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Abstract.  

Over the past decade, a wealth of research has been devoted to the detection of crevasses in glaciers and ice sheets via 10 

remote sensing and machine learning techniques. It is often argued that remotely sensed damage maps can function as early-

warning signals for shifts in ice shelf conditions from intact to damaged states and can serve as an important tool for ice 

sheet modellers to improve future sea-level rise predictions. Here, we provide evidence for Filchner-Ronne and Pine Island 

ice shelves that remotely sensed damage maps are only weakly related to the ice rate factor field 𝐴𝐴 derived by an ice-flow 

model when inverting for surface velocities. This technique is a common procedure in ice flow models, as it guarantees that 15 

any inferred changes in 𝐴𝐴 relate to changes in ice flow measured through observations. The weak relationship found is 

improved when investigating heavily damaged shear margins, as observed on Pine Island Ice Shelf; yet, even in this setting, 

this association remains modest. Our findings suggest that many features identified as damage through remote sensing 

methods are not of direct relevance to present-day ice-shelf flow. While damage can clearly play an important role in ice-

shelf processes and thus be relevant for ice-sheet behaviour and sea-level rise projections, our results imply that mapping ice 20 

damage directly from satellite observations may not directly help improve the representation of these processes in ice-flow 

models. 

1 Introduction 

The advent of high-resolution satellite imagery and the development of new sophisticated algorithms to analyse these 

products automatically have motivated many studies that track surface crevasse features across the Antarctic continent (Lai 25 

et al., 2020; Lhermitte et al., 2020; Zhao et al., 2022; Izeboud and Lhermitte, 2023; Surawy-Stepney et al., 2023). Some of 

these studies have highlighted the value of remotely sensed crevasses maps for ice sheet modellers when investigating future 

ice shelf stability (Zhao et al., 2022), initialising or improving creep damage models (Izeboud and Lhermitte, 2023), and 

evaluating the impact of ice shelf crevasses on ice dynamics ( Lai et al., 2020, Zhao et al., 2022). Specifically, a recent study 

from Surawy-Stepney et al., (2023), has suggested potential applications of damage fields extracted from satellite imagery as 30 
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fracture data can be used to constrain inverse problems in ice-flow models aiming to infer the effective ice viscosity from 

surface velocities. 

 

For alpine glaciers, ice caps and ice sheets, where most of the forward motion is either due to ice deformation concentrated 

close to the bed or caused by basal sliding, surface crevasses are unlikely to have any significant impact except for a possible 35 

modification in the effective ice density of the surface layers to which they are confined. For ice shelves, where the ice 

deformation is generally characterised by uniform horizontal divergence and convergence across the whole ice column, the 

impact of surface crevasses may not be this easily discounted.  However, only those surface features that actively influence 

ice flow are pertinent to modelling studies of ice-flow dynamics. In fact, some surface morphological features detected by 

remote sensing techniques may not necessarily represent crevasses but rather features that can be easily mistaken for 40 

crevasses, such as flow stripes (Luckman et al., 2012) or surface expressions of basal fractures (McGrath et al., 2012). In 

other cases, some features may indeed be crevasses but may have such shallow characteristics that they have limited 

relevance to ice-flow dynamics or could have transitioned from active to passive states when being advected in regions of 

compression (Colgan et al., 2016). Hence, it is not a priori clear if the surface morphological features identified through 

remote sensing products have any direct correspondence to the ice rheological parameters as used in ice-sheet modelling. 45 

 

In the modelling community, “ice damage” is generally introduced as a scalar variable that impacts the effective value of a 

rheological parameter, 𝐴𝐴  — also known as the pre-factor in Glen’s flow law (see details below) — by making it 

rheologically weaker than can be expected for temperate ice (Pralong and Funk, 2005; Borstad et al., 2013; Krug et al., 2014; 

Sun et al., 2017). Rather than prescribing 𝐴𝐴 as an input field, or alternatively by calculating 𝐴𝐴 from modelled englacial 50 

temperatures, many modern ice-flow models infer the 𝐴𝐴  distribution by performing a model inversion using surface 

velocities and rates of thickness change, sometimes referred to as ‘data assimilation'. In contrast to the forward problem, 

where ice flow is solved as a function of an initial ice sheet state, the inverse problem aims to infer the ice sheet's state (the 

spatial distribution of 𝐴𝐴) that gave rise to these observations. Solving the inverse problem can be more challenging than its 

forward counterpart since, in order for it to be well-posed, it requires the introduction of regularisation parameters — 55 

described further below. Nevertheless, the inversion method remains a powerful tool as it ensures that an ice-sheet model’s 

initial state is consistent with the observations available, e.g., surface velocities. Thus, we can employ inverse methods to 

robustly identify the spatial distribution of 𝐴𝐴 required to generate the specific velocity field observed.  

 

The question now arises if the inferred distribution of 𝐴𝐴 of an ice-flow model agrees with the crevasse maps obtained from 60 

satellite imagery. Here, we investigate this association for the whole of Filchner-Ronne Ice Shelf, in the Weddell Sea, as well 

as Pine Island Ice Shelf, in the Amundsen Sea Embayment. We solve inverse problems at a spatial resolution comparable to 

those provided by available crevasse maps. This requires a resolution of about 100 metres, which is considerably higher 

resolution than typically applied in the study of ice shelves, and a pan-Antarctic inversion at this resolution is currently not 
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feasible. Additionally, these two ice shelves exemplify two contrasting situations. Over the past 20 years, Pine Island Ice 65 

Shelf experienced rapid changes (Rignot et al., 2019; Shepherd et al., 2019), transitioning from a state of no crevasses in 

1997 to exhibiting extensive crevassed-damaged areas near the grounding line and shear margins in 2019 (Lhermitte et al., 

2020). In contrast, the Filchner-Ronne Ice Shelf has remained relatively unchanged in recent decades, primarily due to its 

location in a colder embayment with less exposure to warm ocean currents (Gardner et al., 2018; Rignot et al., 2019; 

Shepherd et al., 2019).  70 

 

To evaluate to what extent maps of crevassing correspond to areas identified as damaged via our model inversion, we treat 

this as a classification problem.  We treat our model inverted ice rate factor as a predictor for damage and quantify how often 

it corresponds to crevassed areas (true positives) as against to how often crevasses are incorrectly predicted from areas of 

damage (false positive). We find, based on this measure, for the regions considered, that the predictive performance is about 75 

as good as a random classifier. 

2 Methods 

This investigation comprised three steps. First, we estimated the ice rate factor 𝐴𝐴 by performing a surface velocity inversion 

using the adjoint capabilities of the numerical ice-flow model, Úa (Gudmundsson, 2013; Gudmundsson et al., 2012). This 

procedure guarantees that any inferred changes in 𝐴𝐴 relate to changes in the ice flow measured through observations and is a 80 

common first-step in many ice-sheet modelling studies (MacAyeal, 1992, 1993; Rommelaere and MacAyeal, 1997; Larour et 

al., 2005; Raymond and Gudmundsson, 2009; Arthern and Gudmundsson, 2010; Morlighem et al., 2010, 2013;  Petra et al., 

2012; Gillet-Chaulet, 2020; Barnes et al., 2021). The second step of this analysis consisted in obtaining a crevasse map from 

remote sensing and machine learning techniques which we compare to the inverted 𝐴𝐴 field. In this study, we used two 

crevasse datasets: (1) the recently proposed NormalisEd Radon transform Damage detection (NeRD, Izeboud and Lhermitte, 85 

2023) method, which maps areas of surface structural damage on ice shelves using multi-source satellite imagery through a 

feature contrast approach, and (2) the Antarctic wide crevasse map produced by Lai et al., (2020), which was trained and 

applied through a Convolutional Neural Network (CNN). Finally, for the third step, we used a standard classification 

analysis to test and evaluate the relationship between these two observational and modelled products.  

 90 

For the first step, modelling simulations were performed with the finite element ice flow model, Úa (Gudmundsson, 2013; 

Gudmundsson et al., 2012), which solves the vertically integrated shallow shelf approximation (SSA) of Macayeal, (1989). 

Viscous ice deformation was described by Glen’s flow law, 𝜖𝜖̇ =  𝐴𝐴τ𝑛𝑛, where 𝐴𝐴 is the ice rate factor,  𝜖𝜖̇  is the effective strain, 

τ the effective stress, and 𝑛𝑛 is the standard constant stress exponent set to 3, while the basal motion for the grounded ice was 

modelled using a Weertman sliding law vb=Cτb
m where vb is the basal velocity, C is a sliding parameter, τb is the basal drag 95 

and m is the constant sliding exponent, set equal to 3. 
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For the Filchner-Ronne Ice Shelf, we extended the computational boundary some distance upstream from the grounding line, 

following the drainage basins of Zwally et al., (2012) and using the 2008-2009 ice front data from ALOS PALSAR and 

ENVISAT ASAR acquired during the International Polar Year, 2007-2009 (IPY) (Mouginot et al., 2017). Calving front 100 

positions for Pine Island Ice Shelf were extracted from Landsat 8 and Sentinel 1 A/B satellite imagery. Measurements of ice-

flow velocities for Pine Island Ice Shelf were obtained from Joughin et al., 2021, for November 2019 and February 2020, 

while for Filchner-Ronne Ice Shelf observed velocities were derived from Landsat 8, Fahnestock et al., 2016, for the year 

2014. Simulations were performed with an initial ice thickness, surface elevation and bedrock topography taken from the 

BedMachine Antarctica v2 dataset (Morlighem et al., 2020).  105 

 

For each ice shelf, we inverted for the ice rate factor 𝐴𝐴. The inversion minimises a cost function (𝐽𝐽) of the general form: 

𝐽𝐽 =  I + 𝑅𝑅 ; 

1) 

where I is the misfit term between modelled and observed velocities, given by: 110 
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where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∫𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the total area of the domain we are integrating on, u and v are the modelled horizontal x- and y-

velocity components, respectively, 𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 are the observed surface x- and y- velocity components, respectively, and 

the 𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒and 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 are their relative observational errors, and R is the regularisation term. The regularisation term follows the 115 

assumption that the prior probability density function can be described using a Matérn covariance function (Lindgren et al., 

2011). Whenever performing an inversion in ice-flow models, the inverse solution (in this case, 𝐴𝐴) is affected by the set of 

constraints (regularisations parameters, γ) imposed in the regularisation term. The magnitude of γ determines to what extent 

our inverse solution can deviate from the prior estimate imposed, such that a high γ penalizes a solution that is substantially 

different from its prior. Here we imposed two regularisation parameters, γs and γa, that penalized deviation of the parameters 120 

getting optimized from their prior estimates in terms of gradient and amplitude, respectively. The regularisation term takes 

the form:  
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where 𝑀𝑀 is the mass matrix, 𝐷𝐷𝑥𝑥𝑥𝑥 + 𝐷𝐷𝑦𝑦𝑦𝑦 is the stiffness matrix in x and y direction, respectively, 𝑝𝑝 =  𝑙𝑙𝑙𝑙𝑙𝑙10(𝐴𝐴), and 𝑝𝑝� is its 125 

relative prior estimate. To avoid the inverse solution either being shaped by the given prior or overfit observations, we 

adopted the L-curve method which graphically visualises, in a log-log scale, the relationship between the norm of the 

regularised solution and the norm of the residual error. The distribution of these points follows an L-shape curve (Calvetti et 

al., 2002) and the point where the horizontal and vertical branches converge is the L-corner. For our simulations, we adopted 
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a γa  = 1 and γs = 25000.  Selecting a smaller value for γs will not affect the calculated velocity distribution significantly, 130 

hence any further variation in 𝐴𝐴 resulting from selecting a smaller value is not supported by any corresponding variations in 

observed velocities.  

 

For the second step, we adopted two crevasse map products. For Pine Island Ice Shelf we used the 30 m resolution 

NormalisEd Radon transform Damage detection (NeRD) method, developed by Izeboud and Lhermitte, (2023), applied on a 135 

median composite sentinel S2 image for the austral summer of 2019-2020 (December, January, February), using red, green, 

and blue reflectance bands, and filter cloud cover < 20 %. Since the NeRD approach was validated just on the Amundsen 

Sea Embayment, and given the limited changes observed in the Filchner Ronne Ice Shelf, we opted to use the CNN derived 

125 m resolution crevasse map produced by Lai et al., (2020) for the Filchner-Ronne Ice Shelf, using a MODIS Mosaic from 

2009 (Fig. 1).  140 

 

The NeRD method applied on Pine Island provided a continuous damage map (D), which has values ranging from 0 for 

intact ice, to 0.5 for fully damaged ice, with heavily damaged regions defined as areas with values greater than 0.1 (Izeboud 

and Lhermitte, 2023). Hence, this continuous crevasse product can be converted into a binary grid, yielding two masks: one 

displaying all surface crevasses (D > 0) and the other exclusively highlighting heavily damaged crevasses (D > 0.1). This 145 

approach enabled us to assess two distinct scenarios for Pine Island Ice Shelf.  

 

For the Filchner-Ronne Ice Shelf, on the other hand, we extracted the CNN product of Lai et al., (2020), which is already a 

binary data, either 0, for intact ice, or 1, for crevassed ice. Since the crevasse mask was obtained from MODIS MOA 2009, 

and the inverted ice rate factor fits observed velocities from 2014 (Fahnestock et al., 2016), we have tested the case for 150 

which the 2009-crevasses were advected downstream for 5 years’ worth distance, with constant velocity, for a better match 

with the 2014 ice rate field, but found no differences in the final results. 

2.1 Classification techniques 

In the third step of our methodology, we used a standard classification analysis (Tharwat, 2018) to test and evaluate the 

relationship between these two observational and modelled products. If there is a strong link between the inverted ice rate 155 

factor 𝐴𝐴 and the damage maps obtained from remote sensing methods, we would expect to be able to use the inverted 𝐴𝐴 field 

to classify areas of damage as identified through the remote sensing methods. To enable the comparison of these two 

products in a common framework, we re-gridded one of the variables, to ensure consistent format and resolution. Since the 

binary crevasse mask is an equally spaced rectangular grid and the 𝐴𝐴 field is computed on a Delaunay triangulation mesh, we 

chose to interpolate the field 𝐴𝐴 onto the regular crevasse mask coordinates. Having achieved spatial consistency between the 160 

crevasse binary mask and the interpolated 𝐴𝐴 field, we proceeded with the assessment of their relationship via multiple 

classification analyses (Ferri et al., 2009; Yacouby and Axman, 2020). 
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Given that classification analyses generally involve comparing two categorical datasets, we need to transform the continuous 

𝐴𝐴 field into a binary map, before comparing it with the binary crevasse map. However, whenever imposing an A-threshold 165 

above which ice is considered damaged, we considerably reduce the amount of information (in terms of spatial variability) 

present in 𝐴𝐴. To address this limitation, we employed Receiver Operating Characteristic (ROC) curve analyses (Hanley and 

McNeil, 1982; Bradley, 1997; Fawcett, 2006), which evaluate the classification performance — predictive capability — of 

each paired dataset (𝐴𝐴 field vs crevasse map) across all potential classification A-thresholds. The strength of the ROC metric 

is its ability to evaluate the classifier's performance based on the True Positive Rate (TPR, “sensitivity”, the proportion of 170 

true positives correctly classified as positive) and False Positive Rate (FPR, “specificity”, the proportion of negatives that are 

incorrectly represented as positive) at any classification threshold. Here, the crevasse products obtained by remote 

sensing/machine learning techniques represent the true observations to be classified. The ROC analysis varies the 

classification threshold of the 𝐴𝐴 field, to generate a binary 𝐴𝐴 map for each threshold. Specifically, values of 𝐴𝐴 that exceed the 

designated classification threshold are categorised as damaged (1), while those that fall below this threshold are identified as 175 

intact ice (0). For each classification threshold, we compare the binary 𝐴𝐴 map with the binary crevasse map and produce a 

pair of TPR and FPR, corresponding to a dot in the ROC curve. The ideal perfect classifier corresponds to the right-angled 

line, vertical along the y axis, and parallel to the x axis, passing by the upper left corner of the plot, where TPR is 1 and FPR 

is 0 (red dot in Fig. 2 and 3); A random classifier on the other hand corresponds to a straight diagonal line of the plot (dashed 

blue line in Fig. 2 and 3). The Area Under the Curve (AUC) is a metric that measures the overall performance of the 180 

classification analysis, and which describes the strength of the relationship between the two compared products, 

independently of the classification threshold used (Rizk et al., 2019). An AUC value ranges from 0 to 1, where an AUC of 

0.5 is equivalent to a random classifier, and an AUC of 1 is a perfect classifier. To further identify an ideal A-threshold 

which best compromises the FPR and TPR in this analysis, we calculate the OPTtimal operating PoinT (OPTPT) on the 

ROC curve — further details on how this value is calculated in the ROC analysis can be found in the Supplementary 185 

material. 

2.2 Adjusting unbalanced datasets 

Since both crevasse maps (CNN and NeRD) have a greater sample size of “non-crevasse” nodes (99%) compared to the 

“crevassed” class, the dataset is, in this sense, highly unbalanced. Thus, careful evaluation and treatment is needed (Branco 

et al., 2015) when assessing the classifier performance in relation to the inverted 𝐴𝐴  field (preliminary analysis in the 190 

Supplementary). When performing a ROC curve analysis on unbalanced datasets, results will be biased towards the majority 

class. To resolve this, we applied a standard approach in classification analysis of under-sampling the majority (non-

crevasse) class, to obtain an even distribution among classes (bias-corrected data). This is performed by randomly sub-

sampling the majority class by the size of the minority class, thus forcing an equal sample size for both classes. Given the 

random nature of the sub-sampling procedure, we perform this step 2000 times, thus repeating the ROC curve analysis for 195 
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each resampling iteration and recording all 2000 ROC curves and Area Under the Curve (AUC). We then calculate the 

OPTtimal operating PoinT (OPTPT) on each of the 2000 ROC curves, measuring the mean optimal "A-threshold”. 

3 Results 

Our inverse solution finds that the Filchner-Ronne Ice Shelf displays a consistently more stiff and resistant ice (low 𝐴𝐴) 

compared to Pine Island Ice Shelf, with softer ice (higher values) present just in the proximity of ice rises and ice rumples, at 200 

the ice shelf front, and in areas close to the grounding line (Fig. 1, panel a). In contrast, Pine Island Ice Shelf (Fig. 1, panel b) 

exhibits a visibly softer and more deformable ice (higher 𝐴𝐴), with values several orders of magnitudes larger than the 𝐴𝐴 for 

temperate ice along the ice shelf margins, specifically in the southern shear zone and in one region in the middle of the ice 

shelf. By visually comparing these 𝐴𝐴 fields with their corresponding maps of remotely sensed crevasses, displayed on the 

right-hand side of each panel, we can already appreciate qualitatively the regions where these two fields overlap in contrast 205 

to regions where little or no agreement is present. A discrepancy is clearly visible between areas displaying an ice rate factor 

well below the reference 𝐴𝐴 for temperate ice and the abundance of remotely sensed crevasses, particularly evident for 

Filchner-Ronne Ice Shelf. The middle portion of Pine Island Ice Shelf, where the NeRD method detects a considerable 

number of crevasses, also exhibits a low ice rate factor (as shown in red boxes in Fig. S2b). Additionally, some regions 

where the ice rate factor exceeds that of temperate ice do not show remotely sensed crevasses, indicating that other factors, 210 

such as fabric, may be affecting changes in ice flow.  
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Figure 1: Summary of the inverted ice rate factor field for Filchner-Ronne (a) and Pine Island (b) ice shelves. To visually display 215 
the A field and identify regions of damage, we have chosen to use a blue-white red colour scale, centred on the A field for 
temperate ice obtained from experimental results (A = 1.67 x 10-7 KPa-3a-1,(U. Spring and L.W.Morland, 1983). This colour scale 
allows us to easily identify areas of damage by visually comparing the A field to the reference value for temperate ice. Regions that 
have lower values of A than the reference value indicate areas of less damage or intact ice (in blue), while regions with higher 
values indicate areas of damage (in red). On the right-hand side of each panel, a representation of the crevasses as detected with 220 
the CNN method (panel a, crevasses in white with MODIS mosaic 2009 underlayed), and all crevasses (in white) and heavily 
damaged crevasses (in red) as mapped with the NeRD method (panel b, with Composite sentinel (S2) image of austral summer 
2019-2020 underlayed) is displayed. 
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3.1 Weak association between remotely sensed damage and inverted ice rate factor 225 

The ROC curve results illustrated in Fig. 2 display the trade-off between the TPR and FPR of the binary classification 

models across different classification thresholds of 𝐴𝐴 for bias-corrected data for Filchner-Ronne Ice Shelf, for the 2009 

crevasse map, and for the case of the 2009 crevasses advected downstream for 5 years’ worth of distance. Overall, we 

measure a mean-AUC for Filchner-Ronne Ice Shelf of 0.51 (with 95 % confidence intervals of 0.494 - 0.528) for the former 

and 0.52 (with 95 % confidence intervals of 0.501- 0.536) for the latter, demonstrating that the ROC’s predictive 230 

performance is no better than a random classifier. 

 

 
Figure 2: ROC curve analysis for 2000 classification tests applied to Filchner-Ronne Ice Shelf, for all crevasses (2009, in blue) and 
for all crevasses advected downstream for 5 year-worth distance (in orange, to improve the match with the inverted ice rate factor 235 
when fitting the 2014 velocities). We compare the ice rate factor field, 𝑨𝑨 , and the crevasse products obtained by remote 
sensing/machine learning techniques, which represent the true observations to be classified. The ideal perfect classifier 
corresponds to the red dot; a random classifier corresponds to the diagonal line of the plot (dashed blue line). We find an AUC-
mean of 0.51, that is slightly improved when considering the advected crevasses to an AUC-mean of 0.52. Both models suggest that 
the predictions are no better than a random classifier.  240 
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The ROC curve analysis for Pine Island Ice Shelf (Fig. 3), based on all surface crevasse features and only heavily damaged 

crevasses, for November 2019 (in blue) and February 2020 (in orange), showed slightly improved classification 

performance. However, we found that the predictive performance is much higher for the model based only on heavily 

crevassed regions, as opposed to that using all crevasses mapped by NeRD (Fig. 3, panel a and b). We found a mean-AUC of 245 

0.55 for velocities of November 2019 ─ with 95 % confidence intervals of 0.542- 0.557 ─ and a mean-AUC of 0.55 for 

velocities of February 2020 ─ with 95 % confidence intervals of 0.539 -0.555 ─ for the model based on all surface crevasses. 

The mean-AUC improves to 0.69 (November 2019) ─ with 95 % confidence intervals of 0.649-0.724 ─ and 0.73, (February 

2020) ─ with 95 % confidence intervals of 0.686- 0.765─ for the model based only on the heavily crevassed areas. These 

results show that surface features identified as heavily damaged crevasses are correlated to a greater degree with the ice rate 250 

factor obtained through inversion methods. However, we found a larger uncertainty around the mean AUC for the heavily 

damaged crevasse ROC analysis compared to that based on all surface crevasses. This reflects the former ROC analysis 

relying on a smaller number of crevasses (412 heavily damaged crevasses) compared to the latter, where all crevasses are 

considered (12466).  

 255 

 
Figure 3: ROC curve analysis for 2000 classification tests applied to Pine Island Ice Shelf, for all crevasses as mapped via NeRD 
(panel a) and for only heavily damaged crevasses (panel b). We find an AUC-mean of 0.55 and 0.73 when using an inverted ice rate 
factor obtained when fitting velocities for February 2020, respectively. This relationship is slightly reduced when considering the 
November 2019 velocities (an AUC-mean of 0.55 and 0.69, respectively). Greater uncertainty is estimated for the case of heavily 260 
damaged crevasses (0.67- 0.77). These results suggest that the model's predictions are improved, to some extent, when considering 
just heavily damaged crevasses. 
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3.2 Results are robust to changes in the regularisation parameter (γs )  

The ROC plot's classification analysis hinges on the accuracy of the currently available crevasse maps derived by satellite 

images and on the ice rate factor field 𝐴𝐴, which cannot be directly observed, and must be derived through inverse methods. 265 

The reliability of the inverted 𝐴𝐴 field can be influenced by two key factors. Firstly, errors can arise from the observed 

velocities during the inversion process when minimising the discrepancies between them and the modelled velocities. 

Secondly, the spatial distribution of the inverted 𝐴𝐴 field may be affected by the choice of the regularisation parameters (γs) 

used to refine the gradient of 𝐴𝐴 based on prior information, during the inversion. In this aspect, while we assumed the 

velocity data provided by the remote sensing community to be reliable for the first factor, we tested the second by evaluating 270 

the sensitivity of our classification results to the choice of γs. The sensitivity analysis was assessed in the context of Pine 

Island Ice Shelf, for both November 2019 (in Supplementary) and February 2020 velocities, and the classification results, 

inclusive of all heavily damaged crevasses, are presented in Fig. 4 and Fig. S3. With γa fixed at a constant value, we 

systematically explored a spectrum of γs values in accordance with the values used by the L-curve method (Fig. 4a). Notably, 

as γs is progressively increased (Fig. 4a and b) to values > 106, the model’s predictive capability (AUC-mean) is reduced 275 

(closer to the random classifier dashed line). This outcome is expected, since an increase in γs enforces a more pronounced 

smoothing effect on the inverted 𝐴𝐴 field, thus reducing the correlation between inverted and remotely sensed damage. 

However, this is not the case for the range of acceptable values of the regularisation parameter — γs within the L-corner 

range— within which the ROC plot results remain invariant.  
 280 
 
3.3 Consistent poor classification ability even for optimal A-threshold 

 

While these results provide insights into the relationship between inferred 𝐴𝐴  and the observed crevasse map for any possible 

threshold value in 𝐴𝐴, it may be beneficial to identify an optimal 𝐴𝐴-threshold, specifically for the case of heavily damaged 285 

crevasses, where this relationship is strongest. When performing this investigation on Pine Island Ice Shelf, for values of γs 

in the L-corner range, we found a median optimal 𝐴𝐴-threshold for heavily damaged crevasses of 2.06e-08 a-1kPa-3 with a 

minimum and maximum range [1.36e-08 2.39e-08] a-1kPa-3 (Fig. 4c). Additionally, when adopting this threshold, the 

classifier accurately identifies 50 % of the crevasses, while also incorrectly flagging almost 20 % of no-crevasse regions as 

crevasses (Fig. 5). While it is plausible that values above this A-threshold may indicate damage for this ice shelf, the 290 

probability of a match between inverted and remotely-detected damage remains limited to 50 %. 
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Figure 4: a) L-curve analysis for the Pine Island Ice Shelf, with a zoomed-in inset highlighting the L-corner range. b) AUC-mean 
values for heavily damaged crevasses across varying regularisation parameters (γs). The AUC-mean is reduced for γs values 295 
exceeding 106, as a smoother ice rate factor is applied. c) and d) Optimal A-threshold determined from the ROC plots and 
corresponding temperature derived from Glen's Flow Law for heavily damaged crevasses, as a function of γs. Within each panel, a 
red-outlined box filled with grey shading highlights the acceptable regularisation values for γs, for heavily damaged crevasses. 
Within this range, a consistent agreement of AUC-mean, optimal A-threshold, and temperature is observed, indicating that 
variations in γs values do not significantly impact the robustness of our results.  300 
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Figure 5: True Positive Rate (a) and False Positive Rate (b) for Pine Island Ice Shelf across varying regularisation values (γs), for 305 
heavily damaged crevasses for simulations that fitted velocities for February 2020. Within each panel, a red-outlined box filled 
with grey shading highlights the acceptable values for γs —within the L-corner range. 
  

4 Discussion 

A wealth of research has been dedicated over the past decade to detect crevasses across Antarctica using remote sensing and 310 

machine learning techniques, but it remains uncertain whether modellers can incorporate these products to inform the 

rheology state of ice and constrain future sea level rise projections. In this study, we have analysed whether the inferred 

distribution of the ice rate factor 𝐴𝐴 of an ice flow model, which by construction is consistent with the observed surface 

velocities, agrees with the damage maps derived from surface morphological features. Overall, we find a poor relationship 

between these observational and inverted products. However, when we specifically target regions where remotely derived 315 

damage maps display heavy crevassing, such as the shear margins of Pine Island Ice Shelf, the two products are somewhat 

correlated. Yet, the calculation of an optimal 𝐴𝐴-threshold which best compromises the ROC analysis, has shown that even in 

this setting, the association between inverted and observational products is limited.  

 

Several studies (MacGregor et al., 2012; Alley et al., 2019; Lhermitte et al., 2020) have documented the increase of areas 320 

affected by damage on Pine Island Ice Shelf over the time period from 2017 to 2020, with a sustained series of calving 

events and high localized fracturing occurring at the ice shelf margins (Lhermitte et al., 2020; Joughin et al., 2021). The 

classification analysis performed in this study showed an improved yet modest relationship when specifically targeting 

heavily crevassed regions, in Pine Island Ice Shelf’s margins (AUC = 0.73 for the 2020 ice velocities). The relationship is 

poor, however, when targeting all features identified as crevasses. Qualitatively, there are multiple regions where this 325 
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discrepancy is clearly visible: for instance, those crevasse-like features located in the centre of Pine Island Ice Shelf, where a 

stiffer and less deformable ice is inferred (red boxes in Fig. S2b);  Equally, in some regions of the Filchner-Ronne Ice Shelf 

the ice rate factor 𝐴𝐴 is lower than that of temperate ice, yet there is a high abundance of crevasses detected through remote 

sensing images. Other regions display the opposite relationship. 

 330 

The classification analysis further provided us with an optimal 𝐴𝐴-threshold, 2.06e-08 a-1kPa-3, where the relationship 

between inverted and observational products is strongest. If we translate this 𝐴𝐴-threshold value into ice temperature (°C) 

using Glen's flow law for a stress exponent n = 3, we find that it corresponds to a mean temperature of approximately -7.4°C, 

with a minimum and maximum range of [-9.1 -6.7] °C, a temperature substantially lower than that of temperate ice (Fig. 4d).  

Since the model employs a 2D depth integrated formulation, resulting in a depth integrated ice rate factor and temperature, 335 

this value will not capture the natural variation of ice shelf temperature with depth. Thus, it becomes challenging to interpret 

this optimal temperature, and extrapolate this critical A-threshold for future modelling purposes.  

 

Since remotely sensed crevasses do not have a strong association with the inferred ice rate factor 𝐴𝐴, it is worth questioning 

whether the extensive effort placed into tracking crevasses across the whole of Antarctica is of direct relevance to modelling 340 

efforts regarding future sea-level rise projections. The inverted ice rate factor 𝐴𝐴 that ice sheet modellers obtain by fitting 

observed velocities already provides a quite detailed and comprehensive understanding of the depth-integrated properties of 

the ice (Albrecht and Levermann, 2014; Borstad et al., 2012, 2013; Khazendar et al., 2007). In fact, horizontal stresses 

cannot be effectively transferred across highly fractured regions, due to the loss of mechanical integrity and load-bearing 

capacity (Borstad et al., 2012, 2013). So, if a crevasse is active and affecting ice flow, the strain rates and velocities in that 345 

region will change, which will be detected by an ice-sheet model as a local increase in the ice rate factor parameter 𝐴𝐴. On the 

other hand, crevasses that were previously active and which later became passive or were later advected in regions of 

compression, are detected and expressed by lower values of 𝐴𝐴. Additionally, regions that display inferred high values of 𝐴𝐴 

may not necessarily match areas of active rifts, thus providing insights into the structural integrity of the ice at that location 

and highlighting the presence of other dynamical processes currently occurring.  350 

 

Current ice flow models do not account for an evolving ice rate factor in transient simulations, thus the accuracy of their 

projections remains restricted. Recent advances adopting a novel physic informed machine learning framework have tested a 

complementary approach to calibrate uncertainties in the ice rate factor and sea level forecasts, by inferring a posterior 

distribution of the ice rate factor (Riel and Minchew, 2023), providing some insights on better and continuously updated 355 

calibrations of ice flow parameters. To further reduce these errors in the ice rate factor field when adopting more 

conventional inversion procedures, it remains crucial for future efforts to prioritize the monitoring of ice shelves' velocity, 

geometry, and calving front positions, which are essential parameters for accurate estimates of sea level forecasts. 
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5 Conclusions 

We have investigated the relationship between inverted values of rheological parameters used in ice-flow models and 360 

independent estimates of ice damage extracted from satellite imagery. In particular, we have critically evaluated the assertion 

that estimates of ice damage can be used to inform ice-flow modelling studies by providing constraints on the rheological 

parameter values (𝐴𝐴) used in those models. Our key measure is the ability to correctly predict the existence of ice damage in 

each area from our inverted 𝐴𝐴 values, and correctly predict no damage where none is found. To do this we must select a 

threshold value for 𝐴𝐴 above which the ice is considered damaged. We find that for any threshold value, the performance of 365 

this predictor is like that of a random classifier. While areas for which our inverted 𝐴𝐴 fields are above a given threshold value 

(suggesting ice damage) often coincide with areas where analyses of satellite imagery indicate structurally compromised ice 

(i.e., true positives), in many other locations where our inverted 𝐴𝐴 fields are above that same threshold value, the satellite 

products suggest undamaged ice (i.e., false positives). In essence, we do not find a clear relationship between damage 

inferred by an ice sheet model and damage identified via remote sensing. 370 

 

Our estimates of the spatial distribution of the rheological parameter 𝐴𝐴 are based on model inversions of measured velocities, 

and therefore reflect spatial variation in the properties of ice that have a measurable impact on ice flow. Any feature 

identified as damage through other methods that does not correspond to areas that a model identifies as softer ice does not, 

by extension, have a measurable impact on ice flow. Our results show that some of the variability in estimated ice damage, 375 

and crevasse densities, derived from analysis of surface morphological features, may not be impacting the flow of the ice. 

This would, for example, be the case if some of the observed crevasses are passive features. Conversely, we also find that 

our model inversion implies areas affected by ice damage (e.g., areas where the ice rate factor 𝐴𝐴 is for example higher than 

that of temperate ice), where no surface damage or crevasses have been identified.  

 380 

This lack of a match between ice damage and crevasse density and inferred variation in ice rheological parameters warrant 

further studies. It seems intuitively plausible that surface crevasses on ice shelves may penetrate to sufficient depths to hit the 

water line and sound theoretical arguments support this expectation, especially in the presence of surface water input (Lai et 

al., 2020). Indeed, we do find areas, such as within the shear margins of Pine Island Ice Shelf, where crevasse density and 

inferred 𝐴𝐴 values both indicate damaged ice. This suggests that further work might be able to elucidate the reasons for the 385 

lack of correspondence between these independent estimates of damage.  

 

6 Code availability  

The source code of the Úa ice-flow model, sufficient to run the experiments in this project, is available at 

https://doi.org/10.5281/zenodo.3706624.  390 
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7 Data availability 

The crevasse mask product of Lai et al., (2020), is available at: https://doi.org/10.15784/601335. The code of the NeRD 

method developed by Izeboud and Lhermitte, (2023), is available on github,  

https://github.com/mizeboud/NormalisedRadonTransform. Input datasets used in our experiments were the Antarctic 395 

drainage basins (Zwally et al., 2012), geometry from Bedmachine Antarctica v2 data set (Morlighem et al., 2020), 2008–

2009 ice-front data from ALOS PALSAR and ENVISAT ASAR (Mouginot et al., 2017), Landsat 8 observed velocities for 

the Filchner Ronne Ice shelf (Fahnestock et al., 2016), and observed velocities for Pine Island Ice Shelf were downloaded 

from Joughin et al., (2021) on https://digital.lib.washington.edu/researchworks/handle/1773/46687.   

 400 
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