
1 

Evaluating an Earth system model from a water manager 1 

perspective 2 

  3 

Mari R. Tye1,2, Ming Ge1, Jadwiga H. Richter1, Ethan D. Gutmann1, Allyson Rugg1, Cindy L. 4 
Bruyère3, Sue Ellen Haupt1, Flavio Lehner4,1,5, Rachel McCrary1, Andrew J. Newman1, Andy 5 
Wood1,6 6 

1 National Center for Atmospheric Research, Boulder, CO 7 
2 Whiting School of Engineering, Johns Hopkins, Baltimore, MD, USA 8 
3 Cooperative Programs for the Advancement of Earth System Science (CPAESS), UCAR, Boulder, CO 9 
4 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA 10 
5 Polar Bears International, Bozeman, MT, USA 11 
6 Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA 12 

Correspondence to: Mari R. Tye (maritye@ucar.edu) 13 

Abstract 14 

The large spatial scale of global Earth system models (ESM) is often cited as an obstacle to using the  output by 15 

water resource managers in localized decisions. Recent advances in computing have improved the fidelity of 16 

hydrological responses in ESMs through increased connectivity between model components. However, the 17 

models are seldom evaluated for their ability to reproduce metrics that are important for and resonate with 18 

practitioners, or present the results in a manner that resonates with the users or that allow practitioners to situate 19 

higher-resolution model outputs within a cascade of uncertainty stemming from different models and scenarios. 20 

We draw on the combined experience of the author team and stakeholder water manager workshop participants 21 

to identify salient water resource management metrics and evaluate whether they are credibly reproduced over the 22 

conterminous U.S. by the Community Earth System Model v2 Large Ensemble (CESM2). We find that while the 23 

exact values may not match observations, aspects such as interannual variability can be reproduced by CESM2 24 

for the mean wet day precipitation and length of dry spells. CESM2 also captures the proportion of annual total 25 

precipitation that derives from the heaviest rain days in watersheds that are not snow-dominated. Aggregating the 26 

7-day mean daily runoff to HUC2 watersheds also shows rain-dominated regions capture the timing and 27 

interannual variability in annual maximum and minimum flows. We conclude  there is potential for far greater 28 

use of large ensemble ESMs, such as CESM2, in long-range water resource management decisions to supplement 29 

high resolution regional projections.  30 

1     Introduction 31 

Water availability and water quality for human consumption, ecosystems, and agriculture are fundamental 32 

requirements, making pertinent assessments of future change crucial for adaptation planning (IPCC, 2022). 33 

Climate related changes in the hydrologic cycle will affect substantial portions of the world population, most 34 
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directly through changes in water availability at or near the surface (Mankin et al., 2020; Sedláček and Knutti, 35 

2014). The information required by water resource managers for decision making is not readily available in a 36 

relevant format, or at sufficient spatial or temporal resolutions from global Earth system models (ESM; e.g., 37 

Ekström et al., 2018). We explore how the Community Earth System Model (CESM) represents the climatology 38 

of water availability, focussingfocusing on metrics that are familiar to decision makers in planning investment-39 

scale decisions.  40 

The inability of ESMs to explicitly resolve sub-grid scale (~100 km) processes is often cited as the limitation 41 

preventing direct model use in decision making. Literature from large organizations making infrastructure 42 

decisions (e.g., Brekke, 2011; Brekke et al., 2009; Reclamation, 2016, 2014) emphasize downscaling climate 43 

model data closer to the scale of the watersheds they manage. These additional modeling steps add complexity 44 

and may increase statistical errors (Clark et al., 2015; Ekström et al., 2018). Extracting useful and robust 45 

information directly from ESMs would reduce such errors if metrics most important to decision makers, such as 46 

the timing of peak flow, were known to be robustly represented.  47 

 48 

There are many comprehensive examples of metrics used to evaluate climate and hydrological models (e.g., 49 

Ekström et al., 2018; Mizukami et al., 2019; Wagener et al., 2022), and communicate the impacts of climate 50 

change (e.g., Reed et al., 2022), or to identify decision-relevant metrics (e.g., Bremer et al., 2020; Mach et al., 51 

2020; Underwood et al., 2018; Vano et al., 2014). However, very few have examined whether user defined metrics 52 

can be reliably reproduced by ESMs (Mankin et al., 2020), and if further model development and scale reduction 53 

is warranted instead of improved communication (Pacchetti et al., 2021). Better communication may also reduce 54 

the temptation of some users to calculate “standard hydroclimate metrics” that are not supported by the climate 55 

model data (Ekström et al., 2018).  56 

 57 

In contrast, climate model output can be rejected unnecessarily when simulated annual minima from freely 58 

running simulations do not “match” the sequence of observed low flows (Ekström et al., 2018; Moise et al., 2015). 59 

Similarly, the benefits of a range of projected outcomes from different climate models are not widely appreciated 60 

beyond the climate model community (Tebaldi and Knutti, 2007). Large ensembles from a single climate model 61 

initialized with a range of atmospheric and ocean conditions, such as the CESM2 Large Ensemble (LENS2; 62 

Rodgers et al., 2021), help to bound the uncertainty that derives from a naturally chaotic system. Averaged over 63 

the full ensemble, they give a better estimate of the model’s response to internal and external forcing (Deser et al., 64 

2012) and enable assessments of the rarity of projected extremes. The additional analysis to identify structural 65 

(i.e. model formulation) and internal variability within regional climate models means that there are fewer large 66 

ensembles at a high resolution (Deser et al., 2020).   67 

 68 

Since different decision makers have different priorities and time-scales of interest, Shepherd et al. (2018) 69 

recommended the development of climate storylines to communicate with those using climate data to make 70 

decisions. Informed by prior surveys of water managers (e.g., Brekke, 2011; Brekke et al., 2009; Cantor et al., 71 

2018; Raff et al., 2013; Wood et al., 2021), Fig. 1 aims to map the different types of water decisions (e.g., Raff et 72 

al., 2013 Fig. 3) to the different scales of model resolution (Meehl et al., 2009 Fig. 2). Water managers make daily 73 
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operational decisions (e.g., to control instantaneous river flow) with the aid of fine-scale weather and flood models 74 

(<4 km) that reliably represent convective and local weather scale processes even though their predictability is 75 

relatively short lived (Yuan et al., 2019; far left side of Fig. 1). Larger watershed operations (such as reservoir 76 

management or groundwater recharge; e.g., Regional Water Authority, 2019) depend on seasonal outlooks 77 

(middle left of Fig. 1). Smaller adaptation and mitigation projects take place at the typical policy or decadal 78 

prediction scale (i.e., 4-10 years; middle right of Fig. 1). Finally, major public investments and inter-basin 79 

agreements occur at the same time scales as climate projections (30-100 years; far right of Fig. 1) where persistent 80 

and relatively predictable synoptic and planetary scale processes are well represented in lower resolution (~100 81 

km) climate models (Phillips et al., 2020). While forecasts (seasonal or decadal) are re-initialized from specific 82 

atmosphere, ocean or land states at regular time intervals, climate projections are run freely from a variety of 83 

atmospheric and oceanic conditions that take several decades to converge to a mean climatology. In considering 84 

the utility and useability of information directly from ESMs we focus on decisions made over decadal to climate 85 

scales at larger spatial scales. 86 

 87 

 88 
Figure 1: Mapping the temporal and spatial scales of models to the timeframes for water management decisions. 89 

Given that ESMs have advanced immeasurably in the recent decade, it is time to re-evaluate whether their direct 90 

output can support decision makers. Such an evaluation needs to focus on how well the models can reproduce 91 

metrics used by decision makers, and whether the results are credible (Briley et al., 2020; Jagannathan et al., 92 

2021). Here we evaluate the credibility of one ESM in generating metrics known to be salient for water 93 

management decisions; specifically, decisions for water management infrastructure project investments. 94 

 95 

The motivation for this paper is to identify:  96 

● a set of water availability metrics that resonates with decision makers and supports their investment-scale 97 

decisions;  98 

● how well CESM2 represents the climatology and recent observed behaviors of those metrics; and  99 

● how such metrics are projected to changethe range of CESM2 structural uncertainty and internal 100 

variability for these metrics.  101 

 102 
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This paper builds off a decade of collaboration between scientists at the National Center for Atmospheric Research 103 

(NCAR) and US water agencies that led to a virtual workshop (Tye, 2023), and presents a test case for improved 104 

communication with water resources management decision makers. The focus is on the Conterminous United 105 

States (CONUS) to match the interest of workshop participants. 106 

2 Climate Information Needs from Prior Research 107 

Information needs vary greatly, from 5-minute rainfall totals at a point (ASCE, 2006), to basin-wide measures of 108 

annual minimum and maximum total runoff. Water management decision metrics can be grouped into similar 109 

types such as timing, frequency, magnitude, extreme values, variability, and duration of events (Ekström et al., 110 

2018). While some aspects of timing, magnitude, or variability can be reliably reproduced by ESMs (e.g., Deser 111 

et al., 2020; Tebaldi and Knutti, 2007), others such as short duration extremes are less reliable.  112 

 113 

Methods of evaluation and data use also differ. For instance, Clifford et al. (2020) reported that predicting general 114 

changes in the frequency of extreme precipitation events is more useful for future planning than the precise 115 

prediction of mean values evaluated by model developers. Lehner et al. (2019) emphasized that models need to 116 

be evaluated for their ability to reproduce sensitivities (e.g., streamflow changes in response to temperature and 117 

precipitation changes) in addition to mean states. However, metrics that are meaningful for evaluating a model’s 118 

capabilities (e.g., the ratio of precipitation to runoff) are less valuable for management decisions (Lehner et al., 119 

2019; McMillan, 2021; Mizukami et al., 2019). When reporting results, water managers are more familiar with 120 

the ‘water year’, rather than the calendar year, to capture the full annual hydrological cycle (Ekström et al., 2018). 121 

While the use of water years is a nuance that does not add substantial value to climate model assessments, 122 

communication with decision makers is improved by presenting data in a familiar format (Briley et al., 2020).  123 

 124 

There is a need for information at the local scale that is unlikely to be met directly by raw outputs from the current 125 

generation of ESM. But better communication of the variability in future daily precipitation and associated runoff 126 

can add value to the detailed models by bringing in the added statistical context and perspective of the large 127 

ensembles. Thus, we believe that ESMs can produce useful information about hydro-meteorological extremes 128 

when presented at different spatial or temporal scales, and offer the benefits of large climate model ensembles to 129 

constrain future impact uncertainty.  130 

 131 

Appendix A summarizes potential hydrological metrics used in water management decisions (Jagannathan et al., 132 

2021) or statistical assessments of extremes (Zhang et al., 2011), and model evaluations (Phillips et al., 2020). 133 

Metrics in bold are presented in this paper. We only considered a simplistic measure of meteorological drought 134 

(absence of rain) in the current work, as drought is sensitive to the definition (Bachmair et al., 2016) and local 135 

conditions (Mukherjee et al., 2018), and so not suited to a generalized assessment. Similarly, snow measures are 136 

not included in this assessment in part due to limited availability of high-quality, long-duration, quality-controlled, 137 

observational data (McCrary et al., 2017); and partly due to the biases in snow distribution arising from the 138 

smoothed topography in GCMs (McCrary et al., 2022). 139 
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3 Data and Methods 140 

3.1 Climate Model Data 141 

CESM2 (Danabasoglu et al., 2020) is a fully coupled global model that simulates the Earth’s climate system 142 

through interactive models for atmosphere, ocean, land, sea-ice, river runoff, and land-ice. Variables considered 143 

in this project are taken from the Community Atmosphere Model version 6 (CAM6) and the Community Land 144 

Model version 5.0 (CLM5; Lawrence et al., 2019) and are part of the default model outputs. A schematic of the 145 

model components is included in Appendix B. This project uses daily values scaled up to annual (e.g., annual 146 

maximum daily precipitation) on a ~1 degree resolution grid. Data were extracted over the CONUS from 10 147 

ensemble members of LENS2 (Rodgers et al., 2021) for model validation in the current era (1981-2010). 148 

3.2 Observations 149 

Gridded daily observations of precipitation at 1/16° horizontal resolution (~6 km) were obtained from the Livneh 150 

et al. (2013) dataset covering CONUS and southern Canada for the control period (1981-2010), hereafter referred 151 

to as “Livneh”. Pierce et al. (2021) provided an update to the Livneh data set to address time adjustments that 152 

result While the time adjustment in the Livneh dataset results in an underestimation of the most extreme daily 153 

precipitation totals and resultant runoff and flood potential (Pierce et al. 2021). However, as, we are also interested 154 

other measures of in precipitation and in runoff minima. As a result, we did not employ the updated gridded 155 

observations (Pierce et al. 2021). 156 

 157 

Livneh daily temperature maxima and minima, and precipitation were used to force the Variable Infiltration 158 

Capacity Model (VIC; Liang et al., 1994) version 4.1.2 to obtain runoff estimates for years 1980-2005 as evaluated 159 

in Livneh et al. (2013). Hereafter referred to as “Livneh-VIC”. 160 

 161 

 162 
Figure 2: HUC 2 regions used in data validation and analysis. Regions defined by USGS (2013): Region 01 New England 163 
(NE); Region 02 Mid-Atlantic (MA); Region 03 South Atlantic-Gulf (SA); Region 04 Great Lakes (GL); Region 05 Ohio 164 
(OH); Region 06 Tennessee (TN); Region 07 Upper Mississippi (UM); Region 08 Lower Mississippi (LM); Region 09 165 
Souris-Red-Rainy (RR); Region 10 Missouri (MR); Region 11 Arkansas-White-Red (ARK); Region 12 Texas-Gulf 166 
(GUL); Region 13 Rio Grande (RIO); Region 14 Upper Colorado (UC); Region 15 Lower Colorado (LCO); Region 16 167 
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Great Basin (GB); Region 17 Pacific Northwest (PN);  168 
Region 18 California (CA) 169 

3.3 Methods 170 

All analyses were carried out using the North American water year (1 October to 30 September) to facilitate later 171 

communication. 172 

3.3.1 Remapping 173 

For ease of comparison, model output were re-gridded using a conservative second-order remapping (Jones, 1999) 174 

to place both datasets on the same scale grid and assess anomalies. Data were also calculated as areal averages or 175 

totals over the 2-digit Hydrological Unit Code (HUC2) regions (Seaber et al., 1987).  HUC2 basins represent 18 176 

watersheds, covering areas ranging from 41,000 mi2 (~105,000 km2; Tennessee) to 520,960mi2 (1,350,000 km2; 177 

Missouri), shown in Fig. 2. While the scale of HUC2 regions may be large for some local decision-makers, it is 178 

also a more appropriate and conservative scale to compare to ESMs as demonstrated by Lehner et al. (2019).  179 

3.3.2 Percentile-based thresholds 180 

The threshold for very heavy rain days (Q95) was calculated at each individual grid cell using only days with ≥ 1 181 

mm rain (“wet days”). Thresholds were derived empirically  for each model ensemble member, with the ensemble 182 

mean threshold (Q95) used to identify the days per year exceeding the threshold (N95) and total annual rainfall 183 

from those days (P95). 184 

Runoff was aggregated over each HUC2 watershed and multiplied by the respective area to generate total volume 185 

per day. Volume per day was then converted to measurements more familiar to users, such as acre feet per day or 186 

cubic meters per second. Daily time series of total volumetric runoff had a 7-day running mean smoother applied, 187 

then annual maximum, minimum and mean values were extracted. The highest and lowest 7-day average runoff 188 

expected once per decade (7Q90, 7Q10) were estimated empirically from the 25 ranked values of of annual 189 

maxima and minima per watershed. Stationarity was assumed over the climatological period for the purposes of 190 

these analyses, acknowledging that changes may have already occurred in the frequency of these events. 191 

 4 Model Evaluation 192 

The metrics used to evaluate CESM2’s ability to reproduce large scale features and physical behaviors (e.g., 193 

Danabasoglu and Lamarque, 2021 and the associated Special Issue) are not necessarily those employed by 194 

decision makers. ESMs are designed to represent large-scale atmospheric processes and fluxes not specific local 195 

responses (Gettelman and Rood, 2016), but this design assumption may not be sufficiently well communicated to 196 

decision makers. The purpose of our evaluation is to establish whether CESM2 output is also fit for local decision 197 

purposes, or if the breadth of information from ESM ensembles remains unsuitable for immediate use in targeted 198 

water management decisions. 199 
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4.1 Rainfall metrics 200 

While broad spatial patterns of seasonal mean daily rainfall are reproduced well (Danabasoglu et al., 2020; Feng 201 

et al., 2020; Simpson et al., 2022), CESM2 fails to capture details over high topography, and overestimates 202 

summer precipitation where convective extremes dominate summer rainfall (Appendix BC). The seasonal mean 203 

precipitation also fails to capture some important watershed-level processes, such as the seasonal variability in the 204 

number of days with precipitation and the associated intensity.  205 

 206 

Estimates of mean annual rainfall on wet days, or wet day volume, are in broad agreement between Livneh and 207 

CESM2 output. Figure 3 shows an example of the mean number of wet days per month (NWD), and mean wet 208 

day volume (WDV) averaged over the Mid AtlanticCalifornia and Pacific Northwest. While CESM2 represents 209 

the NWD annual cycle very well in regions such as California (Fig. 3a, 3c) and the Pacific Northwest (Fig. 3b, 210 

3d), it does not capture NWD in many central and snow dominated regions (Fig. S1 and Fig. S2). This is likely 211 

due to the smoother topography of CESM2 missing the influence of orographic uplift, and large spatial scale 212 

missing sub-grid scale convective systems (e.g., over the Central Plains). The figures also highlight the scale of 213 

model (structural and internal variability) uncertainty present in the ensemble. As noted in previous sections, water 214 

management decision-makers are aware of the potential scale of uncertainty and expressed a desire for the full 215 

ensemble range to be presented to them instead of ensemble means.  216 
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 218 
Figure 3: Average number of wet days per month (a, b) and interannual variability in mean annual precipitation on 219 
wet days for Livneh climatological mean (red) with interannual spread (pink)  and CESM2 mean (bluecyan) with 220 
interannual and ensemble spread (gray); and (c,d) between 1981-2010 for observations derived from Livneh (red) and 221 
an individual CESM2 ensemble mean member (blue) and Ensemble spread (gray) in (a,c) Region 18 California (CA);  222 
and (b,d) Region 17 Pacific Northwest (PN).  223 

The annual variability in WDV, both year-to-year variations as well as the overall range of minima and maxima, 224 

is well captured by each of the model members for the different HUC2 regions, even if the absolute values do not 225 

match (Fig. 3 c,d). As expected, the specifics of which years have high or low values of WDV are not the same 226 

for each ensemble member (i.e. demonstrating internal variability). As a result, the ensemble mean value of WDV 227 

(cyan)(blue) does not reflect the same year-to-year variability as the observations or individual ensemble members 228 



10 

(blue). Decision makers expressed that the interannual variability demonstrated by each model member is more 229 

valuable to demonstrate the credibility of the data than the ensemble mean (Tye, 2023). We recommend that the 230 

full range of values of each metric (i.e. after computation for each ensemble member individually) are 231 

communicated in addition to the climatological means to help bound uncertainty around decisions (Wilby et al., 232 

2021). 233 

 234 

The magnitude of interannual variability in WDV (i.e., the absolute differences between the maximum and 235 

minimum values in each member time series) is typically within 10% of observations in all regions as illustrated 236 

for two regions in Fig. 3. Exceptions are the Lower Colorado, South Atlantic-Gulf and Upper Mississippi where 237 

the simulated distributions are too narrow. Many different sources of error may contribute to this discrepancy, 238 

such as the inability to resolve convective precipitation (Chen et al., 2021) in addition to elevation changes not 239 

captured by the coarse model resolution, or the “drizzle effect” that is common in GCMs (Chen et al., 1996; Dai, 240 

2006).  241 

 242 

CESM2 captures the longest spells of consecutive dry days per year (CDD; Fig. 4a) and consecutive wet days per 243 

year (CWD; Fig. 4b), and their variability. Many regions capture both the interannual variability and the 244 

climatological mean duration of CWD, particularly those regions that are subject to large-scale synoptic systems 245 

(e.g., Pacific Northwest, Mid Atlantic-Gulf, California). Several regions either overestimate (South Atlantic-Gulf) 246 

or underestimate (Great Lakes, Souris-Red-Rainy) the absolute durations of the longest wet spells, but do reflect 247 

the magnitude of interannual variability. The exception is Tennessee, where both interannual variability and mean 248 

CWD are overestimated. At the grid scale, broad spatial patterns of CWD are correct but the finer atmospheric 249 

processes arising from topographic features are incorrect, as expected from the coarse model resolution. A similar 250 

pattern is present in CDD, except that some drier regions with CDD >30 days do not capture the full range of 251 

interannual variability (Souris-Red Rainy, Missouri, Rio Grande). As GCMs have a tendency to produce drizzle, 252 

adjusting for a higher wet day threshold (e.g., 2 mm) might improve dry spell representation in those regions. It 253 

is also important to communicate such model sensitivities to users more effectively. 254 
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 255 
Figure 4: a) Longest duration per year of consecutive days <1 mm rain (longest dry spell) for Livneh over all years 256 
(green) and CESM2 ensemble range over all years (blue) for all HUC2 regions; and b) Longest duration per year of 257 
consecutive days with ≥1 mm rain (longest wet spell). Regional Acronyms defined in Fig. 2. 258 

The thresholds for heavy and very heavy rain days (P95, P99) are defined with respect to the wet days, and 259 

calculated individually and compared for Livneh and CESM2 both to understand whether the intensity of more 260 

extreme rainfall is captured, and to evaluate model behavior. A comparison of the thresholds reflects the 261 

considerable improvements in modeling capabilities in recent years (Gettelman et al., 2022). For instance, earlier 262 

versions of CESM underestimated extreme precipitation intensity by 10-30 mm/day east of the Rockies, and 263 

overestimated intensity by 5-10 mm/day to the west (Gervais et al., 2014). We found CESM2 still underestimates 264 

the most extreme rainfall, but that errors have approximately halved. As these differences are still inadequate for 265 

many engineering and major infrastructure decisions (Wright et al., 2019), we focus on CESM2’s ability to capture 266 

the relative contributions of P95 and P99 to the annual total and the interannual variability in their frequency. A 267 

result with considerable useability is the proportion of annual total precipitation derived from the heaviest rain 268 

days, or “Proportional Contribution of Extreme Days” (P95Tot). This proportion and its interannual variability is 269 

well represented by CESM2 at the HUC2 scale and has shown to be skillful in other models (Tebaldi et al., 2021).  270 

 271 

The interannual variability in the frequency (N95) and intensity of extreme rainfall, as represented by P95Tot, are 272 

illustrated in Fig. 5 and 6. In several HUC2 regions the simulations report more frequent events, and proportionally 273 

higher totals (e.g., Great Lakes, Rio-Grande, Missouri, Upper Colorado and Lower Colorado; Fig. S3). Overall, 274 

there is good subjective agreement between Livneh and CESM2, identifying an opportunity to inform local 275 

decisions from large scale ESMs. 276 
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 277 
Figure 5: a, c, e, g) Number of very heavy rain days per year; and b, d, f, h) total rain from very heavy rain days as a 278 
proportion of the annual total for a, b) Tennessee (TN); c,d) Great Lakes (GL); e,f) Souris-Red-Rainy (RR); and g,h) 279 
California (CA) HUC2 regions. Observations in red; CESM2 ensemble spread in gray, single randomly selected 280 
ensemble member in blue. 281 
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 282 
Figure 6: Box plots of the interannual range of contributions to annual total rainfall from very heavy days (P95Tot) 283 
shown as percentages for: Observations (light blue), and ensemble range for CESM2 (green) for all HUC2 regions. 284 
Boxes are bound by the interquartile range, black lines indicate the median, notches indicate the degree of spread from 285 
the median and bars extend to the full data range. 286 

4.2 Runoff metrics 287 

Runoff estimates are taken from the individual components of surface and subsurface runoff generated within 288 

CLM5 (Lawrence et al., 2019) and compared to the Livneh forced VIC runoff (“Livneh-VIC”).  289 

 290 

Assessing the skill of runoff in large-scale models is complicated by many factors, including the mismatch of 291 

scales between in-channel flow (~1-102 m) and the grid scale (~105 m). Thus, metrics of climate model runoff 292 

should be selected carefully and the runoff should be aggregated or combined with other metrics, rather than used 293 

directly (Lehner et al., 2019).  Appendix C D demonstrates the discrepancies between the grid-scale representation 294 

of runoff from Livneh-VIC and CESM2. The large discrepancies arise from different processes that are not 295 

captured adequately, such as groundwater, topography, and associated snow ablation and melt, in addition to 296 

meteorological biases.  297 

 298 

However, water management decisions are made over watersheds in units such as acre-feet1 or cubic meters, while 299 

model data are output as a depth of runoff over each grid cell (e.g., mm/day per km2). We aggregated the 7-day 300 

running mean daily runoff (Q7) within each HUC2 region to generate Q7 time series in each basin. Fig. 7a 301 

illustrates the 25-year mean seasonal cycle for Livneh-VIC in red and CESM2 in blue, and the full range of values 302 

over all years and ensemble members for the Souris-Red-Rainy basin (HUC Region 9), additional basins are 303 

included in Fig. S4. Data are presented in millions of acre feet, to align with decision maker needs. The minimum 304 

simulated Q7 in any year considerably underestimates the lowest flows in this region compared to Livneh-VIC. 305 

 
1 1 Acre-foot is the volume of water it would take to cover 1 acre of land to a depth of 1 foot. Equal to 325,852 
gallons or 1,233 m3 (USGS Water Science). 
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In contrast, the largest total runoff volume is overestimated and peaks too early in the water year. Figure 7b plots 306 

the same information as the cumulative runoff volume from the start of the water year, highlighting that the lowest 307 

runoff volume is underestimated by a factor of ten for this region, other regions are illustrated in Fig. S5. Low 308 

runoff volumes were typically underestimated in smaller regions (e.g., NE, TN). High runoff volumes were only 309 

underestimated in three regions (LM, ARK, GUL) and considerably overestimated in seven regions. Snow-310 

dominated regions perform particularly poorly for both QMax and QMin as snowpack and the timing of associated 311 

runoff are not well simulated. Transitional regions that straddle both snow- and rain-dominated hydrology also 312 

fail to capture QMax, but better estimate Qmin (not shown). Only the South Atlantic region reproduces both 313 

QMax and QMin. 314 

 315 
Figure 7: Interannual variability in runoff in Souris Red Rainy Region for a) the mean seasonal cycle; and b) the 316 
cumulative watershed runoff over the water year. Livneh-VIC climatological mean in red, range of all years in pink; 317 
CESM2 ensemble mean in blue and ensemble range in gray. Figure highlights the underestimation of the lowest runoff 318 
volume by CESM2 by a factor of ten. 319 

 320 

We explored the relationship between the highest and total annual runoff (QMax/QTot), and lowest and total 321 

annual runoff (QMin/QTot). Some regions performed well for QMax/QTot, others performed better for 322 

QMin/QTot but there was no consistent relationship that could be utilized by decision makers.  323 

 324 

Participants at the NSF NCAR workshop (Tye, 2023) emphasized that the exact numbers produced by climate 325 

models are not very important for future decisions. Others have also emphasized the importance of well-326 

represented processes in the model (Reed et al., 2022) and correlations with known experiences (Mach et al., 327 

2020; Shepherd et al., 2018). FocussingFocusing on fidelity to the historical climate exaggerates the importance 328 

of model performance instead of robustness to different conditions without ensuring that model predictions are 329 
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useful or reliable (Brunner et al., 2021; Wagener et al., 2022). Runoff estimates in transitional catchments may be 330 

inadequate in the current climate but plausible in the future, if the model reproduces rain-dominated hydrological 331 

processes (McMillan, 2021). 332 

 333 

Climatological mean runoff cycles are estimated from Pardé coefficients — calculated as Q7/QTot on each 334 

calendar day — a dimensionless value that enables comparison across regions. Figure 8 depicts the mean seasonal 335 

cycle for representative snow-dominated (Upper Colorado), transitional (Missouri) and rain-dominated 336 

(Tennessee) regions, demonstrating how an imperfect representation of snow in the Upper Colorado results in 337 

CESM2 peak runoff occurring two months earlier than Livneh-VIC (Fig. 8a). The runoff regimes display very 338 

different seasonal characteristics, with CESM2 having a “mid late spring” runoff regime rather than Livneh-VIC’s 339 

“extreme early summer” regime (Fig. 8a; Haines et al., 1988). Peak runoff is also too early in transitional regions, 340 

but closer to Livneh-VIC than in snow-dominated regions (Fig. 8b). Rain-dominated regions capture both the 341 

timing of QMax and overall seasonal hydrograph shape (Fig. 8c). 342 
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 343 
Figure 8 : Seasonal patterns of runoff for HUC2 regions a) Upper Colorado (UC); b) Tennessee (TN);  344 
and c) Missouri (MR). Constructed from normalized series of the ratio of 7-day mean runoff to the mean annual total. 345 
Livneh-VIC runoff climatological mean (red), climatological range (pink), CESM2 ensemble mean (blue) and ensemble 346 
range (gray with dashed border). Vertical lines indicate the mean date of peak runoff with number of days since the 347 
start of the water year. 348 

7Q10 and 7Q90 are estimated empirically from annual minima and maxima as occurring once per decade. 349 

Projected changes in the frequency of very low or very high runoff volumes are deemed credible where CESM2 350 

replicates the standard deviation of annual minima and maxima according to a !2 test at the 5% significance level. 351 

Table 1 reports CESM2 and Livneh-VIC regional estimates of 7Q10 and 7Q90 and standard deviations of the 352 

annual maxima and minima; values in bold indicate where estimates are statistically similar. It should be noted 353 

that the values in Table 1 have ≤10% of occurring in any year, and so represent the tails of the runoff distribution. 354 
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 355 
Table 1 : Very low (7Q10) and very high (7Q90) regional runoff, and standard deviation in regional annual minima (! 356 
QMin) and annual maxima (! QMax) for Livneh and CESM2. Values in bold indicate where CESM2 and Livneh-VIC 357 
regional runoff are statistically similar according to a "2 test. 358 

Region 

Livneh-VIC CESM2 

7Q10 7Q90 ! QMin ! 
QMax 7Q10 7Q90 ! QMin ! 

QMax 

NE 1 4.1 132.4 1.3 25.5 8.6 215.1 4.7 39.9 

MA 2 6.9 103.5 2.5 25.7 7.4 220.7 3.6 47.9 

SA 3 21.1 240.4 8.4 50.7 20.5 258.6 11.9 45.8 

GL 4 6.9 122.5 2.2 23.8 7.8 331.0 4.3 58.0 

OH 5 7.8 187.6 2.3 53.0 9.4 260.9 4.5 56.4 

TN 6 2.1 90.5 0.8 23.1 0 98.7 0.3 21.7 

UM 7 2.1 78.2 1.7 16.9 7.9 122.3 4.7 31.5 

LM 8 3.9 212.2 1.1 36.1 8.0 81.0  5.1 14.7 

RR 9 1.0 24.3 0.5 7.1 0 33.0 0.1 8.4 

MR 10 2.3 103.0 1.6 28.1 5.2 147.4  4.2 30.4 

ARK 11 2.2 130.5 0.7 36.2 3.2 93.9 4.5 18.1 

GUL 12 1.5 99.1 0.5 35.5 1.3 70.7 2.8 16.7 

RIO 13 0.5 22.5 0.2 5.8 0.4 29.5 1.3 7.3 

UC 14 0.6 27.3 0.2 7.2 0 74.7 0.2 15.3 

LCO 15 0.5 19.4 0.2 7.5 0.3 46.7  0.7 11.6 

GB 16 0.7 33.3 0.3 10.3 1.8 71.5 1.3 21.1 

PN 17 20.6 266.5 7.9 50.2 4.4 449.6 2.6 87.3 

CA 18 1.6 323.2 0.4 101.9 1.3 233.4 1.1 61.3 

 359 

Grid-scale estimates such as mean daily runoff readily highlight why decision makers have low confidence in 360 

CESM2 output: the metrics are not salient and appear to have no skill. After aggregating the 7-day mean daily 361 

runoff to watershed scales, some skill emerges in the annual minima and maxima, and seasonal cycles. Snow-362 

dominated watersheds perform poorly with regard to peak runoff volume and timing of the peaks and lows, as 363 

expected (McCrary et al., 2022). Rain-dominated watersheds capture the inter-annual variability and magnitudes 364 

of peak and low flows, and the seasonal hydrographs. While CESM2 at this coarse scale does not represent the 365 

local topography and cannot represent finer scale snow, our analysis indicates the land surface model correctly 366 



18 

simulates the overall bulk water budget for most watersheds as illustrated in Figures 7 and 8. However, the tail 367 

behavior of highest and lowest total watershed runoff is only captured by a few basins and so caution needs to be 368 

exercised in the interpretation and use of model results, as biases may propagate into the future. This is premised 369 

on the understanding of why the model can produce accurate results, and whether the accuracy can be reliably 370 

reproduced for the future climate (Wagener et al., 2022).  371 

 372 

While participants at the NSF NCAR workshop stated that precise estimates are not necessary, they also 373 

emphasized their desire for high confidence in the projected scale and direction of any changes. We note that 374 

“confidence” is derived from a combination of 1) credible process representation; 2) agreement with historical 375 

trends, given internal variability; 3) agreement across multiple models. It is worth noting that trends in extremes 376 

may be important without being statistically significant, as a limited sample of points (e.g. one per year) from a 377 

stochastic series is inherently noisy. However, some of these trends may emerge from the noise in the distribution 378 

and so are important to monitor.  379 
 380 
CESM2-LENS projections could helpfully augment RCM output in rain-dominated regions such as Tennessee, 381 

Ohio, and California, where CESM2 most closely reproduces Livneh-VIC, by providing supplementary 382 

information on the relative uncertainty in the models. This is also true for transitional basins such as the Rio 383 

Grande, Northeast, and Lower Colorado, where seasonal snowpack may become more ephemeral and change the 384 

seasonal hydrological responses.  385 

6 Discussion 386 

As decision makers have become more immersed in developing water resource management adaptation plans, the 387 

role of “climate services” in developing salient climate information has increased (Briley et al., 2020; Brugger et 388 

al., 2016; Dilling et al., 2019). We tested our hypothesis that recent improvements in ESMs can allow decision-389 

relevant metrics to be produced directly, by leveraging the combined experience of the author team, results from 390 

the NCAR workshop, and the wealth of literature on actionable knowledge (Bremer et al., 2020; Jagannathan et 391 

al., 2021; Mach et al., 2020; Vano et al., 2014). Given that no model can perfectly address all decision needs, we 392 

identified and evaluated multiple metrics that can frame specific water management decisions within the known 393 

constraints of the data (Lempert, 2021), or within the decision makers’ experiences (Austin, 2023; Clifford et al., 394 

2020; Reed et al., 2022; Shepherd et al., 2018).  395 

 396 

It is important to communicate the original purpose of the model and associated weaknesses, so that decision 397 

makers fully understand which information is appropriate to use in other applications (Fisher and Koven, 2020; 398 

Gettelman and Rood, 2016; Wagener et al., 2022). Given the balance between model fidelity and model 399 

complexity (Clark et al., 2015) and the absence of detailed global scale observation data (e.g., Gleason and Smith, 400 

2014; Reba et al., 2011) CESM2 provides a plausible representation of Earth system processes and moisture 401 

fluxes, but may not capture basin-scale specifics (Ek, 2018; Lehner et al., 2019). That said, there are continued 402 

efforts to improve the simulation of land surface processes and analyses such as those presented in this article can 403 

flag weaknesses for future improvement (Lawrence et al., 2019).  404 
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 405 

Establishing model fidelity also requires distinguishing an accurate representation of the climate processes from 406 

serendipitous correlation with observations. Whether the model has good process representation overall, or 407 

exactitude in one simulation can be established through internal variability analyses using large ensembles (e.g., 408 

Deser et al., 2020; Tebaldi et al., 2021). Repeating the analyses with several different ESMs to establish the degree 409 

of agreement (Mankin et al., 2020) would further strengthen the usability of metrics presented in this article. It is 410 

also worth noting that the analysis presented here only used one reference dataset. As different reanalysis and 411 

observational datasets can have large discrepancies, a thorough model evaluation would also benefit from 412 

comparison to several products (Kim et al., 2020; Newman et al., 2015), including an assessment of how removing 413 

temporal adjustments in observations affects the statistics of extremes (Pierce et al., 2021). 414 

 415 

While the precise details of precipitation and runoff may not be well simulated by CESM2, we found some aspects 416 

are credible. The frequency of wet days highlighted regions where current seasonal behavior is well captured, and 417 

may support planning around flood and drought control or wildfire risk when used in combination with other 418 

models or data sources (Austin, 2023; Clifford et al., 2020; Jagannathan et al., 2021; Reclamation, 2016).  419 

7 Conclusions 420 

This paper presented an assessment of whether a standard resolution (~100 km grid) Earth system model is capable 421 

of producing information that water users typically employ in their decisions. Our motivation was to explore 422 

whether it is possible to reduce the need for intermediate downscaling, and to broaden the use of large model 423 

ensembles to quantify the influence of internal variability on localized decisions. We drew on the combined 424 

experience of the project team and workshop participants to identify potential metrics and familiar modes of 425 

visualization. This project used only CESM2 over the conterminous United States to develop example metrics 426 

that may be explored within other models and over other regions. CESM2 is unable to reproduce some metrics 427 

given the lack of topographical detail. A companion paper by Rugg et al. (2023) examines potential improvements 428 

to the subgrid-scale simulation of land processes to improve the representation of the hydrological cycle in 429 

mountainous regions.  430 

 431 

We encourage others working in the decision space between climate data producers and users to be forthcoming 432 

about specific regions and reasons where model data are not credible, or where the model has particular 433 

weaknesses (such as the drizzle effect) that may be overcome with a different analysis approach. 434 

For future model assessors, the following metrics were found to be salient for water users and were skillfully 435 

reproduced in many regions. 436 

 437 

Rainfall: 438 

▪ Number of wet days (≥ 1mm of rain) per year/season 439 

▪ Mean precipitation on wet days 440 

▪ Duration of the longest wet and dry spells per year 441 



20 

▪ Number of days with rain > 95th percentile of current climate wet day totals 442 

▪ Proportion of the annual total derived from days > 95th percentile of wet day totals 443 

 444 

Runoff (aggregated up to basin level, as a volume for 3- and 7-day averages): 445 

▪ Annual maxima and minima 446 

▪ Frequency of very high or very low flows (< 10% annual chance of occurring in the current climate) 447 

▪ Proportion of averaged daily runoff to annual total 448 

 449 

The work presented in this paper is a small step toward establishing greater usability of climate model output by 450 

decision makers. The present evaluation is also only the first step in evaluating ESM performance. Additional 451 

research is needed to support water managers placing these results and their uncertainty in the context of additional 452 

observational data (such as remote sensing) that may already be available to them. Continued collaboration is 453 

essential to improve the transfer of knowledge (e.g., data requirements, model assumptions, decision constraints) 454 

between communities. 455 

 456 
Appendix A 457 
 458 
Table A1: Hydro-meteorological responses used in water management decisions, and the specific metrics that have 459 
potential for representation in ESMs. Metrics in bold are presented in this article. 460 

Hydro- 
meteorological 
Responses 

Typical Water 
Management Decision  Metric Description 

Annual rainfall Water supply and 
drought monitoring 

Total Precipitation 
(PRCPTOT) 

Total annual precipitation 
measured as rainfall or 
snow water equivalent. 

Seasonal rainfall 
cycle 

Seasonal water supply, 
reservoir operations 
management 

Number of Wet Days 
(NWD),  
Mean Wet Day Volume 
(WDV) 

Frequency of days with 
≥1mm precipitation 
(NWD) per month, season 
or year,  
Mean precipitation on wet 
days calculated from 
PRCPTOT/NWD 

Rainfall extreme Flood and stormwater 
management 

95th percentile (Q95) 
Number of very heavy 
rain days (N95) 
Very heavy rain volume 
(P95) 
Proportional contribution 
of very heavy rain 
(P95tot) 

Rainfall percentile threshold 
that is exceeded by 5% rain 
events per year on average, 
and calculated from wet 
days only 
Frequency of days with 
rainfall exceeding Q95 
Total rain falling on days 
exceeding Q95 
Proportional of annual 
total derived from very 
heavy rain, calculated as 
P95/PRCPTOT 
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Hydro- 
meteorological 
Responses 

Typical Water 
Management Decision  Metric Description 

Rainfall extreme (dry) 

Water supply planning 
and drought 
monitoring/planning 
including water rights 
and restrictions. 

Consecutive dry days 
(CDD) 

Maximum duration of 
spell with consecutive days 
measuring < 1 mm 
precipitation. 

Rainfall extreme 
(wet) 

Stormwater 
management, water 
supply planning 

Consecutive wet days 
(CWD) 

Maximum duration of 
spell with consecutive days 
measuring ≥ 1 mm 
precipitation. 

High streamflow  

Reservoir management 
and flood control, water 
quality management 
and water supply 
management, including 
use of supplemental 
water supplies 

Annual maximum runoff 
(QMax) 
Description (JMaxF) 
Description (HFD) 

Annual maximum daily 
volume of basin-wide 
runoff  
Julian day of QMax/ day of 
the water year 
Duration of high flows  

Low streamflow  
 

Water supply 
management, 
assessment of water 
shortages with respect 
to seasonal demands 

Annual minimum runoff 
(QMin) 
Description (JMinF) 
Description (LFD) 

Annual minimum daily 
volume of basin-wide 
runoff  
Julian day of QMin/ day of 
the water year  
Duration of low flows 

Streamflow 

Water supply planning, 
water quality 
management, reservoir 
operations 
management, planning 
future investment needs 

7-day mean runoff (Q7) 

Daily volume of basin-
wide runoff averaged over 
7 days. Often presented as 
percentage of annual total 
volume of runoff or Pardé 
coefficient (Pardé, 1933) 

Very low streamflow 

Water quality 
management for 
discharge permits, 
conservation 
management, drought 
planning 

7-day “10-year” low 
runoff (7Q10)- 

7-day averaged basin-wide 
lowest volume of runoff 
with <10% annual 
probability of occurring. 
Estimated from Qmin series. 

Very high flow 
Flood management and 
planning, reservoir 
operations 

7-day “10-year” high 
runoff (7Q90) 

7-day averaged basin-wide 
highest volume of runoff 
with <10% annual 
probability of occurring. 
Estimated from Qmax 
series. 

Streamflow 
Water supply planning, 
reservoir operations 
management 

Central Tendency (CT) 
Description (Q25, Q50, Q75) 

Day of the water year when 
the cumulative annual 
runoff exceeds 50% of the 
total annual runoff 
Annual quartiles of 
cumulative annual runoff 
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Hydro- 
meteorological 
Responses 

Typical Water 
Management Decision  Metric Description 

estimated from daily 
streamflow. 

Snowpack 
Reservoir operations 
and flood management, 
water supply planning 

Snow Water Equivalent 
(SWE) Maximum 
(SWEMax) 
SWEMax Date 
SWE Duration 

Volume of peak snow water 
equivalent 
Day of the water year when 
peak SWE occurs 
Total length of snow 
accumulation and ablation 

Snowmelt Flood management and 
reservoir operations Snowmelt onset Day of water year of 

snowmelt onset 

 461 

Appendix B 462 
Schematic of the Community Earth System Model version 2 (CESM2) model components, reproduced from 463 
Danabasoglu et al. (2020) Figure 1. 464 

 465 

  466 
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Appendix C 467 

Seasonal Mean Precipitation for Winter (top row), Spring (row 2), Summer (row 3) and Fall (bottom row) as shown in 468 
Livneh (left column) and CESM2 (middle column), and difference CESM2-Livneh (right column) 469 

 470 
 471 
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Appendix D 472 

 473 

 474 
 475 

 476 
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