Supplementary Materials

B)

C)

Figure S1: Average and extreme values of temperature (a), relative humidity (b) and pressure (c) data during the considered period.

Figure S2. Cluster mean of back-trajectories during the Saharan Dust event of 15-19 March.

Figure S3. Comparison of sodium, calcium and magnesium concentrations performed using ion chromatography with conductivity detector (IC-CD) and inductively coupled plasma sector field mass spectrometry (ICP-SFMS).

2021-2022

Figure S4. Comparison of non-sea salt sulfate (nss- $\mathrm{SO}_{4}{ }^{2-}$) and methansulfonic acid (MSA) during the entire sampling year at Col Margherita Observatory.

Figure S5. Annual trend of organic acids in the aerosol collected at MRG between August 2021 and July 2022

$1.0 \mathrm{E}+06$	
1.0E:02: Summer 21	L.OE+ 00 !:! $!$ Summer 21
$1.05-04$ - ${ }^{\text {a }}$	${ }_{1.0 \mathrm{E}-02}$ - Summer 21
$1.0 \mathrm{EF}+06$.05+ 12
1.05-04	${ }^{1.05+10}$ [00
$1.0 \mathrm{E} \cdot 02$ 	${ }_{1.0060}^{1.01006}$
${ }_{1.05-02}$ ••• - . -	${ }_{1.0 E+20}^{1.0 E+1!}$!
$1.0 \mathrm{E}-04 \mathrm{C}$	
$1.05+06$.05+ 12
$104-\ldots .0{ }^{\text {a }}$	$1.05+100$ eill
	1.0 EI 04
$1.0 \mathrm{E} \cdot 02 \mathrm{I}$	
1.0r-04 \longrightarrow Winter 21/22	${ }_{1}$
1.0106	$1.05 \cdot+12$
1.0E+04	(105
1.05+02	
	${ }_{1.05 E+02}^{1.0 E+04} 11!11$
$1.00-020$	$1.06+00$ O 0
1.0E:04 Spring 22	
1.0196	1.0E+ 12
$1.05+04$	
$1.05-122$!	
- Summer 22	1.0 E -02 . Summer 22

Figure S6. (a) EFs: enrichment factors calculated using Al as reference element. (b) MEFs: marine enrichment factors calculated using ssCa as reference element.

Figure S7. Comparison between measured and modelled concentrations obtained with PMF approach. In the box inside, the outlier point of Saharan Dust was excluded to evaluate the quality of reconstruction without the artifact due to the outlier point.

10-14 August

27-31 August

8-12 September

20-24 September

14-18 August

12-16 September

24-28 September

18-22 August

4-8 September

16-20 September

11-15 Febraury

23-27 Febraury

20-24 January

3-7 Febraury

15-19 Febraury

27 Febraury - 3 March

26-30 January

7-11 Febraury

19-23 Febraury

3-7 March

Figure S8. 5-days back-trajectories of air masses calculated for each sample. The starting point is considered the elevation of Col Margherita Station plus 1000 m in to avoid the surrounding orography.

Table S1. Linearity of each species plotted the observed data with the modelled ones.

Species	Intercept	Slope	R^{2}
PM_{10}	533.497	0.757	0.961
Na^{+}	-3.036	0.802	0.440
Na	-40.600	1.666	0.921
NH_{4}^{+}	42.962	0.502	0.700
K^{+}	1.018	0.688	0.615
Mg^{2+}	-2.301	1.095	0.566
Mg	31.087	0.480	0.984
Ca^{2+}	-13.345	0.838	0.854
Cl^{-}	2.757	0.386	0.780
$\mathrm{NO}_{3}{ }^{-}$	65.848	0.179	0.290
$\mathrm{SO}_{4}{ }^{2-}$	116.850	0.538	0.508
MSA ${ }^{-}$	0.315	0.852	0.845
Br^{-}	0.370	0.511	0.446
CA	11.724	0.373	0.596
D-FAA	0.148	0.501	0.655
L-FAA	0.368	0.647	0.594
PC	0.086	0.053	0.171
$\mathrm{PD} \alpha \mathrm{P}$	2.571	0.201	0.073
Levoglucosan	0.703	0.082	0.290
Mannitol	0.137	0.430	0.505
Glucose	0.263	0.459	0.560
Ti	4.832	0.347	0.988
Mn	0.938	0.624	0.992
Mo	1.670	0.076	0.054
Cu	-1.991	1.648	0.388
Pb	-0.287	1.018	0.581
V	0.125	0.477	0.992
U	0.012	0.398	0.425
Ag	0.047	-0.011	0.004
Sb	0.018	0.151	0.299
Fe	56.711	0.407	0.989
La	0.042	0.460	0.990
Ce	0.087	0.448	0.989
Sm	0.007	0.597	0.991
Eu	0.002	0.443	0.983
Ho	-0.0003	0.662	0.951
Yb	0.003	0.462	0.971

