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Abstract.

The skill of the atmospheric reanalysis ERA5 from the European Centre for Medium-Range Weather Forecasts (ECMWF)

at simulating temperature and relative humidity in the upper troposphere and lower stratosphere is assessed by using five years

of In-service Aircraft for a Global Observing System (IAGOS) observations. IAGOS flight trajectories are used to extract

co-located meteorological conditions from ERA5, namely temperature and relative humidity, which are compared with the5

IAGOS measurements. This assessment is particularly relevant to the study of contrail formation, so focuses on the highly

frequented airspace that spans the Eastern United States over the North Atlantic and to central Europe. The comparison is

performed in terms of mean, median, probability density functions, and a confusion matrix. For temperature a good agreement

is identified with a maximum bias of −0.4 K at the 200 hPa level. Larger biases are found for relative humidity up to −5.5 %

at the 250 hPa level. A bias correction method based on a multivariate quantile mapping is proposed and applied to remove10

the systematic biases that are characterized by an atmosphere that is too dry and too cold. After the correction the bias in

temperature is reduced to less than 0.1 K and in relative humidity to less than −1.5 %. To estimate potential contrail formation

on the basis of ERA5, data points from IAGOS as well as corrected and uncorrected data points from ERA5 - temperature and

relative humidity - are flagged for contrail formation using the Schmidt-Appleman criterion. In the IAGOS data set, 44.0 %

and 12.1 % of the samples represent conditions for non-persistent contrails and persistent contrails, respectively. The original15

ERA5 analyses show corresponding numbers of 50.3 % and 7.9 % for non-persistent and persistent contrails, respectively.

This suggests an overestimation of non-persistent contrails at the expense of an underestimation of persistent contrails. To

improve the representation of both contrail types, the proposed quantile mapping correction method was applied, which largely

removed biases in temperature and relative humidity. As a result, the representation of non-persistent and persistent contrail

formation potential in corrected ERA5 data has improved, now flagging 44 % and 10.9 % of the data points as non-persistent20

and persistent, respectively. Despite this improvement, differences in contrail occurrence persist after the correction, which

are traced back to the underlying biases in temperature and relative humidity, as well as to the non-linearities in the Schmidt-

Appleman criterion. This suggests that the original ERA5 is either too dry and warm or too cold and moist compared to IAGOS.

The differences depend on the region, with largest differences at 250 hPa but decreasing biases with with increasing altitude.
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1 Introduction

Aviation contributes to global climate warming (Lee et al., 2021). The total contribution by aviation is commonly split into

two parts. One fraction is directly attributable to carbon-dioxide (CO2) and is well quantified. For the year 2018, aviation was

estimated to be responsible for 2.5 to 2.6 % of global CO2 emissions (Friedlingstein et al., 2019; Lee et al., 2021; Boucher et al.,

2021). The other contributing fraction to aviation-induced climate change comes from byproducts resulting from fossil fuel30

combustion, like nitrogen oxides (NOx), sulfur dioxide (SO2), and aerosol particles. Furthermore, the combustion of all fuels,

regardless whether they are fossil or synthetic, lead to the emission of water vapor (WV) as long as they contain hydrogen.

The effects of WV are receiving increasing attention in recent years as the emitted WV in the engine exhaust allows and

triggers the formation of condensation trails, also called contrails (Schumann, 1996; Kärcher, 2018). Optically thin cirrus

and contrails are known to have a net warming effect on the climate (Burkhardt and Kärcher, 2011; Schumann et al., 2015;35

Lee et al., 2021). The influence of a perturbation, e.g., clouds, aerosols, or gases, on the Earth’s atmosphere and its radiative

transfer is quantified by the radiative forcing (RF). By definition, RF is defined as the difference in the net irradiance at the

top of atmosphere under perturbed and unperturbed conditions (Ramanathan et al., 1989). Effective radiative forcing (ERF)

includes in addition the radiative impact of adjustments in the troposphere and stratosphere (Bickel et al., 2020). The aviation-

induced global CO2-related ERF is estimated to be around 30 mWm−2 (Boucher et al., 2021). Contrail RF is estimated to be40

stronger, at about 60 mWm−2 but is subject to much larger uncertainties (Burkhardt and Kärcher, 2011).

Contrail formation depends on the ambient conditions, which have to be sufficiently cold and moist. The thresholds of

temperature, below which a contrail forms, and relative humidity above which a contrail can form, are estimated with the

Schmidt–Appleman criterion (SAc, Schmidt, 1941; Appleman, 1953). For a contrail to be persistent (with the common meaning

that is has a lifetime longer than 10 minutes), the ambient air has to fulfill the SAc and must also be supersaturated with45

respect to ice. When these criteria are fulfilled and persistent contrails have formed, they can remain for hours, spread, merge,

and increase the total cirrus cloud cover. Employing climate simulations and analyzing satellite observations, Burkhardt and

Kärcher (2011) and Quaas et al. (2021) estimated an increase in total cloud cover due to contrail formation of 6 to 10 % in the

mid-latitudes of the northern hemisphere, where most of the flights occur.

To lower the climate impact of aviation it is important to reduce CO2 as well as non-CO2 effects. An approach to minimize50

non-CO2 effects is active flight re-routing to avoid areas where contrails are likely to form and persist, which would require

accurate numerical weather predictions. A useful prerequisite is to identify and document flight levels and regions of the Earth’s

atmosphere that are particularly prone to contrail formation due to meteorological and dynamical conditions that favor contrail

formation. Such a statistical data base might be obtained in four different ways.

The first approach builds on ground-based observations. For example, Schumann et al. (2013) used a roof-top camera to55

infer cirrus properties and contrail occurrence. However, this approach is limited to a single or few locations. In a second

approach, satellite observations provide a top-down view with the required global coverage but come with some drawbacks
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(Meyer et al., 2002; Minnis et al., 2013). Depending on the sensor and the satellite platform, the temporal or spatial resolutions

are often insufficient to detect young contrails with low cloud optical thickness (Kärcher et al., 2009). Furthermore satellite

observations, similarly to ground-based observations, can be compromised by underlying cloud layers between the surface and60

the cirrus.

In a third approach, contrail occurrence can be assessed by model simulations. However, the assessment strongly relies on

the accurate representation of the temperature and humidity fields at high altitudes, as well as that of ice cloud amount and

microphysical properties, in the model. Contrail modeling can be done interactively or offline. Interactive contrail models are

typically implemented in climate models, e.g., Bock and Burkhardt (2016), by simulating ice supersaturated regions and calcu-65

lating contrail cirrus cover based on aircraft emission inventories. Offline contrail models, such as CoCiP (Schumann, 2012),

use meteorological fields to predict contrail formation and evolution to contrail cirrus. A frequent source of meteorological

data is ERA5 (Hersbach et al., 2020), a state-of-the-art global modeling system from the European Centre for Medium-Range

Weather Forecasts (ECMWF). ERA5 builds on the decade-long improvements of the Integrated Forecasting System (IFS) of

ECMWF and replaces its predecessor ERA-interim (Dee et al., 2011). Previous studies showed that the IFS scheme and the70

associated data assimilation predict well the temperature field, as verified against radiosonde and satellite observations (Dy-

roff et al., 2015; Carminati et al., 2019). Slightly less accurate is the prediction and re-analysis of relative humidity, which is

generally challenging due to the high temporal and spatial variability of WV. Specific issues have been identified in the upper

troposphere and lower stratosphere, as well as with the general representation of ice supersaturation. For example, Bland et al.

(2021) compared radiosonde observations with operational ECMWF IFS weather forecast and identified a lower stratosphere75

moist-bias. Similarly, Krüger et al. (2022) compared measurements from a differential absorption Lidar with ECMWF ERA5-

reanalysis data (on a relative-tropopause coordinate) and identified a small moist bias in the upper troposphere that increases to

a moderate to significant moist bias in the lower stratosphere. Contrarily, studies that compared water vapor concentrations and

ice supersaturation in ERA-interim and ERA5 with aircraft in-situ observations found that conditions of ice supersaturation are

not frequent enough in those reanalysis products, suggesting a dry bias (Kunz et al., 2014; Dyroff et al., 2015; Gierens et al.,80

2020; Reutter et al., 2020; Schumann et al., 2021). Consequently, there is no consensus whether ECMWF re-analysis products

are subject to a moist or dry bias in the upper troposphere. It is noted that in-situ aircraft observations are potentially biased

by avoiding deep-convective clouds and the outflow of such clouds. However, cirrus clouds are typically not avoided (Petzold

et al., 2020) and, therefore, a potential sampling issue with respect to cirrus clouds is not expected to play more than a minor

role.85

In situ measurement campaigns are a potential fourth approach, during which contrails are directly probed and contrail

properties are investigated. Dedicated measurement campaigns, for instance by Krämer et al. (2009, 2020) and Voigt et al.

(2017), are rare. Furthermore, they may lack spatial representation by targeting specific atmospheric features as well as cloud

conditions, which may bias the results (Petzold et al., 2020). Fortunately, the IAGOS data set is different in the way that it

covers large areas of North America, the North Atlantic, and Europe, which have now been sampled for around two decades90

including its predecessor Measurement of OZone and water vapour on Airbus In-service airCraft (MOZAIC; Marenco et al.,

1998; Petzold et al., 2017). Comparing and bias correcting ERA5 with IAGOS is insofar important because: i) IAGOS data
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has been shown to be reliable; ii) IAGOS samples temperature and relative humidity at exactly at the locations and pressure

levels that are relevant to aviation studies; and iii) ERA5 is often used for predicting potential contrail formation. It is important

to stress that we do not seek to make a universally applicable correction of humidity in ERA5 but rather provide a corrected95

humidity to enable better estimates of contrail occurrence. Relying on IAGOS data allows us to do so exactly at the locations

and pressure levels that are relevant for aviation studies.

To mitigate the dry bias under conditions close to ice-supersaturation in ERA-interim and ERA5, studies have applied either

multiplication factors (Schumann and Graf, 2013; Schumann et al., 2015) or parameterized corrections (Teoh et al., 2022a).

However, these proposed corrections do not consider the temperature dependence of humidity nor the spatial variations in the100

bias, particularly at different pressure levels. In this study we propose a correction for ERA5 data that is based on a bivariate

quantile mapping (QM), which is a standard method of model bias correction (Cannon et al., 2015; Cannon, 2016, 2018). The

QM method allows the removal of biases based on the statistical distributions of an observed and modeled quantity, for example

temperature and relative humidity, with the aim to better estimate the contrail formation potential in air traffic regions. Here, the

QM is trained on 3.5 years of IAGOS observations and collocated ERA5 data of temperature and relative humidity. The QM105

method is then applied on 5.5 years of ERA5 data and compared with IAGOS. Subsequently, we determine the impact of the

correction on the representation of non-persistent and persistent contrails with respect to IAGOS. In case of false classifications

the underlying differences in simulated and observed temperature and relative humidity are determined to identify systematic

shortcoming in ERA5.

Subsequent to this introduction, Sec. 2 describes the data and methods used in this study. After that the results are presented110

in Sec. 3 and summarized in Sec. 4. The appendices A–C provide detailed information about the IAGOS data analysis.

2 Data and Methods

2.1 In-service Aircraft for a Global Observing System

The In-service Aircraft for a Global Observing System (IAGOS; Petzold et al., 2015) is a framework of commercial aircraft that

are equipped with a set of sensors for in situ measurements of meteorological conditions, trace gas concentrations, and cloud115

properties. Since 2015, all aircraft within the IAGOS framework have been equipped with the ’Package 1’ (P1) instrument

package system that includes a backscatter cloud probe (BCP) to measure the particle number concentration Nice, and a

dedicated sensor ’ICH’ that measures temperature TP1 and relative humidity rP1. The BCP is a single particle backscattering

optical spectrometer to detect cloud particles with sizes between 5 and 75 µm. Light with 658 nm wavelength is emitted by

a light emitting diode and directed through a quartz window to the outside of the aircraft fuselage. The light is focused on a120

narrow range of 4 cm that represents the target area. Cloud particles within the focus backscatter the radiation to a sensor. The

intensity of the radiation is proportional to the size, the refractive index, and the shape of the particles as well as the angle

under which the particles were hit by the beam. Directly from these measurement the particles size and the particle number

concentration N can be derived. More details on the BCP can be found in Beswick et al. (2014). Measurements of N are used

to separate for in-cloud (N ≥ 0.015 cm−3) and cloud-free measurements (N < 0.001 cm−3) following the thresholds given125
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by Petzold et al. (1997). For intermediate conditions, where 0.001 ≤ N < 0.015 cm−3, the measurements cannot be clearly

attributed to in-cloud or cloud-free conditions, so they are assigned to the intermediate category (Petzold et al., 2017; Sanogo

et al., 2023).

The ICH package is comprised of a capacitive sensor (Humicap-H, Vaisala, Finland) for measurements of relative humidity

(defined over liquid water) and a collocated PT-100 platinum sensor for temperature measurements. Both sensors are mounted130

within a Model 102 BX housing of Rosemount Inc. (Aerospace Division, USA) to minimize heating from solar radiation and

thermodynamic effects. The recorded data is post-processed by the IAGOS consortium to correct the raw data following Helten

et al. (1998) and Boulanger et al. (2018, 2020). Hereby an “in-flight calibration method” (IFC) correcting an offset drift during

the course of the deployment period is applied (Smit et al., 2008; Petzold et al., 2017).

Post-processed data of TP1 and rP1 are stored every four seconds. However, the response time t1−1/e of a sensor is an135

important characteristic as it directly affects the measurements. t1−1/e is commonly defined as the time that is required by a

sensor to adapt to 1− 1
e = 0.63̄ of an abrupt change in the measured quantity. The temperature sensor is characterized by a

response time t1−1/e of 4 s and an accuracy of ±0.5 K . The IAGOS humidity sensor is characterized by an average uncertainty

of ±6 %. Including uncertainties from sensor calibration and data post-processing, the uncertainty ranges between 5 % and

up to 10 % and increases with decreasing temperature (Helten et al., 1998). The humidity sensor’s response time t1−1/e was140

determined to be 1 s at 293 K and increases to several minutes at 233 K (Neis et al., 2015). t1−1/e of the relative humidity sensor

increases due to reduced molecular diffusion into and out of the sensors polymer substrate. In a first order approximation, the

distance between two IAGOS measurements of TP1 and rP1 is 0.96 km at a cruise speed of 240 m s−1. However, t1−1/e of the

relative humidity sensor averages these measurements over a distance that ranges between 15 km (253 K) and 50 km (233 K)

at cruise altitude.145

IAGOS measurements in the lower stratosphere that are typically characterized by low values of relative humidity ≈ rP1 < 10 %,

are subject to a moist bias. This moist bias is a non-linear function of the relative humidity and requires a multi-dimensional

regression correction that is currently under development (Konjari et al., 2022). Therefore, this known moist bias in IAGOS

is not corrected in our analysis and it should be kept in mind that subsequent differences between ERA5 and IAGOS for low

values of relative humidity may also be attributable to artifacts in the IAGOS measurements. However, since the focus of this150

analysis is to investigate contrail formation and persistence, only high values of relative humidity are relevant. Consequently,

the moist bias for low relative humidity values in the IAGOS observations has little impact, on our analysis.

In this study, we use only the IAGOS measurements that fulfill the following criteria :

– IAGOS quality flag of TP1 and rP1 is ’good’ and ’limited’

– measurements are located between 30◦N and 70◦N; 110◦W and 30◦E155

– measurements are between 325 and 150 hPa

– rP1 (w.r.t liquid water) is between 0 and 100 %
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Figure 1. Number of measurements per 2◦x2◦ grid-box of analyzed IAGOS measurements for the years 2015 to 2021 (inclusive). The

measurements are filtered for data quality and pressure levels. This study uses measurements in the three boxes: United States (US, red),

North Atlantic (NA, green), and continental Europe (EU, blue). Longitude coordinates of the bounding boxes are selected to follow Petzold

et al. (2020).

Table 1. ERA5 pressure levels (in hPa) and pressure ranges used to collocate the IAGOS observations.

Pressure level (hPa) Pressure range (hPa)

300 275.0 ≤ p < 325.0

250 237.5 ≤ p < 275.0

225 212.5 ≤ p < 237.5

200 187.5 ≤ p < 212.5

175 150.0 ≤ p < 187.5

While IAGOS has been operated for many years, the global horizontal and vertical coverage remains heterogeneous. Figure 1

shows a density plot of all IAGOS measurements from the years 2015 to 2021 fulfilling the above criteria. Due to the history

of IAGOS and the contributing airlines, the highest measurement density is found across the North Atlantic domain (Fig. 1,160

green, 65◦W–5◦W). A slightly reduced density is found over North America (Fig. 1, red, 105◦W–65◦W) and Europe (Fig. 1,

blue, 5◦W–30◦E), particularly towards the western and eastern boundaries of the respective boxes. Outside of the boxes, the

coverage is lower and, therefore, we focus our analysis on these three domains. These domains also follow the selection from

Petzold et al. (2020).

Figure 2a–e shows the total numbers of measurements per pressure level (p-level) and the fractions attributable to the three165

sub-domains, which can also be understood as a proxy for the altitude distribution of commercial air traffic in the North Atlantic

corridor. The largest number of samples (35.3 %) are found at the 200 hPa level (Fig. 2d). Slightly fewer samples are obtained

at the 225 hPa level (Fig. 2c) with 32.0 % and at the 250 hPa level (Fig. 2b) with 26.5 %. Contributions from p-level 300 hPa

and 175 hPa are small with 2.5 % and 3.3 %, respectively. Due to the typical flight profiles (for an example see Fig. 10 in

Petzold et al. (2015)) the majority of measurements at low p-levels (Fig. 2e) are sampled over Europe, where aircraft reach170
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Figure 2. (a–e) Fraction of analyzed IAGOS observations by pressure level separated by sub-domain (see Table 1). The total number of

samples per pressure level as well as the fraction with respect to the total sample size are indicated at the top.

their maximum cruising altitude when returning to their main hubs. For intermediate p-levels, the fraction of samples over the

North Atlantic is largest compared to the EU and US domain (Fig. 2c), while for the highest p-levels th EU domain dominates

again (Fig. 2a), corresponding to where the majority of IAGOS-contributing airlines have their main hubs.

The measurement density is a function of longitude, latitude, and p-level. In addition, the sampling is biased, i.e., by avoiding

severe weather and by avoiding or favoring specific atmospheric circulation patterns, such as the jet stream (Petzold et al.,175

2020). The North Atlantic Flight Tracks (routes typically used by aircraft to cross the Atlantic) are selected on a daily basis

to avoid (westbound) or take advantage (eastbound) of the jet stream. This might cause a bias in the sampling of certain

atmospheric conditions that might be associated with the jet stream and mid-latitude storm activity (Pasquier et al., 2019).

2.2 ERA5

Meteorological data are obtained from the ECMWF Copernicus Climate Data Store (ECMWF CDS, 2021) using output of the180

High Resolution component (HRES, T639) of ERA5 (Hersbach et al., 2020). The maximal spatial resolution on the Cartesian

grid with 0.25◦ × 0.25◦ and maximal temporal resolution of one hour are used. We also use the native vertical resolution

with a 50-hPa spacing between 350 and 300 hPa, and a 25-hPa spacing between 300 and 150 hPa. Along-track temperature

TERA, relative humidity rERA, and cloud fraction CFERA are extracted using the nearest neighbor method, i.e., selecting the

ERA5 grid points that are temporally and spatially closest to the IAGOS observations. Spatial and temporal interpolation of185

relative humidity is not done because the relative humidity depends on the underlying temperature and absolute humidity field,

which are both related through the Clausius–Clapeyron relationship. Due to the exponential nature of the Clausius–Clapeyron

equation, linear interpolation, for example, could lead to incorrect values of relative humidity.

The current version of the ERA5 data set was generated with the ECMWF Integrated Forecasting System (IFS) cycle Cy41r2,

which was operational in 2016. Within ERA5 the relative humidity is provided with respect to liquid water or ice depending190

on TERA of the grid box. In general, relative humidity (unitless) is defined as the ratio of the water vapor pressure e(T ) to the
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saturation water vapor pressure esat(T ) as:

r =
e

esat(T )
. (1)

In ERA5, esat(T ) is given by:

esat(T ) = α · esat,l(T )+ (1−α) · esat,i(T ), (2)195

with esat,l(T ) and esat,i(T ) the saturation water vapor pressure over liquid water and ice, respectively. esat,l(T ) and esat,i(T )

are given by:

esat(T ) = a1 · exp
{
a3 ·

(
T −T0

T − a4

)}
, (3)

with a1 = 611.21 Pa, a3 = 17.502, and a4 = 32.19 K for liquid water and a1 = 611.21 Pa, a3 = 22.587, and a4 = −0.7 K over

ice; and in both cases T0 is 273.16 K (Buck, 1981; Alduchov and Eskridge, 1996; ECMWF, 2020). The scaling factor α in200

Eq. 2 is a piecewise linear function of temperature T determined by:

α=


0 for T < Tice

T−Tice

T0−Tice
for Tice ≤ T < T0

1 for T0 ≤ T

(4)

with Tice = 250.16 K and T0 = 273.16 K. For consistency and comparability with IAGOS all extracted values of relative

humidity are converted to be defined solely over liquid water (α= 1) or ice (α= 0) and are subsequently referred to as rERA

and rERA,ice, respectively. For consistency, IAGOS relative humidity defined over liquid water is labeled with rP1 and defined205

over ice with rP1,ice.

The fixed (Cartesian) grid resolution of 0.25◦ of ERA5 does not correspond to a constant longitudinal grid box size in km

which instead depends on the latitude. Considering the three sub-domains between 30◦N and 70◦N, the spatial resolution of

one ERA5 grid-box ranges between 24 km (30◦N) and 14 km (70◦N). Therefore, we assume an average grid box size of

19 km. However, it should be noted that ERA5 is a spectral model with an internal Gaussian resolution of around 31 km and,210

thus, the effective resolution is coarser than the Cartesian grid resolution (Hersbach et al., 2020). While the IAGOS relative

humidity measurements are already smoothed due to the response time of the relative humidity sensor, we additionally smooth

the IAGOS measurements by applying a Gaussian filter to account for the mismatch in spatial resolution between IAGOS and

ERA5. The standard deviation σ of a Gaussian filter is approximated with:

σ =
k− 1

6
, (5)215

which can be regarded as an approximation for a Gaussian distribution, as 3 ·σ includes 99.7 % of the Gaussian distribution. k

is the window length of the smoothing filter and achieved by setting σ = 3, based on the assumption of an average cruise speed

of around 240 m s−1 and a resulting segment length (distance between two measurements) of around 1 km.
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2.2.1 In-cloud representation of supersaturation in ERA5

Previous studies have shown that the upper troposphere is frequently supersaturated with respect to ice under cloud-free220

(Gierens et al., 1999; Petzold et al., 2020) as well as cloudy conditions (Spichtinger et al., 2004; Dekoutsidis et al., 2023).

While ice supersaturation (ISS) in cloud-free conditions is represented in state-of-the-art numerical weather models, they cur-

rently lack in the appropriate representation of ISS under cloudy conditions. Often, the ISS is clipped to rice = 100 %, applying

the so called "saturation adjustment" (McDonald, 1963). This adjustment is also applied in the IFS ice cloud microphysical

scheme. The adjustment is a necessity of a missing diagnostic variable that would track the time-dependent in-cloud saturation225

(Tompkins et al., 2007). As a consequence of the adjustment, all available ’excess’ water vapor, which is beyond the threshold,

is deposited on existing ice particles within one time step, forcing rice back to 100 %. While the adjustment approach proved to

be suitable for most atmospheric conditions (Gierens et al., 1999; Tompkins et al., 2007; Lamquin et al., 2009), the adjustment

results in an underestimation of ISS in the upper troposphere (Gierens et al., 2020), which is problematic for contrail and cirrus

representation.230

To compensate for the dry bias in ERA5 for contrail detection applications, rERA,ice values are sometimes scaled by multi-

plication factors between 0.8 or 0.9, particularly in Schumann and Graf (2013) and Schumann et al. (2015). An updated scaling-

method was proposed by Teoh et al. (2022a, T22 thereafter) that enhances rERA,ice > 100 % and reduces rERA,ice < 100 % by

a a factor which depends on the original rERA,ice. Within our study, we use T22-corrected values of rERA,ice as a benchmark.

2.3 Quantile mapping235

In this study we propose to use a quantile mapping (QM) method to remove the lack of ISS in ERA5. QM is a correction

method that it is frequently used to correct model biases in comparison to observations in a way that imposes the observed

statistical distribution (Maraun et al., 2010; Maraun, 2012; Cannon et al., 2015; Cannon, 2018). Within our study, the QM

technique is applied on ERA5 data and IAGOS measurements, which are regarded as the reference. Subsequently, we provide

a brief overview of the mathematical concept of QM for which we follow the notations from Cannon et al. (2015) and Cannon240

(2018).

The basis of QM algorithms is to consider cumulative distribution functions (CDFs), Fo,h and Fm,h, of the observed (xo,h)

and simulated (xm,h) quantity, respectively. The CDFs describe the probability that the value of a quantity (or random variable)

x, for example temperature or relative humidity, has a value that is lesser or equal to x. In our case xo,h are the IAGOS

TP1 or rP1 measurements, and xm,h the corresponding along-track data from ERA5. The subscript ’h’ commonly refers to245

historical data, in our case the reference period from 2018 to 2021. This can also be understood as the training data. Based

on the relationship of Fo,h and Fm,h, the biased model output xm,p(t) at any given time t is corrected. The corrected value is

represented by x̂m,p(t) (Cannon et al., 2015; Cannon, 2018). This is written in mathematical notation as:

x̂m,p(t) = F−1
o,h{Fm,h[xm,p(t)]}. (6)
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Equation 6 therefore couples a (potentially biased) model output to the most likely value that is observed in reality by the250

convolution of Fm,h and F−1
o,h . Here we apply the QM technique to the full period, i.e., the inference period, from January 2015

to June 2021, which includes but exceeds the training period.

Equation 6 describes the basic QM bias correction that depends only on one variable. Here, we propose a bivariate QM

version for TERA and rERA,ice as the bias between ERA5 and IAGOS might depend on latitude. Such a multi-variate QM is

similar to the suggested versions by Cannon (2016), Cannon (2018), or François et al. (2020).255

For the temperature bias correction, Fo,h and Fm,h are determined at each p-level and for two latitude bands. The latitude

bands are defined by the outer boundaries of the investigated area with 30◦N and 70◦N, with the split center point given by the

50 % percentile of the measurements per pressure level. Thus Fo,h(p,Φ) and Fm,h(p,Φ) are determined for different classes of

pressure p and latitude Φ. Fo,h(p,Φ) and Fm,h(p,Φ) spans a temperature range from 190 and 273 K. Similarly, rice is corrected

with Fo,h(p,Φ,T ) and Fm,h(p,Φ,T ), which are calculated for each p-level, two latitude bands Φ, and five temperature bins.260

As above, T ranges from 190 to 273 K with 5 temperature bins defined by 20 % percentile steps so that each temperature

bin contains an equal number of observations at each p-level and latitude bin. Consequently, Fo,h(p,Φ,T ) and Fm,h(p,Φ,T )

are calculated for a total of 80 bins. A visualization of the resulting CDFs of temperature and relative humidity are given in

Appendix A.

It is important to note that this basic version of QM assumes a time invariant bias between model and observations. We265

assume the ERA5 data set to be invariant in time as ERA5 is generated with one version of the IFS Cycle 41r2 and we only

consider ERA5 data from the years 2015 to 2022. However, the IAGOS reference observations might vary over time as the

spatial distribution of the sampling, instrument calibration, and data post-processing can change.

The temporal consistency of IAGOS relative humidity measurements was investigated by means of monthly climatologies.

A constant bias in temperature and relative humidity between ERA5 and IAGOS was found. An exception are IAGOS relative270

humidity measurements from the year 2017, when IAGOS observations tend towards elevated relative humidity observations

with respect to the other years, while the bias in temperature remained constant (see Appendix B). Biases between IAGOS,

ERA5, and corrected ERA5 were further separated for their dependencies on latitude and longitude. While the bias in the

temperature was found to be independent of longitude and latitude, the bias in relative humidity was smallest in North America

and increased towards continental Europe (see Appendix C).275

2.4 Schmidt–Appleman criterion, potential contrail formation, and contrail persistence

To allow for contrail formation the ambient air must be sufficiently cold and moist. The formation is typically estimated using

relative humidity rcrit and a critical temperature Tcrit threshold that is derived from the Schmidt–Appleman criterion (SAc,

Appleman, 1953). The SAc is based solely on thermodynamic principles and has been tested to be a valid approximation

although it does not inform on the fate of the contrail, which is a more complicated function of the ambient conditions but280

also the interactions of the vortex phase with the environment. The SAc is a necessary but insufficient criterion for persistent

contrails. For contrails to be persistent (lifetime > 10 min), the ambient air must be additionally supersaturated with respect

to ice (rice > 100 %) in so called ice supersaturated regions (ISSR). However, even under slightly sub-saturated conditions
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contrails can form, but the persistence is uncertain. In weakly sub-saturated conditions the dissipation of ice crystals is slow

and, hence, contrails can remain for hours (Li et al., 2023). Within this study, we use the revised version of the SAc, following285

Schumann (1996) and Rap et al. (2010). Calculations are performed for kerosene with a fuel specific energy Q = 43.2 MJkg−1

and an emission index of water EIH20 = 1.25. The overall propulsion efficiency η is set to a typical value of 0.3 (Rap et al.,

2010). For details on the SAc and equations used to calculate Tcrit and rcrit the reader is referred to Wolf et al. (2023).

The SAc and the requirement for ice supersaturation separate the water-vapor-pressure–temperature diagram (see Fig.2 in

Wolf et al. (2023)) in four different areas. The first area represents conditions, where the ambient air fulfills the SAc but is290

sub-saturated with respect to ice. In our study, contrails that form under these conditions are regarded as non-persistent and

are labeled as NPC. Within the second area the SAc is fulfilled and ambient air is additionally supersaturated with respect to

ice and persistent contrails (PCs) can form. The third area is treated as a special case, in which the ambient air does not fulfill

the SAc but is ice supersaturated. Contrails that might have formed under conditions ’R1-NPC’ or ’R2-PC’ and that are mixed

in area 3 may persist and spread. Therefore, area 3 can be understood as a potential ’Reservoir’ (R) for contrails (Wolf et al.,295

2023). The SAc and the ISS threshold are used to flag the IAGOS measurements and the along-track ERA5 for NPC, PC, and

R conditions. Samples that belong to none of these three categories are flagged as "no contrails" (NoC).

3 Results

3.1 Distributions of temperature and relative humidity from ERA5 and IAGOS

In a first step, along-track temperature and relative humidity from IAGOS and ERA5 are compared in terms of probability300

density functions (PDFs), mean values, and mean difference (MD). The performances of the QM–correction and the T22–

correction are further quantified by the root-mean square error (RMSE), the mean absolute error (MAE), the mean square

error, and the mean difference (MD). The analysis is limited to p-levels 250, 225, and 200 hPa, representing the most frequented

p-levels (Fig. 2b–d).

Beginning with the temperature distributions, Fig. 3 (first column) shows that at p-levels 200 and 225 hPa, measured TP1 and305

simulated TERA agree well in terms of the MD (dashed lines) and the overall shape of the distributions. Only minor deviations

in the MD of −0.4 K (200 hPa) and −0.1 K (225 hPa) are found, with a negative MD suggesting ERA5 is colder than observed

on average (TERA < TP1, see Fig. 3 second column). After the bias correction, the MD is reduced at all p-levels to below 0.1 K

and also the shape of the PDFs of T cor
ERA are adjusted to better match the distributions of TP1 (Fig. 3 second column).

Turning to the relative humidity, which is plotted in the third column of Fig. 3. The distributions of rice are bimodal although310

the two modes have different magnitudes. The bimodal shape in the PDFs of upper-air rice matches with previous studies, e.g.,

Ruzmaikin et al. (2014), who used satellite observations from the Atmospheric Infrared Sounder (AIRS). The first mode at low

rice is caused by dry atmospheric conditions related to dry air intrusions from the stratosphere into the upper troposphere, e.g.,

behind frontal zones (Browning, 1997), and flight sections within the lower stratosphere. The second mode at rice = 100 %

is related to regions of high humidity or measurements inside clouds. With the general decrease in absolute humidity and315
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Figure 3. Probability density functions (PDFs) of temperature T (in K) and relative humidity rice w.r.t ice (in %) from IAGOS (black), ERA5

(red), and bias-corrected ERA5 data (blue). From top to bottom, rows represent pressure levels 200, 225, and 250 hPa. The first column shows

PDFs of temperature from IAGOS TP1, ERA5 TERA, and the bias-corrected ERA5 T cor
ERA. The second column presents absolute difference

of TERA and T cor
ERA with respect to TP1. Columns three and four are the same as columns one and two but for relative humidity rice. In

addition, bias-corrected rT22
ERA,ice using the correction method after T22 is given in orange. Differences are calculated by subtracting the

IAGOS reference from the model output. In each plot, the median values of the distributions are indicated by the vertical dashed lines with

the black line indicative of the IAGOS data. For reference, the average measurement uncertainties for TP1 and rERA,ice with ±0.5 K and

±10 % are indicated around mean TP1 and rERA,ice, respectively.

possible intrusion of dry air from the stratosphere, the first mode becomes more and more pronounced with decreasing p, while

the second mode flattens and almost vanishes.

Comparing the PDFs of rERA,ice and rP1,ice minor differences are found for the first mode. However, larger differences

appear for the second mode at rice = 100 %, where the occurrence frequency of large rERA,ice well exceeds rP1,ice, while

rERA,ice > 100 % are underrepresented. The PDF of rERA,ice close to 100 % is characterized by a triangular shape, while320

the distribution of rP1,ice is smaller in magnitude, broader in width, and skewed towards rP1,ice > 100 %. Furthermore, at all

p-levels, mean rERA,ice (red line, column three in Fig. 3), is generally shifted to lower values compared to mean rP1,ice (black

line). This indicates a lack of ISSR in ERA5 that is expected from its use of saturation adjustment (Sec. 2.2.1). The resulting

MDs are determined to be −4.3 % (200 hPa), −3.8 % (225 hPa), and −5.5 % (250 hPa).

Smoothing the IAGOS data, as explained in Section 2.2, leads to mean values of TP1 and rP1,ice for the native and the325

smoothed data that are similar by 0.1◦C and 1 %, respectively. As smoothing did not change the mean values significantly, the

differences in the PDFs of ERA5 and IAGOS, as well as the bias in mean rERA,ice compared to rP1,ice cannot be attributed to
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Table 2. Mean values of temperature T and relative humidity rice from IAGOS and ERA5 calculated from the original and the corrected

values using the QM–correction and the scaling from T22. The data includes filtered measurements from January 2015 to January 2021.

Values in parentheses are the differences relative to IAGOS.

Pressure level (hPa) TP1 (K) TERA (K) T
cor
ERA (K)

250 221.9 221.2 (−0.7) 221.9 (0.0)

225 219.8 219.7 (−0.1) 219.9 (0.1)

200 218.7 218.3 (−0.4) 218.7 (0.0)

Pressure level (hPa) rP1,ice (%) rERA,ice (%) rcorERA,ice (%) rT22
ERA,ice (%)

250 60.4 54.9 (−5.5) 59.4 (−0.9) 56.8 (−3.7)

225 50.6 46.8 (−3.8) 49.1 (−1.5) 48.6 (−2.0)

200 38.8 34.5 (−4.3) 37.5 (−1.3) 35.8 (−3.0)

differences in the spatial resolutions. However, the smoothing of the IAGOS data leads to a reduction in the variability as well

as in the extreme values in measured TP1 and rP1,ice (not shown here).

To correct the lack of ISS, i.e., the mismatch in the PDFs (Fig. 3 third column), the QM-technique is applied. After the330

QM–correction the MDs are reduced almost by half to −1.3 % (200 hPa), −1.5 % (225 hPa), and −0.9 % (250 hPa), which

indicates a remaining slight dry-bias in rERA,ice compared to IAGOS as the MD remains negative (see Fig. 5j). However, the

QM–correction leads to an adjustment of the entire PDFs such that the shape of the PDFs of corrected rcorERA,ice match the

IAGOS observations. For comparison, we apply the T22–correction that only partly removes the dry-bias, resulting in MDs

between −3.7 % (250 hPa) and −2.0 % (225 hPa) (see Fig. 3 fourth column and Fig. 5j). Furthermore, differences in the335

second mode in relation to the IAGOS observations remain as the T22–correction only scales values above a certain threshold,

which primarily shifts the bulk of data points from the 100 % to higher rice. An overview of the original and corrected mean T

and rice is given in Table 2.

The individual PDFs of rice are used to compile joined 2–dimensional (2D) histograms that are shown in Fig. 4a–c. In

general, the frequency distribution of rERA,ice and rP1,ice follow the diagonal line of ’ideal’ agreement (Fig. 4a). However,340

the distribution is slightly shifted to below the 1:1-line, indicating a lower rERA,ice and therefore dryer conditions in ERA5

compared to the IAGOS observations. Particularly striking is the elongated feature of the rERA,ice distribution positioned close

to 100 % (second mode) and a flattening for rERA,ice > 130 % as a result of the saturation adjustment. Gierens et al. (2020)

presented a similar comparison of rice between ERA5 and IAGOS, providing only a scatter plot and not a density distribution.

They found a strong scattering around the 1:1-line and described the distribution as "scattered all over the place" with a poor345

agreement among rERA,ice and rP1,ice. While we agree that the distributions in Fig. 4a–c are subject to scattering, the majority

of the points (read to dark-red colors) show a reasonable alignment along the 1:1-line. For the individual pressure fields of 250,

225, and 200 hPa, r2-score of 0.74, 0.79, and 0.75 are determined, respectively (also see Fig. 5h).

After the application of the QM–correction the alignment with the 1:1-line is improved (see Fig. 4b). As expected from

Fig. 3, the artificially pronounced second mode in rERA,ice is removed in rcorERA,ice and the distribution extends further towards350
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Figure 4. (a–c) Bidimensional histogram of original rERA,ice (left), QM-corrected rcorERA,ice (center), and T22-corrected rT22
ERA,ice (right) as

a function of IAGOS-observed rP1,ice. Relative humidity is binned in intervals of 2 %. rice is given as relative humidity with respect to ice.

Pressure levels 250, 225, and 200 hPa are combined. Perfect agreement is indicated by the diagonal dashed line and ice saturation is indicated

by the horizontal and vertical dashed lines.

rice > 130 %, better representing the conditions observed by IAGOS. The QM–correction leads to r2-values of 0.73, 0.78, and

0.75 at 250, 225, and 200 hPa, respectively, that are similar to the uncorrected ones (also see Fig. 5h).

For reference, the T22-corrected rice is compared with observed rP1,ice and shown in Fig. 4c. The scaling of the T22-method

enhances rice that are close or above 100 % and shifts the elongated feature towards higher rice but does not eliminate it. For

this correction r2 of 0.73 (250 hPa), 0.78 (225 hPa), and 0.74 (200 hPa) are calculated. So this type of correction leads to a355

small decrease in the r2-score compared to the original ERA5 data.

To quantify the performance and the impact of the QM-method, five metrics are calculated, namely the root mean square

error (RMSE), the mean absolute error (MAE), the r–square score, the mean square error (MSE), and the mean deviation (MD).

This set of metrics has been selected to account for the different sensitivity of the metrics to outliers.

The top row in Fig. 5 visualizes the calculated metrics for the temperature. In general, the 250 hPa p-level is characterized360

by the largest RMSE of 2.1 K, MAE of 1.6 K, and MSE of 4.3 K2 in relation to the other p-levels, which is explained by

the enhanced natural variability in the temperature field with increasing p-level. A larger natural variability leads to larger

differences among the IAGOS measurements and the ERA5 grid-box mean values. At the 225 and 200 hPa levels, in a more

stratified atmosphere, the RMSE, MAE, and MSE are generally lower and similar for both p-levels with values around 1.2 K,

1 K, and 1.5 K2, respectively. The QM–correction leads to a minimal increase in the r2-score at all p-levels, while RMSE, MAE,365

and MSE increase unnoticeable. However, as expected and as it was demonstrated before, the MD is significantly reduced.

Similarly, the bottom row in Fig. 5 visualizes the calculated metrics for the original, the QM-corrected, and the T22-corrected

rice against the IAGOS observations. As for the temperature, the RMSE, MAE, and MSE are largest for the 250 hPa p-level

followed by the 225 and 200 hPa p-levels. At all p-levels, the QM- and T22–corrections lead to a constant or marginally

increased RMSE, MAE, MSE, while the r2-score remains almost constant. The increase in RMSE, MAE, and MSE appears370

counter-intuitive from the results shown in Fig. 4, with an improvement in the mean values and the distributions. However,

both correction methods are purely statistical and do not remove differences in temperature and relative humidity of individual
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Figure 5. Bar plots of: (a, f) root mean square error (RMSE); (b, g) mean absolute error (MAE); (c, h) r2–score; (d, i) mean square error

(MSE); and (e, j) mean difference (MD) of ERA5 against IAGOS. First row shows metrics for T and the second row for rice. The first set of

bars represent the original ERA5 output (label Org) while the second set represents the data set after the quantile-mapping correction (label

QM). In the second row a third set of bars indicates the T22–correction. The metrics are calculated for pressure levels of 250 (blue), 225

(orange), and 200 hPa (green).

data points. Instead singular data points might be falsely adjusted by the QM–correction, which then creates outliers on which

the RMSE and MSE respond very sensitively, thus the large RMSE and MSE for relative humidity. In contrast, MAE is less

susceptible to outliers.375

3.2 Distribution of relative humidity under cloud-free and in-cloud conditions

The IFS ISS adjustment partly depends on the ERA5 cloud fraction CFERA as only cloud-containing grid-boxes are clipped

in rice (Tompkins et al., 2007). The effect of CFERA on the distribution of rice is investigated by separating rcorERA,ice for

grid-boxes with CFERA < 0.2 (cloud-free), 0.2, <= CFERA < 0.8 (intermediate), and 0.8, <= CFERA <= 1 (cloudy). Accordingly,

IAGOS measurements of rP1,ice are separated for cloud-free, intermediate, and in-cloud measurements using the cloud particle380

number concentration N as described in Sec. 2.1. This is only a subset of the IAGOS data used in this study, because BCP data

are not always available for these flights. Data from pressure levels 250, 225, and 200 hPa are considered here.

Figure 6a shows PDFs of rice from IAGOS (black), ERA5 (red), and QM-corrected ERA5 (blue). The data is filtered

separately for conditions, where IAGOS measures outside of clouds or where grid-boxes are almost cloud-free in ERA5 (CF

<= 0.2). This category includes 88.3 % of the ERA5 data and 97.7 % of the IAGOS data. For cloud-free conditions, the385

distributions of rice < 60 % are similar to the one presented Fig. 3c, g, and k. As expected, the three PDFs of IAGOS, ERA5,

and QM-corrected ERA5 are characterized by a peak towards small rice, which is attributed to measurements and grid-boxes
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Figure 6. a–c Probability density functions of relative humidity rice w.r.t ice (in %) from IAGOS (black), original ERA5 (red), and corrected

ERA5 (blue) using quantile mapping. Panels a–c show the PDFs separated for cloud-free, intermediate, and in-cloud conditions, respectively.

Mean values of the distributions are indicated by the vertical lines.

with dry conditions. Differences in the PDFs appear, when rice approaches 100 %, where the probability of occurrence in rP1,ice

is higher compared to rERA,ice. This resembles the scatter plot in Fig. 4a, where rERA,ice systematically tends to smaller rice.

Recall that IAGOS is subject to a slight moist bias under conditions with low absolute humidity that are often encountered in390

the lower stratosphere (see Sec. 2.1). It can be seen in Fig. 6a that the QM–correction has only a limited impact on rcorERA,ice.

This is due to the nature of, and is an advantage of, the QM-technique, which respects the probability of occurrence by giving

less weight to rare conditions (logarithmic y-scale). For cloud-free or almost cloud-free conditions mean values for rP1,ice,

rERA,ice, and rcorERA,ice of 28.9, 30.1, and 38 % were determined.

PDFs of rice of intermediate values are shown in Fig. 6b. This category includes 7.3 % of the ERA5 data and 1.3 % of the395

IAGOS data. Within this category it is not clear whether a grid-box should be considered as cloudy or cloud-free. The same is

the case for IAGOS measurements. The shape of the PDFs changed compared to Fig. 6a, as the shape is now dominated by a

peak in rice between 90 and 100 %. The shape of rP1,ice from IAGOS revels the largest variability (width of the distribution),

partly due to the intermediate detection of in-cloud and cloud-free conditions. QM-corrected values of rcorERA,ice lead to a

distribution, where the left tail resembles the distribution from the original data rERA,ice, while the right tail approaches the400

distribution of rP1,ice. Under intermediate cloud conditions the QM–correction skews the distribution to the right, which leads

to a mean of rcorERA,ice = 109.3%. For rERA,ice and rP1,ice mean values of 100.9 and 99.4 % are determined, respectively. The

improved representation of rERA,ice in the intermediate category is particularly important, as NPC and PC formation is relevant

from a radiative perspective in cloud-free or almost cloud-free air.

Figure 6c shows PDFs of rice, when CFERA is larger than 0.8, i.e., almost the entire grid-box is considered as cloudy, or405

when IAGOS measurements are from inside of clouds. This category includes 4.4 % of the ERA5 data and 0.9 % of the
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Table 3. Fractions of measurement points (in %) labeled as non-persistent, persistent, and no contrail formation, as well as reservoir condi-

tions. The results using the scaling method after Teoh et al. (2022b) is labeled with T22.

IAGOS ERA5

Original T correction rice correction T+rice correction rice correction T22

Condition

NPC 44.0 50.3 47.8 46.4 44.0 46.9

PC 12.1 7.9 7.7 11.2 10.9 10.5

R 1.2 0.8 1.0 1.2 1.5 1.2

None 42.6 41.0 43.6 41.2 43.6 41.3

IAGOS data. The relatively limited number of samples (<1 %) from within clouds causes a less robust PDF compared to the

PDF based on measurements conducted outside of clouds. This difference might be due to the fact that, compared to research

aircraft measurements, the backscatter cloud probe misses clouds with N smaller than its detection limit of N = 0.001 cm−3

(Beswick et al., 2014; Petzold et al., 2017). All three distributions of rice are smaller compared to the cloud-free or intermediate410

conditions, with rP1,ice being broadest. This is partly due to the larger natural variability in the IAGOS measurements compared

to the ERA5 simulations of rERA,ice. The distribution of rERA,ice is centered between 75 and 100 % with a steep slope on

either sides. Particularly towards rERA,ice of 100 % the cutoff of rERA,ice for in-cloud conditions is prominent, which is not

represented in rP1,ice. The QM–correction slightly broadens the distribution of rcorERA,ice towards values above 100 %. The bias

in rERA,ice under cloudy conditions is reduced resulting in a mean rcorERA,ice of 105.6 %. This is closer to the measured mean415

rIAGOS,ice of 107.6 % compared to the original output of rIAGOS,ice with a mean of 99.6 %. In addition, the distribution of

QM-corrected rcorERA,ice is slightly broadened but does not resemble the IAGOS but better agrees with measurements from,

e.g., Krämer et al. (2016, 2020) and Li and Groß (2022), who reported in-cloud rice between 90 and 110 % due to the slow

sublimation or growth of ice particles in cloudy conditions.

3.3 Along-track contrail formation potential and the effect of applied corrections420

Along-track time series of uncorrected and corrected ERA5 data, and IAGOS measurements are flagged for non-persistent

(NPC) and persistent (PC) contrails, and reservoir (R) conditions using the method described in Sec. 2.4. All data points not

belonging to any of the categories are flagged for no contrail formation (NoC). Considering all data points from the years 2015

to 2021 at p-levels 250–200 hPa, it is found that 44 % of the IAGOS observations show a potential for NPC formation. PC

appear to be less frequent with about 12.1 % and R conditions are rare with an occurrence of only 1.2 %. Using the original425

along-track ERA5 output, the contrail formation potential for NPC, PC, and R are estimated to be 50.3 %, 7.9 %, and 0.8 %,

respectively. Due to the dry bias and the clipping of rERA,ice at 100 % the NPC category is enhanced in ERA5 at the expense

of the PC category compared to the IAGOS measurements.
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For reference, Teoh et al. (2020) (see Table 1 therein) estimated that 18.4 % of the flights form contrails (i.e., at least one

contrail section during a flight) with only 7.4 % of the total, analyzed flight distance led to contrails. While there is a reasonable430

agreement in the occurrence of contrails, we identified more than twice the chance of forming non-persistent contrails. There

are two main potential sources of disagreement. First, the account of aircraft characteristics is different. The estimates of our

study solely rely on the SAc including constant values for fuel properties (specific heat capacity Q) and the overall propulsion

efficiency η given in Sec. 2.4. Contrarily, the more elaborate method by Teoh et al. (2020) uses a fleet data set that includes flight

specific information of aircraft engine type, thrust settings during flight stages, and estimates of black carbon (soot) emissions.435

These information were ingested into the contrail cirrus prediction model from (CoCiP, Schumann, 2012) to determine contrail

formation and the related radiative effect. It is noted that CoCiP only considers flight sections as a contrail, when a certain

contrail radiative effect is exceeded, i.e., the ice particle number is larger than 103 m−3 and the cirrus optical thickness is

larger than 10−6 (Schumann, 2012). Thus, the results from Teoh et al. (2020) consider the potential for contrail formation,

actual aircraft emissions, the synoptic conditions, and the contrail radiative effect. For our approach, with the IAGOS data set,440

no such aircraft-performance data are available. Secondly, the way flight distance is counted as contrail-forming is different

between the two studies. In our study, the SAc accounts only for thermodynamic properties.

Subsequently, the impact of corrected T cor
ERA and rcorERA,ice on the along-track classification of NPC, PC, and R is investigated.

The individual contributions of T and r are separated by applying the QM–correction separately on T and r. The scaling method

from T22 is shown as a benchmark.445

Applying the QM correction only on TERA leads to a reduction in the fraction of NPC from 50.3 % to 47.8 % and for PC from

7.9 % to 7.7 %, respectively. The correction increases the mean T cor
ERA (ambient temperature), allowing fewer ERA5 samples

to pass the T and rice thresholds for NPC and PC formation. Consequently, the fraction of NoC or R conditions increases,

where supersaturation is reached but the SAc is not fulfilled. The remaining differences in the distributions of NPC, PC, and

R between the TERA-only corrected and the IAGOS measurements indicate that temperature correction alone is insufficient to450

better represent NPC and PC (see Table 3).

Applying the QM correction only to rERA,ice reduces the frequency of NPC to 46.3 %. At the same time the number of

PC increases to 11.4 % and R conditions are slightly increased to 1.2 %. Thus, this correction leads to an increase in PC,

mostly on the expense of the NPC category. This is simply because of the higher mean rcorERA,ice and correspondingly more

samples that pass the thresholds given by the SAc. Compared to the TERA–only correction, the rERA,ice–only correction has the455

largest impact on the categorization and is, therefore, the main driver of potential miss-classification and needs to be correctly

represented.

The scaling-based T22–correction is most similar to the QM correction of rERA,ice–only. After the T22–correction, 46.9 %

of the samples were identified as NPC, which is slightly above the IAGOS reference and similar to the estimated occurrence

after the QM rERA,ice–only correction. With the T22 correction, PC and R conditions are found in 10.5 % and 1.2 % of the460

cases, which is also comparable to the result from the QM rERA,ice–only correction.

Applying the QM correction to both TERA and rERA,ice results in a decrease of NPC to 44.0 %, which corresponds to the

occurrence of NPC that is found in the IAGOS data set and is below the original ERA5 data. It is also slightly lower than after
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Figure 7. a–d Redistributed fractions (in %) of original ERA5 contrail classification with respect to the classification after applying the

T -only correction, the r-only correction, the QM–correction, and the correction after T22, respectively. The original classification of non-

persistent contrail (NPC) are given in blue, persistent contrails (PC) are given in orange, reservoir conditions (R) are colored in green, and

samples that do not allow for contrails formation (NoC) are given in red.

the QM rERA,ice-only correction. This is due to the simultaneous correction of T and rERA,ice as some samples become to

warm to form contrails. PC conditions are found in 10.9 % of the samples, which is slightly less compared to the QM correction465

of rERA,ice. The frequency of R conditions as well as NoC increase slightly. It is found that the combined correction of TERA

and rERA,ice leads to the best agreement with the IAGOS observations. While the improvement is primarily caused by the

correction of rERA,ice, it is emphasized that also T has to be corrected as the calculation of rERA,ice depends on the underlying

temperature field. The conversion of specific humidity to relative humidity and the conversion between relative humidity w.r.t

ice and w.r.t liquid water via the saturation curves becomes very sensitive to T , when approaching low temperatures that exist470

at typical flight levels, see, e.g., Ambaum (2020).

For a detailed understanding on how the QM–correction modifies the classification of NPC, PC, R, and NoC, the redistribu-

tion among the contrail categories is determined by tracking the classification before and after the corrections. The distributions

have to be interpreted qualitatively as the statistics include a potential yearly variation. Figure 7a–d shows the contribution of

the pre-correction categories to the classification after applying a specific correction method.475

For example, Fig. 7a shows that for the majority of the QM TERA–only corrected ERA5 samples that are now classified as

’NPC’ were already NPC before the correction. Only a minority of the new NPC samples were previously identified as PC or

belonged to the NoC category before. The QM TERA-only correction does not significantly affect the PC category but leads

to the largest redistribution in the R category. Due to the increase in mean TERA, previous PC-flagged samples now contribute

by 21 % to the R category. However, the proportion of R conditions relative the total number of samples is small and thus the480

overall relevance is small. Similarly, samples previously classified as NPC contribute little to the NoC category.

Similar to Fig. 7a, the QM rERA,ice-only correction, given in Fig. 7b, as well as the T22–correction, given in Fig. 7d, lead

to only minor changes in the NPC category. In the case of the QM rERA,ice-only correction the newly flagged samples in the

R category are composed of samples that already belong to the R category (62.5 %) or the NoC category (31.3 %). In the case
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Table 4. Schematic contingency table for a binary event. Adapted from Stephenson (2000).

IAGOS ERA5 detection

detection Yes No

Yes True False

Positive (TP) Negative (FN)

No False True

Positive (FP) Negative (TN)

of the T22–correction a similar pattern is found but with an additional share of previously flagged PC samples (7.0 %). Both485

corrections show similar patterns for the newly formed PC category, which now consist of about of 75 % and 25 % of former

PC and NPC data points, respectively.

The QM–correction, shown in Fig. 7c, is a superposition of the QM TERA-only and QM rERA,ice-only correction. No

redistribution within the NPC category is found. The R category is subject to the strongest re-distribution but keeping in mind

that the R category represents the smallest proportion of all data points. The newly formed PC category now consists of 29 %490

and 71 % of former NPC and PC data points, respectively.

3.4 Analysis of collocated contrail formation potential from ERA5 and IAGOS

Beyond the comparison of bulk statistics, the collocated temporal and spatial along-track representation of NPC and PC in

ERA5 are validated against IAGOS observations using a confusion matrix, where we consider NPC, PC, R, and NoC conditions

as single binary events. A confusion matrix is a special type of a two dimensional contingency table for which a schematic is495

given in Table 4. In our case the classification is based on: i) the IAGOS observations and ii) the ERA5 data. Perhaps persistent

contrails form only in a minority of situations, we computed the equitable threat score (ETS; Mason, 2012), following the

reasoning of Gierens et al. (2020) given in the Appendix A of their paper. The ETS can be regarded as equitable to the four

entries of the contingency table, when the total number of samples is sufficiently large (Hogan et al., 2010; Gierens et al.,

2020), which is the case considering our data set. The ETS ranges between 0 for random relations and 1 for perfect correlation,500

and is calculated on the basis of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) by:

ETS =
TP − r

TP +FN +FP − r
, (7)

with:

r =
(TP +FP ) · (TP +FN)

(TP +FP +FN +TN)
. (8)

The ETS is calculated for the original as well as corrected ERA5 data against IAGOS estimates (see Table 5 and Fig. 8).505

Statistics based on a confusion matrix like the one given in Table 4 are a tough test for ERA5 because even small spatial

or temporal errors in the temperature or humidity fields can lead to mis-classifications. To estimate the effect of a possible
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Figure 8. (a–b) Fraction of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) predictions from ERA5

data classifications based on IAGOS observations (reference) for non-persistent and persistent contrails, as well as reservoir conditions,

respectively. ERA5 data is compared in its original form ’ERA’ (first column), after the QM–correction ’ERA cor2d’ (second column), and

using the correction after Teoh et al. (2022b) ’ERA T22’ (third column).

Table 5. Equitable threat score (ETS) calculated from the confusion matrix between IAGOS (reference) and the original ERA5 as well as

the corrected ERA5 output.

ERA5 ERA5 (3h) ERA5 QM ERA5 T22

PC 0.27 0.26 0.36 0.35

NPC 0.51 0.50 0.54 0.53

R 0.19 0.17 0.24 0.23

pattern shift, we use the three-hourly (3h) ERA5 data of TERA and rERA,ice. Evaluating the NPC and PC formation as well as

the R condition with the confusion matrix between IAGOS and the coarsened ERA5 (3h), the ETS remains almost constant.

This indicates that sensitivity of the confusion matrix and the ETS to temporal and spatial decorrelations that occur within510

three hours is low. In addition, the differences in ETS between the original ERA5 and the three-hourly ERA5 data provides

a reference for estimating the impact of the corrections in relation to temporal-spatial mismatches. Thus, differences in the

calculated ETS that are larger than that reference are truly due to incorrect values of TERA and rERA,ice.

The application of the QM–correction modifies the distributions of temperature and relative humidity in such a way that PC

conditions are correctly detected more frequently, resulting in an increase in ETS from 0.27 to 0.36. Similarly, the NPC and R515

categories an increase in ETS from 0.51 to 0.54 and 0.19 to 0.24, respectively, is observed. Thus, the QM–correction leads to

an improvement across all categories. The QM–correction appears to be most effective for the PC category, which is also the

most relevant category considering the longevity and the potential radiative effects of contrails. Similar improvements in the

contrail representation are observed for the T22–correction. For all categories, an increase in the ETS is observed compared

to the original ERA5 data. The T22–correction related ETS are comparable to those of the QM–correction and are listed in520

Table 5. Based on the original ERA5 data, an ETS of 0.27 and 0.51 is calculated for PC and NPC conditions, respectively. For
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Figure 9. (a–c) Mean difference in temperature T (in K) and relative humidity rice (in %) between IAGOS and ERA5 corrected by quantile

mapping for three pressure levels: from left to right, 250, 225, and 200 hPa. Colored dots represent a combination of mean ∆T and ∆r for

one of the nine categories of the contingency table (right). The area of the dots is proportional to the fraction of measurement–simulation

pairs with respect to the total number per pressure level. Colors indicate the classification, using the legend shown in the right-hand panel

with categories no contrail formation (NoC), non-persistent contrails (NPC), and persistent contrails (PC).

reference, we provide values obtained by Gierens et al. (2020), who compared ERA5 with MOZAIC measurements. Gierens

et al. (2020) compared MOZAIC data and ERA5 for individual months, while we calculate the ETS on the basis of several

years. Therefore, the ETS from Gierens et al. (2020) are subject to significant monthly variations. For comparability, the ETS

values from Gierens et al. (2020), given for the months of January, April, July, and October in their Table 1, were used to525

calculate mean ETS of 0.12 and 0.74 for PC and NPC conditions, respectively. Evaluating the contingency tables by means of

ETS it can be concluded that the QM–correction as well as the T22–correction lead to a better representation of all contrail

types compared to the original ERA5 data. Compared to the mean values calculated from Gierens et al. (2020) we found a

lower performance of uncorrected and corrected ERA5 for the NPC category, while there is a better performance for the PC

category, especially after the QM–correction and the T22–correction.530

3.5 Disentangling of classification with respect to temperature and relative humidity

Even after QM–correction, about 16 % of the NPC and 11.5 % of the PC observation–measurement pairs are classified as

’false positive’ and ’false negative’. The sensitivity study using 3 hourly ERA5 data showed that this is unrelated to spatial

mismatches but is rather due to actual deviations in temperature and relative humidity between IAGOS and ERA5. Subse-

quently, we aim to quantify the mean differences in temperature and relative humidity that remained after the QM–correction535

and that contribute to the misclassification of potential contrail formation. Within the following section all ERA5 values are

QM-corrected.

The along track-samples from IAGOS and ERA5 are categorized by a contingency table with categories: NoC, NPC, and

PC taking IAGOS as the reference. The created contingency table is visualized in the legend of Fig. 9. The diagonal elements

of the contingency table represent combinations of IAGOS and ERA5 that agree in terms of contrail occurrence, while all540

off-diagonal values are incorrectly classified. For each of the nine contingency table combinations the corresponding mean
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differences in the temperature:

∆T =
1

n

n∑
i=0

TERA5,i −TIAGOS,i (9)

and relative humidity:

∆rice =
1

n

n∑
i=0

rERA5,ice,i − rIAGOS,ice,i (10)545

are calculated, with n the number of data points in each category. Figure 9a–c presents the 2D–space spanned by ∆T and ∆r

for each of the contingency table combinations at p-levels 250, 225, and 200 hPa, respectively. In the following, a notation of

’A–B’ with A,B ∈ {NoC,NPC,PC} is used as an abbreviation for the classification of A from IAGOS and B in ERA5. For

example, a notation of ’NPC-PC’ means a combination of IAGOS NPC conditions and ERA5 PC conditions.

In general, ∆T and ∆rice are similar at all three p-levels and the three p-levels are discussed simultaneously and the frac-550

tion of each category compared to the total number of samples are given for the middle layer at 225 hPa. 81.9 % of the

observation–model combinations are correctly categorized and represented along the contingency table-diagonal. As expected,

corresponding ∆T and ∆rice (black dots) are close to the origin.

Contrarily, the off-diagonal groups are mostly located in the top-left and lower-right quadrants. Misclassifications for PC–

NPC (green, 4.5 %) and NPC–PC (violet, 5.4 %) due to errors in ∆rice mostly. Samples in the PC–NPC group (green) were555

incorrectly categorized due to a too low relative humidity in ERA5, while the NPC–PC samples (violet) were too moist. But of

course, since rice depends on T , mis-classifications are also caused by errors in T , even if they do not dominate in these cases.

Misclassifications for the combinations ’NoC–NPC’ (red, 3.7 %) and ’NPC–NoC’ (yellow, 1.9 %) are mostly due to errors

in T . For ’NoC–NPC’ and ’NPC–NoC’, T cor
ERA was colder or warmer than TP1, respectively.

Least frequent are the misclassifications ’NoC–PC’ (light blue, 0.3 %) and PC–NoC (dark blue, 0.5 %). These two groups560

are subject to the largest ∆T and ∆rice. Samples in these categories were only found at the 250 and 225 hPa p-level, while the

PC–NoC (dark blue) is not found at the 200 hPa level. It is likely that data points in the two categories result from small scale

variations captured by IAGOS that are not represented by ERA5 due to temporal and spatial resolution.

It is worth identifying whether the misclassification in ERA5 with respect to IAGOS is most often due to biases in tempera-

ture or in humidity. Focusing on the PC representation in ERA5, the primary reason for a misclassification after the correction565

is the deviation in rice. This is shown by the proximity of the violet and green dots to the y-axis (small ∆T), while the differ-

ences in rice are larger than ±20 %. Hence, the underestimation (green dot) or overestimation (violet dot) of potential contrail

formation is primary related to the underlying humidity field in ERA5.

4 Summary

In this study we proposed a temperature and relative humidity correction method for ERA5 based on a bivariate quantile570

mapping (QM) technique to better estimate the contrail formation potential. The QM–correction was trained on 3.5 years of
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IAGOS observations and collocated ERA5 data of TERA and rERA,ice. The QM–correction was then applied on 5.5 years of

ERA5 data and compared with IAGOS. The target region covers the eastern United States, the North Atlantic, and continental

Europe, spanning 30◦N to 70◦N and 110◦W to 30◦E for pressure (p) levels 250 to 200 hPa, where the majority of IAGOS

observations are available (93.8 %).575

Alongside the IAGOS data post-processing and the calculation of cumulative distribution functions (CDF) for the QM–

correction, the along-track biases in temperature and relative humidity among ERA5 and IAGOS were analyzed. In general,

biases in temperature and relative humidity are characterized by a dependence at p-level with the largest differences typically

for the lowest p-level, i.e., 200 hPa. Biases were further separated for their dependencies on latitude and longitude. While the

bias in the temperature was found to be independent of longitude and latitude, the bias in relative humidity was smallest in580

North America and increased towards continental Europe. The temporal consistency of IAGOS relative humidity measurements

was investigated by means of monthly climatologies. A constant bias in temperature and relative humidity between ERA5 and

IAGOS was found. An exception are IAGOS relative humidity measurements from the year 2017, when IAGOS observations

tend towards elevated relative humidity observations with respect to the other years, while the bias in temperature remained

constant. It is again noted that in-situ observations from IAGOS are potentially biased by avoiding deep-convective clouds and585

their outflow, while cirrus clouds are generally not avoided.

Using the bivariate QM–correction, the bias in TERA was reduced from −0.7, −0.1, and −0.4 K, at p-levels 250, 225, and

200 hPa, respectively, to below 0.1 K at all p-levels. The relative humidity bias was reduced from −5.5, −3.8, and −4.3 %

to −0.9, −1.5, and −1.3 % at 250, 225, and 200 hPa, respectively. While a slight dry-bias compared to IAGOS remains, a

significant improvement in terms of the probability density functions (PDFs) of the relative humidity distribution is achieved.590

PDFs of corrected relative humidity are almost identical in shape with the PDFs determined from the IAGOS observations. A

previously existing artificial peak at rERA,ice = 100 % in the PDFs of ERA5, which is caused by the saturation adjustment in

ERA5, was removed. Consequently, corrected values of rcorERA,ice better represent the actual conditions in terms of mean value

and frequency of occurrence.

Subsequently, the impact of the QM correction on the detection and classification of NPC, PC, and R with respect to IAGOS595

was evaluated. Measurements from IAGOS and along-tack ERA5 data were flagged for NPC, PC, R, and NoC conditions.

Based on the original ERA5 data set, 50.3, 7.9, and 0.8 % of all data points were identified as NPC, PC, and R, respectively.

Compared to the IAGOS estimates with 44.0, 12.1, and 1.2 % for NPC, PC, and R, an overestimation of NPC and underesti-

mation of PC was identified in ERA5. After the ERA5 QM correction, 44.0, 10.9, and 1.5 % of the samples were identified as

NPC, PC, and R conditions, indicating a general improvement of the contrail representation with respect to the original ERA5600

data. Using a parameterized relative humidity correction from Teoh et al. (2022a), here used as a reference for comparison,

led to 46.9, 10.5, and 1.2 % of NPC, PC, and R conditions, respectively, which is comparable to the performance from the

QM–correction.

The temporal and spatial representation of NPC, PC, and R in ERA5 with respect to IAGOS was assessed with a contingency

table. Based on the contingency table the equitable threat score (ETS) was calculated. The largest improvement is found for605
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the PC category with an increase in ETS from 0.27 to 0.36. Smaller improvements were found for the NPC and the R category

with an increase in ETS from 0.51 to 0.54 and 0.2 to 0.24, respectively.

The contingency table further revealed that 81.9 % of the data samples were coherently flagged in IAGOS and ERA5 after

QM–correction. In these cases almost no biases in temperature and relative humidity between IAGOS and ERA5 remain. The

remaining 18.1 % of the data points, which were incorrectly classified for NPC, PC, and R conditions by ERA5, are caused610

by remaining biases in temperature and relative humidity of varying magnitude. The misclassifications were insensitive to the

applied correction method. False classifications of NPC as PC were primarily dominated by a relative humidity bias, while

false classifications of NPC as NoC were dominated by a bias in the temperature. However, the majority of misclassifications

were caused by combinations of temperature and relative humidity biases with ERA5 either being cold-moist or a warm-dry

biased compared to IAGOS. Furthermore, the relative humidity bias between IAGOS and ERA5 was found to depend on the615

temperature.

Overall, the presented QM–correction allowed to remove the systematic bias in temperature and relative humidity in ERA5

with IAGOS as the reference. As a result, the QM-correction leads to a representation of NPC, PC, and R in ERA5 that is

comparable to the distribution identified in the IAGOS observations.

Code availability. The python code that was used to perform the analysis and the quantile correction is provided following:620

https://doi.org/10.5281/zenodo.8418565

Data availability. ERA5 data can be obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) data catalog at

https://doi.org/10.24381/cds.f17050d7 (Hersbach et al., 2023).

The IAGOS data can be downloaded from the IAGOS data portal at https://doi.org/10.25326/20 (Boulanger et al., 2020).

Appendix A: Cumulative distribution functions for quantile mapping625

Here we provide an example for calculated cumulative distribution functions (CDFs) of relative humidity r defined with respect

to ice. IAGOS CDFs (Fo,h) and ERA CDFs (Fm,h) are calculated on basis of the observed IAGOS relative humidity (xo,h) and

simulated, along-track ERA5 relative humidity (xm,h), respectively, following the description in Sec. 2.3. Figure A1 shows

Fo,h (dashed lines) and Fm,h (solid lines) for individual pressure (p) levels between 350 and 200 hPa. As described in Sec. 2.3

the full domain (specified in Sec. 2.1) is subdivided into two latitude bands. The split point is determined by the 50th-percentile630

at each p-level such that both latitude bands contain equal numbers of data points. For legibility, only CDFs of the northern

most latitude band are shown here. The selection is arbitrary and conclusions are transferable between the two bands.

The black lines in Fig. A1 indicate Fo,h and Fm,h from the quantile mapping (QM) approach that considers only for p-

level dependence and the latitude band. For the majority of the p-levels Fo,h and Fm,h are similar in shape. An exception is

r between 100 and 110 % at levels 350 ≤ p ≤ 250 hPa, where Fm,h (ERA5) shows a dominant mode, while Fo,h (IAGOS)635
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Figure A1. (a–e) Cumulative distribution functions (CDFs) F of relative humidity w.r.t ice (in %). CDFs from ERA5 Fm,h and IAGOS Fo,h

are given by solid and dashed lines, respectively. The black lines represent Fo,h and Fm,h that depend at p-level and latitude Φ. Color-coded

are Fm,h and Fo,h that additionally consider for five temperature bins with bin sizes defined by 20th-percentiles.

remains flat. The mode in Fm,h is a superposition of two effects. While the peak is of natural origin, as reported by Krämer et al.

(2016, 2020), it is also caused by the saturation adjustment in ERA5 (see Section 2.2.1). This mode becomes less prominent

with decreasing p as the atmosphere gets drier with altitudes, so supersaturation is less likely. Simultaneously, the differences

between Fo,h and Fm,h increase for r < 20 %, where both Fo,h and Fm,h are further characterized by a steep slope. The largest

effect in this regard is found at the 200 hPa p-level, where Fm,h contains a larger fraction of high relative humidity values640
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compared to Fo,h, indicating an underestimation of r that is not attributable to the saturation adjustment. For example, 50 %

of the ERA relative humidity are smaller than around 15 %, while the respective value for IAGOS is around 22 %, indicating

a general dry-bias unrelated to the saturation adjustment.

The color-coded lines in Fig. A1 represent the bivariate QM approach, where r is additionally separated for five temperature

(T ) bins that are defined by 20 %-steps. Fm,h and Fo,h that result from the bivariate QM reveal a strong dependence in T ,645

which becomes visible in the deviating shapes of Fm,h and Fo,h at constant p-level and latitude band. The systematic order

of the colored lines further indicates that T -bins with low T (0–20th-percentile, violet lines) are mostly dominated by high

relative humidity values, while bins with higher T (80–100th-percentile, red lines) are dominated by low r. The CDFs with

lower T are generally flat with a continuous slope, while T bins with higher temperatures are dominated by a steep slope for

r < 10 %, particularly for p < 250 hPa. However, for the bivariate QM correction the actual shape of Fm,h and Fo,h is less650

relevant but the difference. These difference between Fm,h and Fo,h are increasing with decreasing p-level. The importance to

consider the T -dependence is further highlighted by the fact that the simpler, univariate QM approach (black) and related Fm,h

and Fo,h do not consider the shape and the shape difference that is required to adequately correct r under different ambient

conditions, particularly with decreasing p-level.

Appendix B: Temporal consistency in temperature and relative humidity of IAGOS and ERA5655

Applying the quantile mapping (QM)–correction in the presented form requires a time-invariant bias in temperature (T ) and

relative humidity (rice) between the IAGOS and the ERA5. The bias among both might vary due to variations in the instrument

calibration procedure or changes in the sampling distribution due to seasonal flight schedules.

We tested for time invariance by calculating mean values of T and rice from ERA5 as well as IAGOS over all samples for

each month spanning January 2015 to 2021 on p-levels of 250, 225, and 200 hPa.660

Figure B1a shows that monthly mean TERA (red) and TP1 (black) agree well, which is expected from the small bias presented

in Fig. 3. Furthermore, the monthly mean difference between TP1 and TERA, given in Fig. B1b, remains constant with values

around −0.5 K and maximal −1 K, except for some individual spikes. Figure B1b also shows that QM-corrected T cor
ERA (blue)

better match with TP1, which is indicated by maximal differences of ±0.5 K.

Similarly, Fig. B1c shows monthly mean of rP1,ice (black), original ERA5 rERA,ice (red), and QM-corrected ERA5 rcorERA,ice665

(blue) ranging between 40 % and 50 % for the majority of the period. An exception is the period after 2020, which is due to

low data availability (see Fig. B1e). Figure B1c illustrates that rERA,ice (red) follows rP1,ice (black) with an offset between 3 %

and up to −12 % that has been shown before (fourth column in Fig. 3). Like for the temperature correction, Fig. B1d clearly

shows that the QM–correction increases mean rcorERA,ice such that the bias between ERA5 and IAGOS is reduced, bringing the

monthly means of rcorERA,ice closer to the 0.670

Even though the bias ∆rice = rERA,ice - rP1,ice remains fairly constant for the majority of the presented time series, the

differences are particularly pronounced for the years 2016 and 2017. However, their temperature bias ∆T = TERA- TP1
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remains constant (Fig. B1b), which suggests that changes in the sampling, e.g., due to modified aircraft operations, are not

the cause but the known grounding problem of IAGOS acquisition at this time period (see Sanogo et al. (2023)).

In the absence of alternative observations to compare against IAGOS, we turn to the interannual variation in rice to confirm675

that relative humidity measurements for years 2016 and 2017 are anomalous. Multi-year, monthly climatological means of

rERA,ice and rP1,ice are calculated spanning the years 2015 to 2021. Using uncorrected rERA,ice as the reference, anomalies

of rP1,ice, rERA,ice, and rcorERA,ice are determined by subtracting the monthly mean of an individual year from the multi-year,

monthly climatological mean. Figure B2 shows mean anomalies of rP1,ice that range from −11.9 % (2017) to 0.8 % (2020).

Similarly, mean anomalies of rERA,ice range between −4.2 % (2017) and 5.5 % (2020). The mean anomalies between ERA5680

and IAGOS are largest for the years 2016 and particularly 2017 the difference between the anomalies for year 2017 exceeds

all other years with −6.8 %. Slightly smaller mean anomaly difference between ERA5 and IAGOS anomalies are found to the

years 2016 with −4.7 % and 2020 with −4.7 %. Therefore, years 2017 and parts of 2016 are special cases compared to the

other years in terms of anomalies during which rP1,ice is likely biased towards too moist values.

Appendix C: Latitudinal and longitudinal dependent deviations in temperature and relative humidity between ERA5685

and IAGOS

The bias between IAGOS and ERA5 might depend on the geographic position, e.g., due to characteristic spatial distributions

of water vapor in the atmosphere. Such spatial-dependent biases in T and rice among ERA5 and IAGOS are identified by

calculating mean differences for bins of 10◦ in latitude and longitude, at p-levels 300, 250, 225, and 200 hPa. The calculations

include all samples from years 2015 to 2021 and from within the defined subdomain (30◦N–70◦N, 105◦W–30◦E).690

First, the longitudinal variation in ∆T is analyzed (Fig. C1a). In general, a tendency toward more negative ∆T is found for

decreasing p-levels, reaching a maximum on the 200 hPa p-level, where ∆T mostly reaches values of up to −2 K. Large ∆T on

200 hPa westwards of 80◦ must be cautiously interpreted due to the low number of available samples in this pressure level and

longitude bin (see Fig. C1e). The general negative ∆T indicates that the mean temperature from ERA5 is predominantly lower

than measured by IAGOS. ∆T at pressure levels 250 hPa (green) and 225 hPa (red) is almost constant over the entire longitude695

range with ∆T being smaller than −0.5. An exception is the 300 hPa level, where ∆T exceeds −0.5 K and reaches values of

up to −1 K east of 50◦W. Separating ∆T for latitudes between 30◦N and 70◦N does not reveal any latitudinal dependencies.

An exception is the 200 hPa p-level, where ∆T increases towards the equator and reaches up to −1.7 K at 30◦N.

Similar to T , the longitudinal and latitudinal dependence of rice is analyzed (see Fig. C1c, d). In general, ∆rice increase

from west, with ∆rice around 0 %, towards east, reaching ∆r of up to −25 % at the 300 and 250 hPa p-levels. No systematic700

offset among the p-levels is found. While ∆rice is largest at the 200 hPa level at 110◦W, ∆rice is among the smallest levels at

30◦E. Conversely, ∆rice is small at the 250 hPa level at 110◦W and is the second largest ∆rice at 30◦E. Similar to T , separating

∆rice for latitudes shows not strong latitudinal sensitivity with the smallest values between −10 % and −4 % at the 225 and

200 hPa p-levels. Largest ∆rice, of up to ∆rice = −25 %, are found at the 300 hPa level particularly between 40◦N and 60◦N.
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Separating biases in T and r clearly shows the necessity to consider the p-level in the QM–correction. In contrast, bin-705

ning for latitudes appears to be of minor importance, which relaxes the requirement for more than two bins in the proposed

QM–correction. In contrast, the dependency of rice on the longitude is much more pronounced and would require individual cu-

mulative distribution functions but could not be considered for in the QM–correction as dividing the data in three sub-domains

would lead to insufficient data in rarely sampled combinations of T and p.
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Table A1. Notations

Symbol Long-name Unit

α Scaling factor in ERA5 -

η Overall propulsion efficiency 0-1

Φ Latitude ◦

σ Standard deviation of Gaussian distribution -

CFIAGOS Fraction of in-cloud measurements by IAGOS 0–1

CFERA Cloud fraction from ERA5 0–1

cp Isobaric heat capacity of air J kg−1 K−1

e(T ) Water vapor pressure, temperature dependent Pa

esat,l(T ) Saturation water vapor pressure over water, temperature dependent Pa

esat,i(T ) Saturation water vapor pressure over ice, temperature dependent Pa

EI Emission index of water vapor for the fuel kg kg−1

F Cumulative distribution function for quantile mapping -

Nice Particle number concentration cm−3

p Pressure hPa

P Probability for contrail occurrence 0–1

rP1,ice Relative humidity with respect to ice from IAGOS package 1 (P1) %

rP1 Relative humidity with respect to liquid water from IAGOS package 1 (P1) %

rERA,ice Relative humidity with respect to ice from ERA5 %

rcrit Critical relative humidity from Schmidt–Appleman criterion [0–1]

rcorERA,ice Relative humidity with respect to ice from ERA5 bias corrected %

rT22
ERA,ice Relative humidity with respect to ice from ERA5 corrected with method T22 %

rERA,liq Relative humidity with respect to liquid water from ERA5 %

rcorERA,liq Relative humidity with respect to liquid water from ERA5 %

t1−1/e(T ) Temperature dependent sensor response time to adjust to a signal change by 63% s

T0 Freezing temperature in ERA5 K

Tice Lower temperature limit for scaling of relative humidity conversion in ERA5 K

Tcrit Critical temperature from Schmidt–Appleman–criterion K

TP1 Temperature measured by IAGOS package 1 (P1) K

TERA Temperature from ERA5 K

T cor
ERA Temperature from ERA5 bias corrected K

qsat,liq Saturation specific humidity with respect to a liquid water surface kg kg−1

qsat,ice Saturation specific humidity with respect to a ice surface kg kg−1

Qheat Specific heat capacity J kg−1

x̂m,p(t) Transfer function for quantile mapping
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Figure B1. (a) Time series of monthly mean temperature (in K) from IAGOS (black), ERA5 (red), and corrected ERA5 (blue). (b) Time

series of temperature difference (in K) from ERA5 minus IAGOS (red) as well as corrected ERA5 minus IAGOS (blue). Panels (c) and (d)

are similar to (a) and (b) but for relative humidity with respect to ice rice in %. (e) Total number of samples available to calculate the monthly

mean.
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Figure B2. (a–g) Anomalies of relative humidity from ERA5 rERA,ice (red), corrected ERA5 rcorERA,ice (blue), and IAGOS rP1,ice (black)

with respect to the multi-year rERA,ice for the years 2015 to 2021. Differences are given in unit of relative humidity.
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Figure C1. (a–b) Temperature difference ∆T (in K) between ERA5 and IAGOS as a function of Longitude and Latitude, respectively. (c–d)

Same as top row but for difference in relative humidity rice (in %). Pressure levels of 300, 250, 225, and 200 hPa are indicated in orange,

green, red, and purple, respectively. (e–f) Fraction of available samples per longitude or latitude bin with respect to the total number of

samples per pressure level.
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