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Abstract. Geothermal heat flow is an important boundary condition for ice sheets, affecting for example basal melt rates, but
for ice covered regions we only have sparse heat flow observations with partly high uncertainty of up to 30 mWm™2. In this
study, we first investigate the agreement between such point-wise heat flow observations and Solid Earth models, applying a
1D steady state approach to perform a statistical analysis for the entire Arctic region. We find that most of the continental heat
flow observations have a high reliability and agreement to Solid Earth models, except a few data points, as for example the
NGRIP (North GReenland Ice core Project) point in Central Greenland.

For further testing, we perform a conditional simulation with focus on Greenland, in which the local characteristics of heat
flow structures can be considered. Simple kriging shows that including or excluding the less reliable NGRIP point has a large
influence on the surrounding heat flow. The geostatistical analysis with the conditional simulation supports the assumption that
NGRIP might not only be problematic for representing a regional feature but likely is an outlier. Basal melt estimates show that
such a local spot of high heat flow results in local high basal melt rates, but leads to less variation than existing geophysical

models.
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1 Introduction

Geothermal heat flow (GHF) is a key factor of Solid Earth-Cryosphere interaction. Under ice-covered regions, such as Green-
land, GHF is a boundary condition for ice sheet dynamics (Karlsson et al., 2021; Goodge, 2018). For example, Karlsson et al.
(2021) state that GHF can contribute up to 25 % of total basal melt rates while locally high heat flow can have a larger impact
on ice sheet dynamics compared to a regionally higher value (McCormack et al., 2022). GHF itself is influenced by the Solid
Earth, first of all reflecting the thickness of the lithosphere (Losing and Ebbing, 2021), as well as hydrological processes (Gooch
et al., 2016) or crustal heat production variations (Bons et al., 2021) making heat flow for continental settings highly variable
(Reading et al., 2022). Furthermore, maps of GHF are often based on interpolation of sparse observations, so isolated points

might distort the distribution. However, geothermal heat flow is complicated to measure directly. Borehole measurements are
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expensive and therefore sparse in large parts of the Arctic (and Antarctic), which is covered with ice and snow most of the
year. Additionally, observations are often concentrated in areas of economic interest or areas that are easily accessible (Stal
et al., 2022). Therefore, Arctic heat flow observations are distributed very heterogeneously with dense data coverage in regions
around the mid-oceanic ridge, Scandinavia and the north of Canada while Siberia, Greenland and the Arctic Ocean north of
Alaska are poorly covered (Lucazeau (2019), Figure 2).

Ice temperature profiles present another option to estimate GHF in glacial areas (e.g. Dahl-Jensen et al. (2003)). If the borehole
reaches the ice-bedrock interface, GHF can be estimated using models of heat transport in the column of ice (e.g. Weertman
(1968); Rasmussen et al. (2013)). However, not all boreholes reach the bedrock, so that the ice temperature profiles need to be
extrapolated (e.g. Kinnard et al. (2006); Buchardt and Dahl-Jensen (2007)), leading to large uncertainties for estimated heat
flow values. The NGRIP (North GReenland Ice core Project) point in central Greenland is a particularly notorious example
(Buchardt and Dahl-Jensen, 2007), with a wide range of values between 63 mWm ™2 (for example Martos et al. (2018)) and
970 mWm~2 (Smith-Johnsen et al., 2020) being suggested in the literature. The latter estimate is highly unlikely but even the
most conservative estimates well exceed the mean of Greenland with 60 mWm 2 (Colgan et al., 2022).

In turn, estimating heat flow from geophysical data gives the possibility to overcome the sparseness, albeit with the mentioned
uncertainty above. For example, Curie depth estimates based on magnetic data are a classical tool to infer heat flow. For Green-
land, heat flow was derived from Curie depth estimates based on satellite magnetic (Fox Maule et al., 2009) or aeromagnetic
(Martos et al., 2018) compilations. Thermal models of the entire lithosphere can also be constrained by a variety of geophys-
ical data sets (i.e. gravity, surface wave data), but these models typically lack lateral resolution within the crust (Afonso et al.
(2019), Pasyanos et al. (2014), Fullea et al. (2021)).

A more geostatistical approach is to compare proxies in a region with poorly known heat flow with similar proxies in regions
with good coverage. Upper mantle seismic velocity was one of the first proxies used to infer GHF (Shapiro and Ritzwoller,
2004) , while Artemieva (2019) applied a thermal isostasy model. More recently, machine learning algorithms (specifically
based on random forest regression) have been used to predict geothermal heat flow based on a variety of geographical/geo-
physical proxies (Colgan et al., 2022; Rezvanbehbahani et al., 2017; Losing and Ebbing, 2021). See Colgan et al. (2022) for
an extended discussion on GHF models for Greenland. However, such heat flow maps can only present regional heat flow as
they are limited by the availability and resolution of data. The non-linear optimization heuristic used in the machine learning
techniques is also highly sensitive to isolated data points. Colgan et al. (2022) and Rezvanbehbahani et al. (2017) study this by
omitting or varying the estimated GHF value for individual data points, respectively and find that particularly the NGRIP point
presents a challenge, being a highly uncertain and isolated measurement. But without additional information, local structures
and regional features cannot be distinguished based on sparse point measurements. Heat flow anomalies can be as small as a
few tens of kilometers due to shallow crustal heat production and the effect of subglacial topography (Reading et al., 2022).
Thus, interpolation (or random forest regression) of GHF observations is prone to large biases if local anomalies are mistaken
for regional features. Nevertheless, local GHF anomalies are crucial for Solid Earth-Cryosphere interaction (McCormack et al.,
2022).

In this study, we approach the question of local vs. regional effects on GHF from two angles. Firstly, we evaluate a database
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of GHF measurements by testing each individual measurement’s consistency with a lithospheric temperature model based on
estimates of Moho and LAB (Lithosphere-Asthenosphere Boundary) depth. Secondly, we use geostatistical analysis and con-
ditional simulation to investigate the spatial scale of heat flow in Greenland. Our results can help to decide whether to exclude
points for interpolation and machine learning on a regional scale or in regions with sparse data, as they are not trustworthy for

such applications.

2 Methods

For any heat flow observation, it is unknown whether the observed value reflects the regional setting or a local anomaly.
Assuming that regional structures are in agreement with LAB and Moho depth models, it should be possible to find a set
of thermal parameters (heat conductivity and heat productivity), such that GHF can be predicted from stationary 1-D heat
flow modeling (Losing et al., 2020; Furlong and Chapman, 1987; Artemieva and Mooney, 2001). If no combination of the
parameters within their given ranges lead to an agreement, the GHF observation should be considered suspicious or a local
anomaly. For example, points in areas of exceptionally local high heat production from radiogenic sources (Bons et al., 2021),
should lead to an incompatibility between the lithospheric model and GHF data.

We assume that geophysical LAB depth can be seen as a representation of the large scale lithospheric temperature field, so
we compare the predicted temperature at the LAB to an assumed LAB temperature of 1315 °C. If the temperature deviation
surpasses a threshold of 100 K, we assume that the corresponding GHF observation probably is locally influenced and therefore
cannot resolve the regional assumptions of the geophysical models. Choosing such high deviation we take uncertainties from
the used models for Moho and LAB depth into account.

We assume vertical heat flux within the lithosphere, which is a common assumption at least for the continental domain (Afonso
et al., 2013; Losing et al., 2020). Furthermore, the lithospheric columns are assumed to be in thermal equilibrium, resulting in

the temperature equation:

b —ne) m
with the crustal thermal conductivity ki, the temperature 7', the depth z and the heat productivity h.

Assuming no heat generation in the lithospheric mantle, the temperature increases linearly with depth, so that the temperature
in the lithospheric mantle at a given depth can be calculated with

T(z)=T(M)+ %’(z — M), @)

with the Moho depth M, the mantle heat flux ¢p and the mantle thermal conductivity k.
Heat production A is assumed constant with depth, following Losing et al. (2020). The heat flux ¢ at a certain depth is then

q(z) = qo — Az, 3)
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where qq is the heat flux at the surface. When calculated at z = M we get gp.
For the temperature distribution in the crust we get

Z2qo — %AZQ

T(2) =T(0)+ =

“4)

Further derivations can be taken from Losing et al. (2020).

The Moho temperature then can be determined by means of this temperature distribution, thus a temperature at a certain depth
in the lithospheric mantle is:
+M+@(2—M). )
k1 ko
The mantle heat flux gp can be calculated using Eq. (3). We now can use a Bayesian inversion coupled with a Monte Carlo
Markov Chain algorithm to fit the heat flow observations to the temperature profile based on geophysical data and Eq. (5).
This approach is based on the method presented in Losing et al. (2020). The goal is to adjust a parameter vector so that the
calculated model corresponds as closely as possible to the given model M, here the LAB temperature. For this purpose, Eq.
(5) is used to define a forward operator F'(®) that calculates the temperature at the LAB for a given parameter vector ©. As
a result we also get estimates for the crustal and mantle thermal conductivity k; and ks and crustal heat production A. The
principle of the algorithm is explained in Fig. 1.

First, initial values for the thermal parameters are stored in a vector ®. The forward operator now takes this vector and
calculates a corresponding proposed model F(©) = m. A standard deviation of 02 = 100 K is allowed, due to uncertainties
in the Moho and LAB depth models, which were not precisely quantified at least for the LAB depth (Afonso et al., 2019).
The standard deviation is given by the relationship o, = o7k/q resulting in a few tens of kilometers uncertainty for the input
depths. For each iteration, we change the initial parameter vector ® by adding random perturbations ®,,,q drawn from the
so-called proposal distribution. We use a component-wise Gaussian distribution as proposal, which first randomly selects a
thermal parameter to change and then perturbs this parameter by a value drawn from a zero-mean Gaussian distribution. The

probability of a certain @ depends on the prior distribution and the likelihood function (i.e. data fit) according to Bayes law:

(F(©); — M;)?
2012\4 '

(6)

N
exp —
=1

L(M|©®)= H

1
If the proposed model has a higher probability than the current model, its parameter vector will be used as the new initial
parameter vector. If the probability is lower, the proposed model can still be accepted with a probability Pey/Polq > u where
u is a uniformly distributed random number between 0 and 1. This prevents being caught in local minima (Losing et al., 2020).
To deliver representative results, a certain number of iterations and burn-in iterations are needed. In our case 10,000 iterations
with 5,000 discarded burn-in iterations are sufficient, relying on the convergence of the likelihood of the iterations as criterion.

To eliminate random fluctuations, the mean of the accepted iterations gives the resulting parameter vector. We use wide uniform

priors based on plausible ranges for each thermal parameter relying on previous studies (e.g. Artemieva and Mooney (2001);
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Figure 1. Scheme of the MCMC algorithm as described in the text.

Furlong and Chapman (1987); Jaupart and Mareschal (2014)). Although higher crustal heat production up to 5 uWm 3 are
seen for some local features, we use a more conservative value appropriate for a regional scale. The prior ranges, starting values
and proposal sizes are shown in Table 1. The proposal was tuned to achieve an acceptance ratio of 20 to 40 %. We assume the

surface temperature as 0 °C and the LAB temperature as 1315 °C (according to Losing et al. (2020)).

Table 1. Prior information for the inversion: initial value, range, and proposal for each iteration.

Parameter initial value initial range  proposal o
ki in Wm™'K™! 22 [1.0,3.0] 0.5
k2 in Wm™'K™! 3.0 [2.5,4.0] 0.5
Ain yWm™ 0.7 [0.25, 1.75] 0.375
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2.1 Kriging Interpolation and Conditional Simulation

Kriging interpolation of irregularly spaced data sets provides estimates with confidence intervals (Cosentino et al., 2023). Here,

we assume the mean value mg as given and constant, so "simple Kriging" results (Chiles and Delfiner, 1999):
Z*:mO‘FZ)\a(Za*ma); @)

with the Kriging estimator Z*, the weights )\, the given observations Z, and the mean of the observations m,. The weights
are adjusted so that the resulting estimator (Eq. (7)) is unbiased and the error variance minimal (Cosentino et al., 2023). A
crucial parameter for Kriging interpolation is the covariance function, which determines how quickly the weighting decreases

with distance (Chiles and Delfiner, 1999). Here, we use the Gaussian covariance model (Webster and Oliver, 2007):

() = 02 (1 ~exp [— (s ;)ZD fn, ®)

in which 7 represents the distance of the points, o2 the variance of the model, s = /7/2 the rescaling factor, £ the length scale
and n the nugget.

The correlation length scale ¢ can be estimated using a semivariogram which represents the dissimilarity of pairs of points at
a certain distance. Closer points tend to be more similar, increasing the distance of the points, the dissimilarity usually also
increases. The correlation length is defined at which the dissimilarity reaches a certain threshold. The nugget describes small-
scale effects, when points with very small distances have an offset to the original point (Wackernagel, 1998). A minimum
number of 100 points should be used for a representative variogram where we can define distances that resolve the resolution
of the data as well as getting an accurate estimate for the mean semi variance (Cosentino et al., 2023).

Kriging interpolation is based on a geostatistical approach, such that the interpolation result is a multivariate normal distri-
bution. The mean (i.e. expected) value at each point is typically taken as the result and the pointwise standard deviation as
uncertainty. However, this is much smoother than any realization of the actual distribution, because it neglects the correla-
tion of errors at different locations. Sparse and uneven distributed data by itself can lead to overestimation of the correlation
lengths, which results in unrealistic uncertainty estimates (Chiles and Delfiner, 1999; Hadavand and Deutsch, 2020). Assuming
that there is a geological region similar to the study area but with higher data coverage, we can use the covariance function
(especially the correlation length) estimated for that region in the study area instead. Conditional simulation can be used to
generate realizations that show possible smaller scale variations. We use this to assess the likelihood of the NGRIP result being
a local anomaly or measurement error. Conditional simulation is based on a two-stage Kriging evaluation combined with an
unconditional simulation. First, the given points are interpolated using the Kriging method (Z*(z)). Then a sample is drawn
from the unconditional multivariate normal distribution (S(x)) based on the covariance matrix, which is in turn based on the
Gaussian covariance function Eq. (8).

Finally, the unconditional sample .S is conditioned upon the known data points. To do this, the difference between S(X) and

the interpolated values of S(X) at the observation locations giving S*(X) is calculated and gives the Kriging variation. A
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Figure 2. Heat flow for the Arctic Region. Data points are from Colgan et al. (2022) and Lucazeau (2019).

conditional sample 7' is then obtained by
T(z) = 2" (x) + (S(x) = 5% (x))- )

The small scale structure of T' represents possible random fluctuations, while the overall large scale trend agrees with the
Kriging interpolation result (Chiles and Delfiner, 1999; Hadavand and Deutsch, 2020). The advantage of conditional simulation
is the ability to overcome difficulties when dealing with sparse data to estimate non-linear and small scale quantities (Hadavand

and Deutsch, 2020).
2.2 Data

The heat flow observations analyzed in this work are located in the Arctic region north of 65°N. Observations are taken from
the data sets of Lucazeau (2019) and Colgan et al. (2022). Lucazeau (2019) has introduced a global compilation of published
heat flow observations. Compared to earlier compilations (e.g. Pollack et al. (1993)), significant changes can be found, espe-
cially for oceanic heat flow, e.g. due to a better quality of sampling in hydrothermal regions. 1488 observations are available
for our study area. Colgan et al. (2022) compiled a database for Greenland, with 417 additional points. The analysis of the heat

flow observations is mainly based on these combined 1905 points (Figure 2).

In addition to the heat flow observations we use models for the LAB depth (Afonso et al., 2019) and Moho depth (Lebedeva-
Ivanova et al., 2019) for our calculations in order to make statements about the reliability to the heat flow points in relation to
these Solid Earth models (See Figure 3).
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Figure 3. Input data: (a) LAB depth from the LithoRef18 (Afonso et al., 2013) and (b) Moho Depth from the ArcCrust model (Lebedeva-
Ivanova et al., 2019).

The LAB depth is derived from a joint inversion of gravity anomalies, geoid height, satellite-derived gravity gradients and
constraints from seismic, thermal and petrological data are used (Afonso et al., 2019). For Moho depth we use the ArcCRUST
model, which is calculated from 3D forward and inverse gravity modeling with constraints from sediment thickness, rifting
age, density and oceanic lithosphere age (Lebedeva-Ivanova et al., 2019). These models and databases are among the most
recent available for the Arctic.

For the regional analysis of continental Greenland, 47 heat flow observations are used from the Colgan et al. (2022) database

which are located on Greenland or directly on the coast and extend down to 60°N.

3 Results
3.1 Agreement to Solid Earth Models

At each heat flow point, an ensemble of possible thermal parameter results from the MCMC approach is calculated where we
use the mean at each location as the most likely result. The correlation between the estimated thermal parameters and input
parameters can be found in Supplementary Material 1.

The distribution of these mean values for the thermal parameters (Fig. 4) highlights important spatial trends and underlines
where we have no fit to the LAB temperature. For most of the points in the oceanic parts but also some points on continental
lithosphere the thermal parameters tend to strive to the upper end of the allowed parameter range, mostly coinciding with a
bad fit of the LAB temperature (compare to Fig. 5). These values are unrealistic high for the thermal parameters in oceanic
lithosphere underlining the problems of applying the 1D steady state approach to oceanic lithosphere. But this we test by the
half-space cooling model. We could say that on continents, that rules out the data point, but in the oceans requires more work

on the thermal model.
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Figure 4. Distribution of the thermal parameter from the inversion with ¢p calculated with Eq. (3) after 10,000 iterations per point. a) crustal

thermal conductivity k1, b) mantle thermal conductivity k2, ¢) mantle heat flux ¢p and d) crustal heat production A.

We see a trend towards the mean values of the prior parameter range for crustal (a) and mantle (b) thermal conductivity,
probably indicating that they are not well resolved. This can also be seen in the distribution of the parameter correlation in
Supplementary Material 1, Fig. Al, e.g. in relation to the Moho depth. The distribution of the crustal heat production tends
to follow the GHF with higher values at oceanic lithosphere and lower values in the continents. We also find low crustal
thermal conductivity at the region of Scandinavia which could give a hint on problematic input parameters, e.g. that the LAB
in the model by Afonso et al. (2019) is too shallow (compare also to the lithospheric model by Artemieva and Thybo (e.g.
2008)). The calculated mantle heat flow follows the LAB depth and is therefore higher in oceanic lithosphere and lower in
continental lithosphere. Somewhat paradoxically, the standard deviations from the MCMC runs are very small for the thermal
conductivities (Supplementary Material 1) at the locations where we could not fit the temperature profile, caused by the result
clinging to the boundary of the parameter ranges.

Our analysis shows that about 2/3 of the heat flow points can be fit with Solid Earth models if adequate thermal parameters
are selected (Figure 5). However, given the range of parameters that we allow it was impossible to achieve the desired 100 K

threshold for LAB temperature at 628 locations. Most of these points are located in the oceanic lithosphere.
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Figure 5. Deviation of the calculated compared to the pre-defined LAB temperature (a) with ¢p calculated with the crustal heat production
A and (b) gp as a free parameter within the inversion. Most of the points lie within the 100 K uncertainty. For (a) 628 points (red) have a

higher deviation, while for (b) the number reduces to 18 points.

Comparing Fig. 4 and 5 (a), we see that most of the high parameter values occur where the LAB temperature could not be fit,
so that this strictly linear approach might not be appropriate to resolve especially oceanic lithosphere. Allowing small jumps
in the heat flow at the Moho leads to a non-linear representation of the temperature profile and could improve the fit of the
LAB temperature for more heat flow points, e.g. where half space cooling is assumed. We can imply this within our inversion
by choosing gp as a free parameter and estimate its value with the MCMC algorithm. To include gp as free parameter to the
inversion we use the range based on Losing et al. (2020) with a minimum of 0 mWm ™2, maximum of 200 mWm~2 and a
proposal std. dev. of 50 mWm 2. With this, we reduce the number from 628 to 18 heat flow points that do not fit the Solid
Earth models and are able to accommodate oceanic points (Fig. 5 (b)).

Figure 6 shows the corresponding distribution of the thermal parameters with gp as free parameter. Mantle heat flux is highly
variable, while mantle and crustal thermal conductivities and the crustal heat production tend towards the middle of the prior
ranges. At points where the LAB temperature could not be fit, the crustal heat production and crustal thermal conductivity tend
to have higher values and correspondingly lower standard deviations (Supplementary Material 1).

To further analyze a possible limitation of our model within oceanic lithosphere, we compare a Curie depth calculated with our
approaches both with and without gp as free parameter to a Curie depth calculated with the half space cooling model (Figure 7).
For both of our 1D approaches we overestimate the Curie depth. We get a higher mean deviation from the half space cooling
Curie depth when ¢p is no free parameter. With gp free, the Curie depths itself are highly scattered for younger oceanic
lithosphere. For older lithosphere, our approaches underestimate the Curie depth with a better fit for fixed gp. Despite the
deviation, we see a similar trend for the different Curie depths in oceanic lithosphere. To further evaluate oceanic lithosphere
a more advanced model like a plate model could be considered, but within our study we may rely on the results from our

simplified approach and do not necessarily need to clip oceanic lithosphere.

10
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Figure 6. Distribution of the thermal parameter from the inversion with gp as a free parameter after 10,000 iterations per point. a) crustal

thermal conductivity k1, b) mantle thermal conductivity k2, ¢) mantle heat flux ¢p and d) crustal heat production A.

Comparing calculated Curie depths from our model as described above with the Curie depths from models with changed
priors (Supplementary Material 2), we mostly get high correlations, except for about 1/6 of the points of the half space cooling
correlation. Which shows that our approach seems to be robust against changes in the prior parameter ranges. The 18 remaining
points are therefore especially interesting since non-linear assumptions still do not lead to a fit. While 17 of the new low
reliability points are close to other observations and can therefore be excluded without losing information on regional scale,
the NGRIP point is nearly solitary for central Greenland. Leaving it out leads either to a data gap or high uncertainties in
the area of central Greenland when taking the information only from the surrounding points. However, considering this point
within regional studies could be problematic since it appears to not fit the regional geophysical models.

For NGRIP, also all parameters lie at the outer edge of the ranges (seen in Fig. 4, discrete values in Table 2) which shows that
this heat flow observation of 130 mWm~2 (Colgan et al., 2022) cannot be brought in line with the Solid Earth models using

these ranges and preferably should be assumed as local structure or excluded from further studies.

11
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Figure 7. Comparison of the calculated associated parameter Curie depth with three different approaches within oceanic lithosphere. Blue
triangles show the calculation with the half space cooling model, while orange marks and green dots show the Curie depths calculated from

the thermal parameters estimated with the 1D steady state approach with and without gp as a free parameter, respectively.

Table 2. Thermal parameters estimated for the NGRIP point with gp as a free parameter within the inversion.

ErinWm K™™'  EinWm'K™'  ¢gpinmWm 2  AinpgWm™>

range [1.0,3.0] [2.5,4.0] [0, 200] [0.25, 1.75]

value 3.0 3.3 10 1.75

3.2 Kriging interpolation

Simple Kriging and conditional simulation allows to investigate the influence of isolated points in sparse regions. Due to
computational costs, we limit the analysis to Greenland, but the method could also be applied to other regions. We rely on 47
heat flow observations on Greenland or directly at the coast. Within this data set, NGRIP is the only point that does not show
an agreement with the regional Solid Earth model.

Unfortunately, there are not enough data points in Greenland to get reliable results from the semivariogram analysis. However,
if applied to the whole Arctic, the semivariogram results in a length scale of 600 km. Still, following Fox Maule et al. (2005),
smaller length scales could be more reasonable. Additionally, the length scale for heat flow should be similar in geologically

similar regions. Since Greenland once was part of Laurentia on the North American plate (Geoffroy et al., 2001) as well as

12
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Figure 8. Kriging interpolation results for heat flow observations. (a) with a length scale of 600 km excluding the NGRIP point, (b) with a
length scale of 600 km including NGRIP and (c) example of a conditional simulation with a length scale of 125 km and NGRIP included.
The triangle marks the position of the EGRIP drill site.

connected to Norway (Mosar et al., 2002), we assume that a similar spatial variability occurs as in the other Precambrian
shields of Scandinavia or North America (Naslund et al., 2005). Both regions are well covered with heat flow data so a more
reliable semivariogram can be estimated. With the Gaussian variogram model we obtain a length scale for GHF of 125 km
from the Scandinavian data set (Supplementary Material 3), which we then applied to Greenland (Fig. 8).

Carrying out Kriging interpolation, we find that, not surprisingly, NGRIP has a crucial impact on the interpolated heat
flow field. Leaving it out (Fig. 8 (a)) results in low to medium heat flow values in central Greenland, whereas with NGRIP
included (Fig. 8 (b)), lower values are estimated in the north and significantly higher values found in the vicinity of NGRIP,
extending c. 300 km west and south. The corresponding uncertainty maps show nearly constant uncertainties of 32 mWm~2 for
(a) and 22 mWm ™2 for (b) (Supplementary Material 4). With a shorter correlation length of 125 km and applying conditional
simulation, a more realistic picture of what heat flow might look like, emerges (Fig. 8 (c)). As expected, the reduced correlation
length limits the influence of the NGRIP point’s high heat flow to a local area. In Southern Greenland - where more points exist
- GHF is comparable for all three approaches. Of course, the conditional simulation does not provide any additional constraints
on the actual data (Hadavand and Deutsch, 2020).

To further judge the viability of the NGRIP point, we use conditional simulation without NGRIP as input. Simulating the
unseen local structures in this way is useful if the stationary heat flow modelling (previous section) implies disagreement
between regional geophysical models and measured/inferred heat flow. Using conditional simulation, the statistical distribution
of the small scale variations can be probed to assess the possibility of a similarly extreme point occurring. We generate 100

2

conditional simulations of heat flow without NGRIP to investigate whether heat flow of more than 100 mWm™= is even

13
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Figure 9. (a) Maximum GHF and (b) percentage of the area with a GHF over 100 mWm ™2 from 100 conditional simulations without NGRIP
in the area 500 km around the NGRIP point.

possible at the NGRIP location, with our assumed geostatistical parameters. An area with 500 km radius around NGRIP will
be used as the "vicinity" of NGRIP.
38 % of the simulated heat flow fields exceed 100 mWm ™2 in the vicinity of NGRIP. A single realization reached 120 mWm 2,
265 but the reported value of 130 mWm ™2 is never attained. Additionally, most simulation have less than 1 % of the NGRIP area
vicinity with heat flow values above 100 mWm™~2. An area of 1 % is roughly 60 by 60 km, so comparable to the length scale
a single GHF hot spot in the area around NGRIP would have. However, in 13 simulations an area of more than 1 % is covered
with heat flow values higher than 100 mWm~2, up to almost 5 % in a single simulation. Within our analysis, 60 % of the real-
izations have a maximum heat flow of less than 100 mWm 2 and 87 % of the realizations have an area of less than 1 % where
270 100 mWm 2 are reached. Thus, we can interpret this as a 40 % chance that there are any "hot spots" above 100 mWm~?2 and
even if they did exist, it would be very unlikely (much less than 5 %) that NGRIP randomly "hits" the hot spot. Therefore, the
high value of NGRIP cannot be explained with lateral variation at a length scale of 125 km and would be essentially incom-
patible with the assumed geostatistical parameters.
EGRIP (East GReenland Ice Project, triangle on Fig. 8) is a drill site in NNE Greenland with no published heat flow value
275 so far (Rasmussen et al., 2023). This point is close to NGRIP (approximately 190 km) and could provide information on the
spatial influence of NGRIP. Although its heat flow value is not yet published we can still use the location of this point and
predict interpolated values for the three different scenarios (Fig. 8). Without NGRIP, EGRIP gets a heat flow of 61 mWm™2.
Including NGRIP increases the heat flow at EGRIP to 81 mWm 2 so that we see an influence of the high heat flow of NGRIP.
The conditional simulation example gives the EGRIP heat flow at 59 mWm ™2 which is significantly lower than the NGRIP
280 value. Performing 50 conditional simulations with NGRIP, we get a variety of possible values for EGRIP (Fig. 10).
In these 50 simulations, the heat flow for EGRIP varies from 40 to 110 mWm 2 with a mean and median of 75 mWm 2.
Most of the simulated GHF values for EGRIP lie within the range of 65 to 85 mWm~2. So, we would rather assume elevated
GHF at EGRIP if the high heat flow at NGRIP is not an outlier.
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Figure 10. Heat flow values for EGRIP extracted from 50 conditional simulations with NGRIP.
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Figure 11. Basal melt estimates for Greenland based on the Kriging interpolated heat flow map (a) without NGRIP and 600 km correlation
length, (b) with NGRIP and 600 km correlation length and (c) the heat flow map from the conditional simulation with 125 km correlation

length and NGRIP. Blanked out areas are considered to be frozen at the ice-bed interface. Red point marks the location of NGRIP.

3.3 Basal Melt Estimates

Although our models can be deemed unrealistic, we like to explore shortly the importance for basal melt rates following the
approach from Karlsson et al. (2021) (Fig. 11). This shows the effect, local heat flow structures (Fig. 11 (c)) might have on
basal melts compared to two different regional heat flow maps (Fig. 11 (a) and (b)) with an estimated geothermal basal melt
for Greenland of 4.9 Gt per year for local structures and 5.0 Gt for regional structures.

All of our maps provide similar results for the basal melt (Table 3) with insignificant variations within the single areas. It can
be seen that the basal melt for a regional GHF map also shows a regional pattern following the geothermal heat flow while we

see local spots of high basal melt where we have "hot spots" of GHF within the local scale map. Karlsson et al. (2021) use
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Table 3. basal melt rates in Gt per year for Greenland for four different HF maps.

Karlsson et al. (2021)  this study, 600 km, no NGRIP this study, 600 km, NGRIP this study, 125 km, NGRIP

NO 04=£03 0.7+0.3 0.6 £0.2 0.6
NW 0.6£0.2 0.6 £0.3 09+0.2 0.7
NE 1.3 +0.6/-0.5 1.7+0.8 1.7 £ 0.6 1.7
Ccw 0.7 +0.5/-0.3 0.8 +£0.5 0.7+ 04 0.8
CE 0.5 +0.5/-0.3 04+0.3 04+0.2 0.3
SW 12+04 05+04 0.5+0.3 0.4
SE 0.7 +0.5/-0.3 03+0.3 03+0.2 0.3
total 53+2.8/-22 50£238 50£21 4.9

an average of 3 GHF maps (Fox Maule et al., 2009; Shapiro and Ritzwoller, 2004; Martos et al., 2018) and calculate a total
geothermal basal melt of 5.342.8/-2.2 Gt. Basal melt calculated from our HF maps is slightly below but still would be within
the standard deviation.

The largest contribution to basal melt from our GHF maps with 1.7 Gt comes from NE Greenland where the NGRIP point
and therefore the "hot spot" around NGRIP is located. Excluding NGRIP leads to the same basal melt rate for this region.
Karlsson et al. (2021) provide an estimate of 1.3+0.6/-0.5 Gt for this region so that our estimates are slightly higher but within
the standard deviation. The major difference between our estimates and the estimate from Karlsson et al. (2021) can be found
in southern Greenland where Karlsson et al. (2021) estimate significantly more basal melt than our estimate, showing the

importance of a careful assessment of heat flow data and models in order to provide accurate uncertainty estimates.

4 Discussion

We performed two analyses to appraise the spatial influence of heat flow observations: First, we used 1-D stationary heat flow
modelling to assess the compatibility between heat flow measurements and regional geophysical models of crustal thickness
and LAB depth. Second, we focused on Greenland and relied on two related geostatistical techniques to investigate the impact
of the enigmatic NGRIP point on the inferred heat flow.

We find that most of the heat flow observations in the Arctic and Greenland can be made compatible with Solid Earth models,
at least when allowing non-stationary heat flow at the Moho boundary. However, the stationary model fails consistently in the
oceanic domain, particularly in young oceanic lithosphere. This is not surprising, since freshly formed oceanic lithosphere is
cooling rapidly and far from stationary conditions.

We allow wide ranges for the geothermal parameters. Therefore, our quality criteria are fairly lenient and attention should
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be focused on the heat flow points that are incompatible with the geophysical models. Non-agreement could be due to four
reasons: (i) our thermal model might not be adequate for this point, (ii) it could be a measurement error, (iii) the geophysical
models are incorrect or (iv) the measurement is affected by local anomalies. Thus, incompatible heat flow observations should
be used with caution for regional studies, as they could represent local anomalies due to local crustal heat production (Bons
et al., 2021; Hasterok and Chapman, 2011) or hydrological processes, or measurement errors. In Scandinavia incompatibility
is probably due to an incorrect LAB depth, highlighting how our method can also be used to scrutinize the geophysical input
models. Here, other LAB depth models (e.g. Artemieva and Thybo, 2008; Plomerova and Babuska, 2010) might improve the
results, but nevertheless, such models are only available for local areas and do not cover all of our investigation area.
Deciding between the four different reasons is difficult, but the spatial distribution can be helpful. For example, in the case of
the incompatible points in Northern Scandinavia, there is a clear spatial correlation between incompatibility and an unusually
shallow LAB depth. Likewise, any clustering of incompatible points suggests systematic issues rather than local anomalies or
measurement errors. However, ultimately additional (geophysical) data will be needed to clearly determine the reason for the
incompatibility.

Our second analysis is based on geostatistics. The NGRIP point is our particular focus, since it controls the interpolated heat
flow over most of central Greenland, as the next heat flow observation is about 300 ki away. A thorough assessment of this
point is essential due to its impact on ice sheet modeling (Rogozhina et al., 2016).

We perform jackknifing for NGRIP to test its influence on the length scale the available data for whole of the Arctic provides.
Simple Kriging interpolation with poor data coverage always leads to high uncertainties (Chiles and Delfiner, 1999), which
reach up to about 32 mWm~2 when NGRIP is excluded from the interpolation data set. Additionally, performing the Simple
Kriging interpolation with the regional length scales of 600 km confirms that excluding or including a single point can have a
large influence on heat flow estimated for central Greenland.

We infer that the high GHF (above 130 mWm™2) measured at NGRIP is also incompatible with other heat flow estimates
based on the conditional simulation. This assessment is not necessarily in disagreement with the NGRIP data, because its GHF
estimate is based on an extrapolated ice temperature profile, since the ice-bedrock interface was not reached during drilling
(Dahl-Jensen et al., 2003). An ensemble of conditional simulations shows, that the high GHF (above 130 mWm™?2) estimated
at NGRIP is not compatible with other heat flow measurements in Greenland. Conditional simulations have higher variance
than the pointwise standard deviation inferred by Kriging interpolation, because error covariances are taken into account. But
even with these additional sources of variance, only about 10 % of the simulations reach values higher than 110 mWm~2 in
the vicinity of NGRIP. Provided that our geostatistical parameters (correlation and length and variance) are correct, values of
GHF of more than 130 mWm 2 are implausible and probably confined to a small region.

There are several studies of GHF in Greenland, that assume large areas of elevated GHF. Martos et al. (2018) infer the GHF
from the Curie depth calculated from magnetic data while assuming constant thermal conductivity (2.8 Wm~'K~!) and heat
production (2.5 uWm~3). They predict an area of elevated GHF for NW-SE Greenland. After removing incompatible points,
our approach estimates thermal conductivities of 2.25 Wm~'K~! or lower for Greenland. The crustal heat production varies

between 0.5 and 1.25 yWm 2. For both parameters we estimate values that are below the assumed constant values Martos
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et al. (2018) use. Especially the constant heat production they assume exceeds our range for the crustal heat production by
far. Artemieva (2019) uses a thermal isostasy model based on seismic Moho depth data, topography and the assumption that
isostatic anomalies can be translated in LAB depth topography. In the region of CE Greenland anomalously high GHF of
110 mWm ™2 is calculated that extends across Greenland. According to our analysis, such high heat flow would not influence
such a large area onshore as predicted in the model. However, the region around NGRIP shows GHF of up to 75 mWm ™2,
which is compatible with our conditional simulation and interpolation results. The machine learning approach employed by
Colgan et al. (2022) also suggests that the NGRIP point is incompatible with their geophysical data sets. A machine learning
model without this point results in no elevated GHF for central Greenland. This is in line with the results from Kriging and the
conditional simulations and confirms that NGRIP should be used with caution for regional studies.

Calculating the basal melt from our GHF maps, we find that the general basal melt is similar to calculations with regional heat
flow models. Our local NGRIP structure seems to punctually provide more basal melt. As stated in McCormack et al. (2022)
local "hot spots" could have a significant influence and not considering those structures could lead to underestimating the basal
melts. When considering a local hot structure we get similar basal melt as choosing the same mean heat flow for Greenland
without local structures. Within the single areas the basal melt varies between the different models so that these local structures
from the heat flow give local structures with high basal melts. Such local high basal melt rates could contribute to the sliding
of ice shields.

Also, the area with the highest difference between the heat flow maps is found at a region not included in the calculations
for basal melts since radar data clearly show that there is no basal melt at the blanked out regions. This could be changed in
future so that the contribution of these regions could be considered.

In order to verify local GHF structures, local information such as magnetic data or radar data should be included in the
calculation in addition to more direct GHF observations such as the not yet published EastGRIP point. Furthermore, heat flow
modelling could be improved by including the temperature at the top of the bedrock, derived by ice temperature profiles from
Yardim et al. (2021) and Lgkkegaard et al. (2022). Using the different GHF maps in conjunction with ice temperature profiles
within the 1D stationary HF equation could provide information on the reliability of the GHF maps.

With this new approach we provide information on the reliability and locality of points and show that assuming smaller length
scales is appropriate for Greenland. This approach is also applicable to the global heat flow database for evaluation of data

points.

5 Conclusions

We evaluate whether the heat flow observations in the Arctic region are in agreement with regional geophysical models of
LAB and Moho boundary depth using a 1D stationary heat flow model. We adjust thermal parameters (heat conductivity and
radiogenic production) in a Bayesian framework, trying to reconcile geophysical LAB estimates with the heat flow data. GHF
points where geophysical models and the GHF measurements disagree, are flagged and further analyzed. The exact reason of

the disagreement cannot be determined from our approach alone: It is possible that a GHF measurement only reflects local
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structures e.g. due to an anomalously high crustal heat production or the disagreement could indicate errors in the GHF or
geophysical models. In any case, GHF observations incompatible with regional assumptions should be used with caution
for interpolations or machine learning approaches - irrespective of the reason of the disagreement. Heat flow observations
are scarcely available throughout the Arctic and distributed unevenly. Due to this, single points are influencing large areas,
creating the risk of systematic biases when used for interpolation or machine learning approaches. Conditional simulation is
a geostatistical technique to incorporate local effects. While closely related to Kriging interpolation, conditional simulation
generates maps that include more spatial heterogeneity. This helps to investigate the occurrence of local "hot spots’ and their
spatial extent. We applied this technique to investigate whether the anomalously high GHF measurement at NGRIP is widely
plausible, given the expected variability of heat flow in Greenland. Our conditional simulation results overall indicate a low
probability that reported high GHF values for NGRIP are plausible. This is in line with the high uncertainty of the GHF
estimate. The reliability of the GHF maps should be studied in the future in detail by replacing the constant surface temperature
with observations on ice temperature profiles from radar (Yardim et al., 2021) and additional local geophysical data to obtain

information on small scales.

Code and data availability. The LAB depth is provided by Afonso et al. (2019):

Afonso, J., Fullea, J., Griffin, W., Yang, Y., Jones, A., D. Connolly, J., and O’Reilly, S.: 3-D multiobservable probabilistic inversion for
the compositional and thermal structure of the lithosphere and upper mantle. I: A priori petrological information and geophysical observ-
ables,435 Journal of Geophysical Research: Solid Earth, 118, 2586-2617, 2013

The heat flow values around Greenland are available at Colgan et al. (2022): Colgan, W., Wansing, A., Mankoft, K., Losing, M., Hopper,
J., Louden, K., Ebbing, J., Christiansen, F. G., Ingeman-Nielsen, T., Liljedahl, L. C., et al.: Greenland Geothermal Heat Flow Database and
Map (Version 1), Earth System Science Data, 14, 2209-2238, 2022.

The Moho depth was taken from the ArcCrust model from Lebedeva-Ivanova et al. (2019): Lebedeva-Ivanova, N., Gaina, C., Minakov,
A., and Kashubin, S.: ArcCRUST: Arctic Crustal Thickness From 3-D Gravity Inversion, Geo- chemistry, Geophysics, Geosystems, 20,
3225-3247, https://doi.org/10.1029/2018 GC008098, 2019.

The main code used is available from Losing et al. (2020): Losing, M., Ebbing, J., and Szwillus, W.: Geothermal Heat Flux in Antarctica:
Assessing Models and Observations by Bayesian Inversion, Front. Earth Sci., 8, https://doi.org/10.3389/feart.2020.00105, 2020.

Last, the heat flow data base from Lucazeau (2019) provides most of the heat flow observations (in the Arctic): Lucazeau, F.: Analysis and
Mapping of an Updated Terrestrial Heat Flow Data Set, Geochemistry, Geophysics, Geosystems, 20, 4001-4024, https://doi.org/10.1029/2019
GC008389, 2019.
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Figure Al. Correlations between the input parameters Moho and LAB depth and surface heat flow and the output parameters from the
inversion crustal thermal conductivity k1, mantle thermal conductivity k2, mantle heat flux gp and crustal heat production A for all heat flow
points. The upper triangle shows the inversion results as scatter plots, on the diagonal we find the histograms for each parameter. The lower
triangle displays the density of the parameter combinations. Note that points with a GHF of more than 150 mWm ™2 are neglected in this

figure for the purpose of clarification.

Appendix A: Supplementary Material 1

The estimated mean parameters (Fig. A1, main diagonal) cover the entire range of allowed values (Table 1). Both mantle and
crustal thermal conductivities show a bimodal distribution with each a peak at the upper boundary and the middle of their prior
range. The crustal heat production is distributed nearly uniformly again with a peak at the upper boundary. The peaks at the
upper boundary of the parameter range are mostly due to points with a bad fit of the LAB temperature. Other points where the
parameters also fall at the edge of the range might also be problematic although a fit to the LAB temperature was possible.

Moho and LAB depth are separated into two depths representing the continental and oceanic parts.
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415 When looking at the correlation plots at the lower triangle we see a high correlation between the surface heat flow ¢y and
the mantle heat flow ¢p. In general, there is a positive correlation from the fitted parameters to gy and qp, respectively and a

slightly negative correlation between the depths and the surface heat flow and mantle heat flow.

The standard deviation of the thermal parameter estimation with the inversion are displayed in Fig. A2 for gp calculated

420 and Fig. A3 for ¢p treated as a free parameter. For both calculations, most of the points get a standard deviation about 0.4 to
0.5Wm 'K~ for k; and 0.3 to 0.4 Wm~'K~! for k. Extremely low standard deviations are mostly found where we can

not fit the temperature profiles and the parameters values itself stick to the edges of the range. With ¢gp calculated we find low
standard deviations for the crustal heat production A, when ¢p is a free parameter, A gets higher standard deviations. We get

highly variable standard deviations for the estimated gp. Especially the estimation of k1 and ko seems to be quite uncertain.

Figure A2. Distribution of the standard deviation of the thermal parameters with ¢p calculated with Eq. (3). (a) crustal thermal conductivity

k1, (b) mantle thermal conductivity k2 (c) crustal heat production A.
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Figure A3. Distribution of the standard deviation of the thermal parameters with gp as a free parameter. (a) crustal thermal conductivity k1,
(b) mantle thermal conductivity k2, (c) mantle heat flux ¢p and (d) crustal heat production A.
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Figure B1. Correlation of different Curie depth approaches (y-axis) to the reference Curie depth calculated with the 1D stationary heat flow
equation with gp estimated within the inversion (x-axis). a) half space cooling model (oceanic lithosphere) b) given k; for Greenland points,

¢) lower crustal heat production (oceanic lithosphere), d) combination of ¢) with a lower crustal thermal conductivity k1.

Appendix B: Supplementary Material 2

To verify that the results from our 1D stationary HF approach basically could represent an appropriate parameter distribution
for whole of the area, we calculate a reference depth with different approaches. These approaches include more appropriate
assumptions especially for oceanic lithosphere. The plots in Figure B1 show the correlation between the Curie depths. We

compare the reference model from the 1D stationary HF approach

o J(2)2 =2 4 (Teuie — T)
ZCurie = A (BI)
k1

where Tcyuie = 580°C is the temperature at the Curie depth with the Curie depth from the half space cooling model as well as
the Curie depths from the 1D stationary HF approach according to Eq. (B1) with variations in the prior and proposal of the

thermal parameters.
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Table B1. Prior information for the inversion: initial value, range, and proposal for each iteration.

Parameter initial value prior range proposal
Ey [Wm K™ 22 [1.0,3.0] 0.5
Ef [Wm™'K™] 22 [0.5,3.0] 0.5
ko [Wm™'K™'] 3.0 [2.5, 4.0] 0.375
gp [MWm™2] 22 [0, 200] 50
A [pWm ™3] 1.5 [0.25, 1.75] 0.375
A* [uWWm ™3] 1.5-107%  [0.25-107%,1.75-1073] 0.375-1073

(a) For oceanic lithosphere the assumption of purely vertical heat flow is not appropriate. We calculate the Curie depth zcyrie
based on the half space cooling model which is the standard approach for oceanic lithosphere
—1 ( ACurie — To
Zourie(t) = 2V/kt -erf 1 [ 2 (B2)
zLaB — 1o

with the time ¢, Temperatures 7" for the Curie and LAB depth and the surface and the thermal diffusivity x = 1.5- 1076 m?s~!

(Beardsmore and Cull, 2001). Despite the different approach we find a high correlation between the half space cooling approach
and the 1D stationary HF approach for shallow Curie depths.

(b) For Greenland, we change the prior of the crustal thermal conductivity to given values from the Colgan et al. (2022) database
and calculate the Curie depths based on Eq. (B1). Due to a shift to lower Curie depths we get a low correlation. Probably the
shift comes from lower crustal thermal conductivities given in the database compared to the estimated ones.

(c) Crustal heat production can be assumed negligible for oceanic lithosphere (Beardsmore and Cull, 2001). Therefore, the prior
range for heat production is set to lower values (A* in Table B1) and the Curie depth is calculated with Eq. (B1). Changing the

crustal heat production does not have a strong effect on the Curie depth.
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Figure C1. Kriging interpolation of the heat flow and observation distribution in Scandinavia.

(d) Last, we can adjust both the range for the crustal heat production and thermal conductivity. Based on the Colgan et al.
(2022) database the crustal thermal conductivity could be lower than initially assumed. The used values A* and k7 are displayed
in Table B1. Combining this with the assumption of lower crustal heat production within the oceanic crust, we calculate the
Curie depths (Eq. (B1)). We get a good correlation but a higher deviation for the Curie depths compared to the approach (c).
Based on the correlation of the Curie depths we can assume that our initial approach is appropriate for the analysis since it is
robust to changes in the parameter space. Even for the comparison for the oceanic crust we find somewhat high correlations

between the different approaches for shallow Curie depths.

Appendix C: Supplementary Material 3

Due to the geological similarity we take the length scales calculated from the semivariogram for the heat flow in Scandinavia
(Lucazeau, 2019). Here, we have a high data coverage so that estimates based on the semivariogram are appropriate (Fig. C1).
For Scandinavia we so calculate a length scale of 125 km.

Comparing the semivariograms (Fig. C2) we see that for Scandinavia we get a lot of points, especially on short distances, so
that the Gaussian variogram model can easily be fitted. For the semivariogram of Greenland we see that we generally get less
points to fit. A fit with the Gaussian variogram model is possible but there are large outliers up to a distance of 500 km so that

it is less appropriate to rely on this semivariogram for length scale estimates.
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Figure D1. Uncertainty maps of the Kriging interpolation (a) with and (b) without NGRIP.

Appendix D: Supplementary Material 4

Kriging provides the uncertainties for our interpolated heat flow map. For both regional heat flow maps the uncertainty maps
are shown in Figure D1. While excluding NGRIP (right) shows uncertainties between 29 and 35 mWm ™2, including NGRIP
(left) leads to lower uncertainties of 20 to 25 mWm~2 with higher uncertainties at north-east Greenland. Within both maps we

get edge effects.
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