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Abstract. Ocean models must be regularly updated through the assimilation of observations (data assimilation) in order to

correctly represent the timing and locations of eddies. Since initial conditions play an important role in the quality of short-

term ocean forecasts, an effective data assimilation scheme to produce accurate state estimates is key to improving prediction.

Western Boundary Current regions, such as the East Australia Current system, are highly variable regions making them par-

ticularly challenging to model and predict. This study assesses the performance of two ocean data assimilation systems in the5

East Australian Current system over a two year period. We compare the time-dependent 4-Dimensional Variational (4D-Var)

data assimilation system with the more computationally-efficient, time-independent Ensemble Optimal Interpolation (EnOI)

system, across a common modelling and observational framework. Both systems assimilate the same observations including:

satellite-derived sea-surface height, sea-surface temperature, vertical profiles of temperature and salinity (from Argo floats),

and temperature profiles from eXpendable Bathy-Thermographs. We analyse both systems’ performance against independent10

data that is withheld allowing a thorough analysis of system performance. The 4D-Var system is 25 times more expensive but

outperforms the EnOI system against both assimilated and independent observations at the surface and subsurface. For forecast

horizons of 5-days Root-Mean-Squared forecast errors are 20-60% higher for the EnOI system compared to the 4D-Var system.

The 4D-Var system, which assimilates observations over 5-day windows, provides a smoother transition from the end of the

forecast to the subsequent analysis field. The EnOI system displays elevated low frequency (>1 day), surface intensified vari-15

ability in temperature, and elevated kinetic energy at length scales less than 100km at the beginning of the forecast windows.

The 4D-Var system displays elevated energy in the near-inertial range throughout the water column, with the wavenumber

kinetic energy spectra remaining unchanged upon assimilation. Overall, this comparison shows quantitatively that the 4D-

Var system results in improved predictability as the analysis provides a smoother and more dynamically-balanced fit between
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the observations and the model’s time-evolving flow. This advocates the use of advanced, time-dependent data assimilation20

methods, particularly for highly variable oceanic regions, and motivates future work into further improving data assimilation

schemes.

Keywords: East Australian Current (EAC), Four-Dimensional Variational (4D-Var) Data Assimilation, Ensemble Optimal

Interpolation (EnOI), mesoscale, prediction, Western Boundary Current, ROMS
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Key Points:

1. The predictive performances of two ocean data assimilation systems (EnOI and 4D-Var) are assessed in a ROMS con-

figuration of the East Australian Current over 5-day forecast horizons.

2. The forecast skill of the 4D-Var system surpasses the EnOI system against both assimilated and independent observations

at the surface and subsurface.30

3. The EnOI system has greater analysis increments, elevated low-frequency (>1 day) surface-intensified variability in

temperature, and elevated kinetic energy at length scales less than 100km at the beginning of the forecast windows.

4. The dynamically-balanced 4D-Var system displays elevated energy in the near-inertial range throughout the water col-

umn, with the wavenumber kinetic energy spectra remaining unchanged upon assimilation.

1 Introduction35

Data assimilation (DA), the combination of numerical modelling and observations, is essential to produce accurate forecasts of

the atmosphere or ocean circulation. The goal of any DA scheme is to combine observations and a numerical model such that

the result is a better estimate of the ocean circulation than either alone. Observations provide sparse data points while the model

provides context. Since initial conditions play an important role in forecast quality, accurate and dynamically consistent state

estimates are key to improving prediction. This study focuses on the comparison of two DA techniques applied to forecasting40

the ocean mesoscale circulation in a highly dynamic oceanic region.

Mesoscale eddies exist throughout the global ocean and contain more than half of the kinetic energy of the ocean circulation.

Western Boundary Current (WBC) regions are hot-spots of high eddy variability as eddies emerge due to instabilities in the

strong boundary current flow. The high mesoscale eddy variability (Stammer, 1997; Mata et al., 2000) and the complexities

of eddy shedding processes and evolution (Mata et al., 2006; Bull et al., 2017) make WBCs challenging to model and predict45

(Feron, 1995; Imawaki et al., 2013; Roughan et al., 2017). Due to the chaotic nature of the mesoscale circulation, ocean models

must be regularly updated through the assimilation of observations in order to correctly represent the timing and locations of

eddies (e.g. Kerry et al., 2016; Li and Roughan, 2023) and accurate forecasts of eddies as they shed, evolve and interact in

WBC regions are lacking.

The East Australian Current (EAC), the WBC of the South Pacific subtropical gyre (Figure 1a), and its associated eddies50

dominate the circulation along the southeastern coast of Australia. The southward-flowing current is most coherent off 27◦ S
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(Sloyan et al., 2016) and intensifies at around 31◦ S (Kerry and Roughan, 2020). The current typically separates from the coast

between 31◦ S and 32.5◦ S (Cetina Heredia et al., 2014) and turns eastward to form the EAC eastern extension, shedding large

warm-core eddies in the Tasman Sea (Oke and Middleton, 2000; Cetina Heredia et al., 2014; Oke et al., 2019). In the EAC,

eddies can directly influence shelf circulation (Schaeffer et al., 2014; Schaeffer and Roughan, 2015; Malan et al., 2023) and55

often intensify as the jet separates from the coast. After shedding, eddies propagate and evolve (Pilo et al., 2015b, a) and can

display a complex vertical structure including tilting and stacking (Oke and Griffin, 2011; Macdonald et al., 2013; Roughan

et al., 2017; Pilo et al., 2018). As such, the EAC is a challenging region to predict and provides an ideal test-bed for comparison

of DA methods.

There are various DA techniques, by which a model estimate of the ocean state can be combined with ocean observations,60

that vary in complexity. Simpler, computationally efficient, time-independent methods such as 3-Dimensional Variational Data

Assimilation (3D-Var) and Ensemble Optimal Inperpolation (EnOI), centre the observations and model on a single time and are

capable of resolving slowly evolving flows governed by simple balance relationships at synoptic scales. These methods have

provided useful states estimates and predictions. For example, the European Centre for Medium-Range Weather Forecasts uses

3D-Var to produce initial conditions for its coupled ocean-atmosphere modelling system (Mogensen et al., 2012), and EnOI65

was effectively employed in Australia’s Bluelink Ocean Data Assimilation System (Oke et al., 2008a). In Oke et al. (2010) a

case was presented for the use of EnOI, weighing up the predictive skill against its computational efficiency. Specifically, EnOI

is highly computationally efficient as it does not represent the errors of the day; rather it assumes that the background error

covariances are well represented by a stationary or seasonally varying ensemble. More recent work has shown that combining

flow-dependent background error covariances (from an ensemble of model solutions) with a static ensemble achieves improved70

predictive skill (Brassington et al., 2023).

With increasing computational capacity and the pursuit of more accurate weather and ocean forecasts over the last two

decades, a shift has been made to more advanced, time-dependent DA techniques (Edwards et al., 2015; Moore et al., 2019).

Advanced DA methods make use of the time-variable dynamics of the model allowing the observations to be assimilated over

a time interval given the temporal evolution of the circulation. In the atmosphere, these methods have provided considerable75

improvement compared to the earlier, time-independent DA techniques, particularly for forecasts (e.g. Lorenc and Rawlins,

2005; Brousseau et al., 2012) and for highly intermittent flows with irregularly sampled observations (e.g. Xu, 2013). Indeed,

the two techniques that are the most promising in NWP are 4-Dimensional Variational Data Assimilation (4D-Var) and the

Ensemble Kalman Filter (EnKF), and ocean DA is following suit (Moore et al., 2019).

In 4D-Var the model and observations are combined using subsequent iterations of the tangent linear and adjoint models to80

compute increments in the forecast model (initial conditions, boundary conditions and surface forcing) such that the difference

between the new model solution and the observations is minimised over a time window (Moore et al., 2004). With 4D-Var, a

continual and full estimate of the ocean over the assimilation window is created. This is ideal for both accuracy and timeli-

ness of current state estimates and future predictions, as a continuous field evolves by the nonlinear primitive equations. The

Kalman Filter (KF) can be formally posed in the same way as 4D-Var (Lorenc, 1986) and in practice uses an ensemble of85

perturbed model simulations to approximate the model error covariances and their temporal evolution, and the ensemble mean
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is considered the best estimate of the state of the system (Evensen, 2002). An advantage of generating an ensemble of forecasts

is that probabilistic forecasts can be derived from the ensemble spread.

Indeed, with the shift to more advanced DA techniques in ocean forecasting, it is important to quantify the improvements

gained. Here we use a Regional Ocean Modelling System (ROMS) configuration of a dynamic WBC (the EAC) to compare90

two DA methods in a quantifiable manner. We compare the time-independent DA technique (EnOI) with the time-dependent

technique (4D-Var) using the same numerical model configuration and suite of observations. We quantify the differences in

predictive skill achieved by the two systems against assimilated and independent observations at the surface and subsurface.

We focus our analysis on the performance of the short-range (5-day) forecasts. After presenting the experiments (Section

2), we begin by comparing forecast performance against assimilated observations (Section 3.1). Then we employ a suite of95

independent observations to assess the forecast skill of the two systems (Section 3.2). The model energetics (Section 4.2) and

the temporal and spatial scales of variability (Section 4.3) are then compared to understand what may drive differences in

predictive skill. Finally we summarise and discuss the way forward for improvements in Section 5.
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Figure 1. (a) Mean Kinetic Energy from AVISO, with mean Eddy Kinetic Energy contours, showing the circulation in the EAC system and

the model domain. The cyan lines show the sections through 278◦S and 34◦S. (b) Location of traditional observations used in the TRAD

assimilation systems (SSH, SST, and SSS are not shown). (c) Location of additional observations used in the FULL assimilation system

and for independent analysis herein. (d) Number of AVISO SSH and NAVO SST observations, and (e) number of Argo, XBT and SSS

observations per 5-day assimilation window.
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2 Model and Data Assimilation System Configuration

2.1 The Regional Ocean Modeling System Configuration100

We use the Regional Ocean Modeling System (ROMS) to simulate the eddying ocean circulation off the southeastern coast

of Australia between January 2012 and December 2013. This modelling suite is named the South East Australian Coastal

Ocean Forecast System (SEA-COFS, Roughan and Kerry (2023b)). ROMS is a widely used free-surface, hydrostatic, terrain-

following, primitive equation ocean model and is described by Haidvogel et al. (2000); Marchesiello and Middleton (2000);

Shchepetkin and McWilliams (2005). The model configuration used in this study has been used in various past studies of the105

EAC and is described in detail in Kerry et al. (2016, 2020a); Roughan and Kerry (2023b).

The study domain covers SE Australia from 25.25◦S to 41.55◦S and approximately 1000 km offshore (Figure 1a). The

domain covers the latitudinal extent of the EAC system from where the current jet is most coherent, the EAC separation region,

the region of high eddy activity associated with the EAC eastern extension, and the EAC southern extension. The grid is rotated

20◦ clockwise such that the domain y-axis is oriented roughly parallel with the coastline. The cross-shore horizontal resolution110

varies from 2.5 km over the continental shelf and gradually increases to 6 km offshore. The horizontal resolution is 5 km in

the along-shore direction. Higher resolution over the shelf allows the steep topography to be maintained while minimising

pressure gradient errors that emerge in terrain-following coordinate schemes, which otherwise may result in artificial along-

slope flow for steep topography (Haney, 1991; Mellor et al., 1994). As such, less topographic smoothing is required to ensure

low horizontal pressure gradient errors while still representing the shelf and seamount structures in the model. The model115

utilises 30 vertical s-layers with higher resolution in the upper 500 m to resolve mesoscale dynamics and higher resolution near

the seabed for improved representation of the bottom boundary layer. To better resolve surface currents, a near-constant-depth

surface layer is provided by applying the vertical stretching scheme of De Souza et al. (2015).

Initial conditions and boundary forcing are derived from the Bluelink ReAnalysis version 3 (BRAN3; Oke et al., 2013). The

boundary forcing is applied daily and misfits in baroclinic energy to the BRAN3 condition are absorbed at the boundary via a120

flow-relaxation scheme. The model is forced at the surface with realistic atmospheric forcing derived from the 12km resolution

Bureau of Meteorology (BOM) Australian Community Climate and Earth-System Simulation (ACCESS) analysis (Puri et al.,

2013). The atmospheric forcing fields are applied every 6 hours and used to compute the surface wind stress and surface net

heat and freshwater fluxes using the bulk flux parameterisation of Fairall et al. (1996).

The free-running configuration, while unable to reproduce the temporal evolution of the mesoscale eddies, has been shown125

to accurately represent the mean dynamical features of the EAC and both the surface and subsurface (0-2000m) variability

(Kerry and Roughan, 2020). Specifically, they show that the model accurately represents the mesoscale eddy related variability

in SSH, the frequency in occurrence of EAC separation latitude, the seasonal cycle in SST, the ocean’s subsurface structure

based on data from Argo profiling floats, EAC transport and the temperature depth structure across the EAC. Thus, using data

assimilation, we aim to constrain the model to reproduce the temporal evolution of the mesoscale eddies and examine the130

forecast skill achieved.
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2.2 Observations

The same set of observations are assimilated into the ROMS model configuration using the two DA systems (EnOI and 4D-

Var) for comparison in this study. These include satellite-derived sea surface height (SSH), sea surface temperature (SST), sea

surface salinity (SSS), vertical profiles of temperature and salinity from profiling Argo floats and vertical profiles of temper-135

ature from eXpendable Bathy-Thermographs (XBTs) (refer to Figure 1b). The number of processed observations assimilated

for each 5-day assimilation window is shown in Figure 1d,e. These observations are referred to as the “traditionally” available

observations (TRAD) (Siripatana et al., 2020). We describe the observations used and the observation uncertainties speci-

fied below. For a detailed description of the observations, the processing performed prior to assimilation, and the prescribed

observation uncertainties, the reader is referred to Kerry et al. (2016).140

2.2.1 Satellite-derived Sea Surface Height

Archiving, Validation and Interpretation of Satellite Oceanographic Data (AVISO), France, produce global, daily, gridded

(1/4◦ x 1/4◦) mean sea level anomaly (SLA) data by merging of all available along-track satellite altimetry data, computed

with respect to a seven-year mean. We add the AVISO SLA data to the dynamic SSH mean from a long free run such that the

sea level data is consistent with the ROMS model configuration. The AVISO delayed-time global SLA product error for the145

region is estimated at 2cm (CNES, 2015). We prescribe an additional 4cm of uncertainty to account for imbalances between this

statistical field and a dynamically-balanced SSH field required by the model, and the higher spatial-scale processes resolved by

the model compared to the gridded product. As such, we prescribe an observation uncertainty of 6cm. As the AVISO gridded

product poorly resolves continental shelf processes, we exclude SSH observations over water depths less than 1000m.

We use the gridded AVISO product to constrain SSH, rather than the along-track altimetry, for this comparison study. Current150

work including the development of a high resolution coastal ocean forecast system (Roughan and Kerry, 2023a) is now making

use of along-track SSH data successfully with 4D-Var.

2.2.2 Satellite-derived Sea Surface Temperature

SST data from the US Naval Oceanographic Office’s Global Area Coverage Advanced Very High Resolution Radiometer level-

2 product (NAVOCEANO’s GAC AVHRR L2P SST) is used for this study. Data is available 2–3 times per day. We remove155

day-time SST observations and any night-time observations when wind speed < 2 ms−1 (Donlon et al., 2002). The percentage

of SST observations removed per 5 day cycle is 0.33-54.3 % (mean of 20.77%). As the resolution of the data is similar to the

resolution of the model, the observation uncertainty for the assimilation is chosen to be equal to the specified product error

(Andreu-Burillo et al., 2010) which is 0.4-0.5 ◦C.

2.2.3 Satellite-derived Sea Surface Salinity160

We use the Level 3 gridded Sea Surface Salinity (SSS) product derived from the National Aeronautics and Space Administra-

tions’s (NASA) Aquarius satellite (www.aquarius.umaine.edu/). This product provides daily fields at a 1◦ resolution. We set
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the observation uncertainty to 0.4. The specified Aquarius SSS product error is ∼0.2 and 0.4 is chosen to account for repre-

sentation errors. The value is considerably higher than the uncertainties specified for other in-situ salinity observations so SSS

provides little constraint to the system (Kerry et al., 2016, 2018).165

2.2.4 Argo floats

Argo (free-drifting profiling) floats measure temperature and salinity of the upper 2000m of the global ocean (www.argo.ucsd.edu,

Figure 1b). The Argo data points are averaged to the model grid (in the horizontal and vertical) and a 5-minute time-step. Un-

certainty profiles are defined to specify the nominal minimal uncertainties for subsurface temperature and salinity (method

described in Kerry et al. (2016)). The profiles provide greater uncertainties in the depth ranges of greatest variability where170

representation errors are likely to be the largest. The observation error variance is specified as the maximum of this nominal

minimum error variance and the variance of the observations from the same model cell.

2.2.5 eXpendable Bathy-Thermographs

eXpendable Bathy-Thermographs (XBT) collect temperature profiles along repeat lines sampled by merchant ships; the Sydney-

Wellington (PX34), and the Brisbane-Fiji (PX30) routes intersect our model domain (Figure 1b). Four PX30 lines and seven175

PX34 lines took place over the assimilation period (2012–2013, Figure 1e). XBT casts are performed at 10 km intervals along

the sections and the XBT data points are averaged to the model grid and a 5-minute time-step. The nominal minimal uncer-

tainty variance profiles used for the Argo temperature observations are doubled for the XBT observations, and the observation

error variance is specified as the maximum of the nominal minimum error variance and the variance of the observations from

the same model cell.180

2.2.6 Independent Observations used for system assessment

A suite of additional observations were also available over the simulation period (2012–2013) that were collected as part of

Australia’s Integrated Marine Observing System (IMOS). These include surface velocity measurements from high-frequency

coastal radar (HF radar), temperature, salinity and velocity observations from continental shelf moorings off the coast of New

South Wales (NSW) and Southeast Queensland (SEQ), temperature, salinity and velocity observations from 5 deep water185

moorings across the core of the EAC at 28◦S (EAC array), and temperature and salinity observations from ocean gliders (refer

to Figure 1c). These products provide independent observations against which we assess the performance of the two systems.

Furthermore, these observations were assimilated into the ROMS model (along with the TRAD observations) using 4D-Var

(Kerry et al., 2016, 2018; Siripatana et al., 2020). Given the full suite of available observations were assimilated, this system

is referred to as the FULL system, and considered the ‘best estimate’ of the ocean state over the 2012-2013 period. As such,190

the FULL system is also used in this paper as a benchmark against which to compare the performance of the two systems

presented in this study (4D-Var and EnOI systems that assimilate TRAD observations).
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2.3 Data Assimilation Experiments

In this paper, we refer to three different configurations of the SEA-COFS model which differ in DA type and/or the observations

assimilated. Each case is performed over the 2-year period from January 2012 and December 2013 and is described below.195

1. 4D-Var TRAD: This refers to the 4D-Var system that assimilates “traditionally” available observations (SSH, SST, SSS,

Argo and XBT). This system is similar to the system described in Kerry et al. (2016) expect that it only assimilates the

TRAD observations.

2. EnOI TRAD: This refers to the system that assimilates the same observations as the 4D-Var TRAD but using the EnOI

DA method described in Section 2.4.1 below.200

3. 4D-Var FULL: This refers to the 4D-Var system that assimilates all available observations (SSH, SST, SSS, Argo,

XBT, HF radar, shelf and deep moorings and glider data). It is similar to the system described in detail in Kerry et al.

(2016, 2020b, 2018).

A detailed comparison of the 4D-Var TRAD and the FULL systems was presented in Siripatana et al. (2020). The

purpose of this paper is to compare the 4D-Var TRAD and the EnOI TRAD systems, in order to provide a comparison205

of the two DA schemes using a common suite of traditionally available observations. We introduce the 4D-Var FULL

system as a benchmark when comparing against observations that are independent to the TRAD experiments in Section

3.2.

2.4 Data Assimilation Methods

The classic state estimation problem can be given by210

XXXa = XXX f +KKK(yyy−H(XXX f )), (1)

where XXX is the state estimate; subscripts f and a refer to forecast and analysis, respectively; KKK is the Kalman gain; yyy is the

observation vector; H is the observation operator that samples the background circulation to observation points in space and

time. The yyy−H(XXX f ) term is referred to as the innovation vector and describes the difference between the observations and the

forecast model mapped to observation space. The difference in DA techniques lies in the formulation of KKK which determines215

how the forecast innovations are mapped into model space to produce the new state estimate (XXXa). For the standard analysis

equation that is solved by the Kalman Filter and the dual form of 4D-Var, KKK can be expressed as:

KKK = BBBGGGT (GGGBBBGGGT +RRR)−1, (2)

where BBB is the background covariance, RRR is the observation error covariance, and GGG performs the mapping from model space

to observation space.220
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For time-dependent methods (4D-Var and EnKF), observations are assimilated over a time window respecting the dynamics

of the model. The observation operator H samples the nonlinear forecast model XXX f at the observation locations in space and

time over assimilation cycle time interval. In 4D-Var, the background error covariance matrix BBB is typically assumed to be

unchanging in time, so there is no explicit flow dependence of the BBB. Flow dependence is implicit via the terms BBBGGGT and

GGGBBBGGGT in Equation 2, since GGG is the operator that maps the tangent linear model solution to the observation points and GGGT is225

the adjoint ocean model forced at observation points (Moore et al., 2011c, 2020). In EnKF, the background error covariance

matrix and its evolution in time is estimated from an ensemble of nonlinear model solutions (Houtekamer and Zhang, 2016).

For 3D-Var and EnOI, observations are all centred at a single time and, rather than using the model physics to constrain the

model versus observation error, time-invariant covariances are prescribed.

2.4.1 EnOI230

Ensemble methods (which include the time-dependent EnKF and the time-independent EnOI) use an ensemble of model

anomalies to estimate the background error covariances. The EnKF allows for the time-varying statistics by using a fixed

number of nonlinear model members (ensembles) to provide a statistical representation of KKK. The ensembles are generated for

every assimilation period so as to capture the state-dependent “errors of the day”. For EnOI, the ensemble of model anomalies

are generated from a long non-assimilating model run. This makes the assumption that the background error covariances are235

not state-dependent, and are well represented by a stationary or seasonally varying ensemble. This method is considerably less

expensive than the time-dependent EnKF or 4D-Var methods as, once the stationary ensemble is generated, EnOI requires only

a single integration of the nonlinear model to generate a background state, and only a single solution of the analysis equations to

update the background. In constrast, to generate an analysis field using EnKF, the forward nonlinear model must be integrated

m times (where m is the number of ensemble members) to represent the time-varying background error covariances and a240

background state (often based on the ensemble mean). All ensemble members are then updated, requiring m solutions of the

analysis equations. Therefore EnOI, is m times less expensive than EnKF.

A challenge of ensemble methods is to determine the sufficient number of ensemble members to capture the entirety of

the state-space, and techniques such as localisation and inflation are used to ensure unrealistic covariances are not applied

(Houtekamer and Zhang, 2016). Specifically, localisation is used for three reasons: it reduces the fictitious large covariances245

at large distance due to sampling error; it improves the rank of the matrix inversion; and, by the use of a parametric form

to taper to zero over the localisation distance the inversions become perfectly parallel improving computational efficiency

(Gaspari and Cohn, 1999). Inflation is only applied to EnKF, not EnOI, with inflation of 5% being typical. The localisation

and inflation techniques however remove some dynamical consistency from the solution. Recent work by the Australian BOM

uses a hybrid-Ensemble Transform Kalman Filter (Sakov and Oke, 2008) based on 48-dynamic and 96-stationary ensemble250

members (Brassington et al., 2023). With EnOI, there is less constraint on the number of ensemble members, as the ensembles

are only performed once to generate the stationary or seasonally-varying ensemble.

For EnOI, there is no time dependence in KKK (Equation 2). The mapping from model space to observation space performed

by GGG is time-independent; all observations are colocated at a single time and the analysis equation (Equation 1) is considered
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only at that time. The background error covariance matrix is estimated from a static ensemble of model state anomalies and is255

given by:

BBB =
1

m−1
AAAAAAT , (3)

where AAA is the matrix of background ensemble anomalies; and m is the ensemble size.

In the EnOI system used in this study, we use a stationary ensemble to represent the intraseasonal model anomalies. Each

member is calculated as a difference between a 2-week model average and a 2-day average, centered at the same time. This260

is repeated every 30 days to ensure the anomalies are independent, generating 266 ensemble members. The DA system is run

with a 1-day cycle and centered observation window, so an analysis is generated every day. For SSH, temperature, and salinity,

the observation time is assumed to coincide with the analysis time, and innovations are calculated as the difference between

observation and model state at the analysis time. The localisation method applied is based on local analysis (Ott et al., 2004);

that is an analysis of a local region is produced with a local background error covariance matrix that has lower dimension265

than the full state vector. The local analyses are then used to construct complete model states for advancement to the next

forecast time. Performing the data assimilation analysis locally is convenient for parallelising the solver. In addition to this,

a polynomial taper function is applied to bring the covariance to exactly zero on a specified length scale (Gaspari and Cohn,

1999). The localisation radius is set to 250 km for SSH, T, and S observations, and to 100 km for SST observations. The

observation errors are set equal to those described in Section 2.2 (identical for both EnOI and 4D-Var systems), except for SST270

for which the error variance is increased by a factor of 2 for the EnOI system to prevent overfitting to SST. The observation

impact was moderated with an adaptive quality control procedure via the so-called K-factor (Sandery and Sakov, 2017) with

the value of K = 2.

For comparison with the 4D-Var system we perform 5-day forecasts based on the EnOI analyses every 4 days. Initial

conditions for each subsequent 5-day forecast are taken from the EnOI analysis. In this paper we focus on the forecast skill275

between the 4D-Var and EnOI systems (not the analysis skill).

2.4.2 4D-Var

4D-Var uses variational calculus to solve for increments in model initial conditions, boundary conditions, and forcing such that

the differences between the observations and the new model trajectory is miminised – in a least-squares sense – over a specific

assimilation window. The goal is for the model to represent all of the observations in time and space using the physics of the280

model, and accounting for the uncertainties in the observations and background model state, producing a description of the

ocean-state that is dynamically-balanced and a complete solution of the nonlinear model equations.

This is achieved by minimising an objective cost function, J, that measures normalised deviations of the modelled ocean

state (given the increment adjustments to model initial conditions, boundary conditions, and forcing) from the observations as

well as from the modelled background state (the model prior). The cost function is a function of the increment vector285

δz = (δX(t0)T ,δ fT (t1), ....,δ fT (tn),δbT (t1), ....,δbT (tn))T (4)
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representing the increments to the initial conditions (time t0), and the surface forcing and boundary conditions for model times

t1 to tn. The cost function can then be written as

J(δz) =
1
2

n

∑
i=0

(GGGδz−di)
T RRR−1

i (GGGδz−di)+
1
2
(δz)T B−1(δz) = Jo + Jb (5)

where GGG = HiM(ti, t0), M(ti, t0) represents the tangent linear version of the nonlinear model equations M , integrated from290

t0 to ti. The difference between the modelled background state and the observations is represented by the innovation vector,

introduced above, given at each time ti by di = yi−Hi(X f (ti)); where y are the observations and Hi is the operator that samples

the background circulation to observation points in space and time. As such, the GGGδz− di term represents the difference

between the model and the observations given the increment adjustment integrated through the tangent linear model. RRR is the

observation error covariance matrix and BBB is the background error covariance matrix.295

We seek to minimise the cost function by equating the gradient to zero. The gradient of the cost function is given by

∇δ zJ =
n

∑
i=0

GT RRR−1
i (Gδz−di)+BBB−1(δz), (6)

where GT encompasseas the adjoint of the tangent linear model equations. The desired analysis increment, δ zzza, that min-

imises Equation 5 corresponds to the solution of equation ∇δ zJ = 0 and is given by

δ zzza = BBBGGGT (GGGBBBGGGT +RRR)−1ddd (7)300

for the dual form (in observation space).

In practice, with 4D-Var, subsequent integrations of the adjoint and tangent linear models are performed to solve for an

increment vector that minimises (or acceptably reduces) J. This is performed in the inner loops. After the last inner loop, the

final increment is applied to the initial conditions, boundary and surface forcing and the new integration of the nonlinear model

is performed. The integration of the nonlinear model given the increment adjustments that were solved for in the inner loops305

is referred to as the outer loop. The analysis field is given by the final integration of the nonlinear model (the final outer loop)

which provides a model state-estimate that is constrained to satisfy the nonlinear model equations (strong-constraint) and better

represent the observations over the assimilation window. The analysis provides an improved estimate of the initial conditions

for the next assimilation window. In this study we find that 15 inner loops and a single outer loop give an acceptable reduction

in J (rather than a true minimum).310

To solve for the nonlinear ocean solution that better represents the observations, we must take into account the uncertainties

in the system. As such, the background (prior model) error covariance matrix, BBB, and the observation error covariance matrix,

RRR, are important scaling factors in the cost function, J (Equation 5). The background error covariance matrix should represent

the expected uncertainties in the model initial conditions, surface and boundary forcings. We estimate BBB by factorisation, as

described in Weaver and Courtier (2001), such that,315
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BBB = KbΣΛL1/2
v LhL1/2

v ΛΣKT
b , (8)

where Kb are the covariance operators of the balanced dynamics, Σ and Λ are the diagonal matrices of the background error

standard deviations and normalisation factors respectively, and Lv and Lh are the univariate correlations in the vertical and

horizontal directions. We prescribe Kb = I such that the dynamics are coupled through the use of the tangent linear and adjoint

models but not in the statistics of BBB. The correlation matrices, Lv and Lh, and the normalisation factors, Λ, are computed as320

solutions to diffusion equations following Weaver and Courtier (2001). The characteristic length scales chosen for Lv and Lh

are assumed to be homogeneous and isotropic (Table 1), and their choice is justified in Kerry et al. (2016). The specification of

the observation error covariances is described in Section 2.2 above, and in more detail in Kerry et al. (2016).

Table 1. Correlation lengths assumed for the control vector elements: 4D-Var system

Horizontal decorrelation scale (km) Vertical decorrelation scale (m)

SSH 100 N/A

U-momentum 70 50

V-momentum 70 50

Temperature 100 20

Salinity 100 50

Because we use the linearised model equations, the assimilation window length is limited by the time over which the tangent

linear assumption remains reasonable (although longer windows have been shown to produce useful results). For the 4D-Var325

system presented in this study, we find that a 5-day assimilation window is reasonable. We adjust the model initial conditions,

boundary conditions and surface forcing such that the new model solution (the analysis) better represents the observations

over the assimilation interval. Open boundary conditions are adjusted every 12 hours and surface forcing every 3 hours. A

5-day analysis is generated every 4 days (that is, there is a one day overlap between the analyses). Initial conditions for the

subsequent 5-day forecast are taken from day 4 of the previous analysis. The ROMS 4D-Var formulation and implementation330

is well described by Moore et al. (2011d, a, b), and it has been used successfully in many applications (e.g. Di Lorenzo et al.,

2007; Powell et al., 2008; Powell and Moore, 2008; Broquet et al., 2009; Matthews et al., 2012; Zavala-Garay et al., 2012;

Janeković et al., 2013; Souza et al., 2014; Kerry et al., 2016; Gwyther et al., 2022; Wilkin et al., 2022). This work adopts the

same 4D-Var configuration as described in detail in Kerry et al. (2016).

2.4.3 System Comparison335

As discussed above, the way by which the observations and the model background are combined to generate the analysis

is quite different for the 4D-Var and EnOI methods. Another significant difference is the computational expense. For the 15
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inner loops and single outer loop used in this study, the 4D-Var data assimilation process is approximately 50 times more

expensive than a single free run, making it 25 times more expensive than the EnOI system (once the stationary ensemble has

been generated).340

This is comparable to the expense of an EnKF using 50 ensembles. The advantage of EnKF (over 4D-Var) is that the tangent

linear and adjoint models are not required and all calculations are performed in nonlinear space, and the ensemble members

can be run simultaneously if sufficient computing resources are available. The drawback is under-dispersion of the ensemble

and the loss of dynamic consistency introduced through localisation and inflation. With a 4D-Var system, the use of the adjoint

model can provide useful insight into the sensitivity of the ocean state to prior changes in state variables or forcings (e.g.345

Powell et al., 2013; Kerry et al., 2022) and the direct quantification of observation impacts (e.g. Powell, 2017; Kerry et al.,

2018). Observation impacts can also be computed from ensemble methods (Liu and Kalnay, 2008).

Future work aims to compare the EnKF and 4D-Var methods, and explore Hybrid Ensemble-4D-Var methods that captialise

on the advantages of both (i.e. the dynamical interpolation properties of the adjoint used in 4D-Var, and the explicit flow

dependent error covariances of the EnKF (Lorenc et al., 2015; Lorenc and Jardak, 2018)). This paper sets a baseline for future350

work by first comparing the existing and commonly used EnOI method with the 4D-Var method, across a common modelling

framework and observational network.

3 System Performance: Assessing Predictive Skill

3.1 Assimilated Observations

We begin by assessing the performance of the EnOI and 4D-Var systems relative to the observations that the systems assimilate.355

The 5-day model forecast is compared to the observations that become available over those 5 days (that is, they have not yet

been assimilated) to quantitatively assess the performance of the model forecasts over time. Comparing forecasts against

observations provides objective assessment of the system performance.

Table 2 presents the mean innovation (Mean Absolute Difference, MAD), innovation bias (Mean Difference, MD), and

number of observations for the 2-year period. Both systems have an identical number of observations. Compared to the EnOI,360

the 4D-Var improves the SST forecast error from 0.42◦C to 0.36◦C; the SSH forecast error — from 10.3 cm to 8.3 cm; in-situ

temperature — from 0.90◦C to 0.71◦C; in-situ salinity — from 0.079 PSU to 0.056 PSU; and SSS — from 0.214 PSU to

0.183 PSU. Overall, the improvement of the MAD for the 4D-Var over the EnOI is 9–21%. The percentage differences in

forecast error between the two systems are less for the surface observations (SLA, SST, and SSS) compared to the in-situ

observations, indicating that the advantages of 4D-Var extend through the water column. In WBC regions, the parent model365

displayed MADs between reanalysed and observed SST values on day 1 of each assimilation of 0.2–0.6◦C and MADs of

6–12 cm for SSH (Chamberlain et al., 2021b).

The performance of the two systems relative to SSH, SST and Argo observations is presented in more detail using the

Root-Mean-Square Difference (RMSD) between the model forecasts at the observation locations, and the observation values.

Figure 2a,b shows the RMSD between the forecasts (4D-Var and EnOI, respectively) and observations for SSH across the370
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Table 2. Summary of performance of the EnOI and 4D-Var systems. Obs num refers to the average number of observations per 5-day

assimilation window.

SLA SST TEMP SAL SSS

EnOI MAD 0.103 0.424 0.901 0.0791 0.214

MD 0.037 -0.045 -0.637 -0.048 0.0417

4D-Var MAD 0.083 0.356 0.709 0.0560 0.183

MD 0.031 -0.035 -0.534 -0.032 0.0359

Obs num 4518 1.58×104 273 198 137

model domain, averaged over the 2-year period. The EnOI forecasts display higher SSH errors across the model domain, with

both systems showing higher errors in the eddy-dominated region compared to the rest of the domain. Figure 2c shows that

the spatially-averaged RMSD between the forecast and the observations is consistently higher for the EnOI forecasts over the

2-year period.

As each forecast is initialised from the previous analysis, forecast errors typically increase over the forecast horizon. SSH375

forecast errors are averaged across the model domain (Figure 2d) and for the eddy-dominated region (Figure 2e) for each day

of the 5-day forecast horizon. With SSH, the forecast errors are consistently lower for the 4D-Var system due to lower errors

in the initial conditions while the rate of error increase is similar between the 4D-Var and EnOI systems. At day 5, the domain-

averaged (eddy-dominated region averaged) RMS SSH forecast errors are 61% (64%) higher for the EnOI system compared

to the 4D-Var system.380

In a similar manner to the SSH forecast errors in Figure 2, the forecast errors relative to SST observations are presented

in Figure 3. Both systems display higher errors in the core of the EAC upstream of the typical separation region and in the

eddy-dominated region. The EnOI forecasts display higher SST errors across the model domain, with the most pronounced

difference in the eddy-dominated region (Figure 3a,b). The time series of RMSD for EnOI and 4D-Var (Figure 3c) are highly

correlated as the statistics are sensitive to the number of observations and the coverage in the high variability area. While the385

EnOI analyses provide a slightly improved fit to SST (Figure 3d,e at day 0), SST forecast errors grow more quickly than in

the 4D-Var system and the 4D-Var system outperforms the EnOI system for SST forecasts after 1-day. At day 5, the domain-

averaged (eddy-dominated region averaged) RMS SST forecast errors are 21% (29%) higher for the EnOI system compared to

the 4D-Var system.

To assess the subsurface predictive skill we extract the 5-day model forecast values at the observation times and locations390

for all Argo floats that observe in the region over the forecast window. Binning these observations with depth, we present

profiles for temperature and salinity of the mean (Figure 4a,e), bias (Figure 4b,f), and the RMSD between the forecasts and the

observations for all observations that fall on the first day of the forecasts (Figure 4c,g), and all observations that fall on day 5

of the forecasts (Figure 4d,h). The magnitude of the RMSDs can be compared to the Root-Mean-Squared (RMS) observation

anomaly, which describes the variability of the observations within each depth bin. For in-situ temperature, both the 4D-Var and395
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Figure 2. (a) RMSD between forecast and observed SSH for all 186 forecast cycles over the 2-year assimilation period for the TRAD 4D-

Var system. (b) Same as (a) for the EnOI system. (c) Spatially-averaged RMSD between forecast and observed SSH for each 5-day forecast

window. (d) Spatially-averaged RMSD between forecast and observed SSH for each day of the 5-day forecast window, averaged over the

186 forecast cycles. (e) Same as (d) but for the high EKE region (shown in (a) and (b)).
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Figure 3. Same as Figure 2 but for SST observations.
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Figure 4. (a) Mean temperature observed by Argo floats and mean modelled temperature extracted at all Argo observation locations and

times for 4D-Var and EnOI systems. (b) Temperature bias. (c) RMSD between forecast and observed temperature at all Argo observation

locations and times that fall on forecast day 1, averaged over the 186 forecast cycles. (d) Same as (c) but for forecast day 5. (e-h) Same as

(a-d) but for salinity observed by Argo floats.

EnOI forecasts display similar skill on the first day of the forecasts (Figure 4c), however by day 5 the 4D-Var forecasts display

lower errors compared to the EnOI forecasts over the upper 600 m, with a maximum difference in RMSD (bias corrected

RMSD) of 0.56◦C (0.34◦C) at 200 m (Figure 4d). For salinity, forecast errors at day 5 are of similar magnitude throughout

the water column for the two systems (Figure 4h). Both systems have RMS errors considerably less that the RMS observation

anomaly. Salinity bias dominates the RMSD deeper than 600 m, so bias corrected RMSD values are less that the total RMSD400

(Figure 4g,h).
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3.2 Independent Observations

As described in Section 2.2, a number of observations were withheld from the 4D-Var and EnOI DA systems presented in

this paper, allowing the system performances to be assessed against independent observations. In this section, forecasts from

the 4D-Var and EnOI systems (that assimilate the traditional suite of observations, TRAD) are compared to the analyses and405

forecasts produced by assimilating the full suite of observations (FULL). Comparisons are made between the observations

and the model solutions extracted at the observation times and locations and predictive skill is assessed for days 1 to 5 of the

forecast horizons (and analysis windows in the case of the FULL analysis).

Under the HF radar footprint at 30◦ S, surface radial velocity observations from two sources are combined to compute

surface velocities to about 100 km offshore, covering the shelf and shelf slope circulation. This coverage typically includes410

the EAC as a coherent jet and the intermittent formation of cyclonic frontal eddies inshore of the EAC (Archer et al., 2017;

Schaeffer et al., 2017; Kerry et al., 2020a). The complex correlations between the observed and model velocities are presented

in Figure 5. At forecast day 5, the 4D-Var TRAD displays similar predictive skill to the FULL forecasts. The EnOI forecasts

are worse than the 4D-Var TRAD across the 5 days, showing that the 4D-Var system provides better representation of the

circulation under the HF radar footprint in the analyses and forecasts.415

Glider data over the study period (2012–2013) was predominantly available over the NSW continental shelf in water depths

<200 m, however, from May-July 2012, several glider missions extended offshore into eddies and sampled down to below

1000 m. These glider observations were shown to be particularly impactful in constraining transport and EKE estimates in the

FULL simulation (Kerry et al., 2018). These observations represent independent data for the 4D-Var and EnOI TRAD systems,

and Figure 6 shows how the simulations represent temperature and salinity as measured by the gliders.420

Errors are lowest near the surface compared to over the thermocline region due to the assimilation of SST and SSS data in all

three systems (4D-Var TRAD, EnOI TRAD and 4D-Var FULL). The 4D-Var TRAD has RMS forecast errors for temperature

of a similar magnitude and depth structure as the RMS observation anomalies, and the errors do not considerably change from

day 1 to day 5 of the forecast window. The EnOI errors are of similar magnitude to the 4D-Var near the surface (∼1oC), but

are 20% greater between 100-200 m for day 1 and 40% greater for that depth range at day 5 (Figure 6c,d). Temperature bias425

plays a considerable part in the EnOI RMSD values below 100 m, but the bias corrected RMSD for EnOI still exceeds the bias

corrected RMSD for 4D-Var TRAD at both day 1 and day 5 (Figure 6c,d).

For salinity, the 4D-Var and EnOI display similar forecast errors in the upper 200 m. This depth range corresponds to where

the many shelf glider observations exist. Below 200 m (the off-shelf missions into the Tasman Sea), forecast errors peak at

300 m reaching 0.30 for EnOI at day 5, compared to 0.23 for 4D-Var. Similar to the Argo observed salinity (Figure 4f,g,h),430

salinity bias dominates the errors associated with glider observed salinity below 500 m for 4D-Var TRAD and below 200 m

for EnOI.

Subsurface velocities are measured by ADCPs mounted on moorings in the EAC array, the SEQ shelf and slope, and on

the NSW shelf (Figure 1c). In Figure 7 we present the complex correlation between the modelled and observed velocities for

selected moorings extending from 28◦S to 34◦S. The mooring locations are shown on Figure 1c, with EAC2 and SEQ400435
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Figure 5. Complex correlation of daily-averaged surface velocities measured by the HF radar with FULL analysis (row a), FULL forecast

(row b), TRAD forecast (row c) and EnOI forecast (row d), separated by window day (columns). Black lines show 0.9 complex correlation

contour and gray lines show the 70, 200, 1000, and 2000 m isobaths. Only grid cells with a minimum of 15 velocity values over the 2-year

period are shown, the values inside the 50 m isobath are removed as the computed velocities are unreliable here due to Geometric Dilution

of Precision.

being in 1500m m and 400 m water depth at 28◦S, CH100 being in 100 m water depth at 30◦S and SYD100 being in 100 m

water depth at 34◦S. At EAC2 and SEQ400, the 4D-Var TRAD display similar predictive skill to the FULL after 5 days and

considerably outperforms the EnOI system throughout the water column. This indicates the benefit of 4D-Var including the

northern boundary conditions in the cost function. On the shelf at 30◦S (CH100) and 34◦S (SYD100) the EnOI and 4D-Var

systems shown similar predictive skill.440

As shown in both Figure 5 and Figure 7, the 4D-Var FULL complex correlations display a rapid reduction in correlation

by day 3-5 of the forecast. As discussed in Siripatana et al. (2020), while the analysis fits the velocity observations along the

continental shelf, the forecast model is unable to resolve the complexities of the shelf circulation such as the cyclonic vorticity

inshore of the EAC. As such, the forecast skill of the TRAD system is similar to that of the FULL system for 5-day forecast

horizons.445
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Figure 6. (a) Mean temperature observed by Gliders and mean modelled temperature extracted at all Glider observation locations and times

for 4D-Var and EnOI systems. (b) Temperature bias. (c) RMSD between forecast and observed temperature at all Glider observation locations

and times that fall on forecast day 1, averaged over the 186 forecast cycles. (d) Same as (c) but for forecast day 5. (e-h) Same as (a-d) but for

salinity observed by Gliders.
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Figure 7. Complex correlations between observed and modelled velocities for the 4D-Var TRAD forecast, the EnOI TRAD forecast, the

FULL analysis and the FULL forecast, at selected mooring locations, separated by window days 1, 3 and 5 (columns). Each row represents

a single mooring site. EAC2 (row a), SEQ400 (row b), CH100 (row c), and SYD140 (row d).
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We have shown that the 4D-Var TRAD system outperforms the EnOI TRAD system at the surface and subsurface when

compared against both assimilated and independent observations. Improvements to temperature forecasts with 4D-Var are

more pronounced in the subsurface (the upper ∼ 400 m) compared to at the surface (Figures 4 and 6). We now examine

the model forecasts to elucidate the differences between the representation of the ocean state (in model space, rather than

observation space) across the two DA systems.450

4 Comparisons in Model Space

4.1 Initial Condition Increments

The model forecast, XXX f , is adjusted by the assimilation of observations (as per Equation 1) to produce an analysis, XXXa. This

model state estimate should provide a better representation of the observations and provides updated (improved) initial condi-

tions for the subsequent model forecast. In the 4D-Var system used in this study we perform a 5-day forecast and a 5-analysis455

every 4 days, such that the initial conditions for the subsequent forecast are taken from day 4 of the previous analysis. For the

EnOI system, an analysis is generated every day. For consistent comparison across the 2 systems, we take the analysis every

4 days as initial conditions and perform a 5-day forecast. In both cases there are discontinuities in the ocean state between

day 4 of the previous forecast, and the beginning of the subsequent forecast (which correspond to concurrent times). This is

illustrated in Figure 8i, which shows a time series of temperature at the surface at 34oS. Assimilated (SST) and independent460

(SYD140 mooring near-surface temperature data) are shown for reference. The discontinuities between the forecasts are less

pronounced for the 4D-Var system compared to the EnOI system. Over the entire 2-year test period, the RMSD between the

initial conditions (from the analysis) and the previous forecast field at that time illustrate greater discontinuities for the EnOI

system compared to the 4D-Var system for SSH, SST and subsurface temperature (Figure 8a-h).

The discontinuities presented here do not exactly correspond to the analysis increments. We have presented the differences in465

the ocean state between day 4 of the previous (5-day) forecast, and the beginning of the subsequent forecast (which correspond

to concurrent times). For 4D-Var, the ocean state at the beginning of the forecast is taken from the previous cycle analysis, and

so the difference presented here represents the difference between the forecast (or the background) at day 4 and analysis at day

4 (once data assimilation has been performed on that assimilation cycle) . This is essentially the ‘analysis increment at day 4’,

however for a 4D-Var system the analysis increments typically refer to the adjustments to the initial conditions, boundary and470

surface forcing that are made to generate the analysis. For EnOI, the analysis increments refer to the difference between the

background model and the analysis (both centred on a single time and computed daily in this case). However, here we take the

analyses every 4 days and perform 5-day forecasts, and the differences presented here refer to the difference between day 4 of

the forecast and the analysis that provides initial conditions for the subsequent forecast.

With 4D-Var we are able to represent the entirety of the observations collected over a time window (in this case 5 days),475

placing them in dynamical context using the (linearised) model equations. In contrast, EnOI performs discrete minimisations

with observations centered on a single time (in this case every day). The estimate of the ocean over the observation window that

is created with the 4D-Var assimilation system results is smaller discontinuities between forecast cycles, on average, compared
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(i)

Figure 8. Root-Mean Squared Difference between the initial conditions (from the analysis) and the previous forecast field at that time for

(a,b) SSH, (c,d) SST, (e,f) temperature at 400m and (g,h) temperature at 1000m, for 4D-Var system (top row) and EnOI system (bottom row).

(i) Timeseries over an example period to illustrate the differences between the end of the forecast window and the analysis conditions in EnOI

compared to 4D-Var, for surface temperature at 34◦S (location shown in Figure 11). SST observations within 2 grid cells, and temperature

observations from SYD140 in the upper 25m, are also shown for comparison.

to the EnOI system, as a continuous field evolves by the nonlinear primitive equations as opposed to starting a forecast from

a discrete estimate, which can ’shock’ the system. Our results of the improved predictability achieved by the 4D-Var system480

support the understanding that a continual and dynamically-balanced analysis field is advantageous to the quality of future

predictions.

4.2 Energetics

The modelled velocities are used to compute eddy kinetic energy (EKE) and mean kinetic energy (MKE) over the 2012–2013

simulation period. MKE is given by MKE = 1
2 (U

2
+V 2

), where U and V are the time mean velocity components, and the EKE485

is given by EKE = 1
2 (U

′2 +V
′2), where U

′
and V

′
are the velocity anomalies. The MKE describes the energy associated with
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the mean currents and the EKE describes the energy associated with the perturbations from the mean. Figure 9 shows the MKE

and EKE averaged over the upper 400 m, and from 400-1200 m.

Comparisons of MKE above 400 m show that the EAC core is narrower and more confined to the slope in the 4D-Var

system, while MKE for the EnOI system is more spread out and with higher MKE directly over the continental shelf (Figure490

9a,e,i). This difference is despite the identical SSH observations being assimilated, noting that SSH observations in water depth

<1000 m are not assimilated, and the identical forward numerical model. In the 4D-Var simulation, the MKE is greater below

400m than the EnOI simulation downstream of 27.5◦S to the typical EAC separation zone (Figure 9b,f,j). This is consistent

with Kerry and Roughan (2020) who use a long-term integration of the free-running simulation to describe a downstream

deepening of the EAC before separation.495

The spatial structure of the EKE is similar across the two systems. Above 400 m, the EnOI system has elevated EKE over the

EAC jet (Figure 9k, blue regions), while the 4D-Var system has elevated EKE in the eddy-dominated regions (Figure 9k, red

regions). The elevated EKE for the EnOI system (in the more coherent region) relates to the greater discontinuities between the

subsequent forecasts, which manifests itself as greater low frequency >1 day variability over the 5 day forecasts as the 5-day

model run adjusts to the “shocks” to the system. In contrast, the elevated EKE in the 4D-Var system outside of the coherent500

jet relates to the greater near-inertial variability. This is explored in Section 4.3 and Figure 12. At depth (400-1200 m), EKE is

elevated for EnOI compared to 4D-Var in the EAC southern extension.

Eddies can form through barotropic instability in the mean flow or baroclinic instability in the vertical density structure. It is

important for a model to correctly represent these instabilities, as they represent the pathways by which eddies are generated.

Following Kang and Curchitser (2015), we calculate the barotropic conversion rate (KmKe) as505

KmKe = ρ0

[
U ′U ′ ∂U

∂x
+U ′V ′ ∂U

∂y
+V ′U ′ ∂V

∂x
+V ′V ′ ∂V

∂y

]
, (9)

where ρ0 = 1025 kgm−3. The baroclinic conversion rate (PeKe), from eddy potential energy to EKE, is calculated as

PeKe =−gρ ′W ′, (10)

where the acceleration due to gravity is g = 9.81 ms−2, and ρ ′ and W ′ are the density and vertical velocity anomalies. KmKe

and PeKe have been previously used to explore eddy generation rates in the EAC (e.g. Li et al., 2021, 2022; Gwyther et al.,510

2023).

Barotropic and baroclinic energy conversions are computed from the model forecast fields and averaged over the 2-year

period (Figure 10). Both the 4D-Var and EnOI systems show similar magnitude and overall spatial structure of the barotropic

and baroclinic energy conversions, and similar partitioning between barotropic and baroclinic instabilities. The similarities are

likely due to the common model and atmospheric forcing. The barotropic conversion (compare Figure 10a,c) represents insta-515

bilities in the depth-mean flow, which 4D-Var and EnOI represent similarly. The baroclinic conversion (compare Figure 10b-d)

is also similar between the DA configurations in overall spatial structure and the zonally-integrated magnitudes (Figure 10e), al-

though the EnOI baroclinic conversion rate contains more high-wavenumber spatial patterns, which likely relate to unbalanced

adjustments upon assimilation. This is further explored in Figure 14 and the associated discussion.
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Figure 9. The 4D-Var simulation (a) 0–400 m, (b) 400–1200 m MKE, and (c) 0–400 m, (d) 400–1200 m time-averaged EKE are shown.

The EnOI (e) 0–400 m, (f) 400–1200 m MKE, and (g) 0–400 m, (h) 400–1200 m time-averaged EKE are shown. In (i-l), the difference in

each respective field between the 4D-Var and EnOI simulations are shown, where a positive difference indicates more energy in the 4D-Var

simulation.
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Figure 10. For the 4D-Var simulation, the (a) barotropic (KmKe) and (b) baroclinic (PeKe) conversions are shown. The EnOI simulation

(c) barotropic and (d) baroclinic conversion rates are shown. Conversion rates are calculated as the depth-mean conversion for each model

column from the surface to 450 m. In (e), the zonally-averaged conversions are shown for both simulations. Averaging is performed in the

across-shelf direction in a band extending approximately from the coast to ∼ 3◦ offshore, as indicated by dashed lines in panel a.
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4.3 Temporal and Spatial Scales of variability520

When observations are assimilated the goal is to provide an improved fit to the observations while retaining a dynamically-

consistent ocean state that can be used as initial conditions for the subsequent forecast. The background numerical model

produces an estimate of the ocean state whose frequency and wavenumber spectra are limited by the resolution of the model

and the processes resolved. If the observations sample time and space scales that cannot be resolved by the model, it is standard

DA practice to either remove these scales of variability from the observations or account for them in the observation error525

terms (e.g. Kerry and Powell, 2022a). If the model background is deficient at some space- and/or time-scale (that it is able to

resolve), then these may be corrected by DA so that the analyses and forecasts are better. However, if the assimilation process

introduces energy at different, non-physical scales, this may negatively impact the forecast skill. By presenting the temporal

and spatial scales of variability of the forecast ocean state we can understand how the assimilation has changed the ocean’s

energy distribution and understand the differences in error growth across the two DA systems.530

The subsurface structure of the model fields and their variability is shown in Figure 11. The EnOI system has more temper-

ature variability near the surface (upper 200-500 m) compared to 4D-Var. The greater near-surface temperature variability in

EnOI compared to 4D-Var is greater in the eddy-dominated region (34◦S), where adjustments are greater (Figure 8d,f) com-

pared to more coherent, upstream region (28◦S ). For velocity variability, 4D-Var shows elevated variability almost everywhere

except in the upper 250 m near the shelf at 34oS. Both data-assimilating configurations show elevated variability in temperature535

and velocity over the upper ∼1000 m compared to the non-data assimilating simulation (hereafter referred to as the Free-run).

The differences are further illustrated in Figures 12 and 13, where the frequencies of the variability are revealed.

Frequency spectral analysis is first performed for all 5-day forecast windows and then averaged (Figure 12). A 5-day window

with the model output 4-hourly gives a frequency range from 1/5 days to 1/8 hours, with 15 points in frequency space due to the

short time series (31 points). Surface velocity (but not temperature) and subsurface temperature and velocity display elevated540

energy in the 16-24 hour band for the 4D-Var system compared to EnOI and the Free-run (Figure 12), corresponding to the

near-inertial band. This inertial energy is introduced through the assimilation adjustments which, due to the nature of 4D-Var,

must satisfy the model equations. Increased near-inertial variability upon 4D-Var data assimilation was also shown in Matthews

et al. (2012); Kerry and Powell (2022b). Matthews et al. (2012) found that the increased inertial energy had minimal impact

on the mesoscale circulation. Using Observing System Simulation Experiments, Kerry and Powell (2022b) showed that, while545

the 4D-Var system displayed elevated near-inertial variability (compared to their free running Truth simulation), near-inertial

frequencies did not influence energy at other frequencies and predictability at both higher frequencies (in their case internal

tides) and lower frequencies (associated with the mesoscale circulation) was good.

The differences between EnOI and the Free-run and EnOI and 4D-Var (as revealed in Figure 11) are difficult to decipher from

Figure 12 as they exist at low frequencies (periods greater than 1 day). In order to resolve the low frequencies, we concatenate550

the forecast cycles in time to produce a full 2-year time series. As a longer time series allows a higher resolution in frequency

space, Figure 13 show higher frequency resolution compared to Figure 12, for which the spectra are computed for all 5-day

periods and averaged. Concatenation of the timeseries requires removal of the one-day overlap (the last day of each cycle is
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Figure 11. Column 1: Mean temperature across all 5-day forecasts for sections 28◦S (top panels) and 34◦S (bottom panels) for the 4D-

Var system, the EnOI system, the difference in mean temperature between the systems (4D-Var - EnOI), the difference in mean temperature

between 4D-Var and the Free-run, and the difference in mean temperature between EnOI and the Free-run. Column 2: Temperature variability

for the 4D-Var system, the EnOI system, the difference in variability between the systems (4D-Var - EnOI), the difference in variability

between 4D-Var and the Free-run, and the difference in variability between EnOI and the Free-run. Temperature variance is computed for

every 5-day forecast, averaged over all forecast windows, and the square root taken. Column 3 shows the same as column 1 but for alongshore

velocity. Column 4 shows the same as column 2 but for alongshore velocity. The 4D-Var - EnOI variability panels show points chosen to

present frequency spectra (Figures 12 and 13). Sections are shown on Figure 1a
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excluded) such that time is monotonously increasing. Because of the assimilation updates, discontinuities exist between the

cycles every 4 days (this is not the case for the Free-run). These discontinuities (displayed in Figure 8 and discussed in Section555

4.1) manifest as harmonics of the 1/4-day frequency, and are most pronounced for EnOI in temperature at 34◦S. For example,

the surface temperature spectra for the EnOI system at 34◦S shows spikes at harmonics of 0.25 (0.5, 0.75 ,1.0 ,1.25, 1.5 etc.

cycles/day). Nevertheless, the spectra are useful in showing the differences in variability across the DA systems and the Free-

run particularly for low frequencies. The Free-run displays less energy than both DA systems in both temperature and velocity

in the eddy dominated region, consistent with the reduced variability shown in Figure 11. This relates to less variability at560

low frequencies (periods greater than 1 day) in the Free-run compared to the DA systems, and for the 4D-Var system, less

variability at inertial frequencies also.

The elevated energy in the EnOI system compared to 4D-Var and the Free-run relates to periods greater than 1 day for both

temperature and velocity (Figure 13). Greater variability at low frequencies in the EnOI system compared to 4D-Var exists in

both temperature and velocity and is most pronounced in the upper 500 m and in the eddy dominated region (34oS compared to565

the more coherent region at 28oS, Figure 13). This increased low frequency variability in EnOI compared to 4D-Var dominates

the total variability (displayed in Figure 11) for near surface temperature, but is masked by greater inertial-period variability

in the 4D-Var system for velocity. That is, despite the low frequency velocity variability being greater in EnOI (Figure 13), the

total velocity variability is greater for 4D-Var (Figure 11). We find that the greater low frequency variability for EnOI compared

to 4D-Var is associated with greater discontinuities between the subsequent forecasts. The discontinuities also exist in 4D-Var,570

but are less pronounced (Figure 8).

The spatial scales of the forecast ocean state can be represented by wavenumber spectra. Here we present cross-shore

wavenumber kinetic energy spectra through sections at 28oS and 34oS (Figure 1a) for days 1 and 5 of the forecasts, for the

Free-run, and for AVISO gridded geostrophic velocities (Figure 14). The observational data product used is the AVISO gridded

velocities from altimetry and drifters using multiscale interpolation, version 0100 (AVISO dataset, 2022), with a 1/10o spatial575

resolution and temporal coverage from 01/07/2016-30/06/2020. Note that the spatial resolution is the same as that of the

assimilated SSH observations (Section 2.2.1). For the model forecasts, wavenumber kinetic energy spectra are computed for

days 1 and 5 of all (186) cycles, and the averages are plotted. For the AVISO observations, wavenumber kinetic energy spectra

are computed for every day of the available time period, and the average plotted. Model spectra are shown at the surface and at

depths of 400 m and 1000 m; AVISO data provide observations at the surface.580

At the surface all systems, except the EnOI at day 1, display consistent kinetic energy spectra at 28oS. The AVISO velocities

show less energy at spatial scales between 15-80 km compared to the Free-run, the 4D-Var system across all forecast days, and

the EnOI system at day 5. At 34oS, where eddy variability is high, the Free-run underrepresents the kinetic energy across all

spatial scales at all depths. At the surface, the 4D-Var system across all forecast days, and the EnOI system at day 5 represent

the AVISO spectrum well, with the AVISO velocities again showing slightly lower energy at spatial scales between 15-80 km.585

For the first day of the EnOI forecasts (representative of the analyses) there is elevated kinetic energy at finer length scales and

this energy dissipates by day 5 of the forecast. This elevated energy is most pronounced at the surface and near-surface (upper

200 m, not shown). Specifically, elevated kinetic energy exists in the EnOI initial states at length scales less than 100 km at 28oS
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Figure 12. Frequency spectra in model space for temperature and alongshore velocity at the surface, 400 m and 1000 m at 28◦S and 34◦S.

Spectra are computed for each 5-day forecast window, then averaged. Points are chosen in the core of the EAC based on the long-term

alongshore velocity mean (from Kerry and Roughan (2020)) where the shelf slope depth is 1500 m at 28◦S and just offshore of the shelf

slope where the water depth is 3500 m at 34◦S. The daily period is shown by the vertical dashed lines.

and between 20-80 km at 34oS. For the 4D-Var system the wavenumber kinetic energy spectra remains relatively unchanged

over the forecast window, with the day 1 and day 5 wavenumber spectra tracking closely. Compared to the Free-run, both the590

4D-Var and EnOI assimilation systems introduce more kinetic energy across all spatial scales throughout the water column in

the eddy-dominated region (illustrated by the sections through 34oS in Figure 14).

We include the idealised spectral slopes of k−5/3 and k−3 on Figure 14 for reference. The wavenumber kinetic energy spectra

approximately match the k−5/3 slope for the mesoscale range, and the k−3 slope for the submesoscale range for the 4D-Var

ocean state on day 1 and day 5, and the EnOI forecasts on day 5. Although we note that the submesoscale range is only partially595

resolved by the 2.5-6 km resolution model, and even less so by the AVISO observations. The k−5/3 and k−3 slopes have been

shown to represent surface quasi-geostrophic and quais-geostrophic dynamics, respectively, however realistic simulations show

that other slopes are possible (Xu and Fu, 2011).

We have shown that energy is elevated for shorter (less than 100 km) length scales in the EnOI analyses, and upon integration

of the forecast model this energy dissipates to match the energy associated with the 4D-Var system. Wavenumber kinetic energy600

analysis of the atmosphere by Skamarock (2004) showed the contrary; the increase of energy at small scales upon integration of

the forecast model. They showed that the initial states of high-resolution NWP model forecasts lacked the fine-scale (mesoscale
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Figure 13. Frequency spectra for the same variables and points shown in Figure 12, however rather than averaging the spectra for all 5-

day periods, the forecast cycles are concatenated to make a full 2-year time series (with the one-day overlap removed). The discontinuities

between the cycles every 4 days manifests as harmonics of the 1/4 day frequency, and is most pronounced for EnOI in temperature at 34◦S.

The daily and 12-hourly periods are shown by the vertical dashed lines. In computing the spectra, 4 ensembles and 4 bands are used to

increase the statistical significance.
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Figure 14. Cross-shore wavenumber kinetic energy spectra for the models at the surface, 400 m and 1000 m and for AVISO geostrophic

velocities at the surface, at 28◦S and 34◦S. The length scales 200 km, 100 km and 20 km are shown by the vertical dashed lines. The -5/3

and -3 spectral slopes are shown on the first panel for comparison. In computing the spectra, 2 ensembles and 2 bands are used to increase

the statistical significance.
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in the case of the atmosphere) energy because "observations to initialize the fine scales are not generally available and data

assimilation methods that can use high-resolution observations are not yet mature". The fine scale portion of the kinetic energy

spectrum was spun-up in the forecasts in 6-12 hours providing increased value to the NWP forecasts. In our study we observe605

the introduction of energy at small spatial scales upon DA with EnOI, and this elevated small-scale energy is lost by day

5. This implies that the small-scale energy dissipates over the 5-day forecast. The elevated kinetic energy at scales less than

100 km is not a physical space-scale that is resolved by the observations, as shown by the AVISO kinetic energy spectra, and

does not exist in the 4D-Var system (Figure 14). Rather it comes about due to EnOI’s adjustments upon assimilation. It is

likely that the increased error growth (hence poorer forecast skill) for the EnOI system (compared to 4D-Var) in this study610

relates to these adjustments. The consistency of the wavenumber spectra over the 4D-Var 5-day forecast windows likely relates

to the constraint that the analysis is a complete solution of the model nonlinear equations, requiring dynamically-balanced

adjustments.

5 Conclusions

This study shows in a quantified manner that the smoother and more dynamically-balanced fit between the observations and615

the model’s time-evolving flow achieved by the 4D-Var system results in improved predictability against both assimilated and

non-assimilated observations. The EnOI system does not produce as tight as fit to the SSH data as the 4D-Var system (although

this may be related to tune-able parameters in the DA formulation), however, the SSH error grows at the same rate in the EnOI

and 4D-Var forecasts (Figure 2). The surface expression of the EAC and its associated eddies is associated with the barotropic

mode, and our results show that the barotropic energy conversion rates are generally consistent across the two systems (Figure620

10a,c). However, the baroclinic conversion rate has small spatial scale variability in the EnOI forecasts compared to the 4D-Var

(Figure 10b,d), and the EnOI analyses (the forecast initial conditions) display elevated energy at fine (<100km) spatial scales

(Figure 14). This is accompanied by reduced predictive skill for both surface and in situ temperature, in situ salinity and surface

velocities (Figures 3, 4, 5, 6, 7). For SST (Figure 3) and temperature in the upper 600 m (Figure 4c,d), the analyses have errors

of similar magnitude for the EnOI and 4D-Var systems, but error growth is considerably greater in the EnOI forecasts. Note that625

the upper 600 m is the region of greatest variability in both temperature and salinity (Figure 4c,d,g,h, blue lines). The improved

forecasts of SST and in situ temperature in the upper 600 m for 4D-Var after 5 days (Figures 3, 4d) is a demonstration of

improved dynamical balance of the model initial conditions. This is evident by the smaller magnitude of the increments for

4D-Var (Figure 8a,c,e,g) compared to EnOI (Figure 8b,d,f,h). The bias corrected salinity errors also show similar errors at

forecast day 1 for both systems, with greater error growth in the EnOI system compared to 4D-Var by day 5 (Figure 4g,h).630

Independent surface velocity observations as measured by the high-frequency radar array at 30 oS are less well represented

by the EnOI system compared to the 4D-Var system from day 1 through to day 5 of the forecasts (Figure 5). Independent

in-situ temperature observations from Gliders show only slightly lower analysis errors for 4D-Var compared to EnOI, and the

subsurface temperature forecasts degrade faster over the 5-day window for EnOI compared to 4D-Var (Figure 6), consistent

with the forecast errors associated with assimilated in-situ temperature observations (Figure 4). For salinity, EnOI and 4D-Var635
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perform equally well on the shelf (observations above 200m in Figure 6g,h are dominated by shelf gliders), but EnOI displays

higher errors below 200 m by day 5. 4D-Var displays improved velocity forecasts compared to EnOI for the upstream moorings

(EAC2 and SEQ400, Fig 7), while downstream and on the shelf the forecasts are comparable. This indicates the benefit of 4D-

Var including the northern boundary conditions in the cost function. Generally, we show that the benefits of 4D-Var over EnOI

are most pronounced in the (5-day) forecasts, rather than the fit of the analyses to the observations, consistent with Lorenc and640

Rawlins (2005)’s paper “Why does 4D-Var beat 3D-Var?”.

The EnOI system displays greater discontinuities between the end of the forecast and the subsequent analysis, particularly

for near-surface temperature (about the thermocline) and the discontinuities have greater magnitude in the downstream eddy-

dominated region (Figure 8). These assimilation ‘shocks’ manifest as increased low frequency variability (periods greater than

1 day, Figures 11 and 13). The 4D-Var system displays elevated energy in the near-inertial frequency band for both temperature645

and velocity (Figures 12 and 13). Consistent with Kerry and Powell (2022a) and Matthews et al. (2012), the energy at near-

inertial frequencies does not appear to affect the mean low frequency energetics associated with the mesoscale circulation.

While the EnOI DA system introduces elevated energy at fine (<100km) spatial scales, 4D-Var maintains the kinetic energy

distribution in wavenumber space upon assimilation (Figure 14).

This study chose to compare two DA methods across a common modelling framework and observational network. The two650

methods were chosen as EnOI has been widely used by the Australian ocean forecasting community (Oke et al., 2008b, 2010;

Chamberlain et al., 2021b), and 4D-Var has been implemented to study predictability and observation impact in the EAC (Kerry

et al., 2016, 2018; Siripatana et al., 2020; Gwyther et al., 2022, 2023). It made sense for the two user groups (operational and

research) to come together to objectively compare the two methods. Each system was tuned by its developers (Australian Bu-

reau of Meteorology for EnOI and UNSW for 4D-Var). We note that the degree of fit between an analysis and the assimilated655

observations of a specific DA system is sensitive to the prior choice of various parameters, such as the observation and back-

ground error covariances, and that the system performance is influenced by the DA system configuration, such as size of the

ensemble for ensemble methods and the assimilation window length for 4D-Var (Moore et al., 2020; Santana et al., 2023). For

example, the EnOI system presented here could be further tuned to provide an improved fit to SSH observations (Figure 2), and

different ensemble sizes could be tested. For the 4D-Var system, different window lengths could be tested and the sensitivity to660

changes in BBB could be studied. However, the goal of this study was not to compare various versions of each DA method. Rather

we compare a single version the two methods, carefully tuned by each user group, and set a baseline for future comparisons.

The focus of this paper is not the fit in the analyses, but the rate of forecast error growth and the response of the ocean state to

the assimilation methodology. As such, the study’s utility and relevance is significant without a large number of comparisons

with different prior specified parameters or DA system configurations.665

The EnOI system is ∼25 times cheaper than the 4D-Var system presented here. It is noted that EnOI has been effective

for long-term reanalysis products where analyses were created every day (Oke et al., 2008b; Chamberlain et al., 2021b) and

forecasts were not required. With increasing computational capacity and the pursuit of more accurate ocean forecasts, this

study’s comparison motivates the use of 4D-Var over EnOI for ocean forecasts of the EAC region. This result is likely to be

applicable over similar, highly variable, oceanic regions such as WBCs. More generally, the comparison advocates for the use of670
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advanced time-dependent DA schemes over time-independent methods. We illustrate how a DA scheme can influence forecast

skill which motivates future development of DA methods. It is noted that Australia’s operational ocean model (OceanMAPS)

recently transitioned to an EnKF DA method (from EnOI). The new system achieves lower mean error and error variance in

WBC extensions regions (Chamberlain et al., 2021a; Brassington et al., 2023), with lower increments to SSH and subsurface

velocities, and less kinetic energy at depth in the analyses, due to more dynamically-balanced adjustments, compared to the675

EnOI system.

Our future work specifically aims to directly address the need to improve predictive skill in WBC regions. Time-independent

schemes (e.g. 3D-Var and EnOI) are useful for intermittent cycling DA at synoptic scales, and are capable of resolving slowly

evolving flows governed by simple balance relationships. Time-dependent DA methods (e.g. 4D-Var and EnKF) are greatly

beneficial for highly intermittent flows with irregularly sampled observations as the time-variable dynamics of the model are680

used to evolve the error covariances. Furthermore, these methods allow the entirety of observations over a time interval to be

minimised rather than discrete minimisations. The time-evolving state is required to truly exploit many novel observation types

that are nonlinearly or indirectly related to the model state. Indeed, the two techniques that are the most promising in NWP

and ocean DA are 4D-Var and EnKF (Moore et al., 2019). In recent years it has been recognised that a marriage of 4D-Var and

EnKF perhaps represents a more optimal approach since it capitalises on the advantages of both approaches (i.e. the dynamical685

interpolation properties of the adjoint, and the explicit flow-dependent error covariances that capture the “errors of the day”).

The relative performance of 4D-Var and EnKF methods in regional ocean models has been assessed by Moore et al. (2020) and

the differences are due primarily to the properties of the background error covariances, so it is anticipated that the performance

of a system using a hybrid covariance will be superior to either 4D-Var or the EnKF alone. Such ensemble-variational methods

have been studied extensively for atmospheric DA (e.g. Lorenc et al., 2015) with improvements in forecast skill achieved690

particularly in dynamically active systems (Raynaud et al., 2011; Lorenc and Jardak, 2018).
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Matthews, D., Powell, B. S., and Janeković, I.: Analysis of Four-dimensional Variational State Estimation of the Hawaiian Waters, J. Geophys.820

Res., 117, https://doi.org/10.1029/2011JC007575, 2012.

40

https://doi.org/10.1029/2021gl094115
https://doi.org/10.1175/JCLI-D-21-0622.1
https://doi.org/10.1029/2012JC008386
https://doi.org/10.1029/2011JC007575


Mellor, G. L., Ezer, T., and Oey, L. Y.: The pressure gradient error conundrum of sigma coordinate ocean models, J. Atmos. Ocean. Technol.,

11, 1126–1134, 1994.

Mogensen, K., Balmaseda, M., and Weaver, A.: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean

analysis for System 4, European Centre for Medium-Range Weather Forecasts, Reading, UK, https://doi. org/10.21957/x5y9yrtm, 2012.825

Moore, A., Martin, M., Akella, S., Arango, H., Balmaseda, M., Bertino, L., Ciavatta, S., Cornuelle, B., Cummings, J., Frolov, S., Lermusiaux,

P., Oddo, P., Oke, P., Storto, A., Teruzzi, A., Vidard, A., and Weaver, A.: Synthesis of Ocean Observations Using Data Assimilation for

Operational, Real-Time and Reanalysis Systems: A More Complete Picture of the State of the Ocean, Frontiers in Marine Science, 6, 90,

https://doi.org/10.3389/fmars.2019.00090, 2019.

Moore, A., Zavala-Garay, J., Arango, H. G., Edwards, C. A., Anderson, J., and Hoar, T.: Regional and basin scale applications of ensemble830

adjustment Kalman filter and 4D-Var ocean data assimilation systems, Progress in oceanography, 189, 102 450, 2020.

Moore, A. M., Arango, H. G., Di Lorenzo, E., Cornuelle, B. D., Miller, A. J., and Neilson, D. J.: A comprehensive ocean prediction and

analysis system based on the tangent linear and adjoint of a regional ocean model, Ocean Modelling, 7, 227–258, 2004.

Moore, A. M., Arango, H. G., Broquet, G., Edwards, C., Veneziani, M., Powell, B. S., Foley, D., Doyle, J., Costa, D., and Robinson, P.: The

Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part II – Performance and application to835

the California Current System, Prog. Oceanog., 91, 50–73, https://doi.org/10.1016/j.pocean.2011.05.003, 2011a.

Moore, A. M., Arango, H. G., Broquet, G., Edwards, C., Veneziani, M., Powell, B. S., Foley, D., Doyle, J., Costa, D., and Robinson, P.:

The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part III – Observation impact and

observation sensitivity in the California Current System, Prog. Oceanog., 91, 74–94, https://doi.org/10.1016/j.pocean.2011.05.005, 2011b.

Moore, A. M., Arango, H. G., Broquet, G., Powell, B. S., Weaver, A. T., and Zavala-Garay, J.: The Regional Ocean Modelling System840

(ROMS) 4-dimensional variational data assimilation systems: Part 1 - System overview and formulation, Progress in Oceanography, 91,

34–49, 2011c.

Moore, A. M., Arango, H. G., Broquet, G., Powell, B. S., Zavala-Garay, J., and Weaver, A. T.: The Regional Ocean Modeling System

(ROMS) 4-dimensional variational data assimilation systems: Part I – System overview and formulation, Prog. Oceanog., 91, 34–49,

https://doi.org/10.1016/j.pocean.2011.05.004, 2011d.845

Oke, P., Sakov, P., Cahill, M. L., Dunn, J. R., Fiedler, R., Griffin, D. A., Mansbridge, J. V., Ridgway, K. R., and Schiller, A.: Towards a

dynamically balanced eddy-resolving ocean reanalysis: BRAN3, Ocean Modell., 67, 52–70, 2013.

Oke, P. R. and Griffin, D. A.: The cold-core eddy and strong upwelling off the coast of New South Wales in early 2007, Deep Sea Research

Part II: Topical Studies in Oceanography, 58, 574 – 591, https://doi.org/https://doi.org/10.1016/j.dsr2.2010.06.006, the East Australian

Current – Its Eddies and Impacts, 2011.850

Oke, P. R. and Middleton, J. H.: Topographically Induced Upwelling off Eastern Australia, Journal of Physical Oceanography, 30, 512–530,

2000.

Oke, P. R., Brassington, G. B., Griffin, D. A., and Schiller, A.: The Bluelink ocean data assimilation system (BODAS), Ocean Modelling,

21, 46–70, 2008a.

Oke, P. R., Brassington, G. B., Griffin, D. A., and Schiller, A.: The Bluelink ocean data assimilation system (BODAS), Ocean modelling, 21,855

46–70, 2008b.

Oke, P. R., Brassington, G. B., Griffin, D. A., and Schiller, A.: Ocean data assimilation: a case for ensemble optimal interpolation, Australian

Meteorological and Oceanographic Journal, 59, 67–76, 2010.

41

https://doi.org/10.3389/fmars.2019.00090
https://doi.org/10.1016/j.pocean.2011.05.003
https://doi.org/10.1016/j.pocean.2011.05.005
https://doi.org/10.1016/j.pocean.2011.05.004
https://doi.org/https://doi.org/10.1016/j.dsr2.2010.06.006


Oke, P. R., Roughan, M., Cetina-Heredia, P., Pilo, G. S., Ridgway, K. R., Rykova, T., Archer, M. R., Coleman, R. C., Kerry, C. G., Rocha,

C., Schaeffer, A., and Vitarelli, E.: Revisiting the circulation of the East Australian Current: its path, separation, and eddy field, Prog.860

Oceanogr., 176, 2019.

Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza, M., Kalnay, E., Patil, D., and Yorke, J. A.: A local ensemble

Kalman filter for atmospheric data assimilation, Tellus A: Dynamic Meteorology and Oceanography, 56, 415–428, 2004.

Pilo, G. S., Mata, M. M., and Azevedo, J. d.: Eddy surface properties and propagation at Southern Hemisphere western boundary current

systems, Ocean Science, 11, 629–641, 2015a.865

Pilo, G. S., Oke, P. R., Rykova, T., Coleman, R., and Ridgway, K.: Do East Australian Current anticyclonic eddies leave the Tasman Sea?,

Journal of Geophysical Research: Oceans, 120, 8099–8114, 2015b.

Pilo, G. S., Oke, P. R., Coleman, R., Rykova, T., and Ridgway, K.: Patterns of vertical velocity induced by eddy distortion in an ocean model,

Journal of Geophysical Research: Oceans, 123, 2274–2292, 2018.

Powell, B. S.: Quantifying How Observations Inform a Numerical Reanalysis of Hawaii, Journal of Geophysical Research: Oceans, 122,870

8427–8444, https://doi.org/10.1002/2017JC012854, 2017.

Powell, B. S. and Moore, A. M.: Estimating the 4DVAR analysis error of GODAE products, Ocean Dynamics, 59, 121–138, 2008.

Powell, B. S., Arango, H. G., Moore, A. M., Di Lorenzo, E., Milliff, R. F., and Foley, D.: 4DVAR data assimilation in the Intra-Americas Sea

with the Regional Ocean Modeling System (ROMS), Ocean Modell., 25, 173–188, 2008.

Powell, B. S., Kerry, C. G., and Cornuelle, B. D.: Using a numerical model to understand the connection between the ocean and acoustic875

travel-time measurements, The Journal of the Acoustical Society of America, 134, 3211–3222, 2013.

Puri, K., Dietachmayer, G., Steinle, P., Dix, M., Rikus, L., Logan, L., Naughton, M., Tingwell, C., Xiao, Y., Barras, V., Bermous, I., Bowen,

R., Deschamps, L., Franklin, C., Fraser, J., Glowacki, T., Harris, B., Lee, J., Le, T., Roff, G., Sulaiman, A., Sims, H., Sun, X., Sun, Z.,

Zhu, H., Chattopadhyay, M., and Engel, C.: Operational implementation of the ACCESS Numerical Weather Prediction system, Australian

Meteorological and Oceanographic Journal, 63, 265–284, 2013.880

Raynaud, L., Berre, L., and Desroziers, G.: An extended specification of flow-dependent background error variances in the Météo-France

global 4D-Var system, Quarterly Journal of the Royal Meteorological Society, 137, 607–619, 2011.

Roughan, M. and Kerry, C.: South East Australian Coastal Ocean Forecast System (SEA-COFS), https://doi.org/10.5281/zenodo.8294716,

We acknowledge funding from the Australian Research Council including grants: DP230100505, LP220100515, LP170100498,

LP160100162, LP150100064, DP140102337, LP120100592, 2023a.885

Roughan, M. and Kerry, C.: South East Australian Coastal Ocean Forecast System (SEA-COFS), https://doi.org/10.5281/zenodo.8294716,

We acknowledge funding from the Australian Research Council including grants: DP230100505, LP220100515, LP170100498,

LP160100162, LP150100064, DP140102337, LP120100592, 2023b.

Roughan, M., Keating, S., Schaeffer, A., Cetina Heredia, P., Rocha, C., Griffin, D., Robertson, R., and Suthers, I.: A tale of two eddies: The

biophysical characteristics of two contrasting cyclonic eddies in the e ast a ustralian c urrent s ystem, Journal of Geophysical Research:890

Oceans, 122, 2494–2518, 2017.

Sakov, P. and Oke, P. R.: A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters, Tellus A:

Dynamic Meteorology and Oceanography, 60, 361–371, 2008.

Sandery, P. and Sakov, P.: Ocean forecasting of mesoscale features can deteriorate by increasing model resolution towards the submesoscale,

Nature Communications, 8, https://doi.org/10.1038/s41467-017-01595-0, 2017.895

42

https://doi.org/10.1002/2017JC012854
https://doi.org/10.5281/zenodo.8294716
https://doi.org/10.5281/zenodo.8294716
https://doi.org/10.1038/s41467-017-01595-0


Santana, R., Macdonald, H., O’Callaghan, J., Powell, B., Wakes, S., and H Suanda, S.: Data assimilation sensitivity experiments in the East

Auckland Current system using 4D-Var, Geoscientific Model Development, 16, 3675–3698, 2023.

Schaeffer, A. and Roughan, M.: Influence of a western boundary current on shelf dynamics and upwelling from repeat glider deployments,

Geophysical Research Letters, 42, 121–128, 2015.

Schaeffer, A., Roughan, M., and Wood, J. E.: Observed bottom boundary layer transport and uplift on the continental shelf adjacent to a900

western boundary current, J. Geophys. Res. Oceans, 119, 1–18, 2014.

Schaeffer, A., Gramoulle, A., Roughan, M., and Mantovanelli, A.: Characterizing frontal eddies along the E ast A ustralian C urrent from

HF radar observations, Journal of Geophysical Research: Oceans, 122, 3964–3980, 2017.

Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-

following-coordinate oceanic model, Ocean Modell., 9, 347–404, 2005.905

Siripatana, A., Kerry, C., Roughan, M., Souza, J. M. A., and Keating, S.: Assessing the impact of nontraditional ocean observations for

prediction of the east australian current, Journal of Geophysical Research: Oceans, 125, e2020JC016 580, 2020.

Skamarock, W. C.: Evaluating mesoscale NWP models using kinetic energy spectra, Monthly weather review, 132, 3019–3032, 2004.

Sloyan, B. M., Ridgway, K. R., and Cowley, R.: The East Australian Current and Property Transport at 27S from 2012-2013., J. Phys.

Oceanogr., 46, 2016.910

Souza, J., Powell, B. S., Castillo-Trujillo, A. C., and Flament, P.: The Vorticity Balance of the Ocean Surface in Hawaii from a Regional

Reanalysis, J. Phys. Oceanogr., 45, 424–440, 2014.

Stammer, D.: Global Characteristics of Ocean Variability Estimated from Regional TOPEX/ POSEIDON Altimeter Measurements, J. Phys.

Oceanogr., 27, 1743–1769, 1997.

Weaver, A. and Courtier, P.: Correlation modelling on the sphere using generalized diffusion equation., Quart. J. Roy. Meteorol. Soc., 127,915

1815–1846, 2001.

Wilkin, J., Levin, J., Moore, A., Arango, H., López, A., and Hunter, E.: A data-assimilative model reanalysis of the US Mid Atlantic Bight

and Gulf of Maine: Configuration and comparison to observations and global ocean models, Progress in Oceanography, 209, 102 919,

2022.

Xu, L.: 4D-Var Data Assimilation for Navy Mesoscale NWP, 2013.920

Xu, Y. and Fu, L.-L.: Global variability of the wavenumber spectrum of oceanic mesoscale turbulence, Journal of physical oceanography, 41,

802–809, 2011.

Zavala-Garay, J., Wilkin, J. L., and Arango, H. G.: Predictability of mesoscale variability in the East Australian Current given strong-

constraint data assimilation, Journal of Physical Oceanography, 42, 1402–1420, 2012.

43


