)

:
.

For consistency, we removed total water levels
::::::
ignored

::::
total

:::::
water

:::::
level

:::::
values

:
during non-observation hours of flooding185

monitoring. We then converted the hourly time series of total water level to the daily maximum a
::::
time

:::::
series

:::
of

:::::::::::::
daily-maximum

total water level , ηd , by sampling maximum values per each day.
::
by

::::::
taking

:::
the

::::::::
maximum

:::::
value

:::
per

::::
day.

::::
This

::::::::
removed

::::
tidal

:::::
cycles

::::
from

:::
the

::::
time

::::::
series. Finally, we defined the HWEs a

::::::::::
high-water

::::
event

:::::::
(HWE) as the set of

:::::::::
consecutive

:
daily total water

levels exceeding a given beach elevation threshold,
:::::::
elevation

:
Zc .

Since flooding events
:::::
relative

:::
to

:::::
MSL

:::::::::::::::::
(Rinaldo et al., 2021)

:
.
::::
Here

:::
Zc::

is
::::::::::

interpreted
::
as

::
a
:::::::::::
characteristic

::::::
beach

:::::::
elevation

:::
in190

:::::
which

::::
case

::::::
HWEs

:::::::
represent

::::::::
potential

:::::::
flooding

::::::
events.

:::::
Thus,

:::::
since

:::::::
flooding

:::::
events

:
and HWEs are equivalent for the purpose of

this work, in what follows we will refer to HWEs as ‘predicted flooding events’, in contrast to the ‘measured’ flooding events

obtained from our CNN-based analysis of camera observations.

Frequency of flooding events

4.1
:::::::::

Frequency
::
of

::::::::
predicted

:::
vs.

:::::::::
measured

:::::::
flooding

::::::
events195

As expected, the frequency of predicted flooding (from HWEs) decreased with beach elevation
:::::
events

::::::::
decreased

:::::
with

:::
the

:::::::::::
characteristic

:::::
beach

::::::::
elevation

:::
Zc,

:
as the number of overtopping events decreased (Fig.11). The predicted flooding frequency

was within the statistical range
::::
95%

:::::::::
confidence

:::::::
interval

:
of the measurements for beach elevations between 0.5mand

::
Zc:::

in

::
the

:::::
range

::::::::::
Zc < 0.9m.

::::
This

::::::
upper

::::
limit

::
is

::::::::
consistent

:::::
with

:::
the

:::::::::::
characteristic

:::::
beach

::::::::
elevation 0.9m . In particular, for the beach

elevation of 0.7m,
:::::::
estimated

:::
by

::::::::::::::::::
Rinaldo et al. (2021)

::::
using

::
a
::::::
digital

::::::::
elevation

:::::
model

:::::::
(DEM)

::
of

::::
the

::::
area

::::
(Fig.

::::
11).

:::
In

::::
fact,200

::
we

::::::
expect

::
a
:::::
lower

:::::
beach

::::::::
elevation

::
at
::::

our
:::
site

:::::::::
following

:::
the

::::
large

::::::
beach

::::::
erosion

:::::
after

::::::::
hurricane

:::::::
Harvey

::
in

::::::
August

:::::
2017,

:::
in

::::::::
agreement

::::
with

:::
the

:::::
trend

::::::::
observed

::
in

:::
Fig.

:::
11.

:

::::::::
Although

::
we

::::
lack

::::::::::::
measurements

:::
of

:::
the

:::::
actual

:::::
beach

::::::::
elevation

::::::
profile

::::::
during

:::
our

::::::::::
observation

::::::
period,

:::
the

:::::
value

::::::::::
Zc = 0.7m,

:
at
::::::

which
:
the predicted frequency matched the measured value of λ= 2.5 month−1 obtained for a daily timescale (τ = 24h

), as seen in Fig.10C. This beach elevation was noticeable lower than the characteristic beach elevation 0.9m estimated by205
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Figure 11. Frequency
::::::
Symbols

:::::
show

::
the

::::::::
frequency (λ) of high water

:::::
coastal

::::::
flooding

:
events overtopping the

::::::
predicted

:::
by

::::::::
high-water

:::::
events

::::
above

::
a

::::::::::
characteristic beach , obtained from extrapolated water elevationdata (Rinaldo et al., 2021), as function of the

::::::::::
characteristic

:
beach

elevation
::
Zc:::::::

(relative
::
to

:::::
MSL). The measured flooding frequency extracted from the water area daily time series A|1d(t) (mean ± 95%

confidence interval)
:
of
:::::::

flooding
:::::
events

::
at

:::
the

::::
daily

:::::::
timescale

:
is shown for comparison

::::
(solid

:::
and

::::::
dashed

::::
black

:::::
lines).

:::
The

:::
red

::::
solid

:::
line

::
is

::
the

:::::::
flooding

:::::::
frequency

:::::::
predicted

:::
by

:::::::::::::::
Rinaldo et al. (2021)

::
for

::
a
::::::::::
characteristic

::::
beach

:::::::
elevation

::::::
around

::::
0.9m

::::::
(dashed

:::
red

:::
line)

::::::::
estimated

:::
from

::
a

:::::
digital

:::::::
elevation

:::::
model

::::::
(DEM).

Rinaldo et al. (2021) using a digital elevation model of the area (DEM, Fig. 11). However, it was
:
),

::
is consistent with the large

observed beach erosion in our field site after hurricane Harvey in August 2017.
:::::::::
hypothesis

::::
that

:::::
beach

:::::::
erosion

:::
can

:::::::
explain

:::::::
potential

:::::::::
differences

:::::::
between

::::::::
predicted

::::
and

::::::::
measured

:::::::
flooding

::::::::::
frequencies.

:
Indeed, the beach scarp visible

::::
scarp

::::::
visible

::
at

:::
the

::::::::
vegetation

:::::
edge in Fig. 3, panel A1, is about 20cm tall

:::
and

:::::
could

::::
help

::::::
explain

:::
the

::::::::
elevation

:::
gap.

4.2 Synchronicity of measured and predicted flooding events210

We compared the
::::
also

::::::::
compared

:
flooding predictions to the measurements at the daily level by defining a corrected and

normalized
::::::
rescaled

:
daily time series of the measured flood area

::::::
flooded

::::
area

::::::
fraction

:
(Rm)

::::::
relative

::
to

:::
the

:::
2%

::::::::
threshold

:
and

the predicted water elevation above the beach (Rp)
:::::
above

:
a
:::::::::::
characteristic

::::::
beach

:::::::
elevation

:::
Zc as follows:

Rm(t) =
A|1d(t)− 2%

Sm

Θ(A|1d(t)− 2%)max

(
A|24h(t)− 2%

Sm

,0

)
::::::::::::::::::::

Rp(t) =
ηd(t)−Zc

Sp

Θ(ηd(t)−Zc)max

(
ηd(t)−Zc

Sp

,0

)
:::::::::::::::::

(2)215
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Figure 12.
::::

Daily
:::
time

:::::
series

::
of

:::
the

::::::
rescaled

::::::::
measured

::::::
flooded

::::
area

::::
(Rm)

:::
and

:::
the

:::::::
rescaled

:::::::
predicted

:::::
water

:::::::
elevation

::::
(Rp)

:::::
above

:
a
:::::
beach

:::::::
elevation

::::::::
Zc = 0.7m,

::::
from

:::
23

:::
Nov

::::
2017

::
to

::
31

:::
Mar

::::
2018

::::
(see

:::::::
definition

::
in

::
the

::::
main

::::
text).

:::
At

::
the

::::::
selected

:::::::
elevation

::::::::::
(Zc = 0.7m)

:::
the

:::::::
predicted

::::::
flooding

::::::::
frequency

::::
from

::::
water

:::::::
elevation

:::
data

:::::
equals

:::
the

:::::::
measured

::::
one

:::
from

::::::
flooded

::::
area

:::
(see

:::
Fig.

:::
11)

:::::::
however

:::
the

::::::
duration

::
of

:::
the

:::::::
predicted

::::::
flooding

:::::
events

::
is

::::
much

:::::
longer.

where , for the measurements , A|1d was the
::::
A|24h::

is
:::
the excess water area fraction at the daily timescale, 2% was the imposed

:
is
:::
the

:
threshold for flooding conditions. The mean

:
,
:::::::::
Sm = 7.5%

::
is

:::
the

:::::::
average size of the measured flooding events for τ = 24h

was Sm = 7.5%(see Fig. 9C).

For the predictions, ηd was the estimated
:
is

:::
the

::::::::
estimated

:::::
daily

::::::::
maximum

::
of

:::
the

:
total water level at the shoreline , Zc was the

characteristic beach elevation and Sp = 0.3m was the mean
:
is

:::
the

:::::::
average size of the predicted HWEs (Rinaldo et al., 2021).220

In both cases, Θ(x) is the step function (1 for x > 0 and 0 otherwise)
::
the

::::::::
function

::::
max

::::::
ensures

::::
Rm::::

and
:::
Rp :::

are
::::::
positive. Due

to lack of data, we could only generate predictions for the first 130 days of our total 170 day measurement period (Fig. 12).

In spite of the numerous uncertainties in the estimation of the actual total water level from off-shore wave dataand its

application to estimate local run-up and beach overtopping, both time series
:
,
:::
the

::::
time

:::::
series

:::::
given

::
by

::::
Eqs.

::
2 were remarkably

similar for the
:::::::::::
characteristic

:
beach elevation Zc = 0.7m at which the predicted flooding frequency equals the measured one225

(Fig. 12). Indeed, most measured events were accurately captured by the prediction, including their relative intensity.

We evaluated the performance of the run-up model in predicting the measurements at the daily level
::::
scale

:
using the

conditional probabilities P (m|p) and P (p|m). The first one was ,
::::::

where
:::::::
P (m|p)

::
is

:
the probability of measuring an event

:::::::::::::::::
observing/measuring

:::::::
flooding (m) that was

:::::
during

::
a

:::
day

:::::
when

:::::::
flooding

:::::::::
conditions

::::
were

:
predicted (p), and the second one was

the
::::::
P (p|m)

::
is
:::
the

:
probability of predicting an event (p) that was measured (m)

::::::
flooding

:::::::::
conditions

::::::
during

:
a
::::
day

:::::
when

:::::::
flooding230

:::
was

::::::::::::::::
observed/measured. Figure 13 shows the rates of false positives 1−P (m|p)

::::::::::::::::::::
P (¬m|p) = 1−P (m|p),

:::::
when

:::::::
flooding

::::
was
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Figure 13.
::::::::::
Performance

::
of

::
the

:::::
model

:::::::::
predictions

::::
when

::::::::
compared

::
to

:::::::::::
measurements

:::
for

::::::
different

:::::
beach

::::::::
elevations

::::
(Zc).

::::
False

:::::::
positive

:::
and

:::
false

:::::::
negative

:::
rates

:::
are

::::::
defined

:
in
:::::
terms

::
of

::::::::
conditional

::::::::::
probabilities

:
as
:::
the

::::::::
probability

::
of

::::::
flooding

::::::::
conditions

:::::
being

:::::::
predicted

::
but

:::
not

::::::::
measured,

:::
and

::
the

:::::::::
probability

::
of

::::::
flooding

::::::::
conditions

::::
being

::::::::
measured

::
but

:::
not

::::::::
predicted,

:::::::::
respectively

:::
(see

:::
text

:::
for

::::::
detailed

::::::::
definition).

:::::::
predicted

::::
but

:::
not

:::::::::
measured, and false negatives 1−P (p|m) of the prediction

:::::::::::::::::::::
P (¬p|m) = 1−P (p|m),

:::::
when

:::::::
flooding

::::
was

::::::::
measured

:::
but

:::
not

::::::::
predicted,

:::
for

:::
the

::::
time

:::::
series

:::::
given

:::
by

::::
Eqs.

:
2
:
as function of

::
the

:::::::::::
characteristic

:
beach elevation Zc . As

::
in

:::
the

:::::
model

::::::::::
prediction.

:

::
As

::
it

::
is already apparent in Fig. 12, for

::
at Zc = 0.7m , the rate of false negatives was

::
is relatively low ∼ 25% whereas the235

rate of false positives was
::
is quite high ∼ 75%.

::::
Since

:::
the

::::::::
predicted

::::
and

::::::::
measured

::::::::
frequency

:::
of

:::::::
flooding

:::::
events

:::
are

::::::
equal,

:::
the

::::
large

::::
rate

::
of

::::
false

::::::::
positives

:::::::
implies

:::
the

:::::::
duration

::
of

:::
the

:::::::::
predicted

:::::::
flooding

::::::
events

::
is

:::::
much

:::::
longer

::::
that

:::
the

::::::::
observed

:::::
ones.

:
As

the beach elevation increased, the rate of false negatives drastically increased, which suggests that our
:::::::
somehow

::::::::
supports

:::
our

::::::
indirect

:
estimation of the local beach elevation

:::::::::::
characteristic

:::::
beach

::::::::
elevation

::
at

:::
our

::::
site by comparing the predicted (using a

run-up model) and measured (using our camera data) flooding frequenciesis consistent with the daily time-series of total water240

elevation predicted from the run-up model (Fig. 12).
:::
and

::::::::
measured

:::::::
flooding

:::::::::::
frequencies. However, no similar improvement

occurred for the rate of false positives, as the run-up model consistently overpredicted
::
the

:::::::
number

::
of flooding days at all beach

elevations.

Given the nature of the run-up predictions using off-shore data (Stockdon et al., 2006, 2014), that in a first approximation

neglects the alongshore variability of the bathymetry or the details of wave shoaling (García-Medina et al., 2017; Atkinson et al., 2017)245

, one can argue that the prediction only indicates conditionsfavorable to floodingevents somewhere along the shoreline and not

necessarily the actual occurrence of a flooding event at a precise location. This statistical interpretation would be inline with

our findings.
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Corrected and normalized daily time series of measured flooded area (Rm) and predicted water elevation above the beach

(Rp) from 23 Nov 2017 to 31 Mar 2018, when both time series are available (see definition in the main text). At the selected250

beach elevation (Zc = 0.7m) the predicted flooding frequency from water elevation data equals the measured one from flooded

area (see Fig. 11).

5
:::::::
Towards

::
a
:::::::::::
probabilistic

::::::
model

::
of

:::::::::::
low-intensity

::::
and

::::::::::::::
high-frequency

:::::::
flooding

::::::
events

Performance of the model predictions when compared to the measurements. False positive and false negative rates are defined

in terms of conditional probabilities as the probability of flooding predicted but not measured, and the probability of flooding255

measured but not predicted, respectively (see text for detailed definition).
:::::::::::
Summarizing

:::
our

::::::::
findings,

:::::::
flooding

:::::
events

::::::::
obtained

::::
from

:::
the

:::::
daily

::::
time

:::::
series

::
of

:::::
water

::::
area

::::::::
A|24h(t)::::

were
:::::::::::

uncorrelated
::::
and

::::
their

::::
size

:::::::
followed

:::
an

::::::::::
exponential

::::::::::
distribution

::::
with

::::::
average

:::::::::
S = 7.5%

:::::
(Figs.

:
9
:::
and

::::
10).

:::::::::
Therefore,

:::
the

::::::::
frequency

::
of

::
a

:::::::
flooding

::::
event

:::
of

:
at
:::::
least

:
a
:::
size

:::
Sc:::

(in
::::::
percent

::
of

:::::
water

::::::
pixels)

:
is
:::::
given

:::
by:

:

λ(Sc) = λ2%e
−(Sc−2%)/S

:::::::::::::::::::::
(3)260

:::::
where

:::::::::
S = 7.5%

::
is

:::
the

:::::::
average

:::
size

::::
and

::::::::::::::::::::::
λ2% = (2.5± 1)month−1

::
is

:::
the

:::::::::
frequency

::
of

:::
all

::::::::
measured

::::::::
flooding

:::::
events

:::
at

:::
the

::::
daily

:::::
scale.

:::::
Note

:::
that

::::
λ2%:::::::

depends
:::
on

:::
the

:::::::
selected

:::
2%

::::::::
threshold

:::
for

:::
the

:::::
water

::::
area

:::::::
fraction

::::
(also

:::::::::
appearing

::
in

:::
the

:::::::::
exponent)

::::::::
separating

:::::::
flooding

::::
and

:::::::::::
non-flooding

:::::::::
conditions.

::::::::
Similarly,

::
as

:::
was

:::::::
already

:::::::::
mentioned

::
in

::
the

:::::::::::
introduction,

::::::::::::::::::
Rinaldo et al. (2021)

::::
found

:::
the

::::::::::
overtopping

::::
(i.e.

:::::::
flooding)

:::::::::
frequency

::
of

::
an

::::::::
elevation

::
Z,

:::::::
relative

::
to

:::::
MSL,

:::
can

:::
be

:::::::::::
approximated

:::
as:265

λ(Z) = λbe
−(Z−Zr)/S̄

::::::::::::::::::
(4)

:::::
where

::::::::
S̄ ≈ 0.3m

::
is
:::
the

::::::::::::
approximated

::::::
average

::::
size

::
of

::::::
HWEs

::
(it

::::
was

:::::
found

::
to

::
be

::::::
mildly

:::::::::::::
site-dependent)

:::
and

::::::::::::::::
λb = 1.5month−1

:
is
:::
the

::::::::::
overtopping

:::::::::
frequency

::
at

:::
the

::::::::
reference

:::::::
elevation

::::
Zr,

::::::
relative

::
to

:::::
MSL.

::::
This

::::::::
elevation

:::
was

::::::
found

::
to

::::::
roughly

::::::::::
correspond

::
to

::
the

::::::::::::
characteristic

:::::
beach

:::::::
elevation

::
at
::
a
:::::
given

:::
site

:::
and

:::::::
depends

:::
on

:::
the

::::
local

::::
tidal

::::::::
amplitude

:::
At:::

and
:::::::
average

::::::::
predicted

:::::
wave

:::::
runup

::
ηw:::

as,270

Zr ≈At +1.6ηw .
::::::::::::::

(5)

:::
The

:::::::
average

::::
wave

::::::
runup,

::::::::
predicted

:::::
using

:::
the

::::::::::
formulation

::
of

::::::::::::::::::
Stockdon et al. (2006)

:
,
:::
can

::
in

::::
turn

::
be

:::::::::
expressed

::
in

:::::
terms

::
of

:::
the

:::::::::
deep-water

:::::::::
significant

::::
wave

::::::
height

:::
Hs:::

and
::::::::::
wavelength

:::
L0 ::

as,
:

ηw = a(β)
√
HsL0

:::::::::::::::
(6)

:::::
where

:::
the

:::::::
overline

::::::
means

:::::::
average

::::
over

:::
the

::::
time

::::::
period

::::::::
analyzed,

:::
L0::

is
:::::::::
calculated

:::::
from

:::
the

::::
peak

:::::
wave

::::::
period

:::
Tp :::::

using
:::
the275

:::::::::
deep-water

:::::::::
dispersion

::::::
relation

::::::::::::::
L0 = gT 2

p /(2π),::::
and

::
the

::::::
factor

::::
a(β)

::
is

:::::::
function

::
of

:::
the

:::::
beach

:::::
slope

::
β

:::
and

:::
can

:::
be

::::::
written

:::
as,

a(β) = 0.033
(√

1+1.2β/βc +β/βc

)
:::::::::::::::::::::::::::::::

(7)
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::::
with

:::::::
constant

:::::::::
βc = 0.087

::::::::::::::::::
(Rinaldo et al., 2021).

:::::::::
Equations

:::
4–7

:::::::
provide

:
a
::::::::
relatively

::::::
simple

::::
and

:::::
widely

:::::::::
applicable

:::::::::::
probabilistic

:::::
model

:::
of

:::::::::::
low-intensity

::::
and

::::::::::::
high-frequency

:::::::
flooding

::::::
events.

:

::::::::
Although

:::
our

:::
Eq.

::
3

::::
only

::::
gives

:::
an

::::::
indirect

:::::::
measure

:::
of

:::::
actual

::::::
flooded

:::::
area,

::
by

:::::
using

:::
the

:::::::
fraction

::
of

:::::
water

:::::
pixels

::
in
:::
an

::::::
image,280

:::
and

::
is

::::
only

::::
valid

:::
for

:::
our

::::
field

::::
site,

::
it

::::
does

::::::
support

:::
the

:::::::
validity

::
of

:::
Eq.

::
4

::
in

:::::::::
describing

:::::
actual

:::::::
flooding

:::::
using

::::::
HWEs.

:

6 Discussion and Conclusion

We studied the stochastic properties of coastal flooding events monitored via 5-minutes time-lapse imagery for more than 160

days and processed using CNN-based image segmentation. When analyzing the data at the daily timescale , we find flooding

events can be modeled as a Poisson process with exponentially distributed sizes, in agreement with recent findings using a285

run-up model to predict beach overtopping (Rinaldo et al., 2021). The
::
We

:::::
found

::::
the

::::::::
frequency

::
of

::::::::
flooding

:::::
events

:::::::::
depended

:::::::
strongly

::
on

:::
the

::::::::
timescale

::
at
::::::

which
::::
data

::::
was

::::::::
analyzed,

:::
and

:::::::::
decreased

::::
from

:::::
about

::
6
::::::
events

:::
per

::::::
month

::
at

:::
the

::::::
hourly

::::::::
timescale

::
to

:
a
:::::::
plateau

::
of

:::
2.5

::::::
events

::::
per

:::::
month

:::
at

:::
the

:::::
daily

::::::::
timescale.

::::::::::::
Furthermore,

:::
the

:
correlation between consecutive events

:::
also

depended on the timescaleat which we defined the flooding events. Following our statistical analysis of event inter-arrivals,

flooding events seems to be correlated for timescales smaller than 10 hours, while events are random and independent at larger290

timescales, thereby following a Poisson process.

The frequency of flooding events depended strongly on the timescale at which data was analyzed, and decreased from about

6 events per month at the hourly timescale to a plateau of 2.5 events per month at the daily timescale. Although this value is

larger than the frequency of 1.5 events per month predicted by HWEs (Rinaldo et al., 2021) for natural beaches, the latter value

was within the confidence bounds of our data, which were relatively large due to the short time period analyzed. Nevertheless,295

a higher measured flooding frequency was expected because of beach erosion induced by hurricane Harvey
:::
This

::::::
change

:::
in

:::::::
temporal

:::::::::
correlation

:::
for

:::::::::
timescales

::::::
around

:::
10

:::::
hours

:::::
could

:::
be

::::::
related

::
to

:::
the

::::
tidal

::::::
period

::::::
(which

::
is

:::::
about

:::
12h

:::
at

:::
this

::::::::
location)

:::
and

:::
the

::::::::
day-night

:::::
cycle

:::::::::
potentially

::::::::
disrupting

::::
any

::::
local

:::::::
weather

::::::
pattern

::::::
behind

:::
the

:::::::
flooding

:::::
event.

We found the size of flooding events was exponentially distributed with average sizes of about 4% of the camera field-

of-view when data was analyzed at the hourly timescale to a maximum 8% at the daily or-larger timescale. When estimated300

at the highest 5-minute resolution, we also found the actual duration of flooding events typically varies between 10 and 100

minutes, and seemed to follow a power-law distribution. However, there was a
:::
The

::::
lack

:::
of

:::::
events

::::::
longer

::::
than

::
3
:::::
hours

:::
in

:::
our

:::::
nearly

:::::::::
six-month

::::::
period,

::::::
during

::::::
which

::::
there

::::
was

:::
no

::::
large

:::::::
storms,

:::::
seems

:::
to

::::::
suggest

::
a
:::::::
physical

:::::
upper

:::::
limit

:::
for

::::::::
sustained

:::::::
flooding

:::::::::
conditions

:::::::
perhaps

::::::
related

::
to

::::
high

:::::
tides.

:::::::::
However,

::
in

:::
this

::::::
region

:::::::::::
astronomical

:::::
tides

:::
are

::::::::
relatively

:::::
small

::::
and

:::::
water

:::::
levels

::
are

::::::
mainly

:::::::
affected

:::
by

::::::
waves,

:::::
which

:::::
would

:::::
again

:::::
point

::
to

::::
wave

::::::
runup

::::::
driving

:::
the

:::::::
observed

::::::::
flooding,

::
as

::::::::
suggested

:::
by

:::
the305

:::::::::
high-water

::::
event

::::::::
analysis.

:::::::::::
Furthermore,

:::
we

:::::
found

:
a
:
poor correlation between the size and the duration of flooding events.

Finally, at
:::::
When

:::::::
focused

:::
on

:
the daily timescale, we found

:::
that

::::::::
flooding

::::::
events

:::
can

:::
be

::::::::
modeled

::
as

::
a
:::::::
Poisson

:::::::
process

::::
with

:::::::::::
exponentially

::::::::::
distributed

:::::
sizes,

::
in

:::::::::
agreement

:::::
with

::::::
recent

:::::::
findings

:::::
using

::
a
::::::
run-up

::::::
model

::
to
:::::::

predict
::::::
coastal

::::::::
flooding

:::::::::::::::::
(Rinaldo et al., 2021)

:
.
:::
The

:::::
main

:::::::::::
probabilistic

:::::::::
properties

::
of

:::::::::
measured

:::
and

:::::::::
predicted

:::::::
flooding

::::::
events

:::
can

:::::
thus

::
be

:::::::::
described

::
by

::::
Eqs.

:
3
::::
and

::
4,

::::::::::
respectively.

::::
One

::::
way

::
to

:::::::::
understand

:::
the

::::::
similar

::::
form

::
of

::::
both

::::::::
equations

::
is

:::::::
through

:::
the

::::::
relation

:::::::
between

:::::::
flooded310
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:::
area

::::
and

::::
water

:::::
depth

::
at

:::
the

::::::::
shoreline.

:::::::::
Assuming

:::
the

:::::
beach

::::
slope

::
in

:::
our

::::
field

:::
site

::
is
::::::::
relatively

:::::::
constant

::::
then

:::
we

:::::
would

::::::
expect

::::
both

::
to

::
be

:::::::::::
proportional,

::
in

:::::
which

::::
case

:::
the

:::::::
fraction

::
of

:::::
water

:::::
pixels

::::::
would

:::
also

::::::::
correlate

::::
with

:::::
water

:::::
depth

::
at

:::
the

::::::::
shoreline.

:::::::::
Therefore,

:::
our

::::::::
agreement

::::
with

::::::::::::::::::
Rinaldo et al. (2021)

:::::::
suggests

:::
that

:::
the

::::::::::
exponential

::::::::::
distribution

:
is
::::::
robust

::::
with

::::::
respect

::
to

:::::::
potential

:::::::::
variations

::
of

:::
the

::::
local

:::::
beach

:::::
slope

:::::
during

:::
the

:::::::::::
measurement

::::::
period

:::
and

:::::::::
alongshore

::::::::
variations

:::
of

::
the

:::::::
flooded

::::
area

:
at
:::
the

::::::
spatial

::::
scale

:::::::
defined

::
by

:::
the

::::::
camera

:::::::::::
field-of-view.

:
315

:::::
Going

::::::
beyond

:::
the

::::::::
statistical

:::::::::
agreement

::::::
pointed

::::::
above,

:::
the

::::::::
frequency

::
of

:::
1.5

:::::
events

:::
per

::::::
month

:::::::
predicted

:::
by

::::::
HWEs

:::::::::::::::::
(Rinaldo et al., 2021)

::
for

:::::::
natural

:::::::
beaches,

::::::::
although

:::::
lower

::::
than

:::
the

:::
2.5

::::::
events

:::
per

::::::
month

::::::::
measured,

::::
was

::::::
within

:::
the

:::::::::
confidence

:::::::
bounds

::
of

:::
our

:::::
data,

:::::
which

::::
were

:::::::::
relatively

::::
large

::::
due

::
to

:::
the

:::::
short

::::
time

::::::
period

::::::::
analyzed.

:::::::::::
Nevertheless,

::
a
::::::
higher

::::::::
measured

:::::::
flooding

:::::::::
frequency

::::
was

:::::::
expected

:::::::
because

::
of

:::::
beach

:::::::
erosion

:::::::
induced

::
by

::::::::
hurricane

:::::::
Harvey,

::::::
which

:::::
would

:::::::
improve

:::
the

:::::::::
agreement

::::
with

:::
the

::::::
model.

::::::
When

:::::::
focusing

::
on

:::
the

::::
daily

::::::::::
correlation

::
of

:::::::
predicted

::::
and

::::::::
measured

:::::::
flooding,

:::
the

:::::::::
predictions

:::::
from

::
the

:::::::
analysis

::
of

::::::
HWEs

::::::::::::::::::
(Rinaldo et al., 2021)320

:::::::
captured

::::
most

::
of

:
the runup modelbehind the HWEs prediction of Rinaldo et al. (2021) indeed captures the occurrence of local

::::
daily

:
flooding, although it noticeably overpredicts them. Furthermore, we found a good agreement between the predicted

flooding frequency (from HWEs ) and our measurements when taking into account local beach erosion due to hurricane

Harvey.
:::
The

::::
large

:::::::
fraction

::
of

:::::
false

:::::::
positives

::
in

:::
the

::::::::
predicted

:::::::
flooded

::::
days

::::::::::
(particularly

::
at

:::
the

::::
end

::
of

:::
the

:::::::::::
measurement

:::::::
period),

::::
even

::::
after

:::::::::
correcting

:::
for

::
a

:::::::
different

:::::
beach

:::::::::
elevation,

:::::
could

:::::
result

:::::
from

:::
the

::::::::::
assumption

::
of

::
a
:::::::
constant

:::::
beach

:::::
slope

::::::
along

:::
the325

:::::
whole

:::::
beach

:::::::
section

::::::
covered

:::
by

:::
the

:::::::
camera

:::
and

:::
for

:::
the

::::::
whole

::::::::::
observation

::::::
period.

:::::
Since

::::::
run-up

::::::::::
predictions

:::::
using

::::::::
off-shore

:::
data

:::::::::::::::::::::::::
(Stockdon et al., 2006, 2014)

::
are

:::::::::
essentially

:::::
valid

:::
for

:
a
::::::
single

::::::
transect

::::
and

::::
thus

::::::
neglect

:::
the

::::::::::
alongshore

::::::::
variability

:::
of

:::
the

:::::::::
bathymetry

::
or

:::
the

::::::
details

::
of

:::::
wave

:::::::
shoaling

:::::::::::::::::::::::::::::::::::::::::
(García-Medina et al., 2017; Atkinson et al., 2017)

:
,
:
it
::::::

would
::
be

:::::::
difficult

::
to

:::::::
capture

::
the

::::::::::
complexity

::
of

:::
the

:::::::::
site-to-site

::::::::
variability

:::
of

:::::::
flooding

::::
over

:
a
::::::::
relatively

::::
large

::::::
beach

::::::
section.

:::
On

:::
the

:::::
other

::::
hand,

::
it
:::::
could

::
be

::::
that

::
the

:::::::::
predicted

:::::::
flooding

::::
was

:::::
taking

:::::
place

::::::::::
somewhere

::::
else

:::::
along

:::
the

:::::
beach

::::
and

:::
was

:::
not

::::::::
captured

:::
by

:::
our

::::
local

::::::::::::
observations.

::
A330

::::
final

::::::::
possibility

::
is
::::
that

:::
our

::::::::
sampling

::::::::
frequency

:::
of

:::
one

::::::
picture

:::::
every

::
5

:::::::
minutes

:
is
::::
not

::::
high

::::::
enough

::
to

:::::::
capture

::
all

:::::::
possible

:::::
large

:::::
runup

:::::
events

:::
(as

::::::::
predicted

:::
by

:::
the

::::::
HWEs

:::::::::::
formulation),

::
in

:::::
which

:::::
case

:::
the

::::
false

:::::::
positive

:::
rate

:::::
could

:::
be

:::::
lower.

::::
This

::
is
:::::::::
supported

::
by

:::
the

:::
fact

::::
that

:::
the

::::::::::
distribution

:::::::
function

::
of

:::
the

:::::::
duration

::
of

:::::::
flooding

::::::
events

:::
has

:
a
::::::::::
lower-limit

::
of

:
3
::::::::
minutes.

In summary,
:::::::::
Regardless

::
of

:::::
these

::::::
sources

::
of

:::::::
potential

::::::
errors,

:::
and

:::::
more

::
in

:::
line

::::
with

:::
the

::::::::
statistical

:::::
nature

::
of

:::::
wave

:::::
runup

:::
data

::::
and

::
the

::::::::::
uncertainty

::
in

:::
the

:::::::::
calibration

::
of

:::
the

::::::
model

:::::::::
parameters

::
in

:::
the

:::
first

:::::
place

:::::::::::::::::::::::::::::::::::::::::
(García-Medina et al., 2017; Atkinson et al., 2017)

:
,335

:::
one

:::
can

:::::
argue

::::
that

::
the

:::::::::
prediction

::::
only

::::::::
indicates

::::::::
conditions

::::::::
favorable

::
to
::::::::
flooding

:::::
events

::::::::::
somewhere

:::::
along

:::
the

:::::::
shoreline

::::
and

:::
not

:::::::::
necessarily

:::
the

:::::
actual

::::::::::
occurrence

::
of

:
a
:::::::
flooding

:::::
event

::
at
::
a
::::::
precise

:::::::
location.

:::::
This

::::::::
statistical

:::::::::::
interpretation

::::::
would

::::
agree

:::::
with

:::
our

:::::::
findings.

::
In

:::::::
addition

::
to

:::
our

:::::::
findings

::::::::::::
characterizing

:::
the

:::::::::::
probabilistic

::::::::
structure,

::::::::
including

:::::::::
frequency,

:::::::
intensity

::::
and

:::::::
duration,

:::
of

::::::
coastal

:::::::
flooding

::
at

:::
our

:::::
field

::::
site,

:
by validating the predictions of Rinaldo et al. (2021), our work

:::
also

:
demonstrates the suitabil-340

ity of HWEs predictions
:
,
:
based on relatively simple run-up models,

:
to estimate the frequency and intensity of beach and

dune overtopping. We also provided a detailed characterization of the probabilistic structure of flooding events, including its

frequency, intensity and duration.
:::::
events

:::::::
leading

::
to

::::::
coastal

:::::::
flooding

::::
and

:::::
dune

:::::::
erosion. Our results thus formalize, i.e. vali-

date and expands
::::::
expand, the first probabilistic model of

::::::::::::
high-frequency

:::::::::::
low-intensity

:
coastal flooding events driven by wave
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run-up . After further estimation
:::
(e.g.

::::
Eqs.

:::::
4–7).

:::::
After

::::::
further

:::::::::
calibration of the model parameters for different locations, this345

probabilistic model can be used
:::
very

::::::
useful in coastal risk management and landscape evolution models.
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