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Abstract

The large spatial scale of global Earth system models (ESM) is often cited as an obstacle to using the output by
water resource managers in localized decisions. Recent advances in computing have improved the fidelity of
hydrological responses in ESMs through increased connectivity between model components. However, the
models are seldom evaluated for their ability to reproduce metrics that are important for and resonate with

5 or that allow practitioners to situate

practitioners,

higher-resolution model outputs within a cascade of uncertainty stemming from different models and scenarios.

We draw on the combined experience of the author team and stakeholderwater manager workshop participants
to identify salient water resetree-management metrics and evaluate whether they are credibly reproduced over the
conterminous U.S. by the Community Earth System Model v2 Large Ensemble (CESM2). We find that while the
exact values may not match observations, aspects such as interannual variability can be reproduced by CESM2
for the mean wet day precipitation and length of dry spells. CESM2 also captures the proportion of annual total
precipitation that derives from the heaviest rain days in watersheds that are not snow-dominated. Aggregating the
7-day mean daily runoff to HUC2 watersheds also shows rain-dominated regions capture the timing and
interannual variability in annual maximum and minimum flows. We conclude there is potential for far greater
use of large ensemble ESMs, such as CESM2, in long-range water reseuree-management decisions to supplement

high resolution regional projections.

1 Introduction

Water availability and water quality for human consumption, ecosystems, and agriculture are fundamental
requirements, making pertinent assessments of future change crucial for adaptation planning (IPCC, 2022).

Climate related changes in the hydrologic cycle will affect substantial portions of the world population, most
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directly through changes in water availability at or near the surface (Mankin et al., 2020; Sedlacek and Knutti,
2014). The information required by water reseurce-managers for decision making is not readily available in a
relevant format, or at sufficient spatial or temporal resolutions from global Earth system models (ESM; e.g.,
Ekstrom et al., 2018). We explore how the Community Earth System Model (CESM) represents the climatology
of water availability, feeussingfocusing on metrics that are familiar to decision makers in planning investment-
scale decisions.

The inability of ESMs to explicitly resolve sub-grid scale (~100 km) processes is often cited as the limitation
preventing direct model use in decision making. Literature from large organizations making infrastructure
decisions (e.g., Brekke, 2011; Brekke et al., 2009; Reclamation, 2016, 2014) emphasize downscaling climate
model data closer to the scale of the watersheds they manage. These additional modeling steps add complexity
and may increase statistical errors (Clark et al., 2015; Ekstrom et al., 2018). Extracting useful and robust
information directly from ESMs would reduce such errors if metrics most important to decision makers, such as

the timing of peak flow, were known to be robustly represented.

There are many comprehensive examples of metrics used to evaluate climate and hydrological models (e.g.,
Ekstrom et al., 2018; Mizukami et al., 2019; Wagener et al., 2022), and communicate the impacts of climate
change (e.g., Reed et al., 2022), or to identify decision-relevant metrics (e.g., Bremer et al., 2020; Mach et al.,
2020; Underwood et al., 2018; Vano et al., 2014). However, very few have examined whether user defined metrics
can be reliably reproduced by ESMs (Mankin et al., 2020), and if further model development and scale reduction
is warranted instead of improved communication (Pacchetti et al., 2021). Better communication may also reduce
the temptation of some users to calculate “standard hydroclimate metrics” that are not supported by the climate

model data (Ekstrom et al., 2018).

In contrast, climate model output can be rejected unnecessarily when simulated annual minima from freely
running simulations do not “match” the sequence of observed low flows (Ekstrom et al., 2018; Moise et al., 2015).
Similarly, the benefits of a range of projected outcomes from different climate models are not widely appreciated
beyond the climate model community (Tebaldi and Knutti, 2007). Large ensembles from a single climate model
initialized with a range of atmospheric and ocean conditions, such as the CESM2 Large Ensemble (LENS2;
Rodgers et al., 2021), help to bound the uncertainty that derives from a naturally chaotic system. Averaged over
the full ensemble, they give a better estimate of the model’s response to internal and external forcing (Deser et al.,
2012) and enable assessments of the rarity of projected extremes. The additional analysis to identify structural
(i.e. model formulation) and internal variability within regional climate models means that there are fewer large

ensembles at a high resolution (Deser et al., 2020).

Since different decision makers have different priorities and time-scales of interest, Shepherd et al. (2018)
recommended the development of climate storylines to communicate with those using climate data to make
decisions. Informed by prior surveys of water managers (e.g., Brekke, 2011; Brekke et al., 2009; Cantor et al.,
2018; Raff et al., 2013; Wood et al., 2021), Fig. 1 aims to map the different types of water decisions (e.g., Raff et
al., 2013 Fig. 3) to the different scales of model resolution (Meehl et al., 2009 Fig. 2). Water managers make daily
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operational decisions (e.g., to control instantaneous river flow) with the aid of fine-scale weather and flood models
(<4 km) that reliably represent convective and local weather scale processes even though their predictability is
relatively short lived (Yuan et al., 2019; far left side of Fig. 1). Larger watershed operations (such as reservoir
management or groundwater recharge; e.g., Regional Water Authority, 2019) depend on seasonal outlooks
(middle left of Fig. 1). Smaller adaptation and mitigation projects take place at the typical policy or decadal
prediction scale (i.e., 4-10 years; middle right of Fig. 1). Finally, major public investments and inter-basin
agreements occur at the same time scales as climate projections (30-100 years; far right of Fig. 1) where persistent
and relatively predictable synoptic and planetary scale processes are well represented in lower resolution (~100
km) climate models (Phillips et al., 2020). While forecasts (seasonal or decadal) are re-initialized from specific
atmosphere, ocean or land states at regular time intervals, climate projections are run freely from a variety of
atmospheric and oceanic conditions that take several decades to converge to a mean climatology. In considering
the utility and useability of information directly from ESMs we focus on decisions made over decadal to climate

scales at larger spatial scales.

Weather Seasonal Decadal Climate Change
Model Purpose £ ocasts Outlooks Predictions  Projections
! Timescale
Model Scale Re

4-10 km ~25 km ~100]_ﬂ

Model Resolution

Daily Maintenance &

Decision Type Operations Management

Adaptation Investment

Figure 1: Mapping the temporal and spatial scales of models to the timeframes for water management decisions.

Given that ESMs have advanced immeasurably in the recent decade, it is time to re-evaluate whether their direct
output can support decision makers. Such an evaluation needs to focus on how well the models can reproduce
metrics used by decision makers, and whether the results are credible (Briley et al., 2020; Jagannathan et al.,
2021). Here we evaluate the credibility of one ESM in generating metrics known to be salient for water

management decisions; specifically, decisions for water management infrastructure project investments.

The motivation for this paper is to identify:
e aset of water availability metrics that resonates with decision makers and supports their investment-scale
decisions;
e how well CESM2 represents the climatology and recent observed behaviors of those metrics; and

e how-such—metries—are—projected—to—changethe range of CESM2 structural uncertainty and internal

variability for these metrics.
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This paper builds off a decade of collaboration between scientists at the National Center for Atmospheric Research
(NCAR) and US water agencies that led to a virtual workshop (Tye, 2023), and presents a test case for improved
communication with water reseurees-management decision makers. The focus is on the Conterminous United

States (CONUS) to match the interest of workshop participants.

2 Climate Information Needs from Prior Research

Information needs vary greatly, from 5-minute rainfall totals at a point (ASCE, 2006), to basin-wide measures of
annual minimum and maximum total runoff. Water management decision metrics can be grouped into similar
types such as timing, frequency, magnitude, extreme values, variability, and duration of events (Ekstrom et al.,
2018). While some aspects of timing, magnitude, or variability can be reliably reproduced by ESMs (e.g., Deser

et al., 2020; Tebaldi and Knutti, 2007), others such as short duration extremes are less reliable.

Methods of evaluation and data use also differ. For instance, Clifford et al. (2020) reported that predicting general
changes in the frequency of extreme precipitation events is more useful for future planning than the precise
prediction of mean values evaluated by model developers. Lehner et al. (2019) emphasized that models need to
be evaluated for their ability to reproduce sensitivities (e.g., streamflow changes in response to temperature and
precipitation changes) in addition to mean states. However, metrics that are meaningful for evaluating a model’s
capabilities (e.g., the ratio of precipitation to runoff) are less valuable for management decisions (Lehner et al.,
2019; McMillan, 2021; Mizukami et al., 2019). When reporting results, water managers are more familiar with
the ‘water year’, rather than the calendar year, to capture the full annual hydrological cycle (Ekstrom et al., 2018).
While the use of water years is a nuance that does not add substantial value to climate model assessments,

communication with decision makers is improved by presenting data in a familiar format (Briley et al., 2020).

There is a need for information at the local scale that is unlikely to be met directly by raw outputs from the current
generation of ESM. But better communication of the variability in future daily precipitation and associated runoff
can add value to the detailed models by bringing in the added statistical context and perspective of the large
ensembles. Thus, we believe that ESMs can produce useful information about hydro-meteorological extremes
when presented at different spatial or temporal scales, and offer the benefits of large climate model ensembles to

constrain future impact uncertainty.

Appendix A summarizes potential hydrological metrics used in water management decisions (Jagannathan et al.,
2021) or statistical assessments of extremes (Zhang et al., 2011), and model evaluations (Phillips et al., 2020).
Metrics in bold are presented in this paper. We only considered a simplistic measure of meteorological drought
(absence of rain) in the current work, as drought is sensitive to the definition (Bachmair et al., 2016) and local
conditions (Mukherjee et al., 2018), and so not suited to a generalized assessment. Similarly, snow measures are
not included in this assessment in part due to limited availability of high-quality, long-duration, quality-controlled,
observational data (McCrary et al., 2017); and partly due to the biases in snow distribution arising from the

smoothed topography in GCMs (McCrary et al., 2022).
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3 Data and Methods
3.1 Climate Model Data

CESM2 (Danabasoglu et al., 2020) is a fully coupled global model that simulates the Earth’s climate system
through interactive models for atmosphere, ocean, land, sea-ice, river runoff, and land-ice. Variables considered
in this project are taken from the Community Atmosphere Model version 6 (CAM6) and the Community Land
Model version 5.0 (CLMS; Lawrence et al., 2019) and are part of the default model outputs. A schematic of the
model components is included in Appendix B. This project uses daily values scaled up to annual (e.g., annual
maximum daily precipitation) on a ~1 degree resolution grid. Data were extracted over the CONUS from 10

ensemble members of LENS2 (Rodgers et al., 2021) for model validation in the current era (1981-2010).

3.2 Observations

Gridded daily observations of precipitation at 1/16° horizontal resolution (~6 km) were obtained from the Livneh
et al. (2013) dataset covering CONUS and southern Canada for the control period (1981-2010), hereafter referred

to as “Livneh”. Pierce et al. (2021) provided an update to the Livneh data set to address time adjustments that

result s-in an underestimation of the most extreme daily

precipitation totals and resultant runoff and flood potential (Pierce et al. 2021). However, as; we are also interested

other measures of in-precipitation and in runoff minima—As-a—result, we did not employ the updated gridded
observations-{Pierce-et-al—2021).

Livneh daily temperature maxima and minima, and precipitation were used to force the Variable Infiltration
Capacity Model (VIC; Liang et al., 1994) version 4.1.2 to obtain runoff estimates for years 1980-2005 as evaluated
in Livneh et al. (2013). Hereafter referred to as “Livneh-VIC”.

Figure 2: HUC 2 regions used in data validation and analysis. Regions defined by USGS (2013): Region 01 New England
(NE); Region 02 Mid-Atlantic (MA); Region 03 South Atlantic-Gulf (SA); Region 04 Great Lakes (GL); Region 05 Ohio
(OH); Region 06 Tennessee (TN); Region 07 Upper Mississippi (UM); Region 08 Lower Mississippi (LM); Region 09
Souris-Red-Rainy (RR); Region 10 Missouri (MR); Region 11 Arkansas-White-Red (ARK); Region 12 Texas-Gulf
(GUL); Region 13 Rio Grande (RIO); Region 14 Upper Colorado (UC); Region 15 Lower Colorado (LCO); Region 16



168
169

170

171
172

173

174
175
176
177
178
179

180

181
182
183
184
185
186
187
188
189
190
191

192

193
194
195
196
197
198
199

Great Basin (GB); Region 17 Pacific Northwest (PN);
Region 18 California (CA)

33 Methods

All analyses were carried out using the North American water year (1 October to 30 September) to facilitate later

communication.

3.3.1 Remapping

For ease of comparison, model output were re-gridded using a conservative second-order remapping (Jones, 1999)
to place both datasets on the same scale grid and assess anomalies. Data were also calculated as areal averages or
totals over the 2-digit Hydrological Unit Code (HUC2) regions (Seaber et al., 1987). HUC2 basins represent 18
watersheds, covering areas ranging from 41,000 mi? (~105,000 km?; Tennessee) to 520,960mi? (1,350,000 km?;
Missouri), shown in Fig. 2. While the scale of HUC2 regions may be large for some local decision-makers, it is

also a more appropriate and conservative scale to compare to ESMs as demonstrated by Lehner et al. (2019).

3.3.2  Percentile-based thresholds

The threshold for very heavy rain days (Q95) was calculated at each individual grid cell using only days with > 1
mm rain (“wet days”). Thresholds were derived empirically for each model ensemble member, with the ensemble
mean threshold (Q95) used to identify the days per year exceeding the threshold (N95) and total annual rainfall
from those days (P95).

Runoff was aggregated over each HUC2 watershed and multiplied by the respective area to generate total volume
per day. Volume per day was then converted to measurements more familiar to users, such as acre feet per day or
cubic meters per second. Daily time series of total volumetric runoff had a 7-day running mean smoother applied,
then annual maximum, minimum and mean values were extracted. The highest and lowest 7-day average runoff
expected once per decade (7Q90, 7Q10) were estimated empirically from the 25 ranked values of ef-annual

maxima and minima per watershed. Stationarity was assumed over the climatological period for the purposes of

these analyses, acknowledging that changes may have already occurred in the frequency of these events.

4 Model Evaluation

The metrics used to evaluate CESM2’s ability to reproduce large scale features and physical behaviors (e.g.,
Danabasoglu and Lamarque, 2021 and the associated Special Issue) are not necessarily those employed by
decision makers. ESMs are designed to represent large-scale atmospheric processes and fluxes not specific local
responses (Gettelman and Rood, 2016), but this design assumption may not be sufficiently well communicated to
decision makers. The purpose of our evaluation is to establish whether CESM2 output is also fit for local decision
purposes, or if the breadth of information from ESM ensembles remains unsuitable for immediate use in targeted

water management decisions.
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4.1 Rainfall metrics

While broad spatial patterns of seasonal mean daily rainfall are reproduced well (Danabasoglu et al., 2020; Feng
et al., 2020; Simpson et al., 2022), CESM2 fails to capture details over high topography, and overestimates
summer precipitation where convective extremes dominate summer rainfall (Appendix BC). The seasonal mean
precipitation also fails to capture some important watershed-level processes, such as the seasonal variability in the

number of days with precipitation and the associated intensity.

Estimates of mean annual rainfall on wet days, or wet day volume, are in broad agreement between Livneh and
CESM2 output. Figure 3 shows an example of the mean number of wet days per month (NWD), and mean wet
day volume (WDV) averaged over the Mid-AtlantieCalifornia and Pacific Northwest. While CESM2 represents
the NWD annual cycle very well in regions such as California (Fig. 3a, 3¢) and the Pacific Northwest (Fig. 3b,
3d), it does not capture NWD in many central and snow dominated regions (Fig. S1 and Fig. S2). This is likely

due to the smoother topography of CESM2 missing the influence of orographic uplift, and large spatial scale
missing sub-grid scale convective systems (e.g., over the Central Plains). The figures also highlight the scale of

model (structural and internal variability) uncertainty present in the ensemble. As noted in previous sections, water

management decision-makers are aware of the potential scale of uncertainty and expressed a desire for the full

ensemble range to be presented to them instead of ensemble means.
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219 Figure 3: Average number of wet days per month (a, b) and interannual variability in mean annual precipitation on

|22O wet days for Livneh climatological mean (red) with interannual spread (pink) and CESM2 mean (bluecyan) with
221 interannual and ensemble spread (gray); and (c,d) between 1981-2010 for observations derived from Livneh (red) and

|222 an individual CESM2 ensemble mean-member (blue) and Ensemble spread (gray) in (a,c) Region 18 California (CA);
223 and (b,d) Region 17 Pacific Northwest (PN).

224 The annual variability in WDV, both year-to-year variations as well as the overall range of minima and maxima,
225 is well captured by each of the model members for the different HUC2 regions, even if the absolute values do not
226 match (Fig. 3 c,d). As expected, the specifics of which years have high or low values of WDV are not the same
227  for each ensemble member (i.e. demonstrating internal variability). As a result, the ensemble mean value of WDV

228 (cyan)fblae)-does not reflect the same year-to-year variability as the observations_ or individual ensemble members
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(blue). Decision makers expressed that the interannual variability demonstrated by each model member is more
valuable to demonstrate the credibility of the data than the ensemble mean (Tye, 2023). We recommend that the
full range of values of each metric (i.e. after computation for each ensemble member individually) are
communicated in addition to the climatological means to help bound uncertainty around decisions (Wilby et al.,
2021).

The magnitude of interannual variability in WDV (i.e., the absolute differences between the maximum and
minimum values in each member time series) is typically within 10% of observations in all regions as illustrated
for two regions in Fig. 3. Exceptions are the Lower Colorado, South Atlantic-Gulf and Upper Mississippi where
the simulated distributions are too narrow. Many different sources of error may contribute to this discrepancy,
such as the inability to resolve convective precipitation (Chen et al., 2021) in addition to elevation changes not
captured by the coarse model resolution, or the “drizzle effect” that is common in GCMs (Chen et al., 1996; Dai,
2000).

CESM2 captures the longest spells of consecutive dry days per year (CDD; Fig. 4a) and consecutive wet days per
year (CWD; Fig. 4b), and their variability. Many regions capture both the interannual variability and the
climatological mean duration of CWD, particularly those regions that are subject to large-scale synoptic systems
(e.g., Pacific Northwest, Mid Atlantic-Gulf, California). Several regions either overestimate (South Atlantic-Gulf)
or underestimate (Great Lakes, Souris-Red-Rainy) the absolute durations of the longest wet spells, but do reflect
the magnitude of interannual variability. The exception is Tennessee, where both interannual variability and mean
CWD are overestimated. At the grid scale, broad spatial patterns of CWD are correct but the finer atmospheric
processes arising from topographic features are incorrect, as expected from the coarse model resolution. A similar
pattern is present in CDD, except that some drier regions with CDD >30 days do not capture the full range of
interannual variability (Souris-Red Rainy, Missouri, Rio Grande). As GCMs have a tendency to produce drizzle,
adjusting for a higher wet day threshold (e.g., 2 mm) might improve dry spell representation in those regions. It

is also important to communicate such model sensitivities to users more effectively.

10
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Figure 4: a) Longest duration per year of consecutive days <1 mm rain (longest dry spell) for Livneh over all years
(green) and CESM2 ensemble range over all years (blue) for all HUC2 regions; and b) Longest duration per year of
consecutive days with >1 mm rain (longest wet spell). Regional Acronyms defined in Fig. 2.

The thresholds for heavy and very heavy rain days (P95, P99) are defined with respect to the wet days. and

calculated individually and compared for Livneh and CESM2 both to understand whether the intensity of more
extreme rainfall is captured, and to evaluate model behavior. A comparison of the thresholds reflects the
considerable improvements in modeling capabilities in recent years (Gettelman et al., 2022). For instance, earlier
versions of CESM underestimated extreme precipitation intensity by 10-30 mm/day east of the Rockies, and
overestimated intensity by 5-10 mm/day to the west (Gervais et al., 2014). We found CESM2 still underestimates
the most extreme rainfall, but that errors have approximately halved. As these differences are still inadequate for
many engineering and major infrastructure decisions (Wright et al., 2019), we focus on CESM2’s ability to capture
the relative contributions of P95 and P99 to the annual total and the interannual variability in their frequency. A
result with considerable useability is the proportion of annual total precipitation derived from the heaviest rain
days, or “Proportional Contribution of Extreme Days” (P95Tot). This proportion and its interannual variability is

well represented by CESM2 at the HUC2 scale and has shown to be skillful in other models (Tebaldi et al., 2021).

The interannual variability in the frequency (N95) and intensity of extreme rainfall, as represented by P95Tot, are
illustrated in Fig. 5 and 6. In several HUC2 regions the simulations report more frequent events, and proportionally
higher totals (e.g., Greattakes;-Rio-Grande, Missouri, Upper Colorado and Lower Colorado; Fig. S3). Overall,
there is good subjective agreement between Livneh and CESM2, identifying an opportunity to inform local

decisions from large scale ESMs.

11
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Figure 5: a, ¢, e, g) Number of very heavy rain days per year; and b, d, f, h) total rain from very heavy rain days as a
proportion of the annual total for a, b) Tennessee (TN); c,d) Great Lakes (GL); e,f) Souris-Red-Rainy (RR); and g,h)
California (CA) HUC2 regions. Observations in red; CESM2 ensemble spread in gray, single randomly selected
ensemble member in blue.
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Figure 6: Box plots of the interannual range of contributions to annual total rainfall from very heavy days (P95Tot)
shown as percentages for: Observations (light blue), and ensemble range for CESM2 (green) for all HUC2 regions.
Boxes are bound by the interquartile range, black lines indicate the median, notches indicate the degree of spread from
the median and bars extend to the full data range.

4.2 Runoff metrics

Runoff estimates are taken from the individual components of surface and subsurface runoff generated within

CLMS (Lawrence et al., 2019) and compared to the Livneh forced VIC runoff (“Livneh-VIC”).

Assessing the skill of runoff in large-scale models is complicated by many factors, including the mismatch of
scales between in-channel flow (~1-10?> m) and the grid scale (~10° m). Thus, metrics of climate model runoff
should be selected carefully and the runoff should be aggregated or combined with other metrics, rather than used
directly (Lehner et al., 2019). Appendix €D demonstrates the discrepancies between the grid-scale representation
of runoff from Livneh-VIC and CESM2. The large discrepancies arise from different processes that are not
captured adequately, such as groundwater, topography, and associated snow ablation and melt, in addition to

meteorological biases.

However, water management decisions are made over watersheds in units such as acre-feet! or cubic meters, while
model data are output as a depth of runoff over each grid cell (e.g., mm/day per km?). We aggregated the 7-day
running mean daily runoff (Q7) within each HUC2 region to generate Q7 time series in each basin. Fig. 7a
illustrates the 25-year mean seasonal cycle for Livneh-VIC in red and CESM2 in blue, and the full range of values

over all years and ensemble members for the Souris-Red-Rainy basin (HUC Region 9). additional basins are

included in Fig. S4. Data are presented in millions of acre feet, to align with decision maker needs. The minimum

simulated Q7 in any year considerably underestimates the lowest flows in this region compared to Livneh-VIC.

''1 Acre-foot is the volume of water it would take to cover 1 acre of land to a depth of 1 foot. Equal to 325,852
gallons or 1,233 m? (USGS Water Science).
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In contrast, the largest total runoff volume is overestimated and peaks too early in the water year. Figure 7b plots
the same information as the cumulative runoff volume from the start of the water year, highlighting that the lowest

runoff volume is underestimated by a factor of ten_for this region, other regions are illustrated in Fig. S5. Low

runoff volumes were typically underestimated in smaller regions (e.g., NE, TN). High runoff volumes were only
underestimated in three regions (LM, ARK, GUL) and considerably overestimated in seven regions. Snow-
dominated regions perform particularly poorly for both QMax and QMin as snowpack and the timing of associated
runoff are not well simulated. Transitional regions that straddle both snow- and rain-dominated hydrology also
fail to capture QMax, but better estimate Qmin (not shown). Only the South Atlantic region reproduces both
QMax and QMin.

Souris-Red-Rainy Area 235,692 km?

(@)  Annual Runoff Hydrograph (b)  Cumulative Runoff Hydrograph

[
L

101 © 103 7
7] v}
o m
Y- N
L 89 °
®

S = 1074
2 o E
2 £
E .| 5

£ S 10!
- «
5 o
c 24 2
= -
[ o
3

g 100 4

0 | T T T T T T T T T T T T U T T T T T T T T T T T T
NS NS
FSF T LTV PR FSET S L BTV PP
—— Livneh-VIC Mean Livheh-VIC Range
—— CESM2 Mean Ensemble Range

Figure 7: Interannual variability in runoff in Souris Red Rainy Region for a) the mean seasonal cycle; and b) the
cumulative watershed runoff over the water year. Livneh-VIC climatological mean in red, range of all years in pink;
CESM2 ensemble mean in blue and ensemble range in gray. Figure highlights the underestimation of the lowest runoff
volume by CESM2 by a factor of ten.

We explored the relationship between the highest and total annual runoff (QMax/QTot), and lowest and total
annual runoff (QMin/QTot). Some regions performed well for QMax/QTot, others performed better for

QMin/QTot but there was no consistent relationship that could be utilized by decision makers.

Participants at the NSF NCAR workshop (Tye, 2023) emphasized that the exact numbers produced by climate
models are not very important for future decisions. Others have also emphasized the importance of well-
represented processes in the model (Reed et al., 2022) and correlations with known experiences (Mach et al.,
2020; Shepherd et al., 2018). EoeussingFocusing on fidelity to the historical climate exaggerates the importance

of model performance instead of robustness to different conditions without ensuring that model predictions are
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useful or reliable (Brunner et al., 2021; Wagener et al., 2022). Runoff estimates in transitional catchments may be
inadequate in the current climate but plausible in the future, if the model reproduces rain-dominated hydrological

processes (McMillan, 2021).

Climatological mean runoft cycles are estimated from Pardé coefficients — calculated as Q7/QTot on each
calendar day — a dimensionless value that enables comparison across regions. Figure 8 depicts the mean seasonal
cycle for representative snow-dominated (Upper Colorado), transitional (Missouri) and rain-dominated
(Tennessee) regions, demonstrating how an imperfect representation of snow in the Upper Colorado results in
CESM2 peak runoff occurring two months earlier than Livneh-VIC (Fig. 8a). The runoff regimes display very
different seasonal characteristics, with CESM2 having a “mid late spring” runoff regime rather than Livneh-VIC’s
“extreme early summer” regime (Fig. 8a; Haines et al., 1988). Peak runoffis also too early in transitional regions,
but closer to Livneh-VIC than in snow-dominated regions (Fig. 8b). Rain-dominated regions capture both the

timing of QMax and overall seasonal hydrograph shape (Fig. 8c).
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Figure 8 : Seasonal patterns of runoff for HUC2 regions a) Upper Colorado (UC); b) Tennessee (TN);
and c) Missouri (MR). Constructed from normalized series of the ratio of 7-day mean runoff to the mean annual total.
Livneh-VIC runoff climatological mean (red), climatological range (pink), CESM2 ensemble mean (blue) and ensemble
range (gray with dashed border). Vertical lines indicate the mean date of peak runoff with number of days since the
start of the water year.

7Q10 and 7Q90 are estimated empirically from annual minima and maxima as occurring once per decade.
Projected changes in the frequency of very low or very high runoff volumes are deemed credible where CESM2
replicates the standard deviation of annual minima and maxima according to a x? test at the 5% significance level.
Table 1 reports CESM2 and Livneh-VIC regional estimates of 7Q10 and 7Q90 and standard deviations of the
annual maxima and minima; values in bold indicate where estimates are statistically similar. It should be noted

that the values in Table 1 have <10% of occurring in any year, and so represent the tails of the runoff distribution.
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Table 1 : Very low (7Q10) and very high (7Q90) regional runoff, and standard deviation in regional annual minima (o
QMin) and annual maxima (6 QMax) for Livneh and CESM2. Values in bold indicate where CESM2 and Livneh-VIC
regional runoff are statistically similar according to a x? test.

Livneh-VIC CESM2
Region
7Q10 | 7Q90 | ¢ QMin Qn:ax 7Q10 | 7Q90 | o QMin ngax

NE |1 4.1 1324 | 1.3 25.5 8.6 215.1 | 4.7 39.9
MA |2 6.9 103.5 | 2.5 25.7 7.4 220.7 | 3.6 47.9
SA |3 21.1 |240.4 |8.4 50.7 |20.5 |[258.6 |11.9 |45.8
GL |4 6.9 122.5 | 2.2 23.8 7.8 331.0 |4.3 58.0
OH |5 7.8 187.6 | 2.3 53.0 9.4 260.9 | 4.5 56.4
™N |6 2.1 90.5 |0.8 23.1 |0 98.7 |0.3 21.7
um |7 2.1 78.2 1.7 16.9 7.9 122.3 | 4.7 31.5
LM |8 3.9 2122 | 1.1 36.1 8.0 81.0 5.1 14.7
RR |9 1.0 243 |05 7.1 0 33.0 |0.1 8.4
MR |10 |23 103.0 | 1.6 28.1 5.2 147.4 | 4.2 30.4
ARK |11 |22 130.5 | 0.7 36.2 3.2 93.9 4.5 18.1
GUL |12 |15 99.1 0.5 35.5 1.3 70.7 2.8 16.7
RIO |13 |o0.5 225 |0.2 5.8 0.4 295 |1.3 7.3
uc |14 |os6 27.3 0.2 7.2 0 74.7 0.2 15.3
Lco |15 |o0.5 19.4 0.2 7.5 0.3 46.7 0.7 11.6
GB |16 |o0.7 33.3 0.3 10.3 1.8 71.5 1.3 21.1
PN |17 |20.6 266.5 | 7.9 50.2 4.4 449.6 | 2.6 87.3
CA |18 |16 323.2 |04 101.9 | 1.3 233.4 | 1.1 61.3

Grid-scale estimates such as mean daily runoff readily highlight why decision makers have low confidence in
CESM2 output: the metrics are not salient and appear to have no skill. After aggregating the 7-day mean daily
runoff to watershed scales, some skill emerges in the annual minima and maxima, and seasonal cycles. Snow-
dominated watersheds perform poorly with regard to peak runoff volume and timing of the peaks and lows, as
expected (McCrary et al., 2022). Rain-dominated watersheds capture the inter-annual variability and magnitudes
of peak and low flows, and the seasonal hydrographs. While CESM2 at this coarse scale does not represent the

local topography and cannot represent finer scale snow, our analysis indicates the land surface model correctly
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simulates the overall bulk water budget for most watersheds as illustrated in Figures 7 and 8. However, the tail
behavior of highest and lowest total watershed runoff is only captured by a few basins and so caution needs to be
exercised in the interpretation and use of model results, as biases may propagate into the future. This is premised
on the understanding of why the model can produce accurate results, and whether the accuracy can be reliably

reproduced for the future climate (Wagener et al., 2022).

While participants at the NSE NCAR workshop stated that precise estimates are not necessary, they also
emphasized their desire for high confidence in the projected scale and direction of any changes. We note that
“confidence” is derived from a combination of 1) credible process representation; 2) agreement with historical
trends, given internal variability; 3) agreement across multiple models. It is worth noting that trends in extremes
may be important without being statistically significant, as a limited sample of points (e.g. one per year) from a

stochastic series is inherently noisy. However, some of these trends may emerge from the noise in the distribution

and so are important to monitor.

6 Discussion

As decision makers have become more immersed in developing water reseuree-management adaptation plans, the
role of “climate services” in developing salient climate information has increased (Briley et al., 2020; Brugger et
al., 2016; Dilling et al., 2019). We tested our hypothesis that recent improvements in ESMs can allow decision-
relevant metrics to be produced directly, by leveraging the combined experience of the author team, results from
the NCAR workshop, and the wealth of literature on actionable knowledge (Bremer et al., 2020; Jagannathan et
al., 2021; Mach et al., 2020; Vano et al., 2014). Given that no model can perfectly address all decision needs, we
identified and evaluated multiple metrics that can frame specific water management decisions within the known
constraints of the data (Lempert, 2021), or within the decision makers’ experiences (Austin, 2023; Clifford et al.,
2020; Reed et al., 2022; Shepherd et al., 2018).

It is important to communicate the original purpose of the model and associated weaknesses, so that decision
makers fully understand which information is appropriate to use in other applications (Fisher and Koven, 2020;
Gettelman and Rood, 2016; Wagener et al., 2022). Given the balance between model fidelity and model
complexity (Clark et al., 2015) and the absence of detailed global scale observation data (e.g., Gleason and Smith,
2014; Reba et al., 2011) CESM2 provides a plausible representation of Earth system processes and moisture
fluxes, but may not capture basin-scale specifics (Ek, 2018; Lehner et al., 2019). That said, there are continued
efforts to improve the simulation of land surface processes and analyses such as those presented in this article can

flag weaknesses for future improvement (Lawrence et al., 2019).
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Establishing model fidelity also requires distinguishing an accurate representation of the climate processes from
serendipitous correlation with observations. Whether the model has good process representation overall, or
exactitude in one simulation can be established through internal variability analyses using large ensembles (e.g.,
Deser et al., 2020; Tebaldi et al., 2021). Repeating the analyses with several different ESMs to establish the degree
of agreement (Mankin et al., 2020) would further strengthen the usability of metrics presented in this article. It is
also worth noting that the analysis presented here only used one reference dataset. As different reanalysis and
observational datasets can have large discrepancies, a thorough model evaluation would also benefit from
comparison to several products (Kim et al., 2020; Newman et al., 2015), including an assessment of how removing

temporal adjustments in observations affects the statistics of extremes (Pierce et al., 2021).

While the precise details of precipitation and runoff may not be well simulated by CESM2, we found some aspects
are credible. The frequency of wet days highlighted regions where current seasonal behavior is well captured, and
may support planning around flood and drought control or wildfire risk when used in combination with other

models or data sources (Austin, 2023; Clifford et al., 2020; Jagannathan et al., 2021; Reclamation, 2016).

7 Conclusions

This paper presented an assessment of whether a standard resolution (~100 km grid) Earth system model is capable
of producing information that water users typically employ in their decisions. Our motivation was to explore
whether it is possible to reduce the need for intermediate downscaling, and to broaden the use of large model
ensembles to quantify the influence of internal variability on localized decisions. We drew on the combined
experience of the project team and workshop participants to identify potential metrics and familiar modes of
visualization. This project used only CESM2 over the conterminous United States to develop example metrics
that may be explored within other models and over other regions. CESM2 is unable to reproduce some metrics
given the lack of topographical detail. A companion paper by Rugg et al. (2023) examines potential improvements
to the subgrid-scale simulation of land processes to improve the representation of the hydrological cycle in

mountainous regions.

We encourage others working in the decision space between climate data producers and users to be forthcoming
about specific regions and reasons where model data are not credible, or where the model has particular
weaknesses (such as the drizzle effect) that may be overcome with a different analysis approach.

For future model assessors, the following metrics were found to be salient for water users and were skillfully

reproduced in many regions.

Rainfall:
®  Number of wet days (> 1mm of rain) per year/season
¥ Mean precipitation on wet days

®  Duration of the longest wet and dry spells per year
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®  Number of days with rain > 95th percentile of current climate wet day totals

¥ Proportion of the annual total derived from days > 95th percentile of wet day totals

Runoff (aggregated up to basin level, as a volume for 3- and 7-day averages):

®  Annual maxima and minima

®  Frequency of very high or very low flows (< 10% annual chance of occurring in the current climate)

®  Proportion of averaged daily runoff to annual total

The work presented in this paper is a small step toward establishing greater usability of climate model output by

decision makers. The present evaluation is also only the first step in evaluating ESM performance. Additional

research is needed to support water managers placing these results and their uncertainty in the context of additional

observational data (such as remote sensing) that may already be available to them. Continued collaboration is

essential to improve the transfer of knowledge (e.g., data requirements, model assumptions, decision constraints)

between communities.

Appendix A

Table Al: Hydro-meteorological responses used in water management decisions, and the specific metrics that have
potential for representation in ESMs. Metrics in bold are presented in this article.
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462 Appendix B
463 Schematic of the Community Earth System Model version 2 (CESM2) model components, reproduced from
464  Danabasoglu et al. (2020) Figure 1.
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467 Appendix C
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