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Abstract. Estimation of flood quantiles at ungauged basins is often achieved through regression based methods. In situations

where flood retention is important, e.g. floodplain management and reservoir design, flood quantile estimates are often needed

at multiple durations. This poses a problem for regression-based models as the form of the functional relationship between

catchment descriptors and the response may not be constant across different durations. A particular type of regression model

that is well-suited to this situation is a generalized additive model (GAM), which allows for flexible, semi-parametric modeling5

and visualization of the relationship between predictors and the response. However, in practice, selecting predictors for such a

flexible model can be challenging, particularly given the characteristics of available catchment descriptor datasets. We employ

a machine learning-based variable pre-selection tool which, when combined with domain knowledge, enhances the practicality

of constructing GAMs. In this study, we develop a GAM for index (median) flood estimation with the primary objective of

investigating duration-specific differences in how catchment descriptors influence the median flood. As the accuracy of this10

explainable approach is dependent on the fitted GAM being adequate, the secondary objective of our study is prediction of the

median flood at ungauged locations and multiple durations, where predictive performance and reliability at ungauged locations

are used as proxies for adequacy of the GAM. Predictive performance of the GAM is compared to two benchmark models:

the existing log-linear model for median flood estimation in Norway and a fully data-driven machine learning model (an ex-

treme gradient boosting tree ensemble, XGBoost). We find that the predictive accuracy and reliability of the GAM matched or15

exceeded that of the benchmark models at both durations studied. Within the predictor set selected for this study, we observe

duration-specific differences in the relationship between the median flood and the two catchment descriptors effective lake

percentage and catchment shape. Ignoring these differences results in a statistically significant decline in predictive perfor-

mance. This suggests that models developed and estimated for prediction of the index flood at one duration may have reduced

performance when applied directly to situations outside of that specific duration.20
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1 Introduction

Estimating flood quantiles in ungauged catchments is a frequent challenge in hydrology and is crucial to many tasks related

to design of infrastructure, emergency and land use planning. A common method for flood quantile estimation at ungauged

catchments is regional flood frequency analysis (RFFA), which uses catchment characteristics–that is, descriptors of the phys-

ical properties of the catchment such as, for example, area, lake percentage, average elevation and total river length–as well25

as climate characteristics like precipitation and temperature to infer flood quantiles at a specified ungauged location. Often

this inference is based on the concept that spatial variations in flood statistics are closely linked with regional catchment and

climate characteristics and is achieved through regression based methods (Robson and Reed, 1999).

This study focuses on constructing regression models for the median annual maximum (index) flood at multiple flood dura-

tions. Regression models on flood quantiles are typically constructed for a single flood duration. However, for many hydrologic30

applications where flood retention is important, e.g. floodplain management and reservoir design, flood quantile estimates for

different durations are needed. Regression models used for index flood estimation are typically parametric regression models

(e.g. linear, log-linear, nonlinear, or generalized linear models). These models rely on a parametric description of what is called

the functional form between predictors and response. That is, we assume the relationship between the median flood and the

mean temperature in February, for example, is completely described by the functional form x2. In this situation, we would35

need to estimate a regression coefficient—that is, we would need to estimate the magnitude and direction of this functional

form—but the underlying relationship will always be described by the square function. Parametric models are easy to interpret

and estimate and therefore widely used. However, in the situation where index flood estimates at multiple durations are needed,

use of the same parametric model at each duration assumes that, although the magnitude and direction of the functional form

may change when regression coefficients are re-estimated or scaled for different durations, the relationship between catchment40

descriptors and the index flood will always be described by the same functional form regardless of the duration being consid-

ered. This is a common assumption among models that seek to provide index flood estimates at different durations, for example

regional flood-duration-frequency (QDF) models as in Javelle et al. (2002). Here the regional QDF model is an extension of

the standard index flood approach and includes an additional “characteristic duration” parameter that acts as a scaling factor on

the coefficients of a parametric index flood regression model. This helps enforce consistency between flood quantile estimates45

at different durations; however, the underlying assumption is not investigated.

Overall, there is a gap in regional flood frequency analysis when it comes to assessing regression models for flood quan-

tiles at multiple durations, especially considering the possibility that the functional form describing the relationships between

catchment descriptors and flood quantiles may not remain constant across durations. In this study we address duration-specific

differences in regional index flood estimation for applications where the total volume of water is of interest. We consider two50

different flood durations: 1 and 24 hours. The focus on flood-retention specific applications means the durations in this study

represent the total flow volume over 1 and 24 hours, not flood events that lasted for precisely 1 or 24 hours. Annual max-

ima corresponding to the these durations are generated by sampling from the discharge series averaged over the desired time

window.
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The underlying relationship between flood quantiles and catchment descriptors is likely to be nonlinear (Pandey and Nguyen,55

1999; Tarquis et al., 2011) as the underlying hydrological processes are non-linear in nature (Durocher et al., 2015). Some

reasons for the non-linear nature are that the runoff response to rain and snow melt is non-linear (Gioia et al., 2012), snow

melt processes are non-linear, and the key flood generating processes might depend on events as well as catchments. The

classic way of handling this nonlinearity is to transform the predictors such that they have a linear relationship with flood

quantile and fit a linear or log-linear regression model. This is the approach used in the current regional median flood model60

for Norway (Engeland et al., 2020). In this approach, much of the work in defining an appropriate model lies in finding the

suitable polynomial terms and transformations of predictors to enhance the fit of the linear relationship. This can be a laborious

and inaccurate process. In situations where model interpretation and uncertainty analysis are priorities, an appealing alternative

to linear or log-linear models are generalized additive models (GAMs).

GAMs are semi-parametric extensions of the linear regression model that can account for nonlinear relationships between65

predictors and response. GAMs are often referred to as “data-driven”, meaning the data determine the form of the relationship

between the response and the predictors rather than assuming some form of parametric relationship, e.g. transformation of

predictors. The main use case of GAMs lies in applications where a nonlinear relationship between the predictor and response

needs to be defined or established; however, if the relationship is linear, the smooth function that defines the relationship

between predictor and response will recover the linear relationship. This offers a potential simplification of the modeling70

process as we no longer need to identify appropriate predictor transformations. Furthermore, the fact we no longer have to

specify a functional form of the predictor-response relationship has potential to generate relationships that better represent the

underlying data. This allows for statistical analyses that focus on identification and description of the data-driven relationships

between predictor and response. These descriptive statistical analyses are a valuable tool for addressing model assumptions.

Additionally, the relationships identified can in some cases increase our understanding of hydrologic systems, although the75

reality of the functional relationships should always be established by theory or process-based models outside of the statistical

analysis.

Recent years have seen increasing use of GAMs in hydrology, often in situations where the relationship between predictor

and response variables is complex and nonlinear, but the available data limits the application of full-scale machine learning

models. In many cases the uncertainty and reliability assessments offered by GAMs are important. Some examples using GAMs80

include reconstruction of reservoir operation signals (Brunner and Naveau, 2023), forecasting spring flood peaks (Dubos et al.,

2022), predicting decadal statistics of daily streamflows (Crowley-Ornelas et al., 2023), and forecasting drought conditions

(Mathivha et al., 2020). Specific application of GAMs for estimation of flood quantiles is generally first attributed to Chebana

et al. (2014). Here GAMs were used to estimate the quantiles corresponding to the 10, 50 and 100 year return periods and

the models were compared to log-linear models on a variety of different regional groupings. The GAMs were found to have85

improved predictive performance and the flexibility of the GAMs reduced the need to split into hydrologically homogenous

regions. Other examples of GAMs used for flood quantile regression are the comparative studies of Msilini et al. (2022)

and Rahman et al. (2018), which compared GAMs to traditional log-linear regression approaches, among others. Rahman

et al. (2018), in line with Chebana et al. (2014), found that GAMs typically outperformed log-linear models, even without
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constraining the GAM to hydrologically similar neighborhoods or regions of influence. In an application that looked at quantile-90

specific performance differences, Noor et al. (2022) compared a GAM to a linear quantile regression technique and found the

GAM resulted in improved performance, but only on quantiles associated with small return periods of up to ten years.

Since GAMs are so flexible, selection of the most relevant predictors must be undertaken carefully to avoid overfitting and

obtain robust predictive models. The natural approach to variable selection within GAMs are the shrinkage-based methods

developed by Marra and Wood (2011). These methods involve shrinking the smooth function estimates of the GAM towards95

zero, such that the relative contribution of each parameter reflects its importance. This approach offers the benefits of subset

selection while allowing variable selection to be accomplished in a single step, and is particularly appealing as it allows

for variable selection uncertainty to be included in the final model. However, the usefulness of these shrinkage methods is

limited to relatively small sets of uncorrelated variables. This is problematic for our application as typical hydrologic data

sets used in regional analyses contain a large number of candidate variables, many of which are highly correlated. For these100

reasons, current applications of GAMs to flood quantiles commonly rely on backwards stepwise selection (Chebana et al.,

2014; Rahman et al., 2018; Noor et al., 2022; Msilini et al., 2022) sometimes coupled with a pre-selection step as in Dubos

et al. (2022). Backward selection approach used for GAMs has the potential to select appropriate covariates at the same rate as

shrinkage approaches, but only when the information content of the data is high (Marra and Wood, 2011). Stepwise procedures

are also prone to well-known problems–namely inconsistency in the selected variable sets and inability to account for variable105

selection uncertainty–most of which were the motivators for developing the theory around shrinkage estimators for GAMs

(Marra and Wood, 2011).

In scenarios where limited information is available for informed predictor variable choice, an idea to increase the practicality

of using shrinkage estimators is to use a machine learning model to aid in selection of a small, nonredundant set of predictors

that can then be validated with shrinkage based methods in GAMs. Guisan et al. (2002) highlights the potential of machine110

learning techniques to complement GAMs by uncovering nonlinear, and possibly previously unknown, relationships between

predictors and the response variable. In this complementary approach, the machine learning model is a practical tool used in

conjunction with expert judgement to aid in initial predictor variable selection. Use of this “tool” occurs prior to the construc-

tion of the GAM and can be fully replaced with expert judgement in situations where the potential set of appropriate predictors

is well-defined. There exist a wide variety of machine learning-based algorithms for predictor selection; for the classic intro-115

duction to the different models and taxonomies available see Guyon and Elisseeff (2003). We chose the tree-based Iterative

Input Selection algorithm (IIS) presented in Galelli and Castelletti (2013) and applied in, for example, Prasad et al. (2017),

He et al. (2022) and Pesantez et al. (2020). The algorithm was developed for application to hydrology, contains routines for

selecting nonredundant predictors, and provides an accessible way to limit variable interactions. This last point in particular is

important to our application as variable interactions are not considered in the GAM presented here.120

This study develops a GAM for estimation of the median annual maximum flood. The primary objective of our study is

detection and description of the functional relationships between the median flood and catchment covariates at both the 1 hour

and 24 hour durations. Here we assume that, while the relationship between the covariates and the median flood may vary

with duration, the covariates themselves remain constant across different durations. The accuracy of this explainable approach
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is dependent on the fitted GAM being adequate. Thus the secondary objective of our study is prediction of the median flood125

at ungauged locations, where predictive performance and reliability at ungauged locations are used as proxies for adequacy

of the GAM. We use two benchmark models to establish predictive performance. These are the existing log-linear model

for median flood estimation in Norway and a gradient-boosted tree ensemble (XGBoost). XGBoost has established use in

hydrology (Zounemat-Kermani et al., 2021) and is applied in, for example, Laimighofer et al. (2022a) and Ni et al. (2020). As

part of what distinguishes the GAM from the log-linear model is the flexible, data-driven nature of the response relationship,130

it is useful to have a comparison point from a fully data-driven model such as XGBoost. The following research questions will

be addressed: (i) Can the GAM achieve comparable or improved performance compared to the benchmark models on the 1

hour and/or the 24 hour duration? (ii) Can we identify and describe duration-specific differences in how catchment covariates

influence the median flood? How impactful are these differences? (i.e. if we ignore them, what is the impact on predictive

performance?). Our analysis will be performed on annual maximum data since flood guidelines in Norway pertain to annual135

maximum values.

The remainder of the paper is organized as follows: section 2 introduces the flood data and catchment descriptors. Section

3 presents an outline of the study design. Section 4 presents the GAM used in this study and summarizes the chosen predictor

selection approach. This section also summarizes the two reference models and the evaluation methods used to assess all

models in the study. The results section 5 presents the predictive performance and model reliability results as well as the140

functional relationships identified by the GAM. The paper finishes with a discussion (section 6) and conclusions (section 7).

2 Data

Flood data from 232 gauging stations across Norway were used in this study (Fig. 1). The stations exhibit a diversity of hydro-

climatic regimes relative to Nordic catchments. The spatial distribution of temperature and precipitation regimes in Nordic

countries is primarily influenced by climatological gradients associated with latitude, topography, and proximity to the coastal145

zone; the diverse topography and wide range of latitudes in Norway make it a suitable location for regionalization studies in

the Nordic region.

In Norway the two major flood generating processes are snowmelt and rainfall. The regional importance of snowmelt as a

runoff generating process varies greatly due to differences in the temperature regime, snowpack volumes and the snow season

across the country. Inland and northern regions are those primarily driven by snowmelt and experience prominent high flows150

during spring and summer, while western and coastal regions are primarily driven by rainfall and experience high flows during

autumn and winter. However, local climate and mixed or transitional flood regimes mean these regional patterns exhibit great

variability, and seasonal patterns are not very distinct in rainfall-driven catchments (Vormoor et al., 2016).

The observed streamflow time series were obtained from the national hydrological database Hydra II hosted by the Nor-

wegian Water Resources and Energy Directorate (NVE). The streamflow records have at least 20 years of quality controlled155

data for periods with minimal influence from river regulations and a sufficient quality for high streamflows; see Engeland et al.

(2016) for details.
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Figure 1. Panel (a) shows average rainfall totals (mm) for the entire year from the period 1991-2020. Panel (b) shows locations of the 232

gauging stations used in this study, where catchment area and average fraction of rain contribution to flood are indicated by size and color,

respectively. Panel (c) shows average temperature (◦C) for the entire year from the period 1991-2020.

The flood data used in this study is the median annual maximum flood [l/s/km2] at each station. We used both the 1-hour and

24-hour median annual maximum flood. The data at different durations were constructed via an aggregation-based approach,

where the durations represent the total volume of water that arrives over a time span of 1 and 24 hours, not flood events that160

lasted precisely 1 or 24 hours. This approach is used in, for example, Breinl et al. (2021) and Barna et al. (2023). For each

station, even spacing in the streamflow time series was enforced via regular sampling of a linear interpolation of the observed

data. A moving average with a window length of either 1 or 24 hours was then applied to the evenly spaced streamflow time

series. From the smoothed time series, annual maxima were extracted to create separate sets of maxima for the 1-hour and 24-

hour durations. We then computed the median of these sets of maxima to get the 1-hour and 24-hour median annual maximum165

flood at each of the 232 stations.

2.1 Data quality control

Given the focus on sub-daily floods, it is necessary to make sure that the sampling frequency of the data is high enough

to represent peak flood magnitudes with sufficient quality. Each of the streamflow records contains a variety of collection

methods. These differing collection methods provide data at different frequencies. Generally, the earlier part of the streamflow170

record has daily time resolution, while the later part of the record contains a higher frequency of measurements after adoption

of digitized limnigraph records and/or digital measurements. For our dataset, the shift to a higher frequency of measurements

is typically around 1980, and stations have, on average, 27 years of high frequency data. The time resolution of the digital

measurements and the digitization of the limnigraph records were selected by NVE to be frequent enough to represent flood

peaks at individual stations. Total record lengths in our data set range from a minimum of 20 years of data to 129 years at175

station 62.5 (Bulken); the distribution of total record lengths is plotted in Fig. 2.
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The median annual maximum flood at both the 1- and 24-hour durations is computed over the total number of years of

data available at each station. This means that for certain stations, especially those with longer record lengths, the median is

constructed from annual maxima derived from streamflow time series at a combination of different resolutions. Thus it is of

interest to know what percentage of the record is comprised of subdaily data. We calculate the number of years of subdaily180

data for each station as all years that have at least 200 days of subdaily data. Figure 2 shows the distribution of the subdaily

record percentage in our dataset. Around 100 stations have subdaily data percentages over 90 %. The other stations have

percentages of subdaily data that range from 20 % to 90 %. Any station that has less than half of its record made up of subdaily

data was manually validated to ensure that the sampling frequency adequately captured flood peaks at those locations. The

stations showing a low percentage of subdaily data are characterized by having a long total record length compared to the185

subdaily record length, i.e. in these cases, the amount of subdaily data is not below average; rather, the overall record length

is extensive. There was no correlation between model performance at the 1-hour duration and either total record length or

percentage of the record that was subdaily data for each of the model evaluation metrics used in this study (results not shown).
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Figure 2. Histograms for record length (years) and percent of the record that is subdaily data. Only years that had at least 200 days of subdaily

data count towards the subdaily data total when calculating the record percentage. Stations with less than 50 % of the record comprised of

subdaily data were manually validated to make sure the sampling frequency of the data was high enough to represent flood peaks at that

location.

In addition to quality control on the sampling frequency, the data have undergone a detailed quality control by the hydromet-

ric section at NVE. Ice jams pose a challenge at numerous stations in Norway and can affect the accuracy of the rating curves190

used to estimate streamflows from water level measurements. In such cases, specific correction procedures outlined in NVE’s

internal quality assurance protocols have been implemented to obtain accurate discharge values. Any year with less than 300

days of data was excluded from the analysis.
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2.2 Catchment descriptors

In addition to streamflow, we derived a set of geographical and hydro-climatic catchment descriptors for each catchment. Table195

1 lists the 76 total catchment descriptors. The geographical descriptors include size and shape of the catchments, length of

the river networks, land use properties and elevation distributions. The hydro-climatic descriptors include mean annual and

monthly runoff, precipitation, temperature and sum of rain and snow melt. Note that all the hydro-climatic descriptors were

based on interpolated observations given by the SeNorge 2.0 dataset (Lussana et al., 2019). Rain was defined as precipitation

when the temperature is above 0 ◦C. Snow melt was extracted from the SeNorge snow model (Saloranta, 2014).200

For this study, we determined the average contribution of rainfall to floods at each catchment by calculating the ratio of

rainfall to the total water depth, where the total water depth includes both rainfall and snowmelt accumulated within a specific

time period prior to each flood. These ratios were then averaged across all flood events for the catchment. For details see

Engeland et al. (2020).

The catchment areas vary from 0.52 km2 to 6182 km2, with a median size of 124 km2. Roughly half (53 %) of the catchments205

have more than 1 % of their area covered by lakes; of these catchments, the median effective lake percentage is 2.8 %. Mean

annual precipitation ranges from 390 mm to 3196 mm, displaying a notable east-west gradient across the country, with higher

precipitation levels along the west coast. The mean annual temperature ranges from -4.0 ◦C to 7.2 ◦C, with a median of 0.15
◦C. Temperature is influenced by both elevation and latitude; temperature decreases as elevation and latitude increase. The

minimum altitude of the catchments spans from sea level to 1104 m.a.s.l., while the catchment relief varies from 54 m to 2019210

m. Catchments with greater relief are typically located in the mountain ranges along the west coast, which exhibits more rugged

topography than the flatter regions of the country in the east.

3 Study design

A flowchart of the study design is displayed in Fig. 3. Panel (a) details the process of predictor selection for the GAM developed

in this study (floodGAM). The predictor selection process is divided into two parts. The first part (Part I, predictor pre-selection)215

is complementary to, but not necessary for, the second part. We detail our approach to predictor pre-selection in section 4.1,

and note that other variable selection techniques or expert judgement could replace our approach detailed in this section.

Part II, selection of predictors for floodGAM, is described in section 4.2. Panel (b) details the validation and visualization

process for floodGAM. In the validation step, floodGAM is compared to the two benchmark models, RFFA_2018 (the existing

log-linear model for median flood estimation in Norway) and XGBoost. The benchmark models are summarized in section220

4.4. We assess the performance of the models through a cross-validation study, such that predictive accuracy and reliability are

assessed through the consistency between predictions and holdout data. Predictive performance for floodGAM and RFFA_2018

is assessed on five evaluation metrics (section 4.5). XGBoost provides a supplementary benchmark value for the mean absolute

error (MAE); due to distributional assumptions, we cannot obtain optimal predictors for XGBoost for the other four evaluation

metrics. Reliability is assessed through the probability integral transform (PIT) which is also only available for RFFA_2018 and225

floodGAM. Predictive performance results are reported in section 5.1. Relibability results are reported in section 5.2. Finally,
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Table 1. Descriptions of the 76 catchment descriptors used in the study, grouped into geographical and hydro-climatic descriptors. Abbrevi-

ations are further used in the text and figures.

Variable Description Unit

A Logarithm of catchment area km2

O Catchment circumference m

AP Catchment area / circumference * 1000 km

D, Dnet Drainage density (total river length / area), (total river length excluding lakes / area) -

CL Logarithm of catchment length km

RL Length of main river km

RTL, RL Total river length, and total river length excluding lakes km

RG, RG1085 Gradient of main river, and gradient of main river excluding the 10 % lowest and 15 % highest reaches m/km

H10, H50, H90,

HMAX , HMIN

The 10th, 50th, and 90th percentile of the hypsographic curve,

maximum elevation, minimum elevation
m.a.s.l.

HF Catchment relief (maximum elevation - minimum elevation) m

CS Mean slope ◦

AGlac, AAgr , ABog , AU ,

AL, ALE , AFor , AMount

Percentage of catchment covered by glaciers, agriculture, bogs, urban areas,

lakes, effective lake percentage, forests, mountains
%

QN Mean annual runoff 1961-1990 l/s/km2

PJan, PFeb, PMar , PApr , PMai, PJun,

PJul, PAug , PSep, POct, PNov , PDec

Mean precipitation from 1961-1990 in January, February, March, April, May, June,

July, August, September, October, November, December
mm/month

PN Mean annual precipitation 1961-1990 mm/year

PMed1Max, PMed2Max, PMed3Max, PMed4Max, PMed5Max Median of annual 1-, 2-, 3-, 4-, and 5-day precipitation mm/day

TJan, TFeb, TMar , TApr , TMai, TJun,

TJul, TAug , TSep, TOct, TNov , TDec

Mean temperature from 1961-1990 in January, February, March, April, May, June,

July, August, September, October, November, December
◦C

TN Mean annual temperature 1961-1990 ◦C

WJan, WFeb, WMar , WApr , WMai, WJun,

WJul, WAug , WSep, WOct, WNov , WDec

Mean sum of rainfall and snowmelt from 1961-1990 in January, February, March, April, May, June,

July, August, September, October, November, December
mm/month

WN Mean annual sum of rainfall and snowmelt 1961-1990 mm/year

WMed1Max, WMed2Max, WMed3Max, WMed4Max, WMed5Max Median of annual 1-, 2-, 3-, 4-, and 5-day rainfall and snowmelt mm/day

section 5.3 presents the visualization and comparison of the data-driven relationships between predictors and the response

identified by floodGAM across different durations.

4 Methods

4.1 Machine learning based pre-selection230

The variable selection algorithm used is the Iterative Input Selection (IIS) algorithm proposed in Galelli and Castelletti (2013).

The IIS algorithm selects a non-redundant set of variables using a ranking procedure and a stepwise forward selection process.

Candidate variables are ranked using an input ranking algorithm, and the top-ranked variables are evaluated by adding them

to the selected variable set and measuring prediction accuracy on a chosen model. This process is repeated with residuals as

the new response variable until the best variable is already in the set or the model’s performance does not improve. These235

two criteria—checking for repeated selection of variables or requiring improvement of predictive performance above a certain
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Figure 3. Flowchart of the study design. Panel (a) details the process of predictor selection for the GAM developed in this study. Panel (b)

details the model validation and visualization process.

threshold—constitute an automatic stopping condition for the algorithm. The algorithm in full can be found in Galelli and

Castelletti (2013).
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IIS requires the choice of (i) an input ranking algorithm and (ii) a model to evaluate the predictive performance of the

chosen subset of candidate variables. A tree-based ensemble is an effective choice for both (i) and (ii) since the ensemble240

can be directly exploited as an input-ranking procedure; the particular structure of tree-based ensembles can be used to infer

the relative importance of input variables and order them accordingly. However, in the context of our analysis, choosing a

tree-based ensemble for (ii) assumes that relationships generated by the tree-based ensemble are simple enough to be able to

be modeled by the GAM. To take this into account, the tree depth—an important parameter controlling the interaction depth

between input variables—is set to one, since we do not consider variable interactions in the GAM. We choose XGBoost as the245

tree-based ensemble within IIS in line with the recent work of Alsahaf et al. (2022). XGBoost is a popular open-source software

implementation of extreme gradient tree boosting (Chen et al., 2015; Chen and Guestrin, 2016), which was first proposed in

Friedman et al. (2000) and is a computationally efficient implementation of the gradient tree boosting from Friedman (2001).

Details of the algorithm set up and hyperparameter tuning for XGBoost can be found in Appendix C.

We run the IIS algorithm within a resampling method to assess consistency of the selected variable sets. This is important as250

there is no uncertainty associated with the XGBoost output or the selected variable sets from IIS. For the resampling step in this

study, we choose to systematically resample without replacement, splitting our data into ten non-overlapping folds; however,

we note that other resampling methods, such as bootstrap, could also be used as the resampling step. This repeated application

of IIS to subsampled data means each application of the algorithm could potentially select a different variable set, where both

the chosen variables and the total number of variables are allowed to vary. A visual explanation of the IIS algorithm within255

the resampling method can be found in Appendix C. The procedure is repeated once for the 1 hour duration and once for the

24 hour duration such that we can assess the consistence of selected variables across durations as well as across data folds. In

total, the IIS algorithm is applied to 10 subsampled data sets × 2 durations for a total of 20 applications. The consistency of

the selected variable sets is assessed across these 20 applications.

The IIS algorithm was run with all 76 catchment descriptors as input. Of those 76 variables, 34 were selected by at least one260

of the folds and 7 were selected by at least five folds. The subset of variables that appeared most consistently, i.e. those that

were selected in at least five of the folds, is depicted in Fig. 4. The complete set of variables identified by IIS can be found in

Appendix C. In Fig. 4, the horizontal axis represents the number of times a variable was chosen within the resampling scheme,

out of a maximum possible of 10 (once for each fold). The color of the grid cells represents the order of variable selection

within the IIS algorithm. Variables selected first tend to be those that are most informative. For example, the predictor variable265

QN (mean annual runoff from 1961-1990 [l/s/km2]) consistently emerges as the most important variable across all folds and

durations: every fold of subsampled data chooses QN as the first predictor. Both consistency of inclusion and order of variable

selection can be considered when choosing which predictors to carry forward for more formal variable selection within the

model architecture of the GAM.

The catchment descriptors that were most consistently selected include QN , ALE , and AP . The catchment descriptor AL,270

which is highly correlated to ALE , is also included for a minority of folds, but its inconsistent inclusion sets it apart from

ALE . The other three less consistently selected predictors are HF , which describes the difference in elevation from the highest

to lowest point [m]; RG1085, which describes the gradient of main river excluding the 10 % lowest- and the 15 % highest
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Figure 4. Variables from the pre-selection scheme that appear in at least 5 of the folds. The horizontal axis represents the number of times

a variable was chosen. The vertical axis indicates the duration that generated the covariate set. The color indicates the order of variable

selection within the IIS algorithm. Variables selected first tend to be those that are most informative.

reaches [m/km]; and WApr, which describes the mean sum of rain and snow melt in April from 1961-1990 [mm/month]. The

two different durations generally selected the same predictors, particularly on those that were most consistently selected (QN ,275

ALE , and AP ). Duration specific differences beyond this should not be over interpreted given the variability in the full selected

set shown in Appendix C.

4.2 Predictor selection for floodGAM

The predictors chosen for floodGAM are identified in Table 2 and include four geographical catchment descriptors: (1) ALE -

effective lake percentage, (2) AP - the area of a catchment divided by its circumference, (3) RG1085 - the gradient of the main280

river excluding the 10 % lowest and 15 % highest reaches, (4) HF - the difference in catchment elevation from the highest to

lowest point, as well as three hydro-climatic catchment descriptors: (5) QN - the mean annual runoff, (6) WApr - the mean

sum of rainfall and snowmelt in April, and (7) PSep -the mean precipitation in September. These predictors were chosen using

the results from the IIS algorithm (Fig. 4) in combination with expert judgement. The climate descriptor PSep was not chosen

by IIS but was added because the autumn- and winter flood season–with mainly rainfall-driven floods–is important in Norway285

and PSep is a good representation of the autumn precipitation. The predictor RG1085 is heavily skewed; we found it useful to
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log transform that predictor for a more numerically stable estimation within floodGAM. All seven predictors were verified as

significant by shrinkage estimation within the implementation of floodGAM.

One of the benchmark models, RFFA_2018, is the log-linear model currently used by NVE to predict the median flood

(Engeland et al., 2020). The RFFA_2018 model was developed for 24 hour flood data. Table 2 displays the catchment descrip-290

tors, and their transformations, used in RFFA_2018 and floodGAM. Predictors and predictor transforms in RFFA_2018 were

chosen according to internal protocols at the Norwegian Water and Energy Directorate. The other benchmark model, XGBoost,

has access to all 76 catchment descriptors. Previous research (Alsahaf et al., 2022) observed improved predictive performance

with XGBoost models when employing IIS-based pre-selection; however, our analysis found that pre-selection applied to the

XGBoost models in this study did not alter the statistical significance of the results. For simplicity, all reported intervals and295

evaluation metrics pertain to the XGBoost model applied to the full catchment descriptor set.

Table 2. Descriptions of predictors used in the models floodGAM and RFFA_2018, structured into geographical (top) and hydro-climatic

(bottom) catchment descriptors. Abbreviations are further used in figures. Inclusion of predictor variables is indicated for each model, and

variable transformations are listed in their respective rows.

Variable Description floodGAM RFFA_2018

RL Length of main river [km] sqrt(x)

ALE Effective lake percentages [ %] x x

AP Catchment area / circumference * 1000 [km] x

RG1085 Gradient of main river excluding the 10 % lowest- and the 15 % highest reaches [m/km] log(x)

HF Maximum elevation - minimum elevation [m] x

QN Mean annual runoff 1961-1990 [l/s/km2] x x1/3

TFeb Mean temperature February 1961-1990 [◦C] x2

TMar Mean temperature March 1961-1990 [◦C] x3

WMai Mean sum of rain and snow melt May 1961-1990 [mm/month] sqrt(x)

WApr Mean sum of rain and snow melt April 1961-1990 [mm/month] x

PSep Mean precipitation September 1961-1990 [mm/month] x

4.3 Generalized Additive Models

GAMs, introduced by Hastie and Tibshirani (1987), are a class of regression models that extend the linear regression model

to handle non-linear relationships between the predictor variables and the response variable. GAMs model the relationship

between the response variable and each predictor separately by assuming a smooth, continuous, non-parameteric function of300

each predictor. These functions are then combined additively to obtain the overall prediction. This allows for a wide range

of predictor-response relationships to be captured without specifying a prior functional form. Furthermore, these predictor-

response relationships are easily visualized by plotting the partial response curve for each predictor.
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Let y be a vector of our response variable (the median flood at location i) with index i ∈ [1, . . . ,n] referring to the ith

element. Then the GAM relates the mean response for observation i to the sum of smooth functions of p explanatory variables305

xi1, . . . ,xip as follows:

g (E[yi]) = α +
p∑

j=1

sj (xij) (1)

where sj() is the smooth function of predictor xij , α is the intercept and g() is a monotonically differentiable link function.

The smooth function sj() is defined by a linear combination of basis functions, allowing the relationship between xij and

response yi to be non-parametrically modeled. Because this non-parametric construction is so flexible, selecting the appropriate310

level of ‘smoothness’ for each predictor is an important component of GAM construction. In practice, this is often done by

limiting the effective degrees of freedom. We used a thin plate spline basis with effective degrees of freedom limited between

6 and 3 for our chosen predictors.

While the form of the predictor-response relationship can be modeled non-parametrically, the probability distribution of the

response variable in the GAM must still be specified. We chose to model the data as normally distributed with a log link, in315

line with standard practices in hydrology that model flood volumes and flood peak discharges as log normal (Stedinger, 1980).

We used the ‘mgcv’ package in the R statistical software (Wood, 2017) to implement the GAMs. The mgcv package contains

a convenient variable selection method based on null-space penalization, which allows smooth functions associated with a

particular predictor to be penalized to the zero function and thereby selected out of the model if the predictor is nonimportant

(Marra and Wood, 2011). This capability is accessed by setting the select argument of the gam() function to ‘True’. We set320

select = T and use restricted maximum likelihood (‘REML’) as the estimation method for each of the GAMs in this study.

4.4 Benchmark models

4.4.1 RFFA_2018

The existing model for index flood estimation in Norway (RFFA_2018) is the log-linear model presented in Engeland et al.

(2020). Let y be a vector of our response variable with index i ∈ [1, . . . ,n] referring to the ith element. Let X be our predictor325

matrix with n×p elements, where p is the number of predictor variables. Furthermore, since we wish to evaluate the predictor-

response relationship on the log scale, let zi = log(yi). Then the regression equation is given as

zi = α +
p∑

j=1

βjxij + ϵ, (2)

where α and βj are the parameters to be estimated and ϵ is the error term that is assumed normally distributed N(0,σ2). The

mgcv package provides routines to fit log-linear models as well as GAMs and was used to estimate RFFA_2018 in this study.330
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4.4.2 XGBoost

XGBoost is a popular open-source software implementation of extreme gradient tree boosting (Chen et al., 2015; Chen and

Guestrin, 2016), which was first proposed in Friedman et al. (2000) and is a computationally efficient implementation of the

gradient tree boosting from Friedman (2001).

Gradient tree boosting is a machine learning technique that involves training an ensemble of decision trees sequentially, with335

each subsequent tree aimed at reducing the residual errors of the previous tree. At each step, a gradient descent algorithm is

used to optimize a predefined loss function by adjusting the weights of the features in each tree.

Let y be a vector of our response variable with index i ∈ [1, . . . ,n] referring to the ith element. Let X be our predictor matrix

with n×p elements, where p is the number of predictor variables. Furthermore, since we wish to evaluate the predictor-response

relationship on the log scale, let zi = log(yi). Then the regression equation is given as340

ẑi =
K∑

k=1

fk (xi) , fk ∈ F , (3)

where fk, k ∈ [1, . . . ,K] is the ensemble of regression trees and K is the number of trees used. Here xi is the ith row of the

predictor matrix and F is the set of all possible classification and regression trees (e.g. CARTs; see XGBoost documentation).

Then the objective function to be minimized is given by

Lk =
n∑

i=1

L
(
zi, ẑ

k−1
i + ηfk(xi)

)
+ Ω(fk) (4)345

where Lk is the kth iteration loss, ẑk−1
i is the prediction at the previous iteration, η is a shrinkage parameter controlling the

learning rate, fk is the tree that provides the best improvement to the model as measured by the predefined loss function, and

Ω(fk) is a penalization parameter that controls the complexity of trees to avoid overfitting. Here we used the squared error loss

as the objective function:

L =
n∑

i=1

(zi− ẑi)
2
. (5)350

The following hyperparameters were tuned on the indicated ranges: tree depth (1-10); the percentage of observations subsam-

pled at each boosting step (0.1-1); the minimum number of instances needed in each node (1-5); and the shrinkage parameter

η (0.01-0.1). The number of boosting iterations was evaluated up to a maximum number of 999 iterations. Hyperparameter

tuning was conducted within a 10-fold cross-validation scheme using all possible parameter combinations and an early stop-

ping criterion for the number of boosting iterations, where the algorithm stopped after 25 rounds without improvement in the355

error rate. The ranges of the hyperparameters were chosen based on experience with the data set and recommended XGBoost

practices.

4.5 Evaluation methods

This section presents (i) the error metrics used to evaluate the predictive performance of the models, (ii) a computationally

efficient permutation test that allows us to assess the statistical significance of differences in error metrics between the models360
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(Thorarinsdottir et al., 2020) and (iii) the probability integral transform (PIT). The PIT is used to assess reliability of the

models as measured by the consistency between model predictions and validation data. We assess the performance of the

models through a cross-validation study, such that predictive accuracy and reliability are assessed through the consistency

between predictions and holdout data.

4.5.1 Error metrics365

We evaluate model performance using the root mean squared error (RMSE), the mean absolute error (MAE), the mean relative

error (MRE), the mean absolute percent error (MAPE) and the continuous ranked probability score (CRPS) (Gneiting and

Raftery, 2007; Hersbach, 2000). All of these metrics measure slightly different aspects of the predictive distribution. The

RMSE, MAE, and CRPS are expressed in the units of the response variable (l/s/km2) and give more weight to catchments with

higher discharge values. In our case, these metrics tend to prioritize minimizing errors in catchments located on the west coast370

of Norway, where the median flood values, given in [l/s/km2], are the highest. The proportional error metrics–the MAPE and

the MRE–avoid this issue of scale but are sensitive to highly over- or under-estimated values. Four of the metrics here (RMSE,

MAE, MRE, MAPE) assess the distance between an observed value and a single predicted value; that is, they are error metrics

for point forecasts. The CRPS measures the difference between the predicted and observed cumulative distributions (Hersbach,

2000) and thus provides a measure of how variable the predictions are in addition to assessing accuracy.375

Constructing a statistically meaningful model ranking from these error metrics requires that the predicted value from the

model minimizes the given error metric. For example, the root mean squared error (RMSE) is minimized when the predicted

value is chosen as the mean of the predictive distribution. If an alternative distributional feature, such as the median, is used

with the RMSE in the situation where the median and mean of the predictive distribution are not equivalent (e.g., when the

data are assumed log normal), any model rankings constructed from the resulting quantity will be unreliable.380

We list the optimal predictor (minimizing quantity) for each of the error metrics for point forecasts in Table 3. The MRE and

MAPE are minimized by the functionals given in Gneiting (2011); see Appendix A for calculation of the optimal predictors

here. Both floodGAM and RFFA_2018 are assessed on all five metrics. XGBoost is assessed only on the MAE; optimal

predictors for the other four error metrics are not accessible for XGBoost when the data are assumed log normal. Table 3

defines the metrics and reports the associated units. All metrics are negatively oriented, i.e. a smaller value indicates better385

predictive performance.

4.5.2 Permutation test

The permutation test, as defined in Thorarinsdottir et al. (2020), determines the difference in scores between two models, M1

and M2, by computing

c =
1
n

n∑

i=1

(ϕ(M1)−ϕ(M2)) (6)390

Here, n represents the total number of stations and ϕ(·) is a scoring measure (for example, the absolute error or the percent

absolute error). If c is negative, it indicates that model M1 performs better than model M2 in terms of the scoring measure,
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Table 3. Definitions of error metrics used in this study: root mean squared error, mean absolute error, mean relative error, mean absolute

percent error, and continuous ranked probability score. Here ŷi is the predicted value at station i, i ∈ [1, . . . ,n], yi is the observed value

at station i, and F is the cumulative distribution function of the predictive distribution with finite first moment. For the CRPS, H(ŷi− yi)

denotes the Heaviside function and takes the value 0 when ŷi < yi and the value 1 otherwise.

Error metric Optimal predictor Units

RMSE
√(

1
n

∑n
i=1(yi− ŷi)2

)
ŷi = mean(F ) l/s/km2

MAE 1
n

∑n
i=1 |yi− ŷi| ŷi = median(F ) l/s/km2

MAPE 1
n

∑n
i=1

∣∣∣ yi−ŷi
yi

∣∣∣ · 100 ŷi = med(−1)(F ) %

MRE 1
n

∑n
i=1

∣∣∣ yi−ŷi
ŷi

∣∣∣ · 100 ŷi = med(1)(F ) %

CRPS
∫∞
−∞ [F (ŷi)−H(ŷi− yi)]

2 dyi - l/s/km2

and vice versa. The permutation test creates resampled copies of c with randomly swapped models M1 and M2. Under the null

hypothesis that both models perform equally well, the set of permutations cannot be differentiated from c. The statistical test

formalizes this concept by determining which quantile c occupies in the set of permutations; if the p-value is less than 0.05,395

then it suggests that the performance of M1 is significantly better than M2.

4.5.3 Probability integral transform

Reliability describes the consistency between model predictions and validation data. A reliable model is expected to produce an

estimated distribution that closely aligns with the unknown true distribution of the data. This is typically assessed through the

probability integral transform (PIT); if the observations follow the estimated distribution, the PIT values will be approximately400

uniformly distributed (Dawid, 1984):

F̂ (yi) ∼̇ U ([0,1]) .

The uniformity of the PIT values is represented graphically through histograms. As the PIT requires the estimated cumulative

distribution of the predictive distribution, F̂ , the reliability assessment is not accessible for the XGBoost models in this study.

5 Results405

5.1 Predictive performance

We report the performance evaluation metrics for floodGAM, RFFA_2018, and XGBoost in Table 4. The best result is shown

in bold font. If floodGAM was statistically significantly better than RFFA_2018 at the α = 0.05 level on a particular metric and

duration, the significance is indicated with an asterisk. The predictive performance for floodGAM predicting across durations–
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that is, using floodGAM fit on the 24 hour data to predict at the 1 hour duration and vice versa–is shown and the duration used410

to fit the model is indicated in the model name (“floodGAM, 24 hours” and “floodGAM, 1 hour”).

On the 1 hour duration, floodGAM was statistically significantly better than RFFA_2018. There were no statistically signif-

icant differences between floodGAM and RFFA_2018 on the 24 hour duration, or between floodGAM and XGBoost on either

the 1 hour or 24 hour MAE. The floodGAM predicting across durations was not competitive and was statistically significantly

worse than the duration-specific floodGAM.415

Table 4. Model evaluation metrics–root mean squared error, (mean) continuous ranked probability score, mean absolute error, mean relative

error, mean absolute percent error–showing predictive performance for floodGAM and the benchmark models. The best result is shown in

bold font. If floodGAM was statistically significantly better at the α = 0.05 level than RFFA_2018 on a particular metric and duration, the

significance is indicated with an asterisk.

Duration Model type Name
Evaluation metric

RMSE [l/s/km2] CRPS [l/s/km2] MAE [l/s/km2] MRE [%] MAPE [%]

1 hour

GAM
floodGAM 122.2* 61.2* 84.9* 20.4* 20.5*

floodGAM, 24 hours 172.7 76.0 104.4 23.4 25.9

Log-linear RFFA_2018 137.7 69.5 97.0 25.3 24.2

ML XGBoost - - 89.9 - -

24 hours

GAM
floodGAM 84.1 42.7 59.5 17.0 17.5

floodGAM, 1 hour 157.3 72.2 102.3 22.8 20.4

Log-linear RFFA_2018 85.9 43.8 61.8 17.4 17.6

ML XGBoost - - 60.5 - -

To illustrate how floodGAM improves on RFFA_2018 at the 1 hour duration, we plot a model-by-model comparison of

the error at each station (Fig. 5). Here we show three different error metrics (absolute percent error, relative error and the

CRPS). Figures for other metrics, models and durations can be found in Appendix D. Points falling above the diagonal line

indicate stations where RFFA_2018 performed worse than floodGAM. Points falling below the diagonal line indicate stations

where floodGAM performed worse than RFFA_2018. Point size shows catchment area, point color indicates the fraction of420

rain contribution to flood.

Figure 5 shows that RFFA_2018 systematically underestimates the 1 hour median flood in large, snowmelt driven catchments

(Panel (a) of Fig. 5). The fact that these large, snowmelt driven catchments have relative errors that are greater than the absolute

percent error means that the observed values are higher than the predicted values: RFFA_2018 is underestimating at these

stations. This underestimation is not obvious when looking at the absolute percent error as the absolute percent error supports425

severe underestimation (Gneiting, 2011). The opposite effect–supporting severe overestimation–is true for the relative error.

In addition to improved performance in extreme cases, Fig. 5 shows that floodGAM has better performance in the bulk of the
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data; that is, there is a higher density of points above the diagonal. This is visualized through the kernel density estimation

underlaid on each panel (shaded areas in Fig. 5). Panel (b) shows the catchments with high CRPS values are typically rain-

driven catchments with small area and large discharge values.430

Absolute percent error |(x−y)/y| Relative error |(x−y)/x|

10% 50% 100% 250% 10% 50% 100% 250%

10%

50%

100%

250%

Proportional error metric

floodGAM (percent error)

R
F

FA
_2

01
8

(p
er

ce
nt

er
ro

r)

(a)
 

Continuous ranked probability score

100 200 300 400 500

100

200

300

400

500

floodGAM [l/s/km2]
R

F
FA

_2
01

8
[l/

s/
km

2]

(b)

0.2 0.5 0.8
Fraction of rain Catchment area [km2] 50 100 2000

Figure 5. Model to model comparison on absolute percent error, relative error, and the continuous ranked probability score for RFFA_2018

and floodGAM on the 1 hour duration. In the panel headers, x represents the predicted value and y the observed value. Points falling above

the diagonal line indicate stations where RFFA_2018 performed worse than floodGAM. Points falling below the diagonal line indicate

stations where floodGAM performed worse than RFFA_2018. The 2D kernel density estimation of point density is underlaid to aid visual

interpretation. Point size shows catchment area, point color indicates the fraction of rain contribution to flood.

5.2 Model reliability

We assess the reliability of the predictions for floodGAM and the existing model, RFFA_2018. Figure 6 shows histograms

for floodGAM and RFFA_2018 at both the 1 and 24 hour durations. Histograms for both models are roughly uniform but

show some evidence of bias: RFFA_2018 has an excess of values at high quantiles, while floodGAM has an excess of values

at low quantiles. The bias in RFFA_2018 shows a tendency to underestimate predicted values; this is consistent with results435

shown by the model evaluation metrics in Section 5.1, where the largest relative errors were caused by underestimations at

large, snowmelt driven catchments. From the PIT histogram we see that the bias in floodGAM, on the other hand, tends toward

overestimation, although the evaluation metric assessment in Fig. 5 shows none of the overestimations were as severe as the

underestimations provided by RFFA_2018.

Table 5 shows the empirical coverage of the associated central 50 %, 80 % and 90 % prediction intervals. The empirical440

coverage is given by the area under the relevant number of central bins in the histograms in Fig. 6; for example, the 50 %
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Figure 6. Visualizations of probability integral transform (PIT) values for floodGAM and RFFA_2018 at both the 1 and 24 hour durations. If

the unknown true distribution of the data is close to the estimated distribution from the models, the PIT values will be uniformly distributed.

This is assessed visually via histograms. Both distributions are roughly uniform but show some evidence of bias: RFFA_2018 shows an

excess of values at the high quantiles, meaning values tend to be underestimated by this model. The floodGAM model has an excess of

values at the low quantiles, indicating a tendency to overestimate.

empirical coverage is the total area under the central five bins in the PIT histogram. We replicate that information in numerical

form in Table 5 for easy model to model comparison. The average width of the empirical prediction intervals, in l/s/km2, is

also shown in Table 5. Wider prediction intervals indicate predictions that are less precise and therefore less informative.

Both models on both durations show empirical coverage probabilities that match the nominal coverage probabilities, reflect-445

ing the uniformity we see in the histograms in Fig. 6. However, we see differences in the average width of the probability

intervals for the 1 hour duration. For this duration, the RFFA_2018 model reports intervals that are about 30 % wider on aver-

age than those for the floodGAM model. This shows the 1 hour predictions for RFFA_2018 are much less precise than those

from floodGAM. The average width of the intervals between the two models is much more similar for the 24 hour duration,

although floodGAM still has narrower prediction intervals on average.450

Table 5. Empirical coverage and average widths (in l/s/km2) of central prediction intervals for both floodGAM and RFFA_2018. The nominal

coverage is 50 %, 80 % and 90 %. Within each duration, models are ordered according to their average CRPS scores (reported in Table 4).

Duration Model
50 % 80 % 90 %

Coverage Width Coverage Width Coverage Width

1 hour
floodGAM 48.7 % 143 74.6 % 275 85.8 % 356

RFFA_2018 52.2 % 189 80.1 % 367 92.7 % 479

24 hours
floodGAM 50.9 % 103 76.2 % 198 87.5 % 256

RFFA_2018 50.9 % 109 78.5 % 208 90.1 % 270
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5.3 Explaining the model

The partial response curves for each predictor in floodGAM are plotted in Fig. 7. The partial response curves are the smooth

components of floodGAM. They show how the median flood varies as a function of a particular predictor when all other

predictors are held constant at their mean value. Note that the partial response curves in Fig. 7 are displayed on the link

(log) scale, not in the units of the response. Therefore, predictor-response interpretation focuses on whether a predictor has an455

increasing or decreasing effect on the median flood, and the magnitude of this effect is assessed relative to other predictors

in the model. The y axis range of the partial response curves in Fig. 7 indicates the relative importance of the predictors; a

predictors that are more important have a larger range. Additional information about the relative importance of predictors can

be obtained from formal measures such as the likelihood ratios between the full model and the model withholding particular

predictors and is displayed in Table 6. Finally, the shading around the partial response curves is the estimation uncertainty460

associated with each smooth component. Areas with little data–for example, catchments with area to circumference ratios

above 5 km–have large estimation uncertainty and possible forms of the smooth component can vary within this uncertainty

interval.

Figure 7 also displays the partial residuals associated with each smooth component. Partial residuals for smooth components

are the residuals that would be obtained by excluding the specific term from the model while keeping all other estimates fixed.465

The partial residuals used here are the working residuals from the 24 hour duration added to the corresponding estimate of

the smooth term. Coloring the partial residuals by fraction of rain and sizing by catchment area can give a better idea of what

types of catchments contribute to the shape of the smooth component. This can aid in identification of predictor-response

relationships that are mechanistically realistic.

Figure 7 shows that the smooth component for QN shows an increasing relationship whereas ALE , AP and PSep show a470

decreasing relationship with the median flood. Three smooth components HF , RG1085 and WApr have a concave relationship

with the median flood.

We see significant differences between durations in the smooth components for ALE and AP ; that is, these smooth com-

ponents display segments where there is no overlap in the estimation uncertainty intervals between the 1 hour duration and

the 24 hour duration. These two predictors that show duration-specific differences are important predictors. Table 6 reports the475

predictor ranking by likelihood ratio: ALE ranks as the most important predictor and AP the third most important predictor.

This can also be assessed visually through the y-axis range of the smooth components in Fig. 7 (top row). We do not see

significant differences between durations in the smooth component for the second most important predictor, QN . Additionally,

the remaining four predictors do not show significant duration-specific differences. The least important predictor on both the 1

hour duration and 24 hour duration is WApr. The other climate variable–PSep–also has a low importance ranking and is ranked480

as second to last on the 24 hour duration and third to last on the 1 hour duration. Given the similarity of values between the

lowest ranked predictors we do not see the reordering of PSep between durations as significant.

When a predictor is correlated with covariates that describe spatial variation of the median flood in Norway, the partial

residuals for that predictor show regional groupings (see, for example, QN , where the upper end of the smooth effect is
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Figure 7. Partial response curves and partial residuals for floodGAM modeling the median annual maxima flood. The smooth components

and partial residuals are shown on the link scale, and units for predictors are shown in panel titles. Partial residuals are colored by average

fraction of rain contribution and sized by area. 95 % intervals showing estimation uncertainty for the smooth components are shaded. Location

of data points for each predictor are shown as tick marks on the x axis. Y axis ranges span the same magnitude for each panel.

dominated by rainfall-driven catchments on the coast of Norway). However, we found no predictive performance benefit when485

splitting the data into hydrologically homogeneous regions, indicating that the GAM is flexible enough to adjust to differences

in response effect between regions within Norway. Evaluation metrics, tests of statistical significance, and regional delineation

for the assessment of the GAM on sub-regions are reported in Appendix E.
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Table 6. Predictor ranking by likelihood ratio; larger values indicate greater predictor importance. Column "Absolute gain in likelihood value"

is given by −log(L0/Lfull), i.e. the positive value of the difference in log likelihood between L0, the model without a particular predictor,

and Lfull, the model with all seven predictors included. The ranking of predictors is consistent between the 1 and 24 hour durations, with

the exception of HF and PSep.

Predictor

Absolute gain in
likelihood value

1 hour 24 hours

ALE 129.6 87.7

QN 83.7 85.9

AP 44.2 24.2

RG1085 22.6 15.3

HF 12.2 12.2

PSep 12.6 7.7

WApr 8.6 3.1

6 Discussion

We have, in accordance with our main objective, developed a GAM (floodGAM) such that we could identify and describe490

the functional relationships between the median flood and catchment descriptors at two different durations. Adequacy of

floodGAM as an explainable model was established through predictive performance at ungauged locations, where predictive

performance was measured by both predictive accuracy and reliability. The predictive accuracy and reliability of floodGAM

matched or exceeded that of the benchmark models at both durations studied.

6.1 Hydrologic interpretation of predictor-response relationships in floodGAM495

The shape of the smooth components should be interpreted with care: as with all statistical models, there is potential that the

relationship reflects unidentified latent or confounding variables rather than a mechanistic relationship with the response. How-

ever, we can say the top three most important predictors (QN , ALE , and AP ) have smooth components that are consistent with

our expectations for the relationship with the median flood. The smooth component for QN shows an increasing relationship;

as the mean annual runoff for a catchment gets larger so does the median flood. The smooth component for ALE shows a500

decreasing relationship with the median flood, reflecting the dampening effect of effective lake percentage on flood peak.

The smooth component for AP shows a decreasing relationship with the median flood. AP reflects both catchment size and

shape. For catchment with similar shapes, AP increases with catchment area. For catchments with similar areas, AP is the

largest for perfectly circular shapes and the smallest for elongated or irregularly shaped catchments. The circumference used

to calculate AP depends both on the approach used to calculate the catchment boundaries and the resolution of the underlying505
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digital elevation model. In our dataset we assume that the catchment boundaries are consistently defined as they all have a

unique source (GeoNorge, 2021).

For our dataset, the catchment area explains most of the variation in AP . The decreasing relationship between AP and median

flood can therefore be explained by the well-known spatial scaling of floods (Alexander, 1972; Blöschl and Sivapalan, 1995;

Robinson and Sivapalan, 1997a, b; Tsonis et al., 2007; Tarasova et al., 2018; Stein et al., 2021; Najibi and Devineni, 2023).510

This scaling reflects the changing influence of runoff-generating processes based on catchment size (Blöschl and Sivapalan,

1995; Tarasova et al., 2018), as summarized in Lun et al. (2021): Firstly, a small catchment is more likely to be fully covered by

a storm than a large catchment. Consequently, the variance of extreme catchment-average precipitation and thereby the median

flood decreases with catchment size (Viglione et al., 2010). Secondly, there is a transition from short-duration convective events

to long-duration stratisform precipitation events as the most relevant flood generating process as catchment size increase (Gaál515

et al., 2015; Merz and Blöschl, 2009). In our data we see also that the snow melt contribution to floods increases with catchment

size. Thirdly, the response times increase with area (Gaál et al., 2012) causing smaller flood peaks.

Relationships between catchment shape and flood size is less clear (Stein et al., 2021) and depends on how the time space

organization of storm events interacts with the spatial organization of the catchments (Zoccatelli et al., 2011). Based on runoff

generation processes, Blöschl (2013) and Viglione and Blöschl (2009) argue that round catchments can be expected to react520

more quickly than elongated catchments since the flood waves from different parts of the catchment will concentrate quickly.

On the other hand, a storm cell that follows a elongated catchments from the top towards the outlet might result in a high flood

peak since the flood wave from upstream and downstream parts will overlap (Murthy, 2002). In an empirical study by David

and Davidova (2014) the connections between catchment shape and flood magnitude are not significant.

In this study AP was consistently preferred as a predictor instead of other descriptors reflecting catchment size (A, CL,525

RL, RTL, RTL,net), indicating that the catchment shape influences the flood sizes. However, the marginal effect of catchment

shape cannot be detected from our model.

Concave relationships between the smooth components HF , RG1085 and WApr and the median flood are challenging to

explain and might be a result of inter-correlated predictors and hidden variables. The smooth component for PSep shows an

increasing linear relationship with the median flood. This is a reasonable relationship for the rainfall-driven catchments that530

experience high flows during autumn and winter; the partial residuals in Fig. 7 show the increasing nature of the smooth

component is driven by catchments with a higher fraction of rain contribution to flood generating process. However, it is less

clear that this increasing linear relationship should hold for the snowmelt-driven catchments that experience high flows during

spring and summer.

This study was limited to constructing a model for annual maxima since flood guidelines in Norway pertain to annual535

maximum values; however, as a preliminary investigation into how seasonal flood regimes may influence the shape of the

partial response curves shown in Fig. 7, we investigated changes in the partial response curves of floodGAM when seasonal

maxima were used instead of annual maxima. Results are reported in Appendix F. We observed season-specific changes in

the shape of the partial response curves for climatic variables. These changes were not observed in the partial response curves

for the geographical catchment descriptors or the mean annual runoff. This suggests relationships between climatic predictors540
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and annual maxima should be interpreted with caution as these relationships may represent a compromise between different

generating processes. This parallels the observations in, for example, Ouarda et al. (2006), McCuen and Beighley (2003), and

Fischer and Schumann (2021). Focusing on the role of climatic variables in regression style models that explicitly account

for flood generating processes is an interesting area of future research for descriptive statistical studies, particularly when

investigating models that incorporate non-stationarities in climate: extrapolating any regression style model to future climates545

is problematic if the relationship between predictor and response is represented in a physically unrealistic way.

6.2 Duration-specific differences in median flood estimation

We observe duration-specific differences in the partial response curves for the predictors ALE (effective lake percentage) and

AP (catchment shape). These differences can be described as changes in the predictors’ magnitude of effect; that is, the y axis

range of the partial response curves for ALE and AP is larger for the 1 hour duration than the 24 hour duration. This means that550

floodGAM finds the influence of effective lake percentage and catchment shape on the median flood to be more pronounced at

shorter durations.

The results from the data-driven model (floodGAM) indicate that the relationship between catchment descriptors and the

median flood changes with duration. This means that in order to optimally model each duration, the form of the functional

relationship between catchment descriptors and the median flood should be adapted and re-estimated at each duration.555

We examined how performance changes when these requirements are relaxed in various ways. First, to assess the perfor-

mance when assuming a fixed relationship between median flood and predictors, we employed the floodGAM fitted on one

duration to make predictions for another duration. We found that using the relationships established by floodGAM for one

duration to predict for another led to diminished predictive performance. Secondly, to assess performance when assuming a

parametric relationship and re-estimating the model for each duration, we fit RFFA_2018—which was developed for the 24560

hour data–to the 1 hour data. Once again, the performance was lower compared to the fully flexible duration-specific model,

although assuming a fixed parametric form and re-estimating yielded better results than assuming an entirely fixed relationship

(without re-estimating the coefficients). In the context of models that simultaneously estimate the median flood at different

durations (e.g. regional QDF models), this suggests it would be challenging to achieve optimal outcomes for every duration. In

such scenarios, practitioners might need to decide on which durations reduced performance would be acceptable.565

6.3 Predictor selection

Our study was focused on the question: does a data-driven model (floodGAM) detect duration-specific differences in how

catchment covariates influence the median flood? If we gauge model adequacy through predictive performance, we are naturally

confined to answering our question within predictor sets that work well with these sorts of data-driven models.

Identification of predictor sets that are good for data-driven models can be interesting in and of itself as it is possible that570

data-driven models can uncover predictor information that was previously unclear (Guyon and Elisseeff, 2003). The challenge

here is that using a data-driven model for selection implies in most cases a model-based preselection, which is not guaranteed

to generate a predictor set that will work within other model architectures (Maier et al., 2010). In this study, one type of data-
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driven model (a boosted tree ensemble with a depth of one) was used to preselect a predictor set that was then validated inside

a different type of data-driven model architecture (the GAM). The selection of the predictor set by two different data-driven575

models suggests some sort of robustness. However, we do not necessarily expect the chosen predictor set in this study to give

good results when used with an entirely different model architecture, e.g. a log-linear model.

This limits cross-model architecture and cross-predictor set questions. For example, we cannot say if the differences in

performance between floodGAM and RFFA_2018 at the 1 hour duration are due to the fixed functional form assumed in

RFFA_2018 or the differences in predictor sets, although the duration-specific differences identified within floodGAM suggest580

that it is advantageous to be able to adapt to different predictor-response relationships at different durations. Answering ques-

tions focusing on the duration dependence of particular catchment descriptors or predictor sets is an interesting area of future

research that requires hydrology-specific knowledge reflecting a mechanistic understanding of the process at hand.

7 Conclusions

We develop a generalized additive modeling approach for estimation of the median annual maximum (index) flood, with a585

focus on detection and description of the functional relationships between the median flood and catchment descriptors at

multiple durations. We employ a machine learning-based variable pre-selection tool to aid in predictor selection and increase

the practicality of constructing generalized additive models (GAMs) for index flood estimation. We establish the adequacy

of the GAM as an explainable model through predictive performance at ungauged locations, where predictive performance

was measured by both predictive accuracy and reliability. The predictive performance of the GAM developed in this study590

(floodGAM) is compared to two benchmark models, the existing log-linear model for median flood estimation in Norway and

a fully data-driven machine learning model (an extreme gradient boosting tree ensemble, XGBoost). We find that

– The predictive accuracy and reliability of floodGAM matches or exceeds that of the benchmark models at both durations

studied.

– We observe duration-specific differences in the form of the functional relationship between the median flood and two595

catchment descriptors (effective lake percentage and catchment shape) within the predictor set considered in floodGAM.

Ignoring these differences results in a statistically significant decline in predictive performance.

If index flood estimation at multiple durations is the goal, these results suggest that it may be difficult to obtain optimal per-

formance on all durations when assuming a fixed or parametric form between predictors and response. Models and approaches

that make these assumptions while accounting for, or extrapolating to, different durations should consider on which durations600

it would be acceptable to have reduced performance. Finally, in situations where predictive performance at multiple observed

durations is a priority, floodGAM emerges as a promising option. The ability to auto-adapt functional relationships at multi-

ple durations offers a potential simplification of the modeling process and could be a practical alternative to development of

separate parametric forms. Furthermore, the comparative predictive performance between floodGAM and XGBoost suggests
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that floodGAM is adequately capturing the available relationships in the data, while also providing accessible information on605

prediction uncertainty.

Appendix A: Computation of minimizing quantity for relative error and absolute percent error

The optimal predictor for the relative error is the functional med(1)(F ), defined in Gneiting (2011), which is the median of the

distribution with density proportional to xf(x). Here f(x) is the probability density function for the log normal distribution;

that is:610

f(x) =
1

xσ
√

2π
exp

(
− (ln x−µ)2

2σ2

)
x > 0 (A1)

and the density proportional to xf(x) is given by g(x) = 1/A ·xf(x), where A is a normalizing constant such that g(x) is a

density. Denote by G the distribution with density g. We approximate the median of G by numerically integrating g(x) from

0 to m in R and conducting a grid search for the closest value of m such that g(m) ≊ 0.5 on a grid with spacing 0.01. The

optimal predictor for the absolute percent error is the functional med(−1)(F )–that is, the median of the distribution with density615

proportional to f(x)/x–and is found with the same approximation method.

Appendix B: Hyperparameter tuning for XGBoost models within the IIS algorithm

XGBoost is used twice in this study: once as the underlying model in the Iterative Input Selection (IIS) algorithm and once

as a predictive performance benchmark in Section 5.1. The two applications are very different and require different hyper-

parameters. In both cases, suitable hyperparameters were chosen by grid-search and cross validation. Here we report the620

hyperparameter optimization set up used in the XGBoost models for the IIS algorithm

We used squared error loss as the objective function and tuned the following hyperparameters on the indicated ranges: the

percentage of observations subsampled at each boosting step (0.1-1); the minimum number of instances needed in each node

(1-7); and the shrinkage parameter η (0.01-0.1). The number of boosting iterations was evaluated up to a maximum number of

999 iterations. For the XGBoost models used within the IIS algorithm, tree depth was fixed at 1. Hyperparameter tuning was625

conducted on a grid search within a 10-fold cross-validation scheme using all possible parameter combinations and an early

stopping criterion for the number of boosting iterations, where the algorithm stopped after 25 rounds without improvement in

the error rate as determined by a chosen evaluation metric. The ranges of the hyperparameters were chosen based on experience

with the data set and recommended XGBoost practices. Hyperparameters were optimized separately for the 1 hour and 24 hour

durations. The evaluation metric used in hyperparameter tuning cross validation is the MAE.630

Appendix C: Details of the machine learning based pre-selection step

Use of XGBoost within the modular structure of the IIS algorithm was first proposed by Alsahaf et al. (2022). The primary

benefit to this is that use of a boosted tree ensemble—rather than a bagged tree ensemble such as the Extra-Trees routine
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originally proposed in Galelli and Castelletti (2013)—solves the issue of significance splitting in the input ranking algorithm.

Significance splitting is when the importance scores of two or more redundant variables are split evenly. This can occur when635

the tree ensemble is subsampled or bootstrapped, as in bagging and random forest. The algorithm in Galelli and Castelletti

(2013) accounts for this by including a secondary evaluation step of the variable ranking to reduce the impact of significance

splitting. However, the success of this secondary step is reliant on hyperparameter choice (Galelli and Castelletti, 2013). The

use of a boosted tree ensemble inherently solves this issue. Selecting XGBoost as the boosted tree ensemble is a natural choice:

it has established use in hydrology (Zounemat-Kermani et al., 2021), is computationally efficient, is available as a package in640

both R and Python, and has a large and active user base.

Within the IIS algorithm, we use the additive gain as the importance score in the input ranking algorithm. As part of the

model-fitting process XGBoost uses a scoring function that takes into account the improvement in the objective function (in

this case, mean squared error) resulting from the inclusion of each variable. The additive gain of a variable is the sum of its

gain across all boosting rounds. For details, see Chen et al. (2015). For a more robust approach, we adopt the method proposed645

in Laimighofer et al. (2022b), where the initial variable ranking is averaged over 25 bootstrap samples. Then the gain of

each variable for the final variable ranking is the ratio of the individual additive gain to the total gain over all variables. The

hyperparameters are the same both for the input ranking and the model used to test predictive performance of an additional

variable.

The automatic stopping condition in IIS requires choice of both a suitable distance metric for measuring predictive accuracy650

of the chosen variable set and a threshold value above which a change in predictive accuracy between the proposed sets is

considered insignificant. We used mean absolute percent error (MAPE) as the distance metric. We set the threshold value to

0.1, meaning we stop selecting new variable sets when the new set results in, on average, a less than 1 l/s/km2 improvement in

median flood prediction. The evaluation of the distance metric takes place across a k-fold cross validation approach to increase

robustness. The dataset is divided into k mutually exclusive subsets of equal size, and the predictive model is fit k times. In655

each iteration, the model is validated on one of the k folds and calibrated using the other k− 1 folds. The predicted accuracy

associated with adding a particular feature is estimated as the average value of the chosen metric over the k validations. We

used 10-fold validation for our data set.

The main computational burden of the IIS algorithm is in this repeated model fitting required for computation of the distance

metric in the k-fold cross validation: if m potential variables are evaluated at each step, m ∗ k models must be fit. Thus the660

choice of the number of top-ranked variables to evaluate at each step is important for model performance. While the variable

ranking at each step is always computed over the entire variable set, the search space (i.e. the number of variables individually

evaluated for predictive performance) can be reduced to a user-specified number of variables. We used the top 15 variables.

In this study the IIS algorithm is used within a resampling scheme. We split our data set into ten non-overlapping folds and

repeatedly apply the IIS algorithm while withholding one of the folds at a time. A visual explanation of the IIS algorithm and665

this resampling scheme is found in Fig. C1.
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Figure C1. Visual depiction of the variable pre-selection scheme, showing the IIS algorithm and the resampling method.
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Table E1. Regions are mid-south-west Norway and eastern Norway + Finmark. The "region" model is fit on the subregions, and evaluation

metrics are calculated from all stations included in analysis. There were no statistically significant differences between the two models on

either duration.

Duration Name
Evaluation metric

RMSE [l/s/km2] CRPS [l/s/km2] MAE [l/s/km2] MRE [%] MAPE [%]

1 hour
floodGAM 122.2 61.2 84.9 20.4 20.5

floodGAM, regions 120.5 59.1 82.8 19.6 19.2

24 hours
floodGAM 84.1 42.7 59.5 17.0 17.5

floodGAM, regions 87.4 43.8 61.6 16.7 17.8

C1 Full grid output

Appendix D: Supplementary figures for model evaluation metrics

Appendix E: Regional assessment

The predictive performance of floodGAM was not significantly improved by splitting the area of study (Norway) into hydro-670

logically homogeneous regions and fitting floodGAM within the regions. Two regions were used: mid-, south and west Norway

(region 1) and east Norway and Finmark (region 2); see Fig. E1. The regions are those defined in Hegdahl et al. (2019). Within

each region, we ran a 10-fold cross validation; predictive performance metrics were calculated between regional model pre-

dictions and the hold out data. The performance metrics were then summarized across the whole of Norway so they could be

compared to the metrics from floodGAM fit to the entire country. Note that this means the hold-out data between floodGAM675

and “floodGAM, regions” is not identical; however, given the similarities between the metrics it is unlikely this variation in

the cross-validation is very influential. Table E1 reports the evaluation metrics from both floodGAM fit to the entire country

and floodGAM fit within regions. There were no statistically significant differences between the reported evaluation metrics at

either duration.

Appendix F: Seasonal variations in hydro-climatic predictors680

To further investigate the relationships found by floodGAM, we compute seasonal maxima for two seasons: a summer season

from April-July and a winter season from August-March. The full model—all seven predictors–is fit on both seasons, and the

select argument of the gam() function is set to ‘True’ such that any predictors found to be irrelevant can be shrunk out of the

seasonal models. This serves as a check on the significance of the two climate characteristics (WApr and PSep) for the seasonal

maxima since April is excluded from the winter months, and September is excluded from the summer months. Figure F1 shows685

the estimated smooth components for the seasonal maxima along with the associated 95 % estimation uncertainty intervals.
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The estimated smooth components for the annual maxima are underlaid as dashed grey lines. The location of data points for

each predictor is indicated along the x axis, and y axis ranges are duplicated from Fig. 7.

Figure F1 shows that all four geographical catchment descriptors and one of the hydro-climatic cdescriptors–QN –have a

consistent shape across durations and seasons. However, splitting on seasons changes the shape of the smooth components for690

the other two hydro-climatic characteristics, WApr and PSep. For the spring season, PSep is shrunk out of the model entirely

whereas the relationship between WApr and median spring floods is decreasing.

The autumn/winter seasonal maxima, however, find both WApr and PSep to be significant. The shapes of the relationships

between the catchment descriptors for the annual model is replicated in the autumn/winter season, except for PSep where a

slightly concave relationship is seen.695
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Figure C2. Full results from variable pre-selection. The horizontal axis represents the number of times a variable was chosen. The vertical

axis indicates the duration that generated the covariate set. The color indicates the order of variable selection within the IIS algorithm.

Variables selected first tend to be those that are most informative.
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Figure D1. Model to model comparison on absolute percent error, relative error, and the continuous ranked probability score for RFFA_2018

and floodGAM on the 24 hour duration. In the panel headers, x represents the predicted value and y the observed value. Points falling

above the diagonal line indicate stations where RFFA_2018 performed worse than floodGAM. Points falling below the diagonal line indicate

stations where floodGAM performed worse than RFFA_2018. The 2D kernel density estimation of point density is underlaid to aid visual

interpretation. Point size shows catchment area, point color indicates the fraction of rain contribution to flood.
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Figure D2. Model to model comparison on absolute error for RFFA_2018 vs floodGAM and XGBoost vs floodGAM on the 1 hour duration.

In the panel headers, x represents the predicted value and y the observed value. Points falling above the diagonal line indicate stations where

the comparative model (RFFA_2018 or XGBoost) performed worse than floodGAM, and vice versa for points falling below the diagonal

line. The 2D kernel density estimation of point density is underlaid to aid visual interpretation. Point size shows catchment area, point color

indicates the fraction of rain contribution to flood.
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Figure D3. Model to model comparison on absolute error for RFFA_2018 vs floodGAM and XGBoost vs floodGAM on the 24 hour duration.

In the panel headers, x represents the predicted value and y the observed value. Points falling above the diagonal line indicate stations where

the comparative model (RFFA_2018 or XGBoost) performed worse than floodGAM, and vice versa for points falling below the diagonal

line. The 2D kernel density estimation of point density is underlaid to aid visual interpretation. Point size shows catchment area, point color

indicates the fraction of rain contribution to flood.
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Figure D4. Model to model comparison on squared error for RFFA_2018 vs floodGAM and XGBoost vs floodGAM on the 1 hour duration.

In the panel headers, x represents the predicted value and y the observed value. Points falling above the diagonal line indicate stations where

the comparative model (RFFA_2018 or XGBoost) performed worse than floodGAM, and vice versa for points falling below the diagonal

line. The 2D kernel density estimation of point density is underlaid to aid visual interpretation. Point size shows catchment area, point color

indicates the fraction of rain contribution to flood.
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Figure D5. Model to model comparison on squared error for RFFA_2018 vs floodGAM and XGBoost vs floodGAM on the 24 hour duration.

In the panel headers, x represents the predicted value and y the observed value. Points falling above the diagonal line indicate stations where

the comparative model (RFFA_2018 or XGBoost) performed worse than floodGAM, and vice versa for points falling below the diagonal

line. The 2D kernel density estimation of point density is underlaid to aid visual interpretation. Point size shows catchment area, point color

indicates the fraction of rain contribution to flood.
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Figure E1. Regional groupings for the 232 stations used in this study. Regions are mid-, south and west Norway and east Norway and

Finmark; these regions are defined in Hegdahl et al. (2019).
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Figure F1. Partial response curves by season and duration. The summer season is April-July. The winter season is August-March. 95 %

estimation uncertainty intervals for the seasonal smooth components are shown in shading, and smooth components from the annual maxima

model are underlaid as dashed or dotted lines. A flat effect means a predictor was selected out of the model by shrinkage. PSep is selected

out of the summer season. The smooth components are shown on the link scale, and units for predictors are shown in panel titles. Location

of data points for each predictor are shown as tick marks on the x axis. Y axis ranges span the same magnitude for each panel.
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