The impact of gaseous degradation on the equilibrium state of gas/particle partitioning of semi-volatile organic compounds

Fu-Jie Zhu^{a,b,c}, Zi-Feng Zhang^{a,b}, Li-Yan Liu^{a,b}, Pu-Fei Yang^{a,b}, Peng-Tuan Hu^{a,d}, Geng-Bo Ren^c, Meng Qin^{a,b}, Wan-Li Ma^{a,b,*}

^a International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

^b Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China

^c School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China

^d School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China

^{*}Corresponding author. International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, Heilongjiang, China. Email address: <u>mawanli002@163.com</u>

Contents

Tables

Table S1. Information of 49 Me-PAHs	. 3
Table S2. Values and the calculation parameters for A and B of several Me-PAHs	. 6
Table S3. Calculation parameters for log K_{OA} (25°C) and ΔH_{OA} (kJ/mol)	. 8
Table S4. The geometric mean values of the N/D ratios for different phases Me-PAHs	in
different seasons	.9
Table S5. Gaseous degradation rate (h ⁻¹) (hydroxyl radicals reaction) of Me-Naps and	U-
PAHs calculated using half-lives from EPI suite	11

Figures

Fig. S1. Chromatographic separation of 49 Me-PAHs in standard solutions (100 ng/mL) 13
Fig. S2. Comparison of the values of N/D ratios for individual Me-PAHs between particle
phase and gas phase
Fig. S3. Comparison the regression lines of log $K_{P'}$ vs. log K_{OA} of total Me-PAHs from
daytime and nighttime
Fig. S4. Comparison of the regression lines of $\log K_{P}$ against $\log K_{OA}$ between daytime and
nighttime for part of individual Me-PAHs16
Fig. S5. The fluxes related to the gas and particle phase in the six compartment model 17

Compounds	Abbreviations	Categories	Rings	Quantitative ions	Qualitative ions	Retention time (min)	IDLs ^a (ng)	DR ^b
2-Methylnaphthalene	2-MeNap	Me	2	142	141	6.858	0.0384	84%
1-Methylnaphthalene	1-MeNap	Me	2	142	141	6.991	0.0505	85%
2,6&2,7-Dimethylnaphthalene	2,6&2,7-DMeNap	Me	2	156	141	7.710	0.0154	46%
1,3-Dimethylnaphthalene	1,3-DMeNap	Me	2	156	141	7.844	0.0904	70%
1,6-Dimethylnaphthalene	1,6-DMeNap	Me	2	156	141	7.886	0.0857	73%
1,4&1,5-Dimethylnaphthalene	1,4&1,5-DMeNap	Me	2	156	141	8.086	0.0467	74%
1,2-Dimethylnaphthalene	1,2-DMeNap	Me	2	156	141	8.220	0.138	68%
1,8-Dimethylnaphthalene	1,8-DMeNap	Me	2	156	141	8.462	0.126	-
2-Methylphenanthrene	2-MePhe	Me	3	192	191	17.476	0.310	96%
2-Methylanthracene	2-MeAnt	Me	3	192	191	17.648	0.240	88%
1-Methylanthracene	1-MeAnt	Me	3	192	191	17.812	0.207	-
1-Methylphenanthrene	1-MePhe	Me	3	192	191	17.855	0.239	98%
9-Methylanthracene	9-MeAnt	Me	3	192	191	18.321	0.432	56%
3,6-Dimethylphenanthrene	3,6-DMePhe	Me	3	206	191	18.847	0.134	-
2,3-Dimethylanthracene	2,3-DMeAnt	Me	3	206	191	19.606	0.201	-
9-Methyl-9-phenylfluorene	9-Me-9-PFlu	Me	4	241	256	20.015	0.0335	-
9,10-Dimethylanthracene	9,10-DMeAnt	Me	3	206	191	20.155	0.245	-
2-Methylfluoranthene	2-MeFluo	Me	4	216	215	20.646	0.0636	97%
1-Methylpyrene	1-MePyr	Me	4	216	215	21.453	0.0620	97%
1-Methylbenzo[c]phenanthrene	1-MeBcP	Me	4	242	241	22.584	0.0570	92%
2-Methylbenzo[c]phenanthrene	2-MeBcP	Me	4	242	241	23.230	0.0275	84%

Table S1. Information of 49 Me-PAHs

	A11 ·		D.	Quantitative	Qualitative	Retention		DBh
Compounds	Abbreviations	Categories	Rings	ions	ions	time (min)	IDLs ^a (ng)	DR ⁶
3-Methylbenzo[c]phenanthrene	3-MeBcP	Me	4	242	241	23.623	0.0700	84%
5-Methylbenzo[c]phenanthrene	5-MeBcP	Me	4	242	241	23.800	0.0641	-
4-Methylbenzo[c]phenanthrene	4-MeBcP	Me	4	242	241	23.846	0.0673	-
1&2-Methylbenz[a]anthracene	1&2-MeBaA	Me	4	242	241	24.138	0.0367	74%
7&9-Methylbenz[a]anthracene	7&9-MeBaA	Me	4	242	241	24.254	0.0331	70%
6&4-Methylbenz[a]anthracene	6&4-MeBaA	Me	4	242	241	24.308	0.0313	62%
1,12-Dimethylbenzo[c]phenanthrene	1,12-DMeBcP	Me	4	256		24.469	0.0607	-
5&6&4-Methylchrysene & 3&5-		М	4	242	241	24 500	0.0214	000/
Methylbenz[a]anthracene	5&6&4-MeChr&3&5-MeBaA	Me	4	242	241	24.500	0.0214	98%
10-Methylbenz[a]anthracene	10-MeBaA	Me	4	242	241	24.893	0.103	-
5,8-Dimethylbenzo[c]phenanthrene	5,8-DMeBcP	Me	4	256	239	25.270	0.0933	-
6,8-Dimethylbenz[a]anthracene	6,8-DMeBaA	Me	4	256	239	25.462	0.0908	-
3,9-Dimethylbenz[a]anthracene	3,9-DMeBaA	Me	4	256	239	25.578	0.108	50%
7,12-Dimethylbenz[a]anthracene	7,12-DMeBaA	Me	4	256	239	26.457	0.190	-
3-Methylcholanthrene	3-Me-Cho	Me	5	268	253	29.440	0.951	-
9-Methylbenzo[a]pyrene	9-MeBaP	Me	5	266	265	29.728	0.595	-
8-Methylbenzo[a]pyrene	8-MeBaP	Me	5	266	265	29.929	0.271	-
7&10-Methylbenzo[a]pyrene	7&10-MeBaP	Me	5	266	265	30.252	0.590	-
7,10-Dimethylbenzo[a]pyrene	7,10-DMeBaP	Me	5	280	131	33.153	0.505	-

continued Table S1

Note: Underlined compounds represent that the instrumental method cannot achieve chromatographic separation for these compounds with same quantitative and qualitative ions

a, represents instrument detection limits

- b, represents detection rate of all samples (include gaseous and particulate samples)
- "-" represents the detection rate was below 30%

Compounds	E ^a	S ^a	A ^a	B ^a	V ^a	La	$\log K_{\rm OA} (25^{\circ}{\rm C})^{\rm b}$	$\Delta H_{\rm OA} ({\rm kJ/mol})^{\rm b}$	A^{c}	B^{c}
2-MeNap	1.3	0.81	0	0.25	1.2263	5.617	5.51	56.43	-4.38	2948
1-MeNap	1.34	0.94	0	0.22	1.2263	5.802	5.73	57.16	-4.28	2986
2,6-DMeNap	1.35	0.82	0	0.25	1.3672	6.146	6.01	61.26	-4.72	3200
2,7-DMeNap	1.35	0.82	0	0.25	1.3672	6.147	6.01	61.27	-4.72	3201
1,3-DMeNap	1.39	0.92	0	0.2	1.3672	6.236	6.1	61.07	-4.60	3190
1,6-DMeNap	1.37	0.94	0	0.21	1.3672	6.347	6.23	62.11	-4.65	3244
1,4-DMeNap	1.4	0.91	0	0.2	1.3672	6.339	6.19	62.12	-4.69	3245
1,5-DMeNap	1.4	1.05	0	0.18	1.3672	6.545	6.45	63.08	-4.60	3295
1,2-DMeNap	1.43	0.97	0	0.25	1.3672	6.473	6.38	63.51	-4.75	3318
1,8-DMeNap	1.4	1.01	0	0.21	1.3672	6.653	6.55	64.64	-4.78	3377
2-MePhe	2.06	1.25	0	0.29	1.5953	8.307	8.16	79.55	-5.78	4155
2-MeAnt	2.29	1.3	0	0.31	1.5953	8.184	8.04	78.25	-5.67	4088
1-MeAnt	2.29	1.3	0	0.3	1.5953	8.332	8.17	79.59	-5.77	4158
1-MePhe	2.06	1.25	0	0.29	1.5953	8.408	8.26	80.53	-5.85	4207
9-MeAnt	2.25	1.27	0	0.3	1.5953	8.438	8.27	80.79	-5.88	4220
3,6-DMePhe	2.05	1.29	0	0.29	1.7362	8.7	8.56	82.89	-5.96	4330
9,10-DMeAnt	2.25	1.25	0	0.28	1.7362	9.283	9.04	88.67	-6.50	4632
1-MePyr	2.81	1.7	0	0.26	1.7255	9.541	9.4	88.28	-6.07	4611
1-MeBaA	2.99	1.7	0	0.35	1.9643	10.763	10.58	100.54	-7.03	5252
7-MeBaA	2.99	1.7	0	0.35	1.9643	11.096	10.89	103.76	-7.29	5420
4-MeBaA	2.99	1.7	0	0.35	1.9643	10.909	10.72	101.95	-7.14	5326
5-MeChr	3.03	1.73	0	0.36	1.9643	10.905	10.73	101.82	-7.11	5319

 Table S2. Values and the calculation parameters for A and B of several Me-PAHs

continued Table S2

Compounds	E ^a	S ^a	A ^a	B ^a	V ^a	L ^a	$\log K_{\rm OA} (25^{\circ}{\rm C})^{\rm b}$	$\Delta H_{\mathrm{OA}} (\mathrm{kJ/mol})^{\mathrm{b}}$	A^{c}	B^{c}
6-MeChr	3.03	1.73	0	0.36	1.9643	10.934	10.76	102.1	-7.13	5333
4-MeChr	3.03	1.73	0	0.36	1.9643	10.937	10.76	102.13	-7.13	5335
7,12-DMeBaA	2.99	1.65	0	0.35	2.1052	11.753	11.48	110.19	-7.83	5756
3-MeCho	3.26	1.57	0	0.51	2.1375	12.482	12.19	119.14	-8.68	6223

Note:

a, Ulrich, N., Endo, S., Brown, T.N., Watanabe, N., Bronner, G., Abraham, M.H., Goss, K.-U., UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2017 [accessed on 09.08.2022]. Available from http://www.ufz.de/lserd

b, log K_{OA} (25°C) and ΔH_{OA} (kJ/mol) were calculated using the parameters in Table S1 and S2.

c, B is calculated by the equation: $B = \Delta H_{OA} / (\ln(10) * 8.314)$, A is calculated by the equation: $A = \log K_{OA} (25^{\circ}C) - B / 298.15$

Parameters	e	S	а	b	V	1	constant	Equations	References
								Parameter = $1 * L +$	
$\log V$ (25°C)	0.21 0.50		2.51	0.75		0.04	0.15	s * S + a * A + b *	[1]
$\log K_{OA}$ (25°C)	-0.21	0.56	3.31	0.75		0.94	-0.15	B+e*E+	[1]
								constant	
								Parameter = $1 * L +$	
		6.04	52 ((0.10	1.57	0.00	((7	s * S + a * A + b *	[2]
$\Delta H_{\rm OA}$ (KJ/mol)	-6.04 53.66 9.19		9.19	9 -1.57	9.66	0.0/	B + v * V +	[2]	
								constant	

Table S3. Calculation parameters for log K_{OA} (25°C) and ΔH_{OA} (kJ/mol)

References:

[1] Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 1500-1627

[2] Mintz, C.; Burton, K.; Ladlie, T.; Clark, M.; Acree Jr, W. E.; Abraham, M. H. Thermochim. Acta 2008, 470 (1-2), 67-76.

		Total Phase			Particle Phase	:		Gas Phase		
	All season	Heating season	Non- heating season	All season	Heating season	Non- heating season	All season	Heating season	Non- heating season	
2-MeNap	2.67	2.14	3.30	0.842	0.561	2.23	2.73	2.21	3.33	
1-MeNap	3.16	2.22	4.41	0.819	0.493	2.47	3.25	2.30	4.51	
2,6&2,7-DMeNap	2.19	2.02	7.30	0.347	0.347	-	2.37	2.19	7.30	
1,3-DMeNap	2.97	2.01	4.27	0.588	0.499	3.03	3.03	2.11	4.27	
1,6-DMeNap	2.76	1.93	3.85	0.604	0.528	1.18	2.83	2.03	3.87	
1,4&1,5-DMeNap	2.67	1.88	3.72	0.501	0.429	3.28	2.73	1.96	3.72	
1,2-DMeNap	2.45	1.75	3.35	0.557	0.557	-	2.49	1.82	3.35	
2-MePhe	1.11	1.12	1.10	1.09	0.984	1.24	1.11	1.14	1.09	
2-MeAnt	1.20	1.32	1.11	1.68	1.34	2.94	1.04	1.05	1.03	
1-MePhe	1.15	1.12	1.18	1.08	0.975	1.22	1.15	1.14	1.17	
9-MeAnt	2.07	2.49	1.38	2.04	2.04	-	1.89	2.78	1.28	
2-MeFluo	1.36	1.23	1.50	1.61	1.24	2.05	1.05	0.68	1.46	
1-MePyr	1.65	1.39	1.95	1.97	1.40	2.71	1.31	0.81	1.89	
1-MeBcP	1.93	1.25	2.88	1.83	1.30	2.63	1.86	1.01	2.79	
2-MeBcP	1.73	1.26	2.34	1.90	1.27	2.78	1.56	1.12	1.72	
3-MeBcP	1.61	1.27	2.01	1.67	1.26	2.24	1.45	1.15	1.54	
1&2-MeBaA	2.04	1.57	2.61	2.08	1.56	2.72	1.79	0.87	2.70	
7&9-MeBaA	1.69	1.35	2.11	1.61	1.34	1.99	1.22	1.48	1.15	
6&4-MeBaA	1.85	1.44	2.33	1.84	1.44	2.31	1.22	-	1.22	

Table S4. The geometric mean values of the N/D ratios for different phases Me-PAHs in different seasons

continued Table S4

		Total Phase		-	Particle Phase			Gas Phase	
		Hasting	Non-		Hasting	Non-		Hasting	Non-
	All season	neating	heating	All season	neating	heating	All season	neating	heating
		season	season		season	season	season	scasoli	season
5&6&4-MeChr&3&5-MeBaA	1.90	1.46	2.42	2.01	1.46	2.77	1.31	1.17	1.46
3,9-DMeBaA	1.86	1.72	2.01	1.86	1.72	2.01	-	-	-
Number of significance	13	6	14	6	3	11	10	7	8

Note: The bold Numbers represent the mean concentrations of Me-PAHs in nighttime were significant different with that in daytime (p < 0.05).

PAHs	$k_{\rm deg_{25}}$	$k_{ m deg_min}$	kdeg_max
2-MeNap	0.305	0.0787	0.417
1-MeNap	0.305	0.0787	0.417
2,6&2,7-DMeNap	0.375	0.0966	0.512
1,3-DMeNap	0.375	0.0966	0.512
1,6-DMeNap	0.375	0.0966	0.512
1,4&1,5-DMeNap	0.375	0.0966	0.512
1,2-DMeNap	0.375	0.0966	0.512
Acy	0.408	0.118	0.557
Ace	0.361	0.105	0.493
Flu	0.0478	0.0139	0.0653

Table S5. Gaseous degradation rate (h^{-1}) (hydroxyl radicals reaction) of Me-Naps and U-PAHs calculated using half-lives from EPI suite

Note: The gaseous degradation rate of PAHs can be calculated using the half-lives of PAHs: $k_{\text{degi}} = \ln(2)/t_{1/2}$.

Fig. S1. Chromatographic separation of 49 Me-PAHs in standard solutions (100 ng/mL)

Fig. S2. Comparison of the values of N/D ratios for individual Me-PAHs between particle phase and gas phase

(Note: * and ** represent that the differences are significant at 0.05 and 0.01 level.)

Fig. S3. Comparison the regression lines of log K_{P} ' vs. log K_{OA} of total Me-PAHs from daytime and nighttime

Fig. S4. Comparison of the regression lines of log K_P' against log K_{OA} between daytime and nighttime for part of individual Me-PAHs

migration flux from gas phase to particle phase; F_{PG} : migration flux of particle phase to gas phase; F_{GWS_diff} : diffusion fluxes from gas phase to water and/or soil phases; F_{GW} : wet deposition flux of gas phase PAHs to water and/or soil phase; F_{WSG_diff} : diffusion fluxes from soil and/or water phases to gas phase; F_{PD} : dry deposition flux of particle phase PAHs to SPM and/or soil phase; F_{PW} : wet deposition flux of particle phase PAHs to SPM and/or soil phase; F_{PW} : wet deposition flux of particle phase PAHs to SPM and/or soil phase; $(1-\phi_0)E$: emission flux of gas phase PAHs; ϕ_0E : emission flux of particle phase PAHs.)

The Figure was cited from the reference: Zhu Fu-Jie, Hu Peng-Tuan, Ma Wan-Li. A new steadystate gas-particle partitioning model of polycyclic aromatic hydrocarbons: implication for the influence of the particulate proportion in emissions. Atmospheric Chemistry and Physics 2023; 8583–8590.