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 Abstract 

 The  large  spatial  scale  of  global  Earth  system  models  (ESM)  is  often  cited  as  an  obstacle  to  using  the  output  by 

 water  resource  managers  in  localized  decisions.  Recent  advances  in  computing  have  improved  the  fidelity  of 

 hydrological  responses  in  ESMs  through  increased  connectivity  between  model  components.  However,  the 

 models  are  seldom  evaluated  for  their  ability  to  reproduce  metrics  that  are  important  for  practitioners,  or  present 

 the  results  in  a  manner  that  resonates  with  the  users.  We  draw  on  the  combined  experience  of  the  author  team 

 and  stakeholder  workshop  participants  to  identify  salient  water  resource  metrics  and  evaluate  whether  they  are 

 credibly  reproduced  over  the  conterminous  U.S.  by  the  Community  Earth  System  Model  v2  Large  Ensemble 

 (CESM2).  We  find  that  while  the  exact  values  may  not  match  observations,  aspects  such  as  interannual 

 variability  can  be  reproduced  by  CESM2  for  the  mean  wet  day  precipitation  and  length  of  dry  spells.  CESM2 

 also  captures  the  proportion  of  annual  total  precipitation  that  derives  from  the  heaviest  rain  days  in  watersheds 

 that  are  not  snow-dominated.  Aggregating  the  7-day  mean  daily  runoff  to  HUC2  watersheds  also  shows 

 rain-dominated  regions  capture  the  timing  and  interannual  variability  in  annual  maximum  and  minimum  flows. 

 We  conclude  there  is  potential  for  far  greater  use  of  large  ensemble  ESMs,  such  as  CESM2,  in  long-range  water 

 resource decisions to supplement high resolution regional projections. 

 1  Introduction 

 Water  availability  and  water  quality  for  human  consumption,  ecosystems,  and  agriculture  are  fundamental 

 requirements,  making  pertinent  assessments  of  future  change  crucial  for  adaptation  planning  (IPCC,  2022). 

 Climate  related  changes  in  the  hydrologic  cycle  will  affect  substantial  portions  of  the  world  population,  most 

 directly  through  changes  in  water  availability  at  or  near  the  surface  (Mankin  et  al.,  2020;  Sedláček  and  Knutti, 

 2014).  The  information  required  by  water  resource  managers  for  decision  making  is  not  readily  available  in  a 
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 relevant  format,  or  at  sufficient  spatial  or  temporal  resolutions  from  global  Earth  system  models  (ESM;  e.g., 

 Ekström  et  al.,  2018).  We  explore  how  the  Community  Earth  System  Model  (CESM)  represents  the  climatology 

 of  water  availability,  focussing  on  metrics  that  are  familiar  to  decision  makers  in  planning  investment-scale 

 decisions. 

 The  inability  of  ESMs  to  explicitly  resolve  sub-grid  scale  (~100  km)  processes  is  often  cited  as  the  limitation 

 preventing  direct  model  use  in  decision  making.  Literature  from  large  organizations  making  infrastructure 

 decisions  (e.g.,  Brekke,  2011;  Brekke  et  al.,  2009;  Reclamation,  2016,  2014)  emphasize  downscaling  climate 

 model  data  closer  to  the  scale  of  the  watersheds  they  manage.  These  additional  modeling  steps  add  complexity 

 and  may  increase  statistical  errors  (Clark  et  al.,  2015;  Ekström  et  al.,  2018).  Extracting  useful  and  robust 

 information  directly  from  ESMs  would  reduce  such  errors  if  metrics  most  important  to  decision  makers,  such  as 

 the timing of peak flow, were known to be robustly represented. 

 There  are  many  comprehensive  examples  of  metrics  used  to  evaluate  climate  and  hydrological  models  (e.g., 

 Ekström  et  al.,  2018;  Mizukami  et  al.,  2019;  Wagener  et  al.,  2022),  and  communicate  the  impacts  of  climate 

 change  (e.g.,  Reed  et  al.,  2022),  or  to  identify  decision-relevant  metrics  (e.g.,  Bremer  et  al.,  2020;  Mach  et  al., 

 2020;  Underwood  et  al.,  2018;  Vano  et  al.,  2014).  However,  very  few  have  examined  whether  user  defined 

 metrics  can  be  reliably  reproduced  by  ESMs  (Mankin  et  al.,  2020),  and  if  further  model  development  and  scale 

 reduction  is  warranted  instead  of  improved  communication  (Pacchetti  et  al.,  2021).  Better  communication  may 

 also  reduce  the  temptation  of  some  users  to  calculate  “standard  hydroclimate  metrics”  that  are  not  supported  by 

 the climate model data (Ekström et al., 2018). 

 In  contrast,  climate  model  output  can  be  rejected  unnecessarily  when  simulated  annual  minima  from  freely 

 running  simulations  do  not  “match”  the  sequence  of  observed  low  flows  (Ekström  et  al.,  2018;  Moise  et  al., 

 2015).  Similarly,  the  benefits  of  a  range  of  projected  outcomes  from  different  climate  models  are  not  widely 

 appreciated  beyond  the  climate  model  community  (Tebaldi  and  Knutti,  2007).  Large  ensembles  from  a  single 

 climate  model  initialized  with  a  range  of  atmospheric  and  ocean  conditions,  such  as  the  CESM2  Large 

 Ensemble  (LENS2;  Rodgers  et  al.,  2021),  help  to  bound  the  uncertainty  that  derives  from  a  naturally  chaotic 

 system.  Averaged  over  the  full  ensemble,  they  give  a  better  estimate  of  the  model’s  response  to  internal  and 

 external  forcing  (Deser  et  al.,  2012)  and  enable  assessments  of  the  rarity  of  projected  extremes.  The  additional 

 analysis  to  identify  structural  (i.e.  model  formulation)  and  internal  variability  within  regional  climate  models 

 means that there are fewer large ensembles at a high resolution (Deser et al., 2020). 

 Since  different  decision  makers  have  different  priorities  and  time-scales  of  interest,  Shepherd  et  al.  (2018) 

 recommended  the  development  of  climate  storylines  to  communicate  with  those  using  climate  data  to  make 

 decisions.  Informed  by  prior  surveys  of  water  managers  (e.g.,  Brekke,  2011;  Brekke  et  al.,  2009;  Cantor  et  al., 

 2018;  Raff  et  al.,  2013;  Wood  et  al.,  2021),  Fig.  1  aims  to  map  the  different  types  of  water  decisions  (e.g.,  Raff 

 et  al.,  2013  Fig.  3)  to  the  different  scales  of  model  resolution  (Meehl  et  al.,  2009  Fig.  2).  Water  managers  make 

 daily  operational  decisions  (e.g.,  to  control  instantaneous  river  flow)  with  the  aid  of  fine-scale  weather  and  flood 

 models  (<4  km)  that  reliably  represent  convective  and  local  weather  scale  processes  even  though  their 
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 predictability  is  relatively  short  lived  (Yuan  et  al.,  2019;  far  left  side  of  Fig.  1).  Larger  watershed  operations 

 (such  as  reservoir  management  or  groundwater  recharge;  e.g.,  Regional  Water  Authority,  2019)  depend  on 

 seasonal  outlooks  (middle  left  of  Fig.  1).  Smaller  adaptation  and  mitigation  projects  take  place  at  the  typical 

 policy  or  decadal  prediction  scale  (i.e.,  4-10  years;  middle  right  of  Fig.  1).  Finally,  major  public  investments  and 

 inter-basin  agreements  occur  at  the  same  time  scales  as  climate  projections  (30-100  years;  far  right  of  Fig.  1) 

 where  persistent  and  relatively  predictable  synoptic  and  planetary  scale  processes  are  well  represented  in  lower 

 resolution  (~100  km)  climate  models  (Phillips  et  al.,  2020).  While  forecasts  (seasonal  or  decadal)  are 

 re-initialized  from  specific  atmosphere,  ocean  or  land  states  at  regular  time  intervals,  climate  projections  are  run 

 freely  from  a  variety  of  atmospheric  and  oceanic  conditions  that  take  several  decades  to  converge  to  a  mean 

 climatology.  In  considering  the  utility  and  useability  of  information  directly  from  ESMs  we  focus  on  decisions 

 made over decadal to climate scales at larger spatial scales. 

 Figure 1: Mapping the temporal and spatial scales of models to the timeframes for water management decisions. 

 Given  that  ESMs  have  advanced  immeasurably  in  the  recent  decade,  it  is  time  to  re-evaluate  whether  their  direct 

 output  can  support  decision  makers.  Such  an  evaluation  needs  to  focus  on  how  well  the  models  can  reproduce 

 metrics  used  by  decision  makers,  and  whether  the  results  are  credible  (Briley  et  al.,  2020;  Jagannathan  et  al., 

 2021).  Here  we  evaluate  the  credibility  of  one  ESM  in  generating  metrics  known  to  be  salient  for  water 

 management decisions; specifically, decisions for water management infrastructure project investments. 

 The motivation for this paper is to identify: 

 ●  a  set  of  water  availability  metrics  that  resonates  with  decision  makers  and  supports  their 

 investment-scale decisions; 

 ●  how well CESM2 represents the climatology and recent observed behaviors of those metrics; and 

 ●  how such metrics are projected to change. 

 This  paper  builds  off  a  decade  of  collaboration  between  scientists  at  the  National  Center  for  Atmospheric 

 Research  (NCAR)  and  US  water  agencies  that  led  to  a  virtual  workshop  (Tye,  2023),  and  presents  a  test  case  for 

 improved  communication  with  water  resources  decision  makers.  The  focus  is  on  the  Conterminous  United 

 States (CONUS) to match the interest of workshop participants. 
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 2  Climate Information Needs from Prior Research 

 Information  needs  vary  greatly,  from  5-minute  rainfall  totals  at  a  point  (ASCE,  2006),  to  basin-wide  measures  of 

 annual  minimum  and  maximum  total  runoff.  Water  management  decision  metrics  can  be  grouped  into  similar 

 types  such  as  timing,  frequency,  magnitude,  extreme  values,  variability,  and  duration  of  events  (Ekström  et  al., 

 2018).  While  some  aspects  of  timing,  magnitude,  or  variability  can  be  reliably  reproduced  by  ESMs  (e.g.,  Deser 

 et al., 2020; Tebaldi and Knutti, 2007), others such as short duration extremes are less reliable. 

 Methods  of  evaluation  and  data  use  also  differ.  For  instance,  Clifford  et  al.  (2020)  reported  that  predicting 

 general  changes  in  the  frequency  of  extreme  precipitation  events  is  more  useful  for  future  planning  than  the 

 precise  prediction  of  mean  values  evaluated  by  model  developers.  Lehner  et  al.  (2019)  emphasized  that  models 

 need  to  be  evaluated  for  their  ability  to  reproduce  sensitivities  (e.g.,  streamflow  changes  in  response  to 

 temperature  and  precipitation  changes)  in  addition  to  mean  states.  However,  metrics  that  are  meaningful  for 

 evaluating  a  model’s  capabilities  (e.g.,  the  ratio  of  precipitation  to  runoff)  are  less  valuable  for  management 

 decisions  (Lehner  et  al.,  2019;  McMillan,  2021;  Mizukami  et  al.,  2019).  When  reporting  results,  water  managers 

 are  more  familiar  with  the  ‘water  year’,  rather  than  the  calendar  year,  to  capture  the  full  annual  hydrological 

 cycle  (Ekström  et  al.,  2018).  While  the  use  of  water  years  is  a  nuance  that  does  not  add  substantial  value  to 

 climate  model  assessments,  communication  with  decision  makers  is  improved  by  presenting  data  in  a  familiar 

 format (Briley et al., 2020). 

 There  is  a  need  for  information  at  the  local  scale  that  is  unlikely  to  be  met  directly  by  raw  outputs  from  the 

 current  generation  of  ESM.  But  better  communication  of  the  variability  in  future  daily  precipitation  and 

 associated  runoff  can  add  value  to  the  detailed  models  by  bringing  in  the  added  statistical  context  and 

 perspective  of  the  large  ensembles.  Thus,  we  believe  that  ESMs  can  produce  useful  information  about 

 hydro-meteorological  extremes  when  presented  at  different  spatial  or  temporal  scales,  and  offer  the  benefits  of 

 large climate model ensembles to constrain future impact uncertainty. 

 Appendix  A  summarizes  potential  hydrological  metrics  used  in  water  management  decisions  (Jagannathan  et  al., 

 2021)  or  statistical  assessments  of  extremes  (Zhang  et  al.,  2011),  and  model  evaluations  (Phillips  et  al.,  2020). 

 Metrics  in  bold  are  presented  in  this  paper.  We  only  considered  a  simplistic  measure  of  meteorological  drought 

 (absence  of  rain)  in  the  current  work,  as  drought  is  sensitive  to  the  definition  (Bachmair  et  al.,  2016)  and  local 

 conditions  (Mukherjee  et  al.,  2018),  and  so  not  suited  to  a  generalized  assessment.  Similarly,  snow  measures  are 

 not  included  in  this  assessment  in  part  due  to  limited  availability  of  high-quality,  long-duration, 

 quality-controlled,  observational  data  (McCrary  et  al.,  2017);  and  partly  due  to  the  biases  in  snow  distribution 

 arising from the smoothed topography in GCMs (McCrary et al., 2022). 
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 3  Data and Methods 

 3.1  Climate Model Data 

 CESM2  (Danabasoglu  et  al.,  2020)  is  a  fully  coupled  global  model  that  simulates  the  Earth’s  climate  system 

 through  interactive  models  for  atmosphere,  ocean,  land,  sea-ice,  river  runoff,  and  land-ice.  Variables  considered 

 in  this  project  are  taken  from  the  Community  Atmosphere  Model  version  6  (CAM6)  and  the  Community  Land 

 Model  version  5.0  (CLM5;  Lawrence  et  al.,  2019)  and  are  part  of  the  default  model  outputs.  A  schematic  of  the 

 model  components  is  included  in  Appendix  B.  This  project  uses  daily  values  scaled  up  to  annual  (e.g.,  annual 

 maximum  daily  precipitation)  on  a  ~1  degree  resolution  grid.  Data  were  extracted  over  the  CONUS  from  10 

 ensemble members of LENS2 (Rodgers et al., 2021) for model validation in the current era (1981-2010). 

 3.2  Observations 

 Gridded  daily  observations  of  precipitation  at  1/16°  horizontal  resolution  (~6  km)  were  obtained  from  the 

 Livneh  et  al.  (2013)  dataset  covering  CONUS  and  southern  Canada  for  the  control  period  (1981-2010),  hereafter 

 referred  to  as  “Livneh”.  While  the  time  adjustment  in  the  Livneh  dataset  results  in  an  underestimation  of  the 

 most  extreme  daily  precipitation  totals  and  resultant  runoff  and  flood  potential  (Pierce  et  al.  2021),  we  are  also 

 interested  in  precipitation  and  runoff  minima.  As  a  result  we  did  not  employ  the  updated  gridded  observations 

 (Pierce et al. 2021). 

 Livneh  daily  temperature  maxima  and  minima,  and  precipitation  were  used  to  force  the  Variable  Infiltration 

 Capacity  Model  (VIC;  Liang  et  al.,  1994)  version  4.1.2  to  obtain  runoff  estimates  for  years  1980-2005  as 

 evaluated in Livneh et al. (2013). Hereafter referred to as “Livneh-VIC”. 

 Figure  2:  HUC  2  regions  used  in  data  validation  and  analysis.  Regions  defined  by  USGS  (2013):  Region  01  New 
 England  (NE);  Region  02  Mid-Atlantic  (MA);  Region  03  South  Atlantic-Gulf  (SA);  Region  04  Great  Lakes  (GL); 
 Region  05  Ohio  (OH);  Region  06  Tennessee  (TN);  Region  07  Upper  Mississippi  (UM);  Region  08  Lower  Mississippi 
 (LM);  Region  09  Souris-Red-Rainy  (RR);  Region  10  Missouri  (MR);  Region  11  Arkansas-White-Red  (ARK);  Region 
 12  Texas-Gulf  (GUL);  Region  13  Rio  Grande  (RIO);  Region  14  Upper  Colorado  (UC);  Region  15  Lower  Colorado 
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 (LCO); Region 16 Great Basin (GB); Region 17 Pacific Northwest (PN); 
 Region 18 California (CA) 

 3.3  Methods 

 All  analyses  were  carried  out  using  the  North  American  water  year  (1  October  to  30  September)  to  facilitate 

 later communication. 

 3.3.1  Remapping 

 For  ease  of  comparison,  model  output  were  re-gridded  using  a  conservative  second-order  remapping  (Jones, 

 1999)  to  place  both  datasets  on  the  same  scale  grid  and  assess  anomalies.  Data  were  also  calculated  as  areal 

 averages  or  totals  over  the  2-digit  Hydrological  Unit  Code  (HUC2)  regions  (Seaber  et  al.,  1987).  HUC2  basins 

 represent  18  watersheds,  covering  areas  ranging  from  41,000  mi  2  (~105,000  km  2  ;  Tennessee)  to  520,960mi  2 

 (1,350,000  km  2  ;  Missouri),  shown  in  Fig.  2.  While  the  scale  of  HUC2  regions  may  be  large  for  some  local 

 decision-makers,  it  is  also  a  more  appropriate  and  conservative  scale  to  compare  to  ESMs  as  demonstrated  by 

 Lehner et al. (2019). 

 3.3.2  Percentile-based thresholds 

 The  threshold  for  very  heavy  rain  days  (Q95)  was  calculated  at  each  individual  grid  cell  using  only  days  with  ≥ 

 1  mm  rain  (“wet  days”).  Thresholds  were  derived  empirically  for  each  model  ensemble  member,  with  the 

 ensemble  mean  threshold  (Q95)  used  to  identify  the  days  per  year  exceeding  the  threshold  (N95)  and  total 

 annual rainfall from those days (P95). 

 Runoff  was  aggregated  over  each  HUC2  watershed  and  multiplied  by  the  respective  area  to  generate  total 

 volume  per  day.  Volume  per  day  was  then  converted  to  measurements  more  familiar  to  users,  such  as  acre  feet 

 per  day  or  cubic  meters  per  second.  Daily  time  series  of  total  volumetric  runoff  had  a  7-day  running  mean 

 smoother  applied,  then  annual  maximum,  minimum  and  mean  values  were  extracted.  The  highest  and  lowest 

 7-day  average  runoff  expected  once  per  decade  (7Q90,  7Q10)  were  estimated  empirically  from  the  25  ranked 

 values of of annual maxima and minima per watershed. 

 4  Model Evaluation 

 The  metrics  used  to  evaluate  CESM2’s  ability  to  reproduce  large  scale  features  and  physical  behaviors  (e.g., 

 Danabasoglu  and  Lamarque,  2021  and  the  associated  Special  Issue)  are  not  necessarily  those  employed  by 

 decision  makers.  ESMs  are  designed  to  represent  large-scale  atmospheric  processes  and  fluxes  not  specific  local 

 responses  (Gettelman  and  Rood,  2016),  but  this  design  assumption  may  not  be  sufficiently  well  communicated 

 to  decision  makers.  The  purpose  of  our  evaluation  is  to  establish  whether  CESM2  output  is  also  fit  for  local 

 decision  purposes,  or  if  the  breadth  of  information  from  ESM  ensembles  remains  unsuitable  for  immediate  use 

 in targeted water management decisions. 
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 4.1  Rainfall metrics 

 While  broad  spatial  patterns  of  seasonal  mean  daily  rainfall  are  reproduced  well  (Danabasoglu  et  al.,  2020;  Feng 

 et  al.,  2020;  Simpson  et  al.,  2022),  CESM2  fails  to  capture  details  over  high  topography,  and  overestimates 

 summer  precipitation  where  convective  extremes  dominate  summer  rainfall  (Appendix  B).  The  seasonal  mean 

 precipitation  also  fails  to  capture  some  important  watershed-level  processes,  such  as  the  seasonal  variability  in 

 the number of days with precipitation and the associated intensity. 

 Estimates  of  mean  annual  rainfall  on  wet  days,  or  wet  day  volume,  are  in  broad  agreement  between  Livneh  and 

 CESM2  output.  Figure  3  shows  an  example  of  the  mean  number  of  wet  days  per  month  (NWD),  and  mean  wet 

 day  volume  (WDV)  averaged  over  the  Mid  Atlantic  and  Pacific  Northwest.  While  CESM2  represents  the  NWD 

 annual  cycle  very  well  in  regions  such  as  California  (Fig.  3a,  3c)  and  the  Pacific  Northwest  (Fig.  3b,  3d),  it  does 

 not  capture  NWD  in  many  central  and  snow  dominated  regions.  This  is  likely  due  to  the  smoother  topography  of 

 CESM2  missing  the  influence  of  orographic  uplift,  and  large  spatial  scale  missing  sub-grid  scale  convective 

 systems (e.g., over the Central Plains). 
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 Figure  3:  Average  number  of  wet  days  per  month  (a,  b)  and  interannual  variability  in  mean  annual  precipitation  on 
 wet  days  for  Livneh  climatological  mean  (red)  with  interannual  spread  (pink)  and  CESM2  mean  (blue)  with 
 interannual  and  ensemble  spread  (gray);  and  (c,d)  between  1981-2010  for  observations  derived  from  Livneh  (red) 
 and CESM2 ensemble mean (blue) and spread (gray) in  (a,c) Region 18 California (CA); 
 and (b,d) Region 17 Pacific Northwest (PN). 

 The  annual  variability  in  WDV,  both  year-to-year  variations  as  well  as  the  overall  range  of  minima  and  maxima, 

 is  well  captured  by  each  of  the  model  members  for  the  different  HUC2  regions,  even  if  the  absolute  values  do 

 not  match  (Fig.  3  c,d).  As  expected,  the  specifics  of  which  years  have  high  or  low  values  of  WDV  are  not  the 

 same  for  each  ensemble  member  (i.e.  demonstrating  internal  variability).  As  a  result,  the  ensemble  mean  value 

 of  WDV  (blue)  does  not  reflect  the  same  year-to-year  variability  as  the  observations.  Decision  makers  expressed 

 that  the  interannual  variability  demonstrated  by  each  model  member  is  more  valuable  to  demonstrate  the 
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 credibility  of  the  data  than  the  ensemble  mean  (Tye,  2023).  We  recommend  that  the  full  range  of  values  of  each 

 metric  (i.e.  after  computation  for  each  ensemble  member  individually)  are  communicated  in  addition  to  the 

 climatological means to help bound uncertainty around decisions (Wilby et al., 2021). 

 The  magnitude  of  interannual  variability  in  WDV  (i.e.,  the  absolute  differences  between  the  maximum  and 

 minimum  values  in  each  member  time  series)  is  typically  within  10%  of  observations  in  all  regions  as  illustrated 

 for  two  regions  in  Fig.  3.  Exceptions  are  the  Lower  Colorado,  South  Atlantic-Gulf  and  Upper  Mississippi  where 

 the  simulated  distributions  are  too  narrow.  Many  different  sources  of  error  may  contribute  to  this  discrepancy, 

 such  as  the  inability  to  resolve  convective  precipitation  (Chen  et  al.,  2021)  in  addition  to  elevation  changes  not 

 captured  by  the  coarse  model  resolution,  or  the  “drizzle  effect”  that  is  common  in  GCMs  (Chen  et  al.,  1996;  Dai, 

 2006). 

 CESM2  captures  the  longest  spells  of  consecutive  dry  days  per  year  (CDD;  Fig.  4a)  and  consecutive  wet  days 

 per  year  (CWD;  Fig.  4b),  and  their  variability.  Many  regions  capture  both  the  interannual  variability  and  the 

 climatological  mean  duration  of  CWD,  particularly  those  regions  that  are  subject  to  large-scale  synoptic  systems 

 (e.g.,  Pacific  Northwest,  Mid  Atlantic-Gulf,  California).  Several  regions  either  overestimate  (South 

 Atlantic-Gulf)  or  underestimate  (Great  Lakes,  Souris-Red-Rainy)  the  absolute  durations  of  the  longest  wet 

 spells,  but  do  reflect  the  magnitude  of  interannual  variability.  The  exception  is  Tennessee,  where  both 

 interannual  variability  and  mean  CWD  are  overestimated.  At  the  grid  scale,  broad  spatial  patterns  of  CWD  are 

 correct  but  the  finer  atmospheric  processes  arising  from  topographic  features  are  incorrect,  as  expected  from  the 

 coarse  model  resolution.  A  similar  pattern  is  present  in  CDD,  except  that  some  drier  regions  with  CDD  >30  days 

 do  not  capture  the  full  range  of  interannual  variability  (Souris-Red  Rainy,  Missouri,  Rio  Grande).  As  GCMs 

 have  a  tendency  to  produce  drizzle,  adjusting  for  a  higher  wet  day  threshold  (e.g.,  2  mm)  might  improve  dry 

 spell  representation  in  those  regions.  It  is  also  important  to  communicate  such  model  sensitivities  to  users  more 

 effectively. 
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 Figure  4:  a)  Longest  duration  per  year  of  consecutive  days  <1  mm  rain  (longest  dry  spell)  for  Livneh  over  all  years 
 (green)  and  CESM2  ensemble  range  over  all  years  (blue)  for  all  HUC2  regions;  and  b)  Longest  duration  per  year  of 
 consecutive days with ≥1 mm rain (longest wet spell). Regional Acronyms defined in Fig. 2. 

 The  thresholds  for  heavy  and  very  heavy  rain  days  (P95,  P99)  are  defined  individually  for  Livneh  and  CESM2 

 both  to  understand  whether  the  intensity  of  more  extreme  rainfall  is  captured,  and  to  evaluate  model  behavior.  A 

 comparison  of  the  thresholds  reflects  the  considerable  improvements  in  modeling  capabilities  in  recent  years 

 (Gettelman  et  al.,  2022).  For  instance,  earlier  versions  of  CESM  underestimated  extreme  precipitation  intensity 

 by  10-30  mm/day  east  of  the  Rockies,  and  overestimated  intensity  by  5-10  mm/day  to  the  west  (Gervais  et  al., 

 2014).  We  found  CESM2  still  underestimates  the  most  extreme  rainfall,  but  that  errors  have  approximately 

 halved.  As  these  differences  are  still  inadequate  for  many  engineering  and  major  infrastructure  decisions 

 (Wright  et  al.,  2019),  we  focus  on  CESM2’s  ability  to  capture  the  relative  contributions  of  P95  and  P99  to  the 

 annual  total  and  the  interannual  variability  in  their  frequency.  A  result  with  considerable  useability  is  the 

 proportion  of  annual  total  precipitation  derived  from  the  heaviest  rain  days,  or  “Proportional  Contribution  of 

 Extreme  Days”  (P95Tot).  This  proportion  and  its  interannual  variability  is  well  represented  by  CESM2  at  the 

 HUC2 scale and has shown to be skillful in other models (Tebaldi et al., 2021). 

 The  interannual  variability  in  the  frequency  (N95)  and  intensity  of  extreme  rainfall,  as  represented  by  P95Tot, 

 are  illustrated  in  Fig.  5  and  6.  In  several  HUC2  regions  the  simulations  report  more  frequent  events,  and 

 proportionally  higher  totals  (e.g.,  Great  Lakes,  Rio-Grande,  Missouri,  Upper  Colorado  and  Lower  Colorado). 

 Overall,  there  is  good  agreement  between  Livneh  and  CESM2,  identifying  an  opportunity  to  inform  local 

 decisions from large scale ESMs. 
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 Figure  5:  a,  c,  e,  g)  Number  of  very  heavy  rain  days  per  year;  and  b,  d,  f,  h)  total  rain  from  very  heavy  rain  days  as  a 
 proportion  of  the  annual  total  for  a,  b)  Tennessee  (TN);  c,d)  Great  Lakes  (GL);  e,f)  Souris-Red-Rainy  (RR);  and  g,h) 
 California  (CA)  HUC2  regions.  Observations  in  red;  CESM2  ensemble  spread  in  gray,  single  ensemble  member  in 
 blue. 

 Figure  6:  Box  plots  of  the  interannual  range  of  contributions  to  annual  total  rainfall  from  very  heavy  days  (P95Tot) 
 shown  as  percentages  for:  Observations  (light  blue),  and  ensemble  range  for  CESM2  (green)  for  all  HUC2  regions. 
 Boxes  are  bound  by  the  interquartile  range,  black  lines  indicate  the  median,  notches  indicate  the  degree  of  spread 
 from the median and bars extend to the full data range. 

 4.2  Runoff metrics 

 Runoff  estimates  are  taken  from  the  individual  components  of  surface  and  subsurface  runoff  generated  within 

 CLM5 (Lawrence et al., 2019) and compared to the Livneh forced VIC runoff (“Livneh-VIC”). 

 Assessing  the  skill  of  runoff  in  large-scale  models  is  complicated  by  many  factors,  including  the  mismatch  of 

 scales  between  in-channel  flow  (~1-10  2  m)  and  the  grid  scale  (~10  5  m).  Thus,  metrics  of  climate  model  runoff 

 should  be  selected  carefully  and  the  runoff  should  be  aggregated  or  combined  with  other  metrics,  rather  than 

 used  directly  (Lehner  et  al.,  2019).  Appendix  C  demonstrates  the  discrepancies  between  the  grid-scale 

 representation  of  runoff  from  Livneh-VIC  and  CESM2.  The  large  discrepancies  arise  from  different  processes 

 that  are  not  captured  adequately,  such  as  groundwater,  topography,  and  associated  snow  ablation  and  melt,  in 

 addition to meteorological biases. 

 However,  water  management  decisions  are  made  over  watersheds  in  units  such  as  acre-feet  1  or  cubic  meters, 

 while  model  data  are  output  as  a  depth  of  runoff  over  each  grid  cell  (e.g.,  mm/day  per  km  2  ).  We  aggregated  the 

 7-day  running  mean  daily  runoff  (Q7)  within  each  HUC2  region  to  generate  Q7  time  series  in  each  basin.  Fig. 

 7a  illustrates  the  25-year  mean  seasonal  cycle  for  Livneh-VIC  in  red  and  CESM2  in  blue,  and  the  full  range  of 

 1  1  Acre-foot  is  the  volume  of  water  it  would  take  to  cover  1  acre  of  land  to  a  depth  of  1  foot.  Equal  to  325,852 
 gallons or 1,233 m  3  (USGS Water Science). 
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 values  over  all  years  and  ensemble  members  for  the  Souris-Red-Rainy  basin  (HUC  Region  9).  Data  are 

 presented  in  millions  of  acre  feet,  to  align  with  decision  maker  needs.  The  minimum  simulated  Q7  in  any  year 

 considerably  underestimates  the  lowest  flows  in  this  region  compared  to  Livneh-VIC.  In  contrast,  the  largest 

 total  runoff  volume  is  overestimated  and  peaks  too  early  in  the  water  year.  Figure  7b  plots  the  same  information 

 as  the  cumulative  runoff  volume  from  the  start  of  the  water  year,  highlighting  that  the  lowest  runoff  volume  is 

 underestimated  by  a  factor  of  ten.  Low  runoff  volumes  were  typically  underestimated  in  smaller  regions  (e.g., 

 NE,  TN).  High  runoff  volumes  were  only  underestimated  in  three  regions  (LM,  ARK,  GUL)  and  considerably 

 overestimated  in  seven  regions.  Snow-dominated  regions  perform  particularly  poorly  for  both  QMax  and  QMin 

 as  snowpack  and  the  timing  of  associated  runoff  are  not  well  simulated.  Transitional  regions  that  straddle  both 

 snow-  and  rain-dominated  hydrology  also  fail  to  capture  QMax,  but  better  estimate  Qmin  (not  shown).  Only  the 

 South Atlantic region reproduces both QMax and QMin. 

 Figure  7:  Interannual  variability  in  runoff  in  Souris  Red  Rainy  Region  for  a)  the  mean  seasonal  cycle;  and  b)  the 
 cumulative  watershed  runoff  over  the  water  year.  Livneh-VIC  climatological  mean  in  red,  range  of  all  years  in  pink; 
 CESM2  ensemble  mean  in  blue  and  ensemble  range  in  gray.  Figure  highlights  the  underestimation  of  the  lowest 
 runoff volume by CESM2 by a factor of ten. 

 We  explored  the  relationship  between  the  highest  and  total  annual  runoff  (QMax/QTot),  and  lowest  and  total 

 annual  runoff  (QMin/QTot).  Some  regions  performed  well  for  QMax/QTot,  others  performed  better  for 

 QMin/QTot but there was no consistent relationship that could be utilized by decision makers. 

 Participants  at  the  NCAR  workshop  (Tye,  2023)  emphasized  that  the  exact  numbers  produced  by  climate  models 

 are  not  very  important  for  future  decisions.  Others  have  also  emphasized  the  importance  of  well-represented 

 processes  in  the  model  (Reed  et  al.,  2022)  and  correlations  with  known  experiences  (Mach  et  al.,  2020; 
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 Shepherd  et  al.,  2018).  Focussing  on  fidelity  to  the  historical  climate  exaggerates  the  importance  of  model 

 performance  instead  of  robustness  to  different  conditions  without  ensuring  that  model  predictions  are  useful  or 

 reliable  (Brunner  et  al.,  2021;  Wagener  et  al.,  2022).  Runoff  estimates  in  transitional  catchments  may  be 

 inadequate  in  the  current  climate  but  plausible  in  the  future,  if  the  model  reproduces  rain-dominated 

 hydrological processes (McMillan, 2021). 

 Climatological  mean  runoff  cycles  are  estimated  from  Pardé  coefficients  —  calculated  as  Q7/QTot  on  each 

 calendar  day  —  a  dimensionless  value  that  enables  comparison  across  regions.  Figure  8  depicts  the  mean 

 seasonal  cycle  for  representative  snow-dominated  (Upper  Colorado),  transitional  (Missouri)  and  rain-dominated 

 (Tennessee)  regions,  demonstrating  how  an  imperfect  representation  of  snow  in  the  Upper  Colorado  results  in 

 CESM2  peak  runoff  occurring  two  months  earlier  than  Livneh-VIC  (Fig.  8a).  The  runoff  regimes  display  very 

 different  seasonal  characteristics,  with  CESM2  having  a  “mid  late  spring”  runoff  regime  rather  than 

 Livneh-VIC’s  “extreme  early  summer”  regime  (Fig.  8a;  Haines  et  al.,  1988).  Peak  runoff  is  also  too  early  in 

 transitional  regions,  but  closer  to  Livneh-VIC  than  in  snow-dominated  regions  (Fig.  8b).  Rain-dominated 

 regions capture both the timing of QMax and overall seasonal hydrograph shape (Fig. 8c). 

 14 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 



 Figure 8 : Seasonal patterns of runoff for HUC2 regions a) Upper Colorado (UC); b) Tennessee (TN); 
 and  c)  Missouri  (MR).  Constructed  from  normalized  series  of  the  ratio  of  7-day  mean  runoff  to  the  mean  annual 
 total.  Livneh-VIC  runoff  climatological  mean  (red),  climatological  range  (pink),  CESM2  ensemble  mean  (blue)  and 
 ensemble  range  (gray  with  dashed  border).  Vertical  lines  indicate  the  mean  date  of  peak  runoff  with  number  of  days 
 since the start of the water year. 

 7Q10  and  7Q90  are  estimated  empirically  from  annual  minima  and  maxima  as  occurring  once  per  decade. 

 Projected  changes  in  the  frequency  of  very  low  or  very  high  runoff  volumes  are  deemed  credible  where  CESM2 

 replicates  the  standard  deviation  of  annual  minima  and  maxima  according  to  a  𝛘  2  test  at  the  5%  significance 

 level.  Table  1  reports  CESM2  and  Livneh-VIC  regional  estimates  of  7Q10  and  7Q90  and  standard  deviations  of 

 the  annual  maxima  and  minima;  values  in  bold  indicate  where  estimates  are  statistically  similar.  It  should  be 
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 noted  that  the  values  in  Table  1  have  ≤10%  of  occurring  in  any  year,  and  so  represent  the  tails  of  the  runoff 

 distribution. 

 Table  1  :  Very  low  (7Q10)  and  very  high  (7Q90)  regional  runoff,  and  standard  deviation  in  regional  annual  minima  (  𝝈 
 QMin)  and  annual  maxima  (  𝝈  QMax)  for  Livneh  and  CESM2.  Values  in  bold  indicate  where  CESM2  and 
 Livneh-VIC regional runoff are statistically similar according to a  𝛘  2  test. 

 Region 

 Livneh-VIC  CESM2 

 7Q10  7Q90  𝝈 QMin  𝝈 
 QMax  7Q10  7Q90  𝝈 QMin  𝝈 

 QMax 

 NE  1  4.1  132.4  1.3  25.5  8.6  215.1  4.7  39.9 

 MA  2  6.9  103.5  2.5  25.7  7.4  220.7  3.6  47.9 

 SA  3  21.1  240.4  8.4  50.7  20.5  258.6  11.9  45.8 

 GL  4  6.9  122.5  2.2  23.8  7.8  331.0  4.3  58.0 

 OH  5  7.8  187.6  2.3  53.0  9.4  260.9  4.5  56.4 

 TN  6  2.1  90.5  0.8  23.1  0  98.7  0.3  21.7 

 UM  7  2.1  78.2  1.7  16.9  7.9  122.3  4.7  31.5 

 LM  8  3.9  212.2  1.1  36.1  8.0  81.0  5.1  14.7 

 RR  9  1.0  24.3  0.5  7.1  0  33.0  0.1  8.4 

 MR  10  2.3  103.0  1.6  28.1  5.2  147.4  4.2  30.4 

 ARK  11  2.2  130.5  0.7  36.2  3.2  93.9  4.5  18.1 

 GUL  12  1.5  99.1  0.5  35.5  1.3  70.7  2.8  16.7 

 RIO  13  0.5  22.5  0.2  5.8  0.4  29.5  1.3  7.3 

 UC  14  0.6  27.3  0.2  7.2  0  74.7  0.2  15.3 

 LCO  15  0.5  19.4  0.2  7.5  0.3  46.7  0.7  11.6 

 GB  16  0.7  33.3  0.3  10.3  1.8  71.5  1.3  21.1 

 PN  17  20.6  266.5  7.9  50.2  4.4  449.6  2.6  87.3 

 CA  18  1.6  323.2  0.4  101.9  1.3  233.4  1.1  61.3 

 Grid-scale  estimates  such  as  mean  daily  runoff  readily  highlight  why  decision  makers  have  low  confidence  in 

 CESM2  output:  the  metrics  are  not  salient  and  appear  to  have  no  skill.  After  aggregating  the  7-day  mean  daily 

 runoff  to  watershed  scales,  some  skill  emerges  in  the  annual  minima  and  maxima,  and  seasonal  cycles. 

 Snow-dominated  watersheds  perform  poorly  with  regard  to  peak  runoff  volume  and  timing  of  the  peaks  and 

 lows,  as  expected  (McCrary  et  al.,  2022).  Rain-dominated  watersheds  capture  the  inter-annual  variability  and 

 magnitudes  of  peak  and  low  flows,  and  the  seasonal  hydrographs.  While  CESM2  at  this  coarse  scale  does  not 
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 represent  the  local  topography  and  cannot  represent  finer  scale  snow,  our  analysis  indicates  the  land  surface 

 model  correctly  simulates  the  overall  bulk  water  budget  for  most  watersheds  as  illustrated  in  Figures  7  and  8. 

 However,  the  tail  behavior  of  highest  and  lowest  total  watershed  runoff  is  only  captured  by  a  few  basins  and  so 

 caution  needs  to  be  exercised  in  the  interpretation  and  use  of  model  results,  as  biases  may  propagate  into  the 

 future.  This  is  premised  on  the  understanding  of  why  the  model  can  produce  accurate  results,  and  whether  the 

 accuracy can be reliably reproduced for the future climate (Wagener et al., 2022). 

 While  participants  at  the  NCAR  workshop  stated  that  precise  estimates  are  not  necessary,  they  also  emphasized 

 their  desire  for  high  confidence  in  the  projected  scale  and  direction  of  any  changes.  We  note  that  “confidence”  is 

 derived  from  a  combination  of  1)  credible  process  representation;  2)  agreement  with  historical  trends,  given 

 internal  variability;  3)  agreement  across  multiple  models.  It  is  worth  noting  that  trends  in  extremes  may  be 

 important  without  being  statistically  significant,  as  a  limited  sample  of  points  (e.g.  one  per  year)  from  a 

 stochastic  series  is  inherently  noisy.  However,  some  of  these  trends  may  emerge  from  the  noise  in  the 

 distribution and so are important to monitor. 

 CESM2-LENS  projections  could  helpfully  augment  RCM  output  in  rain-dominated  regions  such  as  Tennessee, 

 Ohio,  and  California,  where  CESM2  most  closely  reproduces  Livneh-VIC,  by  providing  supplementary 

 information  on  the  relative  uncertainty  in  the  models.  This  is  also  true  for  transitional  basins  such  as  the  Rio 

 Grande,  Northeast,  and  Lower  Colorado,  where  seasonal  snowpack  may  become  more  ephemeral  and  change 

 the seasonal hydrological responses. 

 6  Discussion 

 As  decision  makers  have  become  more  immersed  in  developing  water  resource  management  adaptation  plans, 

 the  role  of  “climate  services”  in  developing  salient  climate  information  has  increased  (Briley  et  al.,  2020; 

 Brugger  et  al.,  2016;  Dilling  et  al.,  2019).  We  tested  our  hypothesis  that  recent  improvements  in  ESMs  can  allow 

 decision-relevant  metrics  to  be  produced  directly,  by  leveraging  the  combined  experience  of  the  author  team, 

 results  from  the  NCAR  workshop,  and  the  wealth  of  literature  on  actionable  knowledge  (Bremer  et  al.,  2020; 

 Jagannathan  et  al.,  2021;  Mach  et  al.,  2020;  Vano  et  al.,  2014).  Given  that  no  model  can  perfectly  address  all 

 decision  needs,  we  identified  and  evaluated  multiple  metrics  that  can  frame  specific  water  management 

 decisions  within  the  known  constraints  of  the  data  (Lempert,  2021),  or  within  the  decision  makers’  experiences 

 (Austin, 2023; Clifford et al., 2020; Reed et al., 2022; Shepherd et al., 2018). 

 It  is  important  to  communicate  the  original  purpose  of  the  model  and  associated  weaknesses,  so  that  decision 

 makers  fully  understand  which  information  is  appropriate  to  use  in  other  applications  (Fisher  and  Koven,  2020; 

 Gettelman  and  Rood,  2016;  Wagener  et  al.,  2022).  Given  the  balance  between  model  fidelity  and  model 

 complexity  (Clark  et  al.,  2015)  and  the  absence  of  detailed  global  scale  observation  data  (e.g.,  Gleason  and 

 Smith,  2014;  Reba  et  al.,  2011)  CESM2  provides  a  plausible  representation  of  Earth  system  processes  and 
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 moisture  fluxes,  but  may  not  capture  basin-scale  specifics  (Ek,  2018;  Lehner  et  al.,  2019).  That  said,  there  are 

 continued  efforts  to  improve  the  simulation  of  land  surface  processes  and  analyses  such  as  those  presented  in 

 this article can flag weaknesses for future improvement (Lawrence et al., 2019). 

 Establishing  model  fidelity  also  requires  distinguishing  an  accurate  representation  of  the  climate  processes  from 

 serendipitous  correlation  with  observations.  Whether  the  model  has  good  process  representation  overall,  or 

 exactitude  in  one  simulation  can  be  established  through  internal  variability  analyses  using  large  ensembles  (e.g., 

 Deser  et  al.,  2020;  Tebaldi  et  al.,  2021).  Repeating  the  analyses  with  several  different  ESMs  to  establish  the 

 degree  of  agreement  (Mankin  et  al.,  2020)  would  further  strengthen  the  usability  of  metrics  presented  in  this 

 article.  It  is  also  worth  noting  that  the  analysis  presented  here  only  used  one  reference  dataset.  As  different 

 reanalysis  and  observational  datasets  can  have  large  discrepancies,  a  thorough  model  evaluation  would  also 

 benefit  from  comparison  to  several  products  (Kim  et  al.,  2020;  Newman  et  al.,  2015),  including  an  assessment 

 of how removing temporal adjustments in observations affects the statistics of extremes (Pierce et al., 2021). 

 While  the  precise  details  of  precipitation  and  runoff  may  not  be  well  simulated  by  CESM2,  we  found  some 

 aspects  are  credible.  The  frequency  of  wet  days  highlighted  regions  where  current  seasonal  behavior  is  well 

 captured,  and  may  support  planning  around  flood  and  drought  control  or  wildfire  risk  when  used  in  combination 

 with  other  models  or  data  sources  (Austin,  2023;  Clifford  et  al.,  2020;  Jagannathan  et  al.,  2021;  Reclamation, 

 2016). 

 7  Conclusions 

 This  paper  presented  an  assessment  of  whether  a  standard  resolution  (~100  km  grid)  Earth  system  model  is 

 capable  of  producing  information  that  water  users  typically  employ  in  their  decisions.  Our  motivation  was  to 

 explore  whether  it  is  possible  to  reduce  the  need  for  intermediate  downscaling,  and  to  broaden  the  use  of  large 

 model  ensembles  to  quantify  the  influence  of  internal  variability  on  localized  decisions.  We  drew  on  the 

 combined  experience  of  the  project  team  and  workshop  participants  to  identify  potential  metrics  and  familiar 

 modes  of  visualization.  This  project  used  only  CESM2  over  the  conterminous  United  States  to  develop  example 

 metrics  that  may  be  explored  within  other  models  and  over  other  regions.  CESM2  is  unable  to  reproduce  some 

 metrics  given  the  lack  of  topographical  detail.  A  companion  paper  by  Rugg  et  al.  (2023)  examines  potential 

 improvements  to  the  subgrid-scale  simulation  of  land  processes  to  improve  the  representation  of  the 

 hydrological cycle in mountainous regions. 

 We  encourage  others  working  in  the  decision  space  between  climate  data  producers  and  users  to  be  forthcoming 

 about  specific  regions  and  reasons  where  model  data  are  not  credible,  or  where  the  model  has  particular 

 weaknesses (such as the drizzle effect) that may be overcome with a different analysis approach. 

 For  future  model  assessors,  the  following  metrics  were  found  to  be  salient  for  water  users  and  were  skillfully 

 reproduced in many regions. 
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 Rainfall: 

 ▪  Number of wet days (≥ 1mm of rain) per year/season 

 ▪  Mean precipitation on wet days 

 ▪  Duration of the longest wet and dry spells per year 

 ▪  Number of days with rain > 95th percentile of current climate wet day totals 

 ▪  Proportion of the annual total derived from days > 95th percentile of wet day totals 

 Runoff (aggregated up to basin level, as a volume for 3- and 7-day averages): 

 ▪  Annual maxima and minima 

 ▪  Frequency of very high or very low flows (< 10% annual chance of occurring in the current climate) 

 ▪  Proportion of averaged daily runoff to annual total 

 The  work  presented  in  this  paper  is  a  small  step  toward  establishing  greater  usability  of  climate  model  output  by 

 decision  makers.  Continued  collaboration  is  essential  to  improve  the  transfer  of  knowledge  (e.g.,  data 

 requirements, model assumptions, decision constraints) between communities. 

 Appendix A 

 Table  A1:  Hydro-meteorological  responses  used  in  water  management  decisions,  and  the  specific  metrics  that  have 
 potential for representation in ESMs. Metrics in bold are presented in this article. 

 Hydro- 
 meteorological 
 Responses 

 Typical Water 
 Management 
 Decision 

 Metric  Description 

 Annual rainfall  Water supply and 
 drought monitoring 

 Total Precipitation 
 (PRCPTOT) 

 Total annual 
 precipitation measured 
 as rainfall or snow 
 water equivalent. 

 Seasonal rainfall 
 cycle 

 Seasonal water 
 supply, reservoir 
 operations 
 management 

 Number of Wet Days 
 (NWD), 
 Mean Wet Day Volume 
 (WDV) 

 Frequency of days with 
 ≥1mm precipitation (NWD) 
 per month, season or year, 
 Mean precipitation on 
 wet days calculated 
 from PRCPTOT/NWD 

 Rainfall extreme 
 Flood and 
 stormwater 
 management 

 95th percentile (Q95) 
 Number of very heavy 
 rain days (N95) 
 Very heavy rain 
 volume (P95) 

 Rainfall percentile 
 threshold that is 
 exceeded by 5% rain 
 events per year on 
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 442 

 443 

 444 
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 447 

 448 

 449 

 450 
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 Hydro- 
 meteorological 
 Responses 

 Typical Water 
 Management 
 Decision 

 Metric  Description 

 Proportional 
 contribution of very 
 heavy rain (P95tot) 

 average, and calculated 
 from wet days only 
 Frequency of days with 
 rainfall exceeding Q95 
 Total rain falling on 
 days exceeding Q95 
 Proportional of annual 
 total derived from very 
 heavy rain, calculated 
 as P95/PRCPTOT 

 Rainfall extreme 
 (dry) 

 Water supply 
 planning and 
 drought 
 monitoring/plannin 
 g including water 
 rights and 
 restrictions. 

 Consecutive dry days 
 (CDD) 

 Maximum duration of 
 spell with consecutive 
 days measuring < 1 
 mm precipitation. 

 Rainfall extreme 
 (wet) 

 Stormwater 
 management, water 
 supply planning 

 Consecutive wet days 
 (CWD) 

 Maximum duration of spell 
 with consecutive days 
 measuring ≥ 1 mm 
 precipitation. 

 High streamflow 

 Reservoir 
 management and 
 flood control, water 
 quality 
 management and 
 water supply 
 management, 
 including use of 
 supplemental water 
 supplies 

 Annual maximum 
 runoff (QMax) 
 Description (JMaxF) 
 Description (HFD) 

 Annual maximum daily 
 volume of basin-wide 
 runoff 
 Julian day of QMax/ 
 day of the water year 
 Duration of high flows 

 Low streamflow 

 Water supply 
 management, 
 assessment of 
 water shortages 
 with respect to 
 seasonal demands 

 Annual minimum 
 runoff (QMin) 
 Description (JMinF) 
 Description (LFD) 

 Annual minimum daily 
 volume of basin-wide 
 runoff 
 Julian day of QMin/ day 
 of the water year 
 Duration of low flows 

 Streamflow 

 Water supply 
 planning, water 
 quality 
 management, 
 reservoir operations 
 management, 
 planning future 
 investment needs 

 7-day mean runoff 
 (Q7) 

 Daily volume of 
 basin-wide runoff 
 averaged over 7 days. 
 Often presented as 
 percentage of annual 
 total volume of runoff 
 or Pardé coefficient 
 (Pardé, 1933) 

 Very low 
 streamflow 

 Water quality 
 management for 
 discharge permits, 

 7-day “10-year” low 
 runoff (7Q10)  

 7-day averaged 
 basin-wide lowest 
 volume of runoff with 
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 Hydro- 
 meteorological 
 Responses 

 Typical Water 
 Management 
 Decision 

 Metric  Description 

 conservation 
 management, 
 drought planning 

 <10% annual 
 probability of occurring. 
 Estimated from Qmin 
 series. 

 Very high flow 
 Flood management 
 and planning, 
 reservoir operations 

 7-day “10-year” high 
 runoff (7Q90) 

 7-day averaged 
 basin-wide highest 
 volume of runoff with 
 <10% annual 
 probability of occurring. 
 Estimated from Qmax 
 series. 

 Streamflow 

 Water supply 
 planning, reservoir 
 operations 
 management 

 Central Tendency (CT) 
 Description (Q  25  , Q  50  , 
 Q  75) 

 Day of the water year 
 when the cumulative 
 annual runoff exceeds 
 50% of the total annual 
 runoff 
 Annual quartiles of 
 cumulative annual 
 runoff estimated from 
 daily streamflow. 

 Snowpack 

 Reservoir 
 operations and 
 flood management, 
 water supply 
 planning 

 Snow Water Equivalent 
 (SWE) Maximum 
 (SWEMax) 
 SWEMax Date 
 SWE Duration 

 Volume of peak snow 
 water equivalent 
 Day of the water year 
 when peak SWE occurs 
 Total length of snow 
 accumulation and 
 ablation 

 Snowmelt 
 Flood management 
 and reservoir 
 operations 

 Snowmelt onset  Day of water year of 
 snowmelt onset 
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 Appendix B 
 Schematic  of  the  Community  Earth  System  Model  version  2  (CESM2)  model  components,  reproduced  from 
 Danabasoglu et al. (2020) Figure 1. 

 Appendix C 

 Seasonal  Mean  Precipitation  for  Winter  (top  row),  Spring  (row  2),  Summer  (row  3)  and  Fall  (bottom  row)  as  shown 
 in Livneh (left column) and CESM2 (middle column), and difference CESM2-Livneh (right column) 
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 Data availability 

 All  data  generated  for  this  study  (e.g.,  CESM2  and  Livneh-VIC  calculated  indices)  along  with  Jupyter 
 notebooks  to  recreate  tables  and  figures  are  available  in  the  repository 
 https://github.com/maritye/PSIF_water_avail 
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