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Abstract. Spatiotemporal yield heterogeneity presents a significant challenge to agricultural sustainability efforts and can 

strain the economic viability of farming operations. Increasing soil organic matter (SOM) has been associated with increased 

crop productivity, as well as the mitigation of yield variability across time and space. Observations at the regional scale have 

indicated decreases in yield variability with increasing SOM, however the mechanisms by which this variability is reduced 

remain poorly understood, especially at the farm scale. To better understand the relationship between SOM and yield 15 

heterogeneity, we examined its distribution between particulate organic matter (POM) and mineral associated organic matter 

(MAOM), at the sub-field scale within 9 farms located in the central United States. We expected that the highest SOM 

concentrations would be found in stable, high-yielding zones, and that the SOM pool in these areas would have a higher 

proportion of POM relative to other areas in the field. In contrast to our predictions, we found that unstable yield areas had 

significantly higher SOM than stable yield areas, and that there was no significant difference in the relative contribution of 20 

POM to total SOM across different yield stability zones. Our results further indicate that MAOM abundance was primarily 

explained by interactions between crop productivity and edaphic properties such as texture, which varied amongst stability 

zones. However, we were unable to link POM abundance to soil properties or cropping system characteristics. Instead, we 

posit that POM dynamics in these systems may be controlled by differences in decomposition patterns between stable and 

unstable yield zones. Our results show that, at the subfield scale, increasing SOM may not directly confer increased yield 25 

stability. Instead, in fields with high spatiotemporal yield heterogeneity, SOM stocks may be determined by interactive effects 

of topography, weather, and soil characteristics on crop productivity and SOM decomposition. These findings suggest that 

POM has the potential to be a useful indicator of yield stability, with higher POM stocks in unstable zones, and highlights the 

need to consider these factors during soil sampling campaigns, especially when attempting to quantify farm-scale soil C stocks.  

 30 
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1 Introduction 

A substantial amount of cropland area exhibits marked production variability from year to year (Basso et al., 2019; Driscoll et 

al., 2022). This phenomenon has been observed across scales, from global (Ray et al., 2015), to national (Renard and Tilman, 

2019), down to the farm and subfield level (Maestrini and Basso, 2018). Previous work has demonstrated that interactions 

between climate (Leuthold et al., 2022b), geomorphology (Kravchenko et al., 2005), and edaphic characteristics (Al‐Kaisi et 35 

al., 2016) are central drivers of this variability. These factors combine to create areas that are high-yielding under certain 

climatic conditions but low-yielding under others. The oscillating nature of these areas across time leads to their designation 

as “unstable,” in contrast to “stable” areas, which maintain consistent yields regardless of a given growing seasons weather. 

While some level of year-to-year yield variability is inevitable, sustained yield instability represents an important source of 

environmental degradation, as well as increased economic uncertainty for farmers (Basso et al., 2019). 40 

 

Increasing cropland soil organic matter (SOM) stocks has been associated with decreased yield instability (Qiao et al., 2022). 

A regional survey of cropping systems across China found a significant, negative relationship between crop yield variability 

and topsoil SOM concentrations (Pan et al., 2009). Other recent work has provided evidence that increasing SOM can reduce 

the effect of drought on crop production (Renwick et al., 2021), decreasing total crop losses and associated crop insurance 45 

indemnity payments by stabilizing yields over time (Kane et al., 2021). These results indicate that increasing SOM may be a 

viable management strategy for reducing crop yield variability, however the bulk of these studies take place at the regional 

scale (e.g., Pan et al., 2009, Kane et al., 2021), and it remains unclear if this association holds true at the subfield level.  

 

One means by which the relationship between SOM and yield stability may be better understood is to separate the bulk SOM 50 

into discrete physical fractions. Physical SOM fractions allow for increased understanding into the function and formation of 

SOM. In particular, particulate organic matter (POM), and mineral associated organic matter (MAOM) have been shown to 

be well suited to act as indicators of SOM dynamics (Christensen, 2001; Cotrufo et al., 2019). Indeed, POM and MAOM have 

unique formation pathways (Cotrufo et al., 2015), different average turnover times (von Lützow et al., 2008), and tend to 

provision different ecosystem services in managed systems (Lavallee et al., 2020). In agricultural lands, the balance of these 55 

two fractions often skews heavily towards MAOM, with reported global to continental scale averages of 71.5 – 79% of C 

stored in the MAOM fraction (Lugato et al., 2021; Sokol et al., 2022), a distribution that can be attributed to a lack of consistent 

C inputs and frequent disturbances that can catalyze rapid POM decomposition (Lugato et al., 2021). Changes in POM C 

stocks therefore have the potential to act as an important indicator towards changes in ecosystem processes—several 

researchers have previously identified it as a sensitive predictor of agronomic function (Schipanski et al., 2010), especially at 60 

the field scale.  
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Given the increased sensitivity of SOM fractions to environmental and management factors (Prairie et al., 2023) and the 

association between SOM and yield stability, SOM fractions may be able to act as robust indicators for subfield patterns of 

yield variability. Further combining SOM fractions with additional factors associated with yield stability such as topographic 65 

and soil physicochemical properties may prove even more useful. Tajik et al. (2012) explained 96-98% of the variability in 

soil enzyme activity using a combination of topographic and edaphic data, including SOM. Similar approaches have been 

applied to understand variability in soil microbial diversity and activity in row cropping systems (Kaleita et al., 2017). 

However, to the best of our knowledge, covariation in SOM fractions with state factors has not been explored as a means to 

understand spatiotemporal yield variability at the farm subfield scale.  70 

 

Here we attempt to leverage the increased insight into ecosystem biogeochemistry that physical SOM fractions provide to 

better understand the relationship between yields, spatiotemporal yield stability and increasing SOM. Specifically, we asked: 

How do POM and MAOM distribute amongst areas of different yields and yield stabilities? As increasing POM is often 

associated with increased nutrient processing (Daly et al., 2021), aggregate formation (Witzgall et al., 2021), and improved 75 

soil structure, we hypothesized that POM-C would be highest in high-yielding, stable areas, and consequently that the ratio of 

POM:MAOM-C would be highest in these zones. Additionally, we expected these areas to have a higher amount of bulk SOM-

C overall. Accordingly, we hypothesized the lowest POM:MAOM-C values would be observed in the unstable yield zones, 

indicating decreased SOM biogeochemical functioning, and that these unstable areas of the field would be relatively C poor 

as a result of inconsistent residue inputs. To investigate these hypotheses, we performed a combined size-density fractionation 80 

on soils sampled from nine farms across the Central United States. At each farm, we sampled from areas of different yields 

(i.e., low, moderate, and high yielding), and different yield stabilities (i.e., stable and unstable). We used linear mixed effect 

models to examine the distribution of SOM among physical fractions as it related to the various stability zones and then 

supported our findings using a gradient boosting machine learning approach. Our goal was to understand if physical SOM 

fractions could be used as indicators of areas of various yield stability at the farm subfield scale, and consequently, if 85 

recommendations for improving yield stability could be gained via an understanding of fractional SOM distribution. 

2 Materials and Methods 

2.1 Site descriptions and soil sampling 

Nine farms across the upper Midwestern United States were sampled to assess the relationship between soil characteristics and 

crop yield stability (Fig. 1, Table 1). The 30-year mean annual precipitation (MAP) ranged from 617 mm yr-1 – 702 mm yr-1, 90 

and the average annual cumulative growing degree days (GDD) ranged from 1502 – 1989 (Table 1). Crop management 

information was obtained via communication with growers and land managers. Crop rotation varied amongst the farms 

however, wheat (Triticum aestivum), soybean (Glycine max L.), and maize (Zea mays) were the dominant crops in rotation at 

all sites (Table 1), and all sites were sampled during either the corn or soybean phase of the rotation. Nutrient management 
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varied by farm as well, but as these were primarily working farms, we assumed that fertilizer management represents a mixture 95 

of economic and agronomic optimum rates for the region (see Fowler et al. (2024) for further discussion). Soils were sampled 

as described in Fowler et al. (2024). Briefly, at each farm, three 15 cm cores from three separate replicate areas of each stability 

zones (i.e.., low-stable, medium-stable, high-stable, and unstable) were taken, such that 12 samples were collected from each 

farm (n = 108). Samples were then sent to Woods End Laboratory for characterization and analysis (Fowler et al., 2024).  

Figure 1 – Location of farms sampled for this analysis. Sampling took place in Indiana, Illinois, and Michigan, United 

States. Inset map shows the geographic location of the sampling region.  
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2.2 Delineation of yield stability zones 100 

Yield data was obtained using a real time kinematics global positioning system (RTK-GPS) enabled research combine with a 

yield monitor, which recorded crop yield at a 1-meter resolution. Following Maestrini and Basso (2018), raster yield data were 

scaled to the annual field average, and a yield level was calculated relative to the mean yield (i.e., high, medium, and low 

yields). Yield stability was then derived from the standard deviation (SD) of yield levels over time, with a SD value greater 

than +/- 15% designated as unstable. A full description of the delineation of yield stability zones is provided in Fowler et al. 105 

(2024). In the work presented here, in order to arrive at a unitless yield stability metric that accommodated differences in crop 

rotation, we also normalized the annual yield from the different zones by the yield in the high and stable zone for each year. 

We then used these normalized values to calculate zonal means and SD for the entire experimental period at each stability 

zone within each farm, and then calculated a coefficient of variation for yields by dividing the SD by the mean. The resulting 

 

Table 1 – Major characteristics of farms from which soils were sampled for analysis. Growing season precipitation (GSP) and 

mean cumulative growing degree day (Cum. GDD) values represent 30-year means retrieved from the Gridmet data product. 

Farm GSP 
Mean 

Cum. GDD 

Soil organic 

carbon 
Soil pH Sand Silt + Clay Cropping system history 

-- (mm) -- (g C kg soil-1) -- (%) (%) -- 

210 Well 617 1522 11.0 6.49 64.2 35.8 C/S/C/S/W 

F-71 701 1561 8.62 5.86 64.3 35.7 S/C/S/W 

F-79-2 698 1559 9.66 5.68 64.5 35.5 W/S/C/S/W 

Horn South 637 1988 25.9 6.22 5.2 94.8 C/S/C/S/C 

Micic State 702 1753 16.5 6.00 52.2 74.8 S/C/S/C/S 

South Lane 643 1989 21.1 6.25 7.4 92.6 C/C/S/S/C 

SR13 624 1513 13.6 6.21 39.5 60.5 W/S/C/S/W 

Watt East 687 1741 20.1 6.51 25.2 74.8 C/S/C/C/S/C 

F-79-2 
644 1502 15.7 5.76 45.0 55.0 C/S/C/S/W 

+: C- Corn (Zea mays); Soybean (Glycine max L.); Wheat (Triticum aestivum). Reported for years available during study period which ended 

in 2020.   
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metric (Yield CV) was well aligned with the stability zones derived from the SD as in Fowler et al. (2024), which we interpreted 110 

as a validation of this approach of quantifying stability numerically.  

2.3 Soil processing and characterization  

At Woods End Laboratory, the air-dried samples were sieved to 2 mm to remove root fragments and rocks, and ground prior 

to analyses. Soils were analyzed for a range of properties including soil pH using a 1:1 soil:water extract and pH electrode 

method, Mehlich I and Mehlich III extracted nutrients (NCERA-13, 2015), and cation exchange capacity (NCERA-13, 2015). 115 

Total soil organic C was measured via dry combustion at 900 °C using a Shimadzu TOC-L coupled to a Solid Sample Dry 

Combustion Module SSM-5000A (Shimadzu Corporation, Kyoto, Japan), following manufacturer protocols (Shimdazu, 

2017).  Across sites, soil pH varied by almost an order of- magnitude, ranging from 5.68 – 6.51 (Table 1). Total soil organic 

C (SOC) varied amongst sites as well, ranging from 8.62 - 25.9 g C kg soil-1 (Table 1). Given our interest in the role of the 

fine fraction of soil particles in determining SOC dynamics, we did not measure texture directly. Instead, we inferred the 120 

proportion of silt and clay particles and the proportion of sand particles from results of our physical fractionation analysis (see 

below). In the soil we analyzed, the distribution of particle sizes ranged from relatively sandy soils (~ 64% sand) to soils 

dominated by fine particles (> 90% silt and clay particles; Table 1). 

2.4 Physical fractionation and SOM analysis 

A well homogenized subsample from all 108 samples was shipped to Colorado State University, where they were fractionated 125 

into physical SOM fractions using a combined size density fractionation as reviewed in (Leuthold et al., 2022a). Briefly, a 6-

gram subsample of 2 mm sieved soils was dried overnight, then shaken in DI water for 15 minutes. The sample was then 

centrifuged, and the supernatant subjected to vacuum filtration of over a 20 μm nylon filter to isolate the dissolved organic 

matter fraction (DOM). Following the removal of the DOM, sodium polytungstate (SPT; Na₆[H₂W₁₂O₄₀]) adjusted to a density 

of 1.85 g cm-3 was added to each sample, and samples were shaken for 18 hours. After shaking, the samples were centrifuged, 130 

and the supernatant was aspirated via vacuum filtration using a 20 μm nylon filter. The material that remained on the filter was 

characterized as the POM fraction. The remaining mineral fraction was resuspended in DI water, centrifuged, and the resulting 

supernatant discarded. This rinsing procedure was repeated two more times to remove any residual SPT from the samples. 

Upon the fourth resuspension of the mineral fraction, the samples were separated via wet sieving into the coarse heavy 

associated organic matter fraction (CHAOM; > 53 μm) and MAOM fractions (< 53 μm). These samples were then placed into 135 

the oven at 60 °C and dried to a constant weight.  

 

Oven-dried samples were weighed, and mass recovery assessed. If the recovered mass was not between 95 and 105% of the 

initial sample mass, the fractionation was repeated until appropriate mass was reached. Two samples did not achieve acceptable 

recoveries despite repeated efforts such that we don’t include them in the analysis presented here. After weighing, samples 140 

were ground to a fine powder using a mortar and pestle and analyzed for C and nitrogen (N) concentrations via a VELP CN802 
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Carbon Nitrogen Analyzer (VELP Scientific, Deer Park, NY). As the soils contained negligible content of inorganic C, total 

C values obtained through elemental analysis reflect fraction organic C. As the DOM fraction typically represents a minor 

fraction of the total SOM, especially in agricultural soils, we opted not to analyze it further after separation. However, we did 

find it necessary to separate the DOM and CHAOM fractions to isolate the POM and MAOM pools that are most homogenous 145 

in their composition and best map on to their conceptual definitions.  

2.5 Topography and climate data acquisition 

To create the dataset used in subsequent multivariate analyses, several databases were called upon using R version 4.2.2 (R 

Core Team, 2022). For each farm, 1-km gridded, daily climate data retrieved for the period between 2015 and 2020 from the 

Daymet Daily Surface Weather dataset (Thornton et al., 2022) using the R package daymetr (Hufkens et al., 2018). Climate 150 

data were trimmed to represent the average period of planting through harvest for major row crops in the Northern Corn Belt, 

starting on Julian Day 121 and ending on Julian Day 304. The Daymet dataset provides daily maximum and minimum 

temperatures, which we averaged to construct a daily mean temperature. We calculated growing degree days with a base 

temperature of 10 °C, such that heat units only accumulated when mean air temperatures exceeded 10 °C. Elevation data were 

retrieved from the USGS 3D Elevation Program using the get_tiles function contained within the terra package in R (Hijmans, 155 

2022). To better capture landscape-level trends, we resampled and aggregated the elevation data using a factor of 8, based on 

an iterative analysis of the scale at which geomorphic features in agricultural land were most pronounced. The we then used 

the terrain function in the terra package to calculate slope and topographic position indices (TPI), a measurement of the 

elevation of a given grid-cell relative to the grid-cells surrounding it (higher values indicate a relatively higher grid cell, and 

vice-versa).  160 

2.6 Data analysis 

2.6.1 Mixed linear model and regression analysis 

We used mixed effect linear models to test for differences in soil texture, soil pH, SOM-C, POM-C, and MAOM-C among 

stability zones. Models were built using the lme4 package in R (v.1.1-31; Bates et al., 2015), and evaluated using the anova() 

function in the stats package (v. 4.2.2; R Core Team, 2022). Pairwise comparisons were made using examinations of the 165 

estimated marginal means of each stability zone contrasts pair using the emmeans package (Lenth, 2022). In the models we 

examined, stability zone was a fixed effect, and farm was a random effect. The alpha level for significant differences was set 

to 0.05. We also examined relationships between soil texture and MAOM-C and POM-C, as well as average crop yield and 

yield CV and soil texture and topographic indices via linear regression, using the lm() function in the stats R package (R Core 

Team, 2022). To account for differences in cropping rotation, edaphoclimatic characteristics, and management history, we 170 

scaled the response variables to the farm level using z-scores, with the mean and standard deviation of the population calculated 
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at the site level, similar to the approach of (Aksoy et al., 2016). All results presented below have been scaled using this method 

unless explicitly noted.  

2.6.2 Assessing feature importance via gradient boosting 

We used a supervised classification machine learning approach, regularized gradient boosting, to identify and understand 175 

potential indicator variables for delineating yield stability zones. We reclassified the stability zones into binary categories, 

stable and unstable, and then randomly split the dataset into training and testing datasets such that 80% of the data were 

contained in the training dataset, and 20% in the testing dataset. We included all SOM fraction data in the model matrix, as 

well as soil physical property data, nutrient data, and topography data. After training the model, we tested the optimized model 

on the training set, and assessed its accuracy in classifying yield zones based on soil and topography characteristics. We 180 

repeated this process 1000 times to arrive at an average model accuracy. From this ensemble of gradient boosting results, we 

extracted the edaphic, biogeochemical, and topographic variables that had the largest and most consistent impact on zone 

delineation.  

3.0 Results and Discussion 

To better understand the relationship between increasing SOM and spatiotemporal yield heterogeneity, we fractionated soils 185 

from areas of different yields and yield stabilities across 9 farms in the Upper Midwestern US. Our experimental goals and 

hypotheses were informed by a growing body of literature that shows that increasing SOM correlates with increased yield 

stability (Kane et al., 2021; Pan et al., 2009; Williams et al., 2016). Given that different physical fractions of SOM are thought 

to have different functions, we predicted that examining the fractions would give increased insight into the mechanisms behind 

the SOM-yield stability relationship. Specifically, we hypothesized that total SOM would be highest in high-yielding, stable 190 

areas, and that these areas would have a higher POM:MAOM-C value than areas of the field that were more unstable. Contrary 

to our hypotheses however, we found that, on average, unstable zones had higher SOM-C stocks than stable yielding zones 

(Fowler et al., 2024). Additionally, while we found significant differences in the amount of POM- and MAOM-C among 

different stability zones, we did not observe significant differences in POM:MAOM-C. These findings challenge the often-

assumed direction of causality whereby higher SOM supports higher yielding (Bauer and Black, 1994; Oldfield et al., 2022; 195 

Ma et al., 2023) and more stable cropping systems (Williams et al., 2016). Instead, our results indicate that causal linkages 

between SOM and yield stability may be bi-directional, depending on the scale of the inquiry (e.g., field vs. county vs. region). 

Here we present the results of our study, discuss potential drivers of POM and MAOM storage at the subfield scale, and 

evaluate the implications of our findings in regard to soil health indicators and soil C storage goals.  
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3.1 Patterns of C storage in bulk SOM and fractions 200 

When examined across the farms in our study, we observed significant differences in the total SOM-C, MAOM-C, and POM-

C storage between our four different yield-stability zones. Post-hoc analyses of the differences between zones in SOM-C 

indicated that unstable zones had 25.7% more SOM-C on average than low-yielding stable zones (p = 0.016; Fig. 2A).  We 

also observed trends towards increased SOM-C in the unstable zones relative to the other two stable zones based on estimated 

marginal means, however these differences were not significant (p = 0.475 and 0.331, respectively; Fig. 2A). These 205 

observations run in contrast to current paradigms that indicate increasing crop yield stability in response to increasing SOM 

content. For instance, Pan et al. (2009) showed that the average yield variability decreased by 5% for every 1% increase in 

SOM (i.e., SOM-C x 1.72) when examined at the regional scale across Chinese provinces. Although our data do not yield 

robust regressions between SOM-C and yield CV, the general trend of the data indicates increasing variability as standardized 

SOM increases (Supplemental Fig. 1; p = 0.077, r2 = 0.02). The MAOM-C results mirror the patterns we observed in SOM-C, 210 

with significant differences among stability zones (p = 0.023; Fig. 2B), and post-hoc tests indicating that the low-yielding 

stable zone had significantly less MAOM-C than the unstable (p = 0.013), while the medium- and high-yielding zones were 

not significantly different than unstable zones (p = 0.522, 0.662; Fig. 2B). The consistency of these two patterns is not 

suprising, as MAOM-C accounted for ~77% of the SOM-C in our data on average, consistent with previous examinations of 

agricultural soils (Sokol et al., 2022). Subfield variation in MAOM-C content has been observed in previous studies (Usowicz 215 

and Lipiec, 2017), but to the best of our knowledge, the covariation with yield stability such as this has not been examined 

thus far.  

 

The POM-C content showed a different pattern across yields and stability zones from the patterns we observed for SOM-C 

and MAOM-C contents (Fig. 2). While we still found a significant difference between stable and unstable zones, stable zones 220 

showed similar POM-C levels, regardless of average yield (p = 0.019, Fig. 2C). This contrasts our original hypothesis, that 

POM-C would be highest in high-yielding, stable zones as a result of increased organic inputs in the form of both aboveground 

crop residue and crop roots (Gosling et al., 2013; Sokol et al., 2019). Our results indicate that POM-C abundance was not 

driven by yield or residue inputs, rather other characteristics of unstable yield zones may have led to increased POM-C stocks 

relative to stable areas. 225 

3.2 Evaluation of POM:MAOM-C ratio as an indicator of biogeochemical function 

The POM:MAOM-C ratio, has been suggested as a useful indicator for soil biogeochemical function (Cotrufo et al., 2019). 

Previous work has shown that the balance of POM-C to MAOM-C may help to explain the mineralization rate of organic 

N(Daly et al., 2021; Grandy et al., 2022), as well as help to identify soils that are approaching mineral C saturation sensu 

Stewart et al. (2007) (Castellano et al., 2015; Just et al., 2023). It has been also posited that a decreasing POM:MAOM-C ratio 230 

may indicate when residue inputs outpace residue decomposition, assuming fragmentation processes are not inhibited (Just et 
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al., 2023). Despite similar POM-C levels across the various stable yield zones and covariation in yield with MAOM-C in our 

Figure 2 – Normalized concentrations of total soil organic carbon (SOM-C) (a.), mineral 

associated organic matter carbon (MAOM-C) (b.), and particulate organic matter carbon (POM-

C) (c.) among the various stability zones. Different coloured points represent different farms. To 

account for edaphoclimatic differences among farms, we scaled all data using z-scores prior to 

analysis, with the mean and standard deviation calculated at the farm level, yielding a unitless 

metric to compare by. Different lower-case letters indicate significant differences (p < 0.05).  

Points are offset horizontally to improve readability of the plot. 
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data, however, we observed no significant differences in the POM:MAOM-C ratio across the different yield stability zones (p 

= 0.170, Supplemental Fig. 2). This similarity across zones, despite differences in POM- and MAOM-C among different 

stability zones, is likely the results of the reasonable expected effect size of changes in POM:MAOM-C ratio in agricultural 235 

soils that are inherently MAOM-C rich and POM-C poor (Prairie et al., 2023, Lugato et al., 2021). To exemplify this issue-- 

across all of our samples, the average POM-C was 1.9 g C per kg soil, the average total SOM-C was 14.8 g C per kg soil, with 

an average POM:MAOM-C ratio of 0.80. If POM-C was increased by 50%, to 2.8 g C kg soil, SOM-C would increase by 

6.4%, but the POM:MAOM-C ratio would adjust only to 0.78, an ecologically insignificant shift. As such, we were unable to 

use it as a metric to understand differences in SOM formation and function among different stability zones. We suggest that 240 

for POM:MAOM-C ratio to be a useful indicator, further research is needed on how to best contextualize and understand this 

measure when applied to agricultural systems. For example, exploring the ratio of POM-C to exchangeable MAOM-C may 

present a more actionable indicator, if robust methods of exchangeable MAOM-C can be identified (Daly et al., 2021; Jilling 

et al., 2018) 

3.3 Drivers of carbon accumulation in MAOM 245 

To explore the possible mechanisms behind the variability in MAOM-C content among different yield-stability zones, we 

examined a set of edaphic characteristics known to be well correlated to MAOM storage (Hassink, 1992). As expected, 

MAOM-C had a significant, positive relationship with the proportion of fine particles within a sample (p < 0.001, r2 = 0.30; 

Supplemental Fig. 3). This relationship partially explained the patterns we observed in MAOM-C across stability zones (Fig. 

2B); when we examined the difference between MAOM-C in unstable and low-yielding, stable zones as a function of the 250 

difference in fine particles, the differences in MAOM-C became negligible when particle distributions were similar (p = 0.002, 

r2 = 0.297; Supplemental Fig. 4).  On average across sites, however, we observed significant differences in the proportion of 

silt and clay particles across stability zones, with unstable and high-yielding, stable zones having significantly higher farm-

scaled silt and clay values than medium- and low-yielding stable zones (p < 0.001; Fig. 3). We posit that these differences are 

a result of the topographic settings of the unstable and high-yielding stable zones, corroborated by our observation of a 255 

significant relationship between the silt and clay content in soil and the TPI (p < 0.001, r2 = 0.10). As observed by Maestrini 

and Basso (2018), both high-yielding, stable zones and unstable zones are often located in depositional areas that receive 

downslope contributions of fine soil particles on the decadal timescale. Our study finds a similar distribution of stability zones 

amongst low-lying areas, with both the high-yielding, stable zones and the unstable zones having a relatively high fine particle 

content (Fig. 3) and being found primarily in lower areas of the field (Figure 4). Our findings thus corroborate previous 260 

observations of crop yield heterogeneity in areas of topographic complexity (Kravchenko and Bullock, 2000; Maestrini and 

Basso, 2018; Leuthold et al., 2021).  The similarity in texture and topography between unstable and high-yielding, stable zones 

highlight an important point: unstable zones have a capacity to be especially high-yielding under the right environmental 

conditions (Fowler et al., 2024; Martinez-Feria and Basso, 2020). Further research into the properties of these unstable zones, 
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such as impeded soil drainage or impediments to rooting ability may help to disentangle what makes some areas with similar 265 

texture and topography consistently high yielding, while others are especially sensitive to environmental stressors.  

 

In addition to these edaphic controls, we also observed an association between increasing yields and increasing MAOM-C 

content. Linear regression analysis indicated that as mean yield within a stability zone increased, so did MAOM-C. This 

relationship was weak, likely reflecting the influence of cropping system, soil physicochemical properties, and climate on 270 

variability in MAOM-C and yield (p = 0.048, r2 = 0.08; Supplemental Fig. 5). However, this result does mirror recent studies 

that support causal linkages between increasing productivity and increased MAOM-C(Prairie et al., 2023; King et al., 2023; 

Hansen et al., 2024). Indeed, there are a number of pathways by which increasing yield (and the associated increase in crop 

residue) can increase the amount of MAOM-C, especially in areas of the field that are receiving inputs of eroded minerals that 

may have a high capacity for sorption of dissolved organics (Van Oost and Six, 2023). Understanding relationships between 275 

topography, productivity, and mineralogy is thus key for understanding how MAOM-C accumulates in croplands, and how 

sampling strategies must be designed to capture accurate estimates of cropland SOC stocks and their spatial variability.  

Figure 3 –Scaled density plot of z-scored silt and clay content of soils from various stability 

zones. Dashed lines indicate the mean z-score for the corresponding stability zone.  
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3.4 Mechanisms for increased POM-C storage 

In contrast to MAOM-C, POM-C did not closely follow the patterns of total SOM-C content variation observed across our 

yield stability zones, and POM-C content in unstable zones was significantly higher than in all stable zones (p = 0.019), which 280 

Figure 4 – a.) Topographic position index values across the various stability 

zones. Lower values indicate a point in space lower than its surroundings, 

while higher values indicate relatively elevated locations and b.) Slope 

values scaled using z-scores to the individual farm level. Different colored 

dots represent different farms. Different lower-case letters indicate 

significant differences (p < 0.05). Points are offset horizontally to improve 

readability of the plot. 
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had the same POM-C content independent of yields (Fig. 2C). Further diverging from patterns in MAOM-C, we could not 

identify any edaphic or cropping system properties that helped to explain patterns in POM-C—it was not correlated with 

average yield (p = 0.337, data not shown), even when accounting for differences in cropping system (reported in Table 1). We 

did observe significant, positive relationships between POM-C and soil texture (p < 0.001; data not shown), and soil pH (p < 

0.001 and p = 0.009, respectively; data not shown), both of which have been suggested as potential controls on POM-C 285 

accumulation (Hansen et al., 2024; Kögel-Knabner and Amelung, 2021). In our study however, our observation of parallel 

increasing of POM-C and texture may be indicative of covariation in these measurements across our stability zones rather than 

a signal of a causality, and pH did not vary systematically across the stability zones in a way that would help to explain the 

patterns of POM-C variation (p = 0.224). 

 290 

Given that we did not observe evidence that POM-C conferred additional stability to cropping systems, as our original 

hypothesis, we propose an alternative hypothesis consistent with our findings (Fig. 5) is that the accumulation of POM-C 

within areas of increased spatiotemporal yield heterogeneity is controlled by constrains on decomposition outpacing those on 

productivity during the unfavorable climate years. Unstable zones tend to have a higher incidence of water-logging (Leuthold 

et al., 2021; Maestrini and Basso, 2018), which can impact both soil microbial activity and crop productivity. While these 295 

hydrologic stressors most often are discussed in regard to their detrimental effect on crop yield – early season saturation can 

reduce crop root viability and emergence (Wenkert et al., 1981), limited oxygen availability under saturated conditions also 

reduces the capacity of the microbial community to depolymerize and break down POM and alters microbial community 

structure (Bowles et al., 2018; Cates et al., 2022). This reduced decomposition could contribute to multi-season feedback in 

these unstable zones; under optimal conditions, decomposition and nutrient mineralization may be increased relative to stable 300 

yield areas due to the increased amount of available POM-C. The ecosystem services provided by POM (e.g., increased 

aggregation and nutrient availability), combined with optimal soil-water conditions, could then encourage increased 

productivity and yields, potentially leading to replenishing POM stocks that may have been decreased over the course of the 

optimal season (Fig. 5). This hypothesis is partially corroborated by the topographic characteristics of our various stability 

zones (Fig. 4). We examined both the farm-scaled TPI and the average slope for each stability zone, and found that high-305 

yielding, stable zones and unstable zones both had significantly lower average slopes, and significantly lower TPI values than 

low- and medium-yielding stable areas (p = 0.001 and p < 0.001, respectively; Fig. 4). Additionally, we observed a significant, 

negative relationship between the position index and POM-C; as TPI increased, the amount of POM-C decreased (p = 0.004; 

Supplemental Fig. 6). We did not observe the same relationship with slope (p = 0.903), which could be due to different 

topographic positions having similar slopes (e.g., summit and footslope positions). Some evidence for this is offered by the 310 

results of including an interaction term between slope and stability zone, which yields a significant result (p = 0.029). Fowler 

et al. (2024) found similar relationships; they indicated that topographic variables such as slope and the log of flow 

accumulation (i.e., topographic wetness index) were adequate predictors of SOM-C and other soil health indicators in these 

fields, potentially highlighting how POM-C can act as an indicator of soil biogeochemical dynamics. These important trends 
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lend some credence to our framework (Fig. 5), though a considerable amount of variance in POM-C remains unexplained by 315 

these factors (r2 = 0.07 for TPI and 0.09 for slope x stability zone respectively). 

 

Our gradient boosting analysis also supports our alternative hypothesis for increased POM storage in unstable yield zones. We 

used a gradient-boosted random forest analysis to determine important predictors of stable vs. unstable yield zones. Our model 

was able to predict stable vs. unstable zones with ~72% accuracy, and over the course of 1000 iterations, identified POM-C 320 

Figure 5 – Conceptual model of proposed biogeochemical differences between stable and unstable yield zones. 

Stable zones, often in upslope positions, are characterized by consistent yields across weather conditions, 

partially due to a decreased incidence of saturated conditions. The same conditions allow for a consistent rate of 

particulate organic matter (POM) decomposition and nutrient provisioning across growing seasons. In contrast, 

low-lying, unstable yield zones experience much more drastic shifts in their soil water status from year to year, 

altering the rate of POM decomposition. In wetter years, in which saturated soil conditions are more likely, 

decomposition rates are slowed, leading to an accumulation of POM. Under dry or optimal conditions, low-lying, 

deeper, more finely textured soils that are characteristic of the unstable yield areas may maintain increased water 

retention, leading to an advanced rate of nutrient cycling, increased productivity relative to the rest of the field, 

and subsequently, increased inputs to the POM pool. These different mechanisms between dry and wet 

conditions, working in tandem, may thus create a feedback that leads to the accumulation of POM in unstable 

areas that we observe. 
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and TPI as the most important variables in characterizing the zones (Fig. 6). Thus, while our original hypothesis of POM acting 

to increase yield stability may not be supported by these data, our results do show that the POM-C content may serve as a 

useful and important indicator for areas prone to increased heterogeneity or variability in decomposition status when robust 

subfield sampling is employed. Future work that links soil microclimate data to decomposition rate across areas of complex 

topography will help to further elucidate the drivers of fractional SOM distribution among yield stability zones. Microbial 325 

community composition may also help provide insight into the means by which different fractions of organic matter accumulate 

and persist in heterogenous areas. 

Figure 6 – Relative importance of variables in predicting yield stability zones as determined by the gradient boosted 

random forest model employed here. Relative importance represents the average of the feature importance over the 

course of 1000 model iterations. (POM: Particulate organic matter, CHAOM: Coarse, heavy organic matter, MAOM: 

Mineral associated organic matter, C: Carbon, TPI: Topographic Position Index, P: Phosphorus, N: Nitrogen, CEC: 

Cation exchange capacity, K: Potassium, Na: Sodium, Mg: Magnesium, GDD: Growing degree days).  
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4.0 Conclusions 

We examined the difference in C storage in bulk SOM and among SOM physical fractions in soils sampled from different 

yield stability zones from nine farms across the upper Central United States. Whereas previous analyses have found increased 330 

crop yield stability with increasing SOM, our results indicate that this relationship may not always hold true depending on the 

scale of inquiry. At the subfield scale, we found increased POM-C in unstable yield zones, which may be an indicator of 

reduced decomposition. We also found increased MAOM-C in unstable zones, which was well correlated with increased 

incidence of fine-particles and increased yield potential in these zones. Given the continued rise of precision agriculture 

technologies (Basso and Antle, 2020), increased understanding of the mechanisms that confer stability unto a given area within 335 

a crop field are of paramount importance. Our work does not stand in contrast to previous publications that show that cropping 

system heterogeneity may be reduced with increasing SOM concentrations, but instead offers an important insight that the 

controls on the relationship between SOM and stability depends on the scale of inquiry, and that at the subfield scale, unstable 

zones may be characterized by increased SOM-C, especially in the POM fraction. Our results provide step towards 

understanding how geomorphology, inter-annual weather variability, and cropping system productivity interact to determine 340 

the distribution of SOM among physical fractions across heterogenous crop fields, and can serve to improve nutrient 

management strategies, carbon sequestration objectives, and guide robust sampling for the quantification of farm-scale SOM 

stocks. 
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