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Abstract 

The large spatial scale of global Earth system models (ESM) is often cited as an obstacle to using the  output by 

water resource managers in localized decisions. Recent advances in computing have improved the fidelity of 15 

hydrological responses in ESMs through increased connectivity between model components. However, the 

models are seldom evaluated for their ability to reproduce metrics that are important for practitioners, or present 

the results in a manner that resonates with the users. We draw on the combined experience of the author team and 

stakeholder workshop participants to identify salient water resource metrics and evaluate whether they are credibly 

reproduced over the conterminous U.S. by the Community Earth System Model v2 Large Ensemble (CESM2). 20 

We find that while the exact values may not match observations, aspects such as interannual variability can be 

reproduced by CESM2 for the mean wet day precipitation and length of dry spells. CESM2 also captures the 

proportion of annual total precipitation that derives from the heaviest rain days in watersheds that are not snow-

dominated. Aggregating the 7-day mean daily runoff to the watershed scale also shows rain-dominated regions 

capture the timing and interannual variability in annual maximum and minimum flows. We conclude  there is 25 

potential for far greater use of large ensemble ESMs, such as CESM2, in long-range water resource decisions to 

supplement high resolution regional projections.  

1     Introduction 

Water availability and water quality for human consumption, ecosystems, and agriculture are fundamental 

requirements, making pertinent assessments of future change crucial for adaptation planning (IPCC, 2022). 30 

Climate related changes in the hydrologic cycle will affect substantial portions of the world population, most 

directly through changes in water availability at or near the surface (Mankin et al., 2020; Sedláček and Knutti, 

2014). The information required by water resource managers for decision making is not readily available in a 

relevant format, or at sufficient spatial or temporal resolutions from global Earth system models (ESM; e.g., 

Ekström et al., 2018). We explore how the Community Earth System Model (CESM) represents the climatology 35 
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of water availability, focussing on metrics that are familiar to decision makers in planning investment-scale 

decisions.  

The inability of ESMs to explicitly resolve sub-grid scale (~100 km) processes is often cited as the limitation 

preventing direct model use in decision making. Literature from large organizations making infrastructure 

decisions (e.g., Brekke, 2011; Brekke et al., 2009; Reclamation, 2016, 2014) emphasize downscaling climate 40 

model data closer to the scale of the watersheds they manage. These additional modeling steps add complexity 

and may increase statistical errors (Clark et al., 2015; Ekström et al., 2018). Extracting useful and robust 

information directly from ESMs would reduce such errors if metrics most important to decision makers, such as 

the timing of peak flow, were known to be robustly represented.  

 45 

There are many comprehensive examples of metrics used to evaluate climate and hydrological models (e.g., 

Ekström et al., 2018; Mizukami et al., 2019; Wagener et al., 2022), and communicate the impacts of climate 

change (e.g., Reed et al., 2022), or to identify decision-relevant metrics (e.g., Bremer et al., 2020; Mach et al., 

2020; Underwood et al., 2018; Vano et al., 2014). However, very few have examined whether user defined metrics 

can be reliably reproduced by ESMs (Mankin et al., 2020), and if further model development and scale reduction 50 

is warranted instead of improved communication (Pacchetti et al., 2021). Better communication may also reduce 

the temptation of some users to calculate “standard hydroclimate metrics” that are not supported by the climate 

model data (Ekström et al., 2018).  

 

In contrast, climate model output can be rejected unnecessarily when simulated annual minima from freely 55 

running simulations do not “match” the sequence of observed low flows (Ekström et al., 2018; Moise et al., 2015). 

Similarly, the benefits of a range of projected outcomes from different climate models are not widely appreciated 

beyond the climate model community (Tebaldi and Knutti, 2007). Large ensembles from a single climate model 

initialized with a range of atmospheric and ocean conditions, such as the CESM2 Large Ensemble (LENS2; 

Rodgers et al., 2021), help to bound the uncertainty that derives from a naturally chaotic system. Averaged over 60 

the full ensemble, they give a better estimate of the model’s response to internal and external forcing (Deser et al., 

2012) and enable assessments of the rarity of projected extremes. The additional analysis to identify structural 

(i.e. model formulation) and internal variability within regional climate models means that there are fewer large 

ensembles at a high resolution (Deser et al., 2020).   

 65 

Since different decision makers have different priorities and time-scales of interest, Shepherd et al. (2018) 

recommended the development of climate storylines to communicate with those using climate data to make 

decisions. Informed by prior surveys of water managers (e.g., Brekke, 2011; Brekke et al., 2009; Cantor et al., 

2018; Raff et al., 2013; Wood et al., 2021), Fig. 1 aims to map the different types of water decisions (e.g., Raff et 

al., 2013 Fig. 3) to the different scales of model resolution (Meehl et al., 2009 Fig. 2). Water managers make daily 70 

operational decisions (e.g., to control instantaneous river flow) with the aid of fine-scale weather and flood models 

(<4 km) that reliably represent convective and local weather scale processes even though their predictability is 

relatively short lived (Yuan et al., 2019; far left side of Fig. 1). Larger watershed operations (such as reservoir 

management or groundwater recharge; e.g., Regional Water Authority, 2019) depend on seasonal outlooks 
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(middle left of Fig. 1). Smaller adaptation and mitigation projects take place at the typical policy or decadal 75 

prediction scale (i.e., 4-10 years; middle right of Fig. 1). Finally, major public investments and inter-basin 

agreements occur at the same time scales as climate projections (30-100 years; far right of Fig. 1) where persistent 

and relatively predictable synoptic and planetary scale processes are well represented in lower resolution (~100 

km) climate models (Phillips et al., 2020). While forecasts (seasonal or decadal) are re-initialized from specific 

atmosphere, ocean or land states at regular time intervals, climate projections are run freely from a variety of 80 

atmospheric and oceanic conditions that take several decades to converge to a mean climatology. In considering 

the utility and useability of information directly from ESMs we focus on decisions made over decadal to climate 

scales at larger spatial scales. 

 

 85 
Figure 1: Mapping the temporal and spatial scales of models to the timeframes for water management decisions. 

Given that ESMs have advanced immeasurably in the recent decade, it is time to re-evaluate whether their direct 

output can support decision makers. Such an evaluation needs to focus on how well the models can reproduce 

metrics used by decision makers, and whether the results are credible (Briley et al., 2020; Jagannathan et al., 

2021). Here we evaluate the credibility of one ESM in generating metrics known to be salient for water 90 

management decisions; specifically, decisions for water management infrastructure project investments. 

 

The motivation for this paper is to identify:  

● a set of water availability metrics that resonates with decision makers and supports their investment-scale 

decisions; 95 

● how well CESM2 represents the climatology and recent observed behaviors of those metrics; and  

● how such metrics are projected to change.  

 

This paper builds off a decade of collaboration between scientists at the National Center for Atmospheric Research 

(NCAR) and US water agencies that lead to a virtual workshop (Tye, 2023), and presents a test case for improved 100 

communication with water resources decision makers. The focus is on the Conterminous United States (CONUS) 

to match the interest of workshop participants. 
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2 Climate Information Needs from Prior Research 

Information needs vary greatly, from 5-minute rainfall totals at a point (ASCE, 2006), to basin-wide measures of 

annual minimum and maximum total runoff. Water management decision metrics can be grouped into similar 105 

types such as timing, frequency, magnitude, extreme values, variability, and duration of events (Ekström et al., 

2018). While some aspects of timing, magnitude, or variability can be reliably reproduced by ESMs (e.g., Deser 

et al., 2020; Tebaldi and Knutti, 2007), others such as short duration extremes are less reliable.  

 

Methods of evaluation and data use also differ. For instance, Clifford et al. (2020) reported that predicting general 110 

changes in the frequency of extreme precipitation events is more useful for future planning than the precise 

prediction of mean values evaluated by model developers. Lehner et al. (2019) emphasized that models need to 

be evaluated for their ability to reproduce sensitivities (e.g., streamflow changes in response to temperature and 

precipitation changes) in addition to mean states. However, metrics that are meaningful for evaluating a model’s 

capabilities (e.g., the ratio of precipitation to runoff) are less valuable for management decisions (Lehner et al., 115 

2019; McMillan, 2021; Mizukami et al., 2019). When reporting results, users are more familiar with the ‘water 

year’, rather than the calendar year, to capture the full annual hydrological cycle (Ekström et al., 2018). While the 

use of water years is a nuance that does not add substantial value to climate model assessments, communication 

with decision makers is improved by presenting data in a familiar format (Briley et al., 2020).  

 120 

There is a need for information at the local scale that is unlikely to be met directly by raw outputs from the current 

generation of ESM. But better communication of the variability in future daily precipitation and associated runoff 

can add value to the detailed models by bringing in the added statistical context and perspective of the large 

ensembles. Thus, we believe that ESMs can produce useful information about hydro-meteorological extremes 

when presented at different spatial or temporal scales, and offer the benefits of large climate model ensembles to 125 

constrain future impact uncertainty.  

 

Appendix A summarizes potential hydrological metrics used in water management decisions (Jagannathan et al., 

2021) or statistical assessments of extremes (Zhang et al., 2011), and model evaluations (Phillips et al., 2020). 

Metrics in bold are presented in this paper. We only considered a simplistic measure of meteorological drought 130 

(absence of rain) in the current work, as drought is sensitive to the definition (Bachmair et al., 2016) and local 

conditions (Mukherjee et al., 2018), and so not suited to a generalized assessment. Similarly, snow measures are 

not included in this assessment. In part due to limited availability of high-quality, long-duration, quality-

controlled, observational data (McCrary et al., 2017); and the biases in snow distribution arising from the 

smoothed topography in GCMs (McCrary et al., 2022). 135 

3 Data and Methods 

3.1 Climate Data 

CESM2 (Danabasoglu et al., 2020) is a fully coupled global model that simulates the Earth’s climate system 

through interactive models for atmosphere, ocean, land, sea-ice, river runoff, and land-ice. Variables considered 
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in this project are taken from the Community Atmosphere Model version 6 (CAM6) and the Community Land 140 

Model version 5.0 (CLM5; Lawrence et al., 2019) and are part of the default model outputs. This project uses 

daily values scaled up to annual (e.g., annual maximum daily precipitation) on a ~1 degree resolution grid. Data 

were extracted over the CONUS from 10 ensemble members of LENS2 (Rodgers et al., 2021) for model validation 

in the current era (1981-2010), and a future time period (2041-2070) under the Shared Socioeconomic Pathway 

emissions scenario SSP2-4.5 (Riahi et al., 2017). This emissions scenario represents a world where “social, 145 

economic, and technological trends do not shift markedly from historical patterns” (O’Neill et al., 2017). 

3.2 Observations 

Gridded daily observations of precipitation at 1/16° horizontal resolution (~6 km) were obtained from the Livneh 

et al. (2013) dataset covering CONUS and southern Canada for the control period (1981-2010), hereafter referred 

to as “Livneh”.  150 

 

Livneh daily temperature maxima and minima, and precipitation were used to force the Variable Infiltration 

Capacity Model (VIC; Liang et al., 1994) version 4.1.2 to obtain runoff estimates for years 1980-2005 as evaluated 

in Livneh et al. (2013). Hereafter referred to as “Livneh-VIC”. 

 155 

 
Figure 2: HUC 2 regions used in data validation and analysis. Regions defined by USGS (2013): Region 01 New England 
(NE); Region 02 Mid-Atlantic (MA); Region 03 South Atlantic-Gulf (SA); Region 04 Great Lakes (GL); Region 05 Ohio 
(OH); Region 06 Tennessee (TN); Region 07 Upper Mississippi (UM); Region 08 Lower Mississippi (LM); Region 09 
Souris-Red-Rainy (RR); Region 10 Missouri (MR); Region 11 Arkansas-White-Red (ARK); Region 12 Texas-Gulf 160 
(GUL); Region 13 Rio Grande (RIO); Region 14 Upper Colorado (UC); Region 15 Lower Colorado (LCO); Region 16 
Great Basin (GB); Region 17 Pacific Northwest (PN);  
Region 18 California (CA) 

3.3 Methods 

All analyses were carried out using the North American water year (1 October to 30 September) to facilitate later 165 

communication. 
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3.3.1 Remapping 

For ease of comparison, model output were re-gridded using a conservative second-order remapping (Jones, 1999) 

to place both datasets on the same scale grid and assess anomalies. Data were also calculated as areal averages or 

totals over the 2-digit Hydrological Unit Code (HUC2) regions (Seaber et al., 1987).  HUC2 basins represent 18 170 

watersheds, covering areas ranging from 41,000 mi2 (~105,000 km2; Tennessee) to 520,960mi2 to (1,350,000 km2; 

Missouri), shown in Fig. 2. 

3.3.2 Percentile-based thresholds 

The threshold for very heavy rain days (Q95) was calculated at each individual grid cell using only days with ≥ 1 

mm rain (“wet days”). Thresholds were calculated for each model ensemble member, with the ensemble mean 175 

threshold (Q95) used to estimate the future number of days per year (exceeding the threshold N95) and total annual 

rainfall from those days (P95). Q95 was not re-evaluated for the future climatological period. 

 

Runoff was aggregated over each HUC2 watershed and multiplied by the respective area of to generate total 

volume per day. Volume per day was then converted to measurements more familiar to users, such as acre feet 180 

per day or cubic meters per second. Daily time series of total volumetric runoff had a 7-day running mean smoother 

applied, then annual maximum, minimum and mean values were extracted. The highest and lowest 7-day average 

runoff expected once per decade (7Q90, 7Q10) were estimated from twenty five years of annual maxima and 

minima.  

 4 Model Evaluation 185 

The metrics used to evaluate CESM2’s ability to reproduce large scale features and physical behaviors (e.g., 

Danabasoglu and Lamarque, 2021 and the associated Special Issue) are not necessarily those employed by 

decision makers. ESMs are designed to represent large-scale atmospheric processes and fluxes not specific local 

responses (Gettelman and Rood, 2016), but this design assumption may not be sufficiently well communicated to 

decision makers. The purpose of our evaluation is to establish whether CESM2 output is also fit for local decision 190 

purposes, or if the breadth of information from ESM ensembles remains unsuitable for immediate use in targeted 

water management decisions. 

4.1 Rainfall metrics 

While broad spatial patterns of seasonal mean daily rainfall are reproduced well (Danabasoglu et al., 2020; Feng 

et al., 2020; Simpson et al., 2022), CESM2 fails to capture details over high topography, and overestimates 195 

summer precipitation where convective extremes dominate summer rainfall (Appendix B). The seasonal mean 

precipitation also fails to capture some important watershed-level processes, such as the seasonal variability in the 

number of days with precipitation and the associated intensity.  

 

Estimates of mean annual rainfall on wet days, or wet day volume, are in broad agreement between Livneh and 200 

CESM2 output. Figure 3 shows an example of the mean number of wet days per month (NWD), and mean wet 
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day volume (WDV) averaged over the Mid Atlantic and Pacific Northwest. While CESM2 represents the NWD 

annual cycle very well in regions such as California (Fig. 3a, 3c) and the Pacific Northwest (Fig. 3b, 3d), it does 

not capture NWD in many central and snow dominated regions. This is likely due to the smoother topography of 

CESM2 missing the influence of orographic uplift, and large spatial scale missing sub-grid scale convective 205 

systems (e.g., over the Central Plains). 

 
Figure 3: Average number of wet days per month (a, b) and interannual variability in mean annual precipitation on 
wet days for Livneh climatological mean (red) with interannual spread (pink)  and CESM2 mean (blue) with 
interannual and ensemble spread (gray); and (c,d) between 1981-2010 for observations derived from Livneh (red) and 210 
CESM2 ensemble mean (blue) and spread (gray) in  (a,c) Region 18 California (CA);  
and (b,d) Region 17 Pacific Northwest (PN).  
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The annual variability in WDV, both year-to-year variations as well as the overall range of minima and maxima, 

is well captured by each of the model members for the different HUC2 regions, even if the absolute values do not 

match (Fig. 3 c,d). As expected, the specifics of which years have high or low values of WDV are not the same 215 

for each ensemble member (i.e. demonstrating internal variability). As a result, the ensemble mean value of WDV 

(blue) does not reflect the same year-to-year variability as the observations. Decision makers expressed that the 

interannual variability demonstrated by each model member is more valuable to demonstrate the credibility of the 

data than the ensemble mean (Tye, 2023). We recommend that the full range of values of each metric (i.e. after 

computation for each ensemble member individually) are communicated in addition to the climatological means 220 

to help bound uncertainty around decisions (Wilby et al., 2021). 

 

The magnitude of interannual variability in WDV (i.e., the absolute differences between the maximum and 

minimum values in each member time series) is typically within 10% of observations in all regions as illustrated 

for two regions in Fig. 3. Exceptions are the Lower Colorado, South Atlantic-Gulf and Upper Mississippi where 225 

the simulated distributions are too narrow. While not as mountainous as, say, Upper Colorado these regions have 

a wide range of elevation changes not captured by the coarse model resolution that may contribute to the model-

observation differences.  

 

CESM2 captures the longest spells of consecutive dry days per year (CDD; Fig. 4a) and consecutive wet days per 230 

year (CWD; Fig. 4b), and their variability. Many regions capture both the interannual variability and the 

climatological mean duration of CWD, particularly those regions that are subject to large-scale synoptic systems 

(e.g., Pacific Northwest, Mid Atlantic-Gulf, California). Several regions either overestimate (South Atlantic-Gulf) 

or underestimate (Great Lakes, Souris-Red-Rainy) the absolute durations of the longest wet spells, but do reflect 

the magnitude of interannual variability. The exception is Tennessee, where both interannual variability and mean 235 

CWD are overestimated. At the grid scale, broad spatial patterns of CWD are correct but the finer atmospheric 

processes arising from topographic features are incorrect, as expected from the coarse model resolution. A similar 

pattern is present in CDD, except that some drier regions with CDD >30 days do not capture the full range of 

interannual variability (Souris-Red Rainy, Missouri, Rio Grande). This is likely because all GCMs have a 

tendency to produce drizzle (Vano et al., 2014); adjusting for a higher wet day threshold (e.g., 2 mm) might 240 

improve dry spell representation in those regions. It is also important to communicate such model sensitivities to 

users more effectively. 
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Figure 4: a) Longest duration per year of consecutive days <1 mm rain (longest dry spell) for Livneh over all years 
(green) and CESM2 ensemble range over all years (blue) for all HUC2 regions; and b) Longest duration per year of 245 
consecutive days with ≥1 mm rain (longest wet spell). Regional Acronyms defined in Fig. 2. 

The thresholds for heavy and very heavy rain days (P95, P99) are defined individually for Livneh and CESM2 

both to understand whether the intensity of more extreme rainfall is captured, and to evaluate model behavior. A 

comparison of the thresholds reflects the considerable improvements in modeling capabilities in recent years 

(Gettelman et al., 2022). For instance, earlier versions of CESM underestimated extreme precipitation intensity 250 

by 10-30 mm/day east of the Rockies, and overestimated intensity by 5-10 mm/day to the west (Gervais et al., 

2014). We found CESM2 still underestimates the most extreme rainfall, but that errors have approximately halved. 

As these differences are still inadequate for many engineering and major infrastructure decisions (Wright et al., 
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2019), we focus on CESM2’s ability to capture the frequency of P95 and P99 per year, and their relative 

contributions to the annual total. A result with considerable useability is the proportion of annual total precipitation 255 

derived from the heaviest rain days, or “Proportional Contribution of Extreme Days” (P95Tot). This proportion 

and its interannual variability is well represented by CESM2 at the HUC2 scale and has shown to be skillful in 

other models (Tebaldi et al., 2021).  

 

The interannual variability in the frequency (N95) and intensity of extreme rainfall, as represented by P95Tot, are 260 

illustrated in Fig. 5. In several HUC2 regions the simulations report more frequent events, and proportionally 

higher totals (e.g., Great Lakes, Rio-Grande, Missouri, Upper Colorado and Lower Colorado). Overall, there is 

good agreement between Livneh and CESM2, identifying an opportunity to inform local decisions from large 

scale ESMs. 
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 265 
Figure 5: a, c, e, g) Number of very heavy rain days per year; and b, d, f, h) total rain from very heavy rain days as a 
proportion of the annual total for a, b) Tennessee (TN); c,d) Great Lakes (GL); e,f) Souris-Red-Rainy (RR); and g,h) 
California (CA) HUC2 regions. Observations in red; CESM2  ensemble spread in gray, single ensemble member in 
blue. 

 270 
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4.2 Runoff metrics 

Runoff estimates are taken from the individual components of surface and subsurface runoff generated within 

CLM5 (Lawrence et al., 2019) and compared to the Livneh forced VIC runoff (“Livneh-VIC”).  

 

Assessing the skill of runoff in large-scale models is complicated by many factors, including the mismatch of 275 

scales between in-channel flow (~1-102 m) and the grid scale (~105 m). Thus, metrics of climate model runoff 

should be selected carefully and the runoff should be aggregated or combined with other metrics, rather than used 

directly (Lehner et al., 2019).  Appendix C demonstrates the discrepancies between the grid-scale representation 

of runoff from Livneh-VIC and CESM2. The large discrepancies arise from different processes that are not 

captured adequately, such as groundwater, topography, and associated snow ablation and melt, in addition to 280 

meteorological biases.  

 

However, water management decisions are made over watersheds in units such as acre-feet1 or cubic meters, while 

model data are output as a depth of runoff over each grid cell (e.g., mm/day per km2). We aggregated the 7-day 

running mean daily runoff (Q7) within each HUC2 region to generate Q7 time series in each basin. Fig. 6a 285 

illustrates the 25-year mean seasonal cycle for Livneh-VIC in red and CESM2 in blue, and the full range of values 

over all years and ensemble members for the Souris-Red-Rainy basin (HUC Region 9). Data are presented in 

millions of acre feet, to align with decision maker needs. The minimum simulated Q7 in any year considerably 

underestimates the lowest flows in this region compared to Livneh-VIC. In contrast, the largest total runoff volume 

is overestimated and peaks too early in the water year. Figure 6b plots the same information as the cumulative 290 

runoff volume from the start of the water year, highlighting that the lowest runoff volume is underestimated by a 

factor of ten. Low runoff volumes were typically underestimated in smaller regions (e.g., NE, TN). High runoff 

volumes were only underestimated in three regions (LM, ARK, GUL) and considerably overestimated in seven 

regions. Snow-dominated regions perform particularly poorly for both QMax and QMin as snowpack and the 

timing of associated runoff are not well simulated. Transitional regions that straddle both snow- and rain-295 

dominated hydrology also fail to capture QMax, but better estimate Qmin (not shown). Only the South Atlantic 

region reproduces both QMax and QMin. 

 
1 1 Acre-foot is the volume of water it would take to cover 1 acre of land to a depth of 1 foot. Equal to 325,852 
gallons or 1,233 m3 (USGS Water Science). 
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Figure 6: Interannual variability in runoff in Souris Red Rainy Region for a) the mean seasonal cycle; and b) the 
cumulative watershed runoff over the water year. Livneh-VIC climatological mean in red, range of all years in pink; 300 
CESM2 ensemble mean in blue and ensemble range in gray. Figure highlights the underestimation of the lowest runoff 
volume by CESM2 by a factor of ten. 

 

We explored the relationship between the highest and total annual runoff (QMax/QTot), and lowest and total 

annual runoff (QMin/QTot). Some regions performed well for QMax/QTot, others performed better for 305 

QMin/QTot but there was no consistent relationship that could be utilized by decision makers.  

 

Participants at the NCAR workshop (Tye, 2023) emphasized that the exact numbers produced by climate models 

are not very important for future decisions. Credible interannual variability and sensitivity to change signals are 

more important to give confidence in the direction of future changes (Lehner et al., 2019). Others have also 310 

emphasized the importance of well-represented processes in the model (Reed et al., 2022) and correlations with 

known experiences (Mach et al., 2020; Shepherd et al., 2018). Focussing on fidelity to the historical climate 

exaggerates the importance of model performance instead of robustness to different conditions without ensuring 

that model predictions are useful or reliable (Brunner et al., 2021; Wagener et al., 2022). Runoff estimates in 

transitional catchments may be inadequate in the current climate but plausible in the future, if the model 315 

reproduces rain-dominated hydrological processes (McMillan, 2021). 

 

Climatological mean runoff cycles are estimated from Pardé coefficients — calculated as Q7/QTot on each 

calendar day — a dimensionless value that enables comparison across regions. Figure 7 depicts the mean seasonal 

cycle for representative snow-dominated (Upper Colorado), transitional (Missouri) and rain-dominated 320 

(Tennessee) regions, demonstrating how an imperfect representation of snow in the Upper Colorado results in 
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CESM2 peak runoff occurring two months earlier than Livneh-VIC (Fig. 7a). The runoff regimes display very 

different seasonal characteristics, with CESM2 having a “mid late spring” runoff regime rather than Livneh-VIC’s 

“extreme early summer” regime (Fig. 7a; Haines et al., 1988). Peak runoff is also too early in transitional regions, 

but closer to Livneh-VIC than in snow-dominated regions (Fig. 7b). Rain-dominated regions capture both the 325 

timing of QMax and overall seasonal hydrograph shape (Fig. 7c). 

 
Figure 7 : Seasonal patterns of runoff for HUC2 regions a) Upper Colorado (UC); b) Tennessee (TN);  
and c) Missouri (MR). Constructed from normalized series of the ratio of 7-day mean runoff to the mean annual total. 
Livneh-VIC runoff climatological mean (red), climatological range (pink), CESM2 ensemble mean (blue) and ensemble 330 
range (gray with dashed border). Vertical lines indicate the mean date of peak runoff with number of days since the 
start of the water year. 
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7Q10 and 7Q90 are estimated empirically from annual minima and maxima as occurring once per decade. 

Projected changes in the frequency of very low (high) runoff volumes are deemed credible where CESM2 

replicates the standard deviation of annual minima and maxima according to a 𝛘2 test at the 5% significance level. 335 

Table 1 reports CESM2 and Livneh-VIC regional estimates of 7Q10 and 7Q90 and standard deviation of the 

annual series; values in bold indicate where estimates are statistically similar.  

 
Table 1 : Very low (7Q10) and very high (7Q90) regional runoff, and standard deviation in regional annual minima (𝝈 
QMin) and annual maxima (𝝈 QMax) for Livneh and CESM2. Values in bold indicate where CESM2 and Livneh-VIC 340 
regional runoff are statistically similar according to a 𝛘2 test. 

Region Livneh-VIC CESM2 

7Q10 7Q90 𝝈 QMin 𝝈 QMax 7Q10 7Q90 𝝈 QMin 𝝈 QMax 

NE 1 4.1 132.4 1.3 25.5 8.6 215.1 4.7 39.9 

MA 2 6.9 103.5 2.5 25.7 7.4 220.7 3.6 47.9 

SA 3 21.1 240.4 8.4 50.7 20.5 258.6 11.9 45.8 

GL 4 6.9 122.5 2.2 23.8 7.8 331.0 4.3 58.0 

OH 5 7.8 187.6 2.3 53.0 9.4 260.9 4.5 56.4 

TN 6 2.1 90.5 0.8 23.1 0 98.7 0.3 21.7 

UM 7 2.1 78.2 1.7 16.9 7.9 122.3 4.7 31.5 

LM 8 3.9 212.2 1.1 36.1 8.0 81.0  5.1 14.7 

RR 9 1.0 24.3 0.5 7.1 0 33.0 0.1 8.4 

MR 10 2.3 103.0 1.6 28.1 5.2 147.4  4.2 30.4 

ARK 11 2.2 130.5 0.7 36.2 3.2 93.9 4.5 18.1 

GUL 12 1.5 99.1 0.5 35.5 1.3 70.7 2.8 16.7 

RIO 13 0.5 22.5 0.2 5.8 0.4 29.5 1.3 7.3 

UC 14 0.6 27.3 0.2 7.2 0 74.7 0.2 15.3 

LCO 15 0.5 19.4 0.2 7.5 0.3 46.7  0.7 11.6 

GB 16 0.7 33.3 0.3 10.3 1.8 71.5 1.3 21.1 

PN 17 20.6 266.5 7.9 50.2 4.4 449.6 2.6 87.3 

CA 18 1.6 323.2 0.4 101.9 1.3 233.4 1.1 61.3 

 

Grid-scale estimates such as mean daily runoff readily highlight why decision makers have low confidence in 

CESM2 output: the metrics are not salient and appear to have no skill. After aggregating the 7-day mean daily 

runoff to watershed scales, some skill emerges in the annual minima and maxima, and seasonal cycles. Snow-345 
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dominated watersheds perform poorly with regard to peak runoff volume and timing of the peaks and lows, as 

expected (McCrary et al., 2022). Rain-dominated watersheds capture the inter-annual variability and magnitudes 

of peak and low flows, and the seasonal hydrographs. While CESM2 at this coarse scale does not represent the 

local topography and cannot represent finer scale snow, our analysis indicates the land surface model correctly 

simulates the bulk water budget. The projected runoff responses in regions that will have little to no snow in the 350 

future are, therefore, credible. This is premised on the understanding of why the model can produce accurate 

results, and whether the accuracy can be reliably reproduced for the future climate (Wagener et al., 2022).  

5 Projected Changes 

The analyses presented in Section 4 identified some rainfall and runoff metrics salient to water resource managers, 

and well-capture by CESM2. While participants at the NCAR workshop stated that precise estimates are not 355 

necessary, they also emphasized their desire for high confidence in the projected scale and direction of any 

changes. We note that “confidence” is derived from a combination of 1) credible process representation; 2) 

agreement with historical trends, given internal variability; 3) agreement across multiple models. As the scope of 

this research was limited to testing the first aspect, we present projections for precipitation and runoff metrics in 

the nine regions where CESM2 is credible. 360 

5.1 Rainfall metrics 

Projected precipitation metrics suggest no statistically-significant changes in the frequency of wet days (NWD) 

in any region by mid-century under the SSP2-4.5 emissions scenario. Mean seasonal precipitation is projected to 

increase in New England (NE) and Pacific Northwest (PN) during winter and spring, but overall changes are 

slight. However, minor changes in the mean obscure the projected increasing intensity of the heaviest precipitation 365 

days and persistence of dry or wet spells (Donat et al., 2019).  

 

Figure 9 compares the range of contributions to the annual total from very heavy rain days (P95Tot). The bars 

encapsulate the interquartile range of all years per region with black bars at the median of all years for Livneh 

(blue) and all years and all ensemble members for CESM2 (green and orange); whiskers show the full extents of 370 

the data. Well-performing regions have the greatest overlaps between green (CESM2) and blue (Livneh) bars, 

while overlapping notches indicate statistical similarity. All regions show projected increases in the volume of 

annual total precipitation that will derive from the most extreme events, with significant changes indicated by 

divergent notches between green and orange (Future). Some regions (e.g., LCO, UM, GB) also show increasing 

volatility of wetter or drier years, as indicated by longer whiskers and/or bars. 375 
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Figure 8: Box plots of the interannual range of contributions to annual total rainfall from very heavy days (P95Tot) 
shown as percentages for: Livneh 1981-2010 (light blue), and also ensemble ranges for CESM2 1981-2010 (green) and 
CESM2 2040-2070 (orange) for all HUC2 regions. Boxes are bound by the interquartile range, black lines indicate the 
median, and bars extend to the full data range. 380 

 

Interannual variability is illustrated further for N95 (Fig. 9a) and P95Tot (Fig. 9b). Regions that are not statistically 

significant (for a student’s t-test at 5% significance) are hatched. Both plots indicate the majority of basins in the 

west will experience a decrease (albeit statistically insignificant) in the interannual variability of N95 and their 

intensity. Great Basin (GB) is notable in projecting a significant increase in both the interannual variability in 385 

N95, and their intensity. This reduction in predictability could exacerbate existing water resource problems, and 

have potential consequences for the downstream basins (LCO, CA). 
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Figure 9: CESM2 ensemble mean projected changes in interannual variability in a) frequency of very heavy wet days 390 
and units of days per decade; and b) proportional contribution to the annual total and units of percent per decade. 
Hatching indicates the region does not reach statistical significance.  

California is projected to halve the frequency of very heavy days, but the proportional contribution of those days 

to the annual total will increase from 20% to 22% (Fig. 8). This is coupled with projected increases in variability 

in the frequency and intensity of the heaviest events (Fig. 9), and reduced persistence in the duration of wet and 395 

dry spells (not shown). While not all of these changes are statistically significant, they are consistent with results 

from higher resolution models and suggest an increased potential for fire weather, drought, and floods (Lukas and 

Payton, 2020; Reclamation, 2016). Similar narratives are found for other regions, with several showing significant 

changes in the swings from wet to dry years (Fig. 9a). This emphasizes the importance of examining multiple 

precipitation metrics, and working with local partners to highlight potential risks and develop the full storyline of 400 

how future water management decisions relate to their experience. 

5.2 Runoff metrics 

CESM2-LENS projections could helpfully augment higher resolution model output in rain-dominated regions 

such as Tennessee, Ohio, and California, where CESM2 most closely reproduces Livneh-VIC. This is also true 

for transitional basins such as the Rio Grande, Northeast, and Lower Colorado, where seasonal snowpack may 405 

become more ephemeral and change the seasonal hydrological responses.  

 

Based on the mean day of QMax, identified from Pardé coefficients, CESM2 projects QMax will occur around 5 

days earlier in Tennessee, Ohio, and California by 2070 (Fig. 10). The duration of low flows at the end of the 

water year may also increase by around 5 days (not shown), but additional analysis using all CESM2-LENS 410 

members is needed to determine the true signal-to-noise in low-flow durations (Lehner et al., 2017). Transitional 

regions may experience QMax up to two weeks earlier as a result of changes in precipitation type. 
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Figure 10 : Example of projected changes in seasonal runoff timing for regions a) New England (NE); 
 and b) Mid-Atlantic (MA). 415 

 

The projected frequency of 7Q90 and 7Q10 has potential skill in CESM2 that would benefit water resource 

managers. The projected changes in seasonal and multi-year behavior point to increases in the east-west divide in 

drought-related problems. California is projected to have little change in 7Q90 frequency that may generate floods 

but twice the frequency of very low events, while the South Atlantic may double or triple 7Q90 frequency with 420 

little change in 7Q10 frequency. Table 2 compares the projected changes in frequencies of 7Q90 and 7Q10 events 

between 2040-2070 and 1981-2005. Effective change is calculated from the difference in ensemble mean of the 

expected rates over thirty years (i.e. 3 events in the current period). Color coding indicates a subjective human-

impacts assessment of beneficial (green) or adverse (orange) changes. Both 7Q90 and 7Q10 can have benefits 

from an ecological perspective and so no change is the most beneficial condition. However, the built environment 425 

is designed to be “fail-safe” (Tye et al., 2015) such that a lower probability of flooding would be beneficial, and 

restrictions on water availability would be adverse. 

 
Table 2: Projected changes in the frequency of very high flows (7Q90) and very low flows (7Q10) per decade for well-
simulated regions. Color coding indicates beneficial (green) or adverse (orange) changes in runoff regimes 430 

Region 7Q90 per decade Effective Change 7Q10 per decade Effective Change 

(1) NE 0.4 -1.0 1.1 0 

(10) MR 0.2 -1.0 2.0 +1.0 

(18) CA 0.8 0 2.4 +1.0 
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Region 7Q90 per decade Effective Change 7Q10 per decade Effective Change 

(2) MA 0.6 0 1.2 0 

(3) SA 3.3 +2.0 1.0 0 

(5) OH 1.0 0 0.8 0 

(6) TN 2.0 +1.0 2.0 +1.0 

(9) RR 1.0 0 3.4 +2.0 

6 Discussion 

As decision makers have become more immersed in developing water resource management adaptation plans, the 

role of “climate services” in developing salient climate information has increased (Briley et al., 2020; Brugger et 

al., 2016; Dilling et al., 2019). We tested our hypothesis that recent improvements in ESMs can allow decision-

relevant metrics to be produced directly, by leveraging the combined experience of the author team, results from 435 

the NCAR workshop, and the wealth of literature on actionable knowledge (Bremer et al., 2020; Jagannathan et 

al., 2021; Mach et al., 2020; Vano et al., 2014). Given that no model can perfectly address all decision needs, we 

identified and evaluated multiple metrics that can frame specific water management decisions within the known 

constraints of the data (Lempert, 2021), or within the decision makers’ experiences (Austin, 2023; Clifford et al., 

2020; Reed et al., 2022; Shepherd et al., 2018).  440 

 

It is important to communicate the original purpose of the model and associated weaknesses, so that decision 

makers fully understand which information is appropriate to use in other applications (Fisher and Koven, 2020; 

Gettelman and Rood, 2016; Wagener et al., 2022). Given the balance between model fidelity and model 

complexity (Clark et al., 2015) and the absence of detailed global scale observation data (e.g., Gleason and Smith, 445 

2014; Reba et al., 2011) CESM2 provides a plausible representation of Earth system processes and moisture 

fluxes, but may not capture basin-scale specifics (Ek, 2018; Lehner et al., 2019). That said, there are continued 

efforts to improve the simulation of land surface processes and analyses such as those presented in this article can 

flag weaknesses for future improvement (Lawrence et al., 2019).  

 450 

Establishing model fidelity also requires distinguishing an accurate representation of the climate processes from 

serendipitous correlation with observations. Whether the model has good process representation overall, or 

exactitude in one simulation can be established through internal variability analyses using large ensembles (e.g., 

Deser et al., 2020; Tebaldi et al., 2021). Repeating the analyses with several different ESMs to establish the degree 

of agreement (Mankin et al., 2020) would further strengthen the usability of metrics presented in this article. It is 455 

also worth noting that the analysis presented here only used one reference dataset. As different reanalysis and 

observational datasets can have large discrepancies, a thorough model evaluation would also benefit from 

comparison to several products (Kim et al., 2020; Newman et al., 2015). 
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While the precise details of precipitation and runoff may not be well simulated by CESM2, we found some aspects 460 

are sufficiently credible to support decision needs. The frequency of wet days highlighted regions where current 

seasonal behavior is well captured, and future behavior is plausible enough to support planning around flood and 

drought control or wildfire risk (Austin, 2023; Clifford et al., 2020; Jagannathan et al., 2021; Reclamation, 2016). 

CESM2 projects increases in late spring and early fall rain, instead of snow, and in the longest wet and dry spells 

affecting soil moisture capacity and the tendency for episodic floods and droughts in common with other basin-465 

wide assessments (e.g., Lukas and Payton, 2020; Underwood et al., 2018). Our analyses are also consistent with 

higher-resolution model projections of increases in the most extreme rainfall events (Fowler et al., 2021). 

7 Conclusions 

This paper presented an assessment of whether a standard resolution (~100 km grid) Earth system model is capable 

of producing information that water users typically employ in their decisions. Our motivation was to reduce the 470 

need for intermediate downscaling and broaden the use of large model ensembles in localized decisions. We drew 

on the combined experience of the project team and workshop participants to identify potential metrics and 

familiar modes of visualization. This project used only CESM2 over the conterminous United States to develop 

example metrics that may be explored within other models and over other regions. 

 475 

Given the inherent limitations of large-scale models in replicating small-scale processes, we only presented future 

projections for regions where processes are well-resolved on the coarse grid. We encourage others working in the 

decision space between climate data producers and users to be forthcoming about specific regions and reasons 

where model data are not credible, or where the model has particular weaknesses (such as the drizzle effect) that 

may be overcome with a different analysis approach. 480 

For future model assessors, the following metrics were found to be salient for water users and were skillfully 

reproduced in many regions. 

 

Rainfall: 

§ Number of wet days (≥ 1mm of rain) per year/season 485 

§ Mean precipitation on wet days 

§ Duration of the longest wet and dry spells per year 

§ Number of days with rain > 95th percentile of current climate wet day totals 

§ Proportion of the annual total derived from days > 95th percentile of wet day totals 

Runoff (aggregated up to basin level, as a volume for 3- and 7-day averages): 490 

§ Annual maxima and minima 

§ Frequency of very high or very low flows (< 10% annual chance of occurring in the current climate) 

§ Proportion of averaged daily runoff to annual total 
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The work presented in this paper is a small step toward establishing greater usability of climate model output by 495 

decision makers. Continued collaboration is essential to improve the transfer of knowledge (e.g., data 

requirements, model assumptions, decision constraints) between communities. 

 
 
Appendix A 500 
 
Table A1: Hydro-meteorological responses used in water management decisions, and the specific metrics that have 
potential for representation in ESMs. Metrics in bold are presented in this article. 

Hydro- 

meteorological 

Responses 

Typical Water 

Management Decision  

Metric Description 

Annual rainfall Water supply and 

drought monitoring 

Total Precipitation 

(PRCPTOT) 

Total annual precipitation 

measured as rainfall or snow 

water equivalent. 

Seasonal rainfall cycle Seasonal water supply, 

reservoir operations 

management 

Number of Wet Days 

(NWD),  

Mean Wet Day Volume 

(WDV) 

Frequency of days with 

≥1mm precipitation 

(NWD) per month, season 

or year,  

Mean precipitation on wet 

days calculated from 

PRCPTOT/NWD 

Rainfall extreme Flood and stormwater 

management 

95th percentile (Q95) 

Number of very heavy rain 

days (N95) 

Very heavy rain volume 

(P95) 

Proportional contribution of 

very heavy rain (P95tot) 

Rainfall percentile threshold 

that is exceeded by 5% rain 

events per year on average, 

and calculated from wet days 

only 

Frequency of days with 

rainfall exceeding Q95 

Total rain falling on days 

exceeding Q95 

Proportional of annual total 

derived from very heavy 

rain, calculated as 

P95/PRCPTOT 
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Hydro- 

meteorological 

Responses 

Typical Water 

Management Decision  

Metric Description 

Rainfall extreme (dry) Water supply planning 

and drought 

monitoring/planning 

including water rights 

and restrictions. 

Consecutive dry days 

(CDD) 

Maximum duration of spell 

with consecutive days 

measuring < 1 mm 

precipitation. 

Rainfall extreme (wet) Stormwater 

management, water 

supply planning 

Consecutive wet days 

(CWD) 
Maximum duration of spell 

with consecutive days 

measuring ≥ 1 mm 

precipitation. 

High streamflow  Reservoir management 

and flood control, water 

quality management and 

water supply 

management, including 

use of supplemental 

water supplies 

Annual maximum runoff 

(QMax) 

Description (JMaxF) 

Description (HFD) 

Annual maximum daily 

volume of basin-wide runoff  

Julian day of QMax/ day of 

the water year 

Duration of high flows  

Low streamflow  

 

Water supply 

management, 

assessment of water 

shortages with respect 

to seasonal demands 

Annual minimum runoff 

(QMin) 

Description (JMinF) 

Description (LFD) 

Annual minimum daily 

volume of basin-wide runoff  

Julian day of QMin/ day of 

the water year  

Duration of low flows 

Streamflow Water supply planning, 

water quality 

management, reservoir 

operations management, 

planning future 

investment needs 

7-day mean runoff (Q7) Daily volume of basin-wide 

runoff averaged over 7 days. 

Often presented as 

percentage of annual total 

volume of runoff or Pardé 

coefficient (Pardé, 1933) 

Very low streamflow Water quality 

management for 

7-day “10-year” low runoff 

(7Q10)- 

7-day averaged basin-wide 

lowest volume of runoff with 
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Hydro- 

meteorological 

Responses 

Typical Water 

Management Decision  

Metric Description 

discharge permits, 

conservation 

management, drought 

planning 

<10% annual probability of 

occurring. Estimated from 

Qmin series. 

Very high flow Flood management and 

planning, reservoir 

operations 

7-day “10-year” high runoff 

(7Q90) 

7-day averaged basin-wide 

highest volume of runoff 

with <10% annual 

probability of occurring. 

Estimated from Qmax series. 

Streamflow Water supply planning, 

reservoir operations 

management 

Central Tendency (CT) 

Description (Q25, Q50, Q75) 

Day of the water year when 

the cumulative annual runoff 

exceeds 50% of the total 

annual runoff 

Annual quartiles of 

cumulative annual runoff 

estimated from daily 

streamflow. 

Snowpack Reservoir operations 

and flood management, 

water supply planning 

Snow Water Equivalent 

(SWE) Maximum 

(SWEMax) 

SWEMax Date 

SWE Duration 

Volume of peak snow water 

equivalent 

Day of the water year when 

peak SWE occurs 

Total length of snow 

accumulation and ablation 

Snowmelt Flood management and 

reservoir operations 

Snowmelt onset Day of water year of 

snowmelt onset 
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Appendix B 505 

Seasonal Mean Precipitation for Winter (top row), Spring (row 2), Summer (row 3) and Fall (bottom row) as shown in 
Livneh (left column) and CESM2 (middle column), and difference CESM2-Livneh (right column) 
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Appendix C 510 
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