1 Evaluating an Earth system model from a water manager

2 perspective

3

- 4 Mari R. Tye^{1,2}, Ming Ge¹, Jadwiga H. Richter¹, Ethan D. Gutmann¹, Allyson Rugg¹, Cindy L.
- Bruyère³, Sue Ellen Haupt¹, Flavio Lehner^{4,1,5}, Rachel McCrary¹, Andrew J. Newman¹, Andy
 Wood^{1,6}
- 7 1 National Center for Atmospheric Research, Boulder, CO
- 8 2 Whiting School of Engineering, Johns Hopkins, Baltimore, MD, USA
- 9 3 Cooperative Programs for the Advancement of Earth System Science (CPAESS), UCAR, Boulder, CO
- 10 4 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
- 11 5 Polar Bears International, Bozeman, MT, USA
- 12 6 Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
- 13 Correspondence to: Mari R. Tye (maritye@ucar.edu)

14 Abstract

- 15 The large spatial scale of global Earth system models (ESM) is often cited as an obstacle to using the output by
- 16 water resource managers in localized decisions. Recent advances in computing have improved the fidelity of
- 17 hydrological responses in ESMs through increased connectivity between model components. However, the
- 18 models are seldom evaluated for their ability to reproduce metrics that are important for and resonate with
- 19 practitioners, or present the results in a manner that resonates with the users or that allow practitioners to situate
- 20 higher-resolution model outputs within a cascade of uncertainty stemming from different models and scenarios.
- 21 We draw on the combined experience of the author team and stakeholder water manager workshop participants
- 22 to identify salient water resource-management metrics and evaluate whether they are credibly reproduced over the
- 23 conterminous U.S. by the Community Earth System Model v2 Large Ensemble (CESM2). We find that while the
- exact values may not match observations, aspects such as interannual variability can be reproduced by CESM2
- 25 for the mean wet day precipitation and length of dry spells. CESM2 also captures the proportion of annual total
- 26 precipitation that derives from the heaviest rain days in watersheds that are not snow-dominated. Aggregating the 27 7-day mean daily runoff to HUC2 watersheds also shows rain-dominated regions capture the timing and
- 27 7-day mean daily runoff to HUC2 watersheds also shows rain-dominated regions capture the timing and 28 interannual variability in annual maximum and minimum flows. We conclude there is potential for far greater
- 29 use of large ensemble ESMs, such as CESM2, in long-range water **resource management** decisions to supplement
- 30 high resolution regional projections.

31 1 Introduction

- 32 Water availability and water quality for human consumption, ecosystems, and agriculture are fundamental
- 33 requirements, making pertinent assessments of future change crucial for adaptation planning (IPCC, 2022).
- 34 Climate related changes in the hydrologic cycle will affect substantial portions of the world population, most

directly through changes in water availability at or near the surface (Mankin et al., 2020; Sedláček and Knutti, 2014). The information required by water resource-managers for decision making is not readily available in a relevant format, or at sufficient spatial or temporal resolutions from global Earth system models (ESM; e.g., Ekström et al., 2018). We explore how the Community Earth System Model (CESM) represents the climatology of water availability, focussingfocusing on metrics that are familiar to decision makers in planning investmentscale decisions.

The inability of ESMs to explicitly resolve sub-grid scale (~100 km) processes is often cited as the limitation preventing direct model use in decision making. Literature from large organizations making infrastructure decisions (e.g., Brekke, 2011; Brekke et al., 2009; Reclamation, 2016, 2014) emphasize downscaling climate model data closer to the scale of the watersheds they manage. These additional modeling steps add complexity and may increase statistical errors (Clark et al., 2015; Ekström et al., 2018). Extracting useful and robust information directly from ESMs would reduce such errors if metrics most important to decision makers, such as the timing of peak flow, were known to be robustly represented.

48

49 There are many comprehensive examples of metrics used to evaluate climate and hydrological models (e.g., Ekström et al., 2018; Mizukami et al., 2019; Wagener et al., 2022), and communicate the impacts of climate 50 51 change (e.g., Reed et al., 2022), or to identify decision-relevant metrics (e.g., Bremer et al., 2020; Mach et al., 52 2020; Underwood et al., 2018; Vano et al., 2014). However, very few have examined whether user defined metrics 53 can be reliably reproduced by ESMs (Mankin et al., 2020), and if further model development and scale reduction 54 is warranted instead of improved communication (Pacchetti et al., 2021). Better communication may also reduce 55 the temptation of some users to calculate "standard hydroclimate metrics" that are not supported by the climate 56 model data (Ekström et al., 2018).

57

58 In contrast, climate model output can be rejected unnecessarily when simulated annual minima from freely 59 running simulations do not "match" the sequence of observed low flows (Ekström et al., 2018; Moise et al., 2015). 60 Similarly, the benefits of a range of projected outcomes from different climate models are not widely appreciated 61 beyond the climate model community (Tebaldi and Knutti, 2007). Large ensembles from a single climate model 62 initialized with a range of atmospheric and ocean conditions, such as the CESM2 Large Ensemble (LENS2; 63 Rodgers et al., 2021), help to bound the uncertainty that derives from a naturally chaotic system. Averaged over 64 the full ensemble, they give a better estimate of the model's response to internal and external forcing (Deser et al., 65 2012) and enable assessments of the rarity of projected extremes. The additional analysis to identify structural (i.e. model formulation) and internal variability within regional climate models means that there are fewer large 66 ensembles at a high resolution (Deser et al., 2020). 67

68

Since different decision makers have different priorities and time-scales of interest, Shepherd et al. (2018) recommended the development of climate storylines to communicate with those using climate data to make decisions. Informed by prior surveys of water managers (e.g., Brekke, 2011; Brekke et al., 2009; Cantor et al., 2018; Raff et al., 2013; Wood et al., 2021), Fig. 1 aims to map the different types of water decisions (e.g., Raff et al., 2013 Fig. 3) to the different scales of model resolution (Meehl et al., 2009 Fig. 2). Water managers make daily 74 operational decisions (e.g., to control instantaneous river flow) with the aid of fine-scale weather and flood models 75 (<4 km) that reliably represent convective and local weather scale processes even though their predictability is relatively short lived (Yuan et al., 2019; far left side of Fig. 1). Larger watershed operations (such as reservoir 76 77 management or groundwater recharge; e.g., Regional Water Authority, 2019) depend on seasonal outlooks 78 (middle left of Fig. 1). Smaller adaptation and mitigation projects take place at the typical policy or decadal 79 prediction scale (i.e., 4-10 years; middle right of Fig. 1). Finally, major public investments and inter-basin 80 agreements occur at the same time scales as climate projections (30-100 years; far right of Fig. 1) where persistent 81 and relatively predictable synoptic and planetary scale processes are well represented in lower resolution (~100 82 km) climate models (Phillips et al., 2020). While forecasts (seasonal or decadal) are re-initialized from specific 83 atmosphere, ocean or land states at regular time intervals, climate projections are run freely from a variety of 84 atmospheric and oceanic conditions that take several decades to converge to a mean climatology. In considering 85 the utility and useability of information directly from ESMs we focus on decisions made over decadal to climate 86 scales at larger spatial scales.

87

Model Purpose	Weather Forecasts	Seasonal Outlooks	Decadal Predictions	Climate Change Projections
Model Scale	Regional			Timescale
	4-10	km	~25 km	~100 km Global
Model Resolutio	on 🔶 🚺			
Decision Type	Daily Operations	Maintenance & Management	Adaptation	Investment

88

95

97

98

99

100

89 Figure 1: Mapping the temporal and spatial scales of models to the timeframes for water management decisions.

90 Given that ESMs have advanced immeasurably in the recent decade, it is time to re-evaluate whether their direct 91 output can support decision makers. Such an evaluation needs to focus on how well the models can reproduce 92 metrics used by decision makers, and whether the results are credible (Briley et al., 2020; Jagannathan et al., 93 2021). Here we evaluate the credibility of one ESM in generating metrics known to be salient for water 94 management decisions; specifically, decisions for water management infrastructure project investments.

96 The motivation for this paper is to identify:

- a set of water availability metrics that resonates with decision makers and supports their investment-scale decisions;
 - how well CESM2 represents the climatology and recent observed behaviors of those metrics; and
- how such metrics are projected to change the range of CESM2 structural uncertainty and internal variability for these metrics.
- 101 102

103 This paper builds off a decade of collaboration between scientists at the National Center for Atmospheric Research

104 (NCAR) and US water agencies that led to a virtual workshop (Tye, 2023), and presents a test case for improved

- communication with water resources-management decision makers. The focus is on the Conterminous United 105
- 106 States (CONUS) to match the interest of workshop participants.

107 2 **Climate Information Needs from Prior Research**

Information needs vary greatly, from 5-minute rainfall totals at a point (ASCE, 2006), to basin-wide measures of 108 109 annual minimum and maximum total runoff. Water management decision metrics can be grouped into similar types such as timing, frequency, magnitude, extreme values, variability, and duration of events (Ekström et al., 110 111 2018). While some aspects of timing, magnitude, or variability can be reliably reproduced by ESMs (e.g., Deser et al., 2020; Tebaldi and Knutti, 2007), others such as short duration extremes are less reliable. 112

113

114 Methods of evaluation and data use also differ. For instance, Clifford et al. (2020) reported that predicting general 115 changes in the frequency of extreme precipitation events is more useful for future planning than the precise 116 prediction of mean values evaluated by model developers. Lehner et al. (2019) emphasized that models need to be evaluated for their ability to reproduce sensitivities (e.g., streamflow changes in response to temperature and 117 118 precipitation changes) in addition to mean states. However, metrics that are meaningful for evaluating a model's 119 capabilities (e.g., the ratio of precipitation to runoff) are less valuable for management decisions (Lehner et al., 120 2019; McMillan, 2021; Mizukami et al., 2019). When reporting results, water managers are more familiar with 121 the 'water year', rather than the calendar year, to capture the full annual hydrological cycle (Ekström et al., 2018). 122 While the use of water years is a nuance that does not add substantial value to climate model assessments, 123 communication with decision makers is improved by presenting data in a familiar format (Briley et al., 2020). 124

125 There is a need for information at the local scale that is unlikely to be met directly by raw outputs from the current generation of ESM. But better communication of the variability in future daily precipitation and associated runoff 126 127 can add value to the detailed models by bringing in the added statistical context and perspective of the large 128 ensembles. Thus, we believe that ESMs can produce useful information about hydro-meteorological extremes 129 when presented at different spatial or temporal scales, and offer the benefits of large climate model ensembles to 130 constrain future impact uncertainty.

131

132 Appendix A summarizes potential hydrological metrics used in water management decisions (Jagannathan et al., 133 2021) or statistical assessments of extremes (Zhang et al., 2011), and model evaluations (Phillips et al., 2020). 134 Metrics in bold are presented in this paper. We only considered a simplistic measure of meteorological drought 135 (absence of rain) in the current work, as drought is sensitive to the definition (Bachmair et al., 2016) and local 136 conditions (Mukherjee et al., 2018), and so not suited to a generalized assessment. Similarly, snow measures are 137 not included in this assessment in part due to limited availability of high-quality, long-duration, quality-controlled, 138 observational data (McCrary et al., 2017); and partly due to the biases in snow distribution arising from the smoothed topography in GCMs (McCrary et al., 2022). 139

140 **3** Data and Methods

141 **3.1 Climate Model Data**

142 CESM2 (Danabasoglu et al., 2020) is a fully coupled global model that simulates the Earth's climate system 143 through interactive models for atmosphere, ocean, land, sea-ice, river runoff, and land-ice. Variables considered 144 in this project are taken from the Community Atmosphere Model version 6 (CAM6) and the Community Land 145 Model version 5.0 (CLM5; Lawrence et al., 2019) and are part of the default model outputs. A schematic of the 146 model components is included in Appendix B. This project uses daily values scaled up to annual (e.g., annual 147 maximum daily precipitation) on a ~1 degree resolution grid. Data were extracted over the CONUS from 10 148 ensemble members of LENS2 (Rodgers et al., 2021) for model validation in the current era (1981-2010).

149 **3.2** Observations

Gridded daily observations of precipitation at 1/16° horizontal resolution (~6 km) were obtained from the Livneh et al. (2013) dataset covering CONUS and southern Canada for the control period (1981-2010), hereafter referred to as "Livneh". <u>Pierce et al. (2021) provided an update to the Livneh data set to address time adjustments that</u> <u>result While the time adjustment in the Livneh dataset results in an underestimation of the most extreme daily</u> precipitation totals and resultant runoff and flood potential (Pierce et al. 2021). <u>However, as</u>, we are also interested <u>other measures of in-precipitation and in runoff minima. As a result</u>, we did not employ the updated gridded observations (<u>Pierce et al. 2021</u>).

157

158 Livneh daily temperature maxima and minima, and precipitation were used to force the Variable Infiltration

- 159 Capacity Model (VIC; Liang et al., 1994) version 4.1.2 to obtain runoff estimates for years 1980-2005 as evaluated
 - 160 in Livneh et al. (2013). Hereafter referred to as "Livneh-VIC".
 - 161

- Figure 2: HUC 2 regions used in data validation and analysis. Regions defined by USGS (2013): Region 01 New England
 (NE); Region 02 Mid-Atlantic (MA); Region 03 South Atlantic-Gulf (SA); Region 04 Great Lakes (GL); Region 05 Ohio
- 165 (OH); Region 06 Tennessee (TN); Region 07 Upper Mississippi (UM); Region 08 Lower Mississippi (LM); Region 09
- 166 Souris-Red-Rainy (RR); Region 10 Missouri (MR); Region 11 Arkansas-White-Red (ARK); Region 12 Texas-Gulf
- 167 (GUL); Region 13 Rio Grande (RIO); Region 14 Upper Colorado (UC); Region 15 Lower Colorado (LCO); Region 16

168	Great	Basin	(GB);	Region	17	Pacific	Northwest	(PN);
169	Region 18 C	California (CA)						

170 **3.3 Methods**

All analyses were carried out using the North American water year (1 October to 30 September) to facilitate latercommunication.

173 **3.3.1 Remapping**

For ease of comparison, model output were re-gridded using a conservative second-order remapping (Jones, 1999)

to place both datasets on the same scale grid and assess anomalies. Data were also calculated as areal averages or

totals over the 2-digit Hydrological Unit Code (HUC2) regions (Seaber et al., 1987). HUC2 basins represent 18

 $\label{eq:covering} 177 \qquad \text{watersheds, covering areas ranging from 41,000 mi}^2 \ (\sim 105,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{Tennessee}) \ \text{to} \ 520,960 \text{mi}^2 \ (1,350,000 \ \text{km}^2; \ \text{to} \$

178 Missouri), shown in Fig. 2. While the scale of HUC2 regions may be large for some local decision-makers, it is

also a more appropriate and conservative scale to compare to ESMs as demonstrated by Lehner et al. (2019).

180 **3.3.2** Percentile-based thresholds

181 The threshold for very heavy rain days (Q95) was calculated at each individual grid cell using only days with ≥ 1

182 mm rain ("wet days"). Thresholds were derived empirically for each model ensemble member, with the ensemble

mean threshold (Q95) used to identify the days per year exceeding the threshold (N95) and total annual rainfallfrom those days (P95).

185 Runoff was aggregated over each HUC2 watershed and multiplied by the respective area to generate total volume

186 per day. Volume per day was then converted to measurements more familiar to users, such as acre feet per day or

187 cubic meters per second. Daily time series of total volumetric runoff had a 7-day running mean smoother applied,

188 then annual maximum, minimum and mean values were extracted. The highest and lowest 7-day average runoff

189 expected once per decade (7Q90, 7Q10) were estimated empirically from the 25 ranked values of of-annual

190 maxima and minima per watershed. Stationarity was assumed over the climatological period for the purposes of

191 these analyses, acknowledging that changes may have already occurred in the frequency of these events.

192 4 Model Evaluation

The metrics used to evaluate CESM2's ability to reproduce large scale features and physical behaviors (e.g., Danabasoglu and Lamarque, 2021 and the associated Special Issue) are not necessarily those employed by decision makers. ESMs are designed to represent large-scale atmospheric processes and fluxes not specific local responses (Gettelman and Rood, 2016), but this design assumption may not be sufficiently well communicated to decision makers. The purpose of our evaluation is to establish whether CESM2 output is also fit for local decision purposes, or if the breadth of information from ESM ensembles remains unsuitable for immediate use in targeted water management decisions.

200 4.1 Rainfall metrics

While broad spatial patterns of seasonal mean daily rainfall are reproduced well (Danabasoglu et al., 2020; Feng et al., 2020; Simpson et al., 2022), CESM2 fails to capture details over high topography, and overestimates summer precipitation where convective extremes dominate summer rainfall (Appendix BC). The seasonal mean precipitation also fails to capture some important watershed-level processes, such as the seasonal variability in the number of days with precipitation and the associated intensity.

206

Estimates of mean annual rainfall on wet days, or wet day volume, are in broad agreement between Livneh and
CESM2 output. Figure 3 shows an example of the mean number of wet days per month (NWD), and mean wet
day volume (WDV) averaged over the <u>Mid AtlantieCalifornia</u> and Pacific Northwest. While CESM2 represents

210 the NWD annual cycle very well in regions such as California (Fig. 3a, 3c) and the Pacific Northwest (Fig. 3b,

3d), it does not capture NWD in many central and snow dominated regions (Fig. S1 and Fig. S2). This is likely

due to the smoother topography of CESM2 missing the influence of orographic uplift, and large spatial scale

213 missing sub-grid scale convective systems (e.g., over the Central Plains). The figures also highlight the scale of

214 model (structural and internal variability) uncertainty present in the ensemble. As noted in previous sections, water

215 management decision-makers are aware of the potential scale of uncertainty and expressed a desire for the full

216 <u>ensemble range to be presented to them instead of ensemble means.</u>

Figure 3: Average number of wet days per month (a, b) and interannual variability in mean annual precipitation on wet days for Livneh climatological mean (red) with interannual spread (pink) and CESM2 mean (bluecyan) with interannual and ensemble spread (gray); and (c,d) between 1981-2010 for observations derived from Livneh (red) and an individual CESM2 ensemble mean-member (blue) and Ensemble spread (gray) in (a,c) Region 18 California (CA); and (b,d) Region 17 Pacific Northwest (PN).

The annual variability in WDV, both year-to-year variations as well as the overall range of minima and maxima, is well captured by each of the model members for the different HUC2 regions, even if the absolute values do not match (Fig. 3 c,d). As expected, the specifics of which years have high or low values of WDV are not the same for each ensemble member (i.e. demonstrating internal variability). As a result, the ensemble mean value of WDV (cyan)(blue) does not reflect the same year-to-year variability as the observations or individual ensemble members (blue). Decision makers expressed that the interannual variability demonstrated by each model member is more valuable to demonstrate the credibility of the data than the ensemble mean (Tye, 2023). We recommend that the full range of values of each metric (i.e. after computation for each ensemble member individually) are communicated in addition to the climatological means to help bound uncertainty around decisions (Wilby et al., 2021).

234

The magnitude of interannual variability in WDV (i.e., the absolute differences between the maximum and minimum values in each member time series) is typically within 10% of observations in all regions as illustrated for two regions in Fig. 3. Exceptions are the Lower Colorado, South Atlantic-Gulf and Upper Mississippi where the simulated distributions are too narrow. Many different sources of error may contribute to this discrepancy, such as the inability to resolve convective precipitation (Chen et al., 2021) in addition to elevation changes not captured by the coarse model resolution, or the "drizzle effect" that is common in GCMs (Chen et al., 1996; Dai, 2006).

242

243 CESM2 captures the longest spells of consecutive dry days per year (CDD; Fig. 4a) and consecutive wet days per year (CWD; Fig. 4b), and their variability. Many regions capture both the interannual variability and the 244 245 climatological mean duration of CWD, particularly those regions that are subject to large-scale synoptic systems 246 (e.g., Pacific Northwest, Mid Atlantic-Gulf, California). Several regions either overestimate (South Atlantic-Gulf) 247 or underestimate (Great Lakes, Souris-Red-Rainy) the absolute durations of the longest wet spells, but do reflect the magnitude of interannual variability. The exception is Tennessee, where both interannual variability and mean 248 249 CWD are overestimated. At the grid scale, broad spatial patterns of CWD are correct but the finer atmospheric processes arising from topographic features are incorrect, as expected from the coarse model resolution. A similar 250 251 pattern is present in CDD, except that some drier regions with CDD >30 days do not capture the full range of 252 interannual variability (Souris-Red Rainy, Missouri, Rio Grande). As GCMs have a tendency to produce drizzle, 253 adjusting for a higher wet day threshold (e.g., 2 mm) might improve dry spell representation in those regions. It is also important to communicate such model sensitivities to users more effectively. 254

255

Figure 4: a) Longest duration per year of consecutive days <1 mm rain (longest dry spell) for Livneh over all years
 (green) and CESM2 ensemble range over all years (blue) for all HUC2 regions; and b) Longest duration per year of
 consecutive days with ≥1 mm rain (longest wet spell). Regional Acronyms defined in Fig. 2.

259 The thresholds for heavy and very heavy rain days (P95, P99) are defined with respect to the wet days, and 260 calculated individually and compared for Livneh and CESM2 both to understand whether the intensity of more 261 extreme rainfall is captured, and to evaluate model behavior. A comparison of the thresholds reflects the 262 considerable improvements in modeling capabilities in recent years (Gettelman et al., 2022). For instance, earlier versions of CESM underestimated extreme precipitation intensity by 10-30 mm/day east of the Rockies, and 263 264 overestimated intensity by 5-10 mm/day to the west (Gervais et al., 2014). We found CESM2 still underestimates 265 the most extreme rainfall, but that errors have approximately halved. As these differences are still inadequate for many engineering and major infrastructure decisions (Wright et al., 2019), we focus on CESM2's ability to capture 266 267 the relative contributions of P95 and P99 to the annual total and the interannual variability in their frequency. A 268 result with considerable useability is the proportion of annual total precipitation derived from the heaviest rain 269 days, or "Proportional Contribution of Extreme Days" (P95Tot). This proportion and its interannual variability is well represented by CESM2 at the HUC2 scale and has shown to be skillful in other models (Tebaldi et al., 2021). 270

271

The interannual variability in the frequency (N95) and intensity of extreme rainfall, as represented by P95Tot, are illustrated in Fig. 5 and 6. In several HUC2 regions the simulations report more frequent events, and proportionally higher totals (e.g., <u>Great Lakes</u>, Rio-Grande, Missouri, Upper Colorado and Lower Colorado; Fig. S3). Overall,

275 there is good subjective agreement between Livneh and CESM2, identifying an opportunity to inform local

276 decisions from large scale ESMs.

Figure 5: a, c, e, g) Number of very heavy rain days per year; and b, d, f, h) total rain from very heavy rain days as a
proportion of the annual total for a, b) Tennessee (TN); c,d) Great Lakes (GL); e,f) Souris-Red-Rainy (RR); and g,h)
California (CA) HUC2 regions. Observations in red; CESM2 ensemble spread in gray, single randomly selected
ensemble member in blue.

282 283

Figure 6: Box plots of the interannual range of contributions to annual total rainfall from very heavy days (P95Tot)
shown as percentages for: Observations (light blue), and ensemble range for CESM2 (green) for all HUC2 regions.
Boxes are bound by the interquartile range, black lines indicate the median, notches indicate the degree of spread from
the median and bars extend to the full data range.

287 4.2 Runoff metrics

288 Runoff estimates are taken from the individual components of surface and subsurface runoff generated within

289 CLM5 (Lawrence et al., 2019) and compared to the Livneh forced VIC runoff ("Livneh-VIC").290

Assessing the skill of runoff in large-scale models is complicated by many factors, including the mismatch of scales between in-channel flow (\sim 1-10² m) and the grid scale (\sim 10⁵ m). Thus, metrics of climate model runoff should be selected carefully and the runoff should be aggregated or combined with other metrics, rather than used directly (Lehner et al., 2019). Appendix C-D demonstrates the discrepancies between the grid-scale representation of runoff from Livneh-VIC and CESM2. The large discrepancies arise from different processes that are not captured adequately, such as groundwater, topography, and associated snow ablation and melt, in addition to meteorological biases.

However, water management decisions are made over watersheds in units such as acre-feet¹ or cubic meters, while model data are output as a depth of runoff over each grid cell (e.g., mm/day per km²). We aggregated the 7-day running mean daily runoff (Q7) within each HUC2 region to generate Q7 time series in each basin. Fig. 7a illustrates the 25-year mean seasonal cycle for Livneh-VIC in red and CESM2 in blue, and the full range of values over all years and ensemble members for the Souris-Red-Rainy basin (HUC Region 9), additional basins are included in Fig. S4. Data are presented in millions of acre feet, to align with decision maker needs. The minimum simulated Q7 in any year considerably underestimates the lowest flows in this region compared to Livneh-VIC.

¹ 1 Acre-foot is the volume of water it would take to cover 1 acre of land to a depth of 1 foot. Equal to 325,852 gallons or 1,233 m³ (USGS Water Science).

306 In contrast, the largest total runoff volume is overestimated and peaks too early in the water year. Figure 7b plots 307 the same information as the cumulative runoff volume from the start of the water year, highlighting that the lowest 308 runoff volume is underestimated by a factor of ten for this region, other regions are illustrated in Fig. S5. Low 309 runoff volumes were typically underestimated in smaller regions (e.g., NE, TN). High runoff volumes were only underestimated in three regions (LM, ARK, GUL) and considerably overestimated in seven regions. Snow-310 311 dominated regions perform particularly poorly for both QMax and QMin as snowpack and the timing of associated 312 runoff are not well simulated. Transitional regions that straddle both snow- and rain-dominated hydrology also 313 fail to capture QMax, but better estimate Qmin (not shown). Only the South Atlantic region reproduces both 314 QMax and QMin.

315

Figure 7: Interannual variability in runoff in Souris Red Rainy Region for a) the mean seasonal cycle; and b) the cumulative watershed runoff over the water year. Livneh-VIC climatological mean in red, range of all years in pink; CESM2 ensemble mean in blue and ensemble range in gray. Figure highlights the underestimation of the lowest runoff volume by CESM2 by a factor of ten.

320

We explored the relationship between the highest and total annual runoff (QMax/QTot), and lowest and total annual runoff (QMin/QTot). Some regions performed well for QMax/QTot, others performed better for QMin/QTot but there was no consistent relationship that could be utilized by decision makers.

324

Participants at the <u>NSF</u> NCAR workshop (Tye, 2023) emphasized that the exact numbers produced by climate models are not very important for future decisions. Others have also emphasized the importance of well-

327 represented processes in the model (Reed et al., 2022) and correlations with known experiences (Mach et al.,

328 2020; Shepherd et al., 2018). FocussingFocusing on fidelity to the historical climate exaggerates the importance

329 of model performance instead of robustness to different conditions without ensuring that model predictions are

useful or reliable (Brunner et al., 2021; Wagener et al., 2022). Runoff estimates in transitional catchments may be
inadequate in the current climate but plausible in the future, if the model reproduces rain-dominated hydrological
processes (McMillan, 2021).

333

Climatological mean runoff cycles are estimated from Pardé coefficients - calculated as Q7/QTot on each 334 335 calendar day — a dimensionless value that enables comparison across regions. Figure 8 depicts the mean seasonal cycle for representative snow-dominated (Upper Colorado), transitional (Missouri) and rain-dominated 336 (Tennessee) regions, demonstrating how an imperfect representation of snow in the Upper Colorado results in 337 338 CESM2 peak runoff occurring two months earlier than Livneh-VIC (Fig. 8a). The runoff regimes display very different seasonal characteristics, with CESM2 having a "mid late spring" runoff regime rather than Livneh-VIC's 339 340 "extreme early summer" regime (Fig. 8a; Haines et al., 1988). Peak runoff is also too early in transitional regions, but closer to Livneh-VIC than in snow-dominated regions (Fig. 8b). Rain-dominated regions capture both the 341 342 timing of QMax and overall seasonal hydrograph shape (Fig. 8c).

Figure 8 : Seasonal patterns of runoff for HUC2 regions a) Upper Colorado (UC); b) Tennessee (TN); and c) Missouri (MR). Constructed from normalized series of the ratio of 7-day mean runoff to the mean annual total. Livneh-VIC runoff climatological mean (red), climatological range (pink), CESM2 ensemble mean (blue) and ensemble range (gray with dashed border). Vertical lines indicate the mean date of peak runoff with number of days since the start of the water year.

349 7Q10 and 7Q90 are estimated empirically from annual minima and maxima as occurring once per decade.

350 Projected changes in the frequency of very low or very high runoff volumes are deemed credible where CESM2

351 replicates the standard deviation of annual minima and maxima according to a χ^2 test at the 5% significance level.

352 Table 1 reports CESM2 and Livneh-VIC regional estimates of 7Q10 and 7Q90 and standard deviations of the

353 annual maxima and minima; values in bold indicate where estimates are statistically similar. It should be noted

that the values in Table 1 have $\leq 10\%$ of occurring in any year, and so represent the tails of the runoff distribution.

356	Table 1 : Very low (7Q10) and very high (7Q90) regional runoff, and standard deviation in regional annual minima (σ
357	QMin) and annual maxima (σ QMax) for Livneh and CESM2. Values in bold indicate where CESM2 and Livneh-VIC

358 regional runoff are statistically similar according to a χ^2 test.

			Livne	h-VIC			CES	5M2	
Reg	gion	7Q10	7Q90	σ QMin	σ QMax	7Q10	7Q90	σ QMin	σ QMax
NE	1	4.1	132.4	1.3	25.5	8.6	215.1	4.7	39.9
MA	2	6.9	103.5	2.5	25.7	7.4	220.7	3.6	47.9
SA	3	21.1	240.4	8.4	50.7	20.5	258.6	11.9	45.8
GL	4	6.9	122.5	2.2	23.8	7.8	331.0	4.3	58.0
ОН	5	7.8	187.6	2.3	53.0	9.4	260.9	4.5	56.4
TN	6	2.1	90.5	0.8	23.1	0	98.7	0.3	21.7
UM	7	2.1	78.2	1.7	16.9	7.9	122.3	4.7	31.5
LM	8	3.9	212.2	1.1	36.1	8.0	81.0	5.1	14.7
RR	9	1.0	24.3	0.5	7.1	0	33.0	0.1	8.4
MR	10	2.3	103.0	1.6	28.1	5.2	147.4	4.2	30.4
ARK	11	2.2	130.5	0.7	36.2	3.2	93.9	4.5	18.1
GUL	12	1.5	99.1	0.5	35.5	1.3	70.7	2.8	16.7
RIO	13	0.5	22.5	0.2	5.8	0.4	29.5	1.3	7.3
UC	14	0.6	27.3	0.2	7.2	0	74.7	0.2	15.3
LCO	15	0.5	19.4	0.2	7.5	0.3	46.7	0.7	11.6
GB	16	0.7	33.3	0.3	10.3	1.8	71.5	1.3	21.1
PN	17	20.6	266.5	7.9	50.2	4.4	449.6	2.6	87.3
CA	18	1.6	323.2	0.4	101.9	1.3	233.4	1.1	61.3

359

Grid-scale estimates such as mean daily runoff readily highlight why decision makers have low confidence in CESM2 output: the metrics are not salient and appear to have no skill. After aggregating the 7-day mean daily runoff to watershed scales, some skill emerges in the annual minima and maxima, and seasonal cycles. Snowdominated watersheds perform poorly with regard to peak runoff volume and timing of the peaks and lows, as expected (McCrary et al., 2022). Rain-dominated watersheds capture the inter-annual variability and magnitudes of peak and low flows, and the seasonal hydrographs. While CESM2 at this coarse scale does not represent the local topography and cannot represent finer scale snow, our analysis indicates the land surface model correctly

367 simulates the overall bulk water budget for most watersheds as illustrated in Figures 7 and 8. However, the tail 368 behavior of highest and lowest total watershed runoff is only captured by a few basins and so caution needs to be 369 exercised in the interpretation and use of model results, as biases may propagate into the future. This is premised 370 on the understanding of *why* the model can produce accurate results, and whether the accuracy can be reliably 371 reproduced for the future climate (Wagener et al., 2022).

372

While participants at the <u>NSF_NCAR</u> workshop stated that precise estimates are not necessary, they also emphasized their desire for high confidence in the projected scale and direction of any changes. We note that "confidence" is derived from a combination of 1) credible process representation; 2) agreement with historical trends, given internal variability; 3) agreement across multiple models. It is worth noting that trends in extremes may be important without being statistically significant, as a limited sample of points (e.g. one per year) from a stochastic series is inherently noisy. However, some of these trends may emerge from the noise in the distribution and so are important to monitor.

380

381 CESM2-LENS projections could helpfully augment RCM output in rain-dominated regions such as Tennessee, 382 Ohio, and California, where CESM2 most closely reproduces Livneh-VIC, by providing supplementary 383 information on the relative uncertainty in the models. This is also true for transitional basins such as the Rio 384 Grande, Northeast, and Lower Colorado, where seasonal snowpack may become more ephemeral and change the 385 seasonal hydrological responses.

386 6 Discussion

387 As decision makers have become more immersed in developing water resource management adaptation plans, the 388 role of "climate services" in developing salient climate information has increased (Briley et al., 2020; Brugger et al., 2016; Dilling et al., 2019). We tested our hypothesis that recent improvements in ESMs can allow decision-389 390 relevant metrics to be produced directly, by leveraging the combined experience of the author team, results from the NCAR workshop, and the wealth of literature on actionable knowledge (Bremer et al., 2020; Jagannathan et 391 al., 2021; Mach et al., 2020; Vano et al., 2014). Given that no model can perfectly address all decision needs, we 392 393 identified and evaluated multiple metrics that can frame specific water management decisions within the known 394 constraints of the data (Lempert, 2021), or within the decision makers' experiences (Austin, 2023; Clifford et al., 395 2020; Reed et al., 2022; Shepherd et al., 2018).

396

397 It is important to communicate the original purpose of the model and associated weaknesses, so that decision 398 makers fully understand which information is appropriate to use in other applications (Fisher and Koven, 2020; 399 Gettelman and Rood, 2016; Wagener et al., 2022). Given the balance between model fidelity and model 400 complexity (Clark et al., 2015) and the absence of detailed global scale observation data (e.g., Gleason and Smith, 401 2014; Reba et al., 2011) CESM2 provides a plausible representation of Earth system processes and moisture fluxes, but may not capture basin-scale specifics (Ek, 2018; Lehner et al., 2019). That said, there are continued 402 403 efforts to improve the simulation of land surface processes and analyses such as those presented in this article can 404 flag weaknesses for future improvement (Lawrence et al., 2019).

406 Establishing model fidelity also requires distinguishing an accurate representation of the climate processes from 407 serendipitous correlation with observations. Whether the model has good process representation overall, or exactitude in one simulation can be established through internal variability analyses using large ensembles (e.g., 408 Deser et al., 2020; Tebaldi et al., 2021). Repeating the analyses with several different ESMs to establish the degree 409 of agreement (Mankin et al., 2020) would further strengthen the usability of metrics presented in this article. It is 410 411 also worth noting that the analysis presented here only used one reference dataset. As different reanalysis and 412 observational datasets can have large discrepancies, a thorough model evaluation would also benefit from 413 comparison to several products (Kim et al., 2020; Newman et al., 2015), including an assessment of how removing 414 temporal adjustments in observations affects the statistics of extremes (Pierce et al., 2021).

415

416 While the precise details of precipitation and runoff may not be well simulated by CESM2, we found some aspects

417 are credible. The frequency of wet days highlighted regions where current seasonal behavior is well captured, and

418 may support planning around flood and drought control or wildfire risk when used in combination with other

419 models or data sources (Austin, 2023; Clifford et al., 2020; Jagannathan et al., 2021; Reclamation, 2016).

420 7 Conclusions

421 This paper presented an assessment of whether a standard resolution (~ 100 km grid) Earth system model is capable 422 of producing information that water users typically employ in their decisions. Our motivation was to explore 423 whether it is possible to reduce the need for intermediate downscaling, and to broaden the use of large model 424 ensembles to quantify the influence of internal variability on localized decisions. We drew on the combined 425 experience of the project team and workshop participants to identify potential metrics and familiar modes of 426 visualization. This project used only CESM2 over the conterminous United States to develop example metrics 427 that may be explored within other models and over other regions. CESM2 is unable to reproduce some metrics given the lack of topographical detail. A companion paper by Rugg et al. (2023) examines potential improvements 428 429 to the subgrid-scale simulation of land processes to improve the representation of the hydrological cycle in 430 mountainous regions.

431

432 We encourage others working in the decision space between climate data producers and users to be forthcoming 433 about specific regions and reasons where model data are not credible, or where the model has particular 434 weaknesses (such as the drizzle effect) that may be overcome with a different analysis approach.

For future model assessors, the following metrics were found to be salient for water users and were skillfully reproduced in many regions.

437

439

440

- 438 Rainfall:
 - Number of wet days (≥ 1 mm of rain) per year/season
 - Mean precipitation on wet days
 - Duration of the longest wet and dry spells per year

442 Number of days with rain > 95th percentile of current climate wet day totals 443 Proportion of the annual total derived from days > 95th percentile of wet day totals 444 445 Runoff (aggregated up to basin level, as a volume for 3- and 7-day averages): 446 Annual maxima and minima 447 Frequency of very high or very low flows (< 10% annual chance of occurring in the current climate) Proportion of averaged daily runoff to annual total 448 449 450 The work presented in this paper is a small step toward establishing greater usability of climate model output by 451 decision makers. The present evaluation is also only the first step in evaluating ESM performance. Additional 452 research is needed to support water managers placing these results and their uncertainty in the context of additional 453 observational data (such as remote sensing) that may already be available to them. Continued collaboration is essential to improve the transfer of knowledge (e.g., data requirements, model assumptions, decision constraints) 454 between communities. 455 456 457 Appendix A

457 Appendix 458

459Table A1: Hydro-meteorological responses used in water management decisions, and the specific metrics that have460potential for representation in ESMs. Metrics in bold are presented in this article.

Hydro- meteorological Responses	Typical Water Management Decision	Metric	Description
Annual rainfall	Water supply and drought monitoring	Total Precipitation (PRCPTOT)	Total annual precipitation measured as rainfall or snow water equivalent
Seasonal rainfall cycle	Seasonal water supply, reservoir operations management	Number of Wet Days (NWD), Mean Wet Day Volume (WDV)	Frequency of days with ≥1mm precipitation (NWD) per month, season or year, Mean precipitation on wet days calculated from PRCPTOT/NWD
Rainfall extreme	Flood and stormwater management	95th percentile (Q95) Number of very heavy rain days (N95) Very heavy rain volume (P95) Proportional contribution of very heavy rain (P95tot)	Rainfall percentile threshold that is exceeded by 5% rain events per year on average, and calculated from wet days only Frequency of days with rainfall exceeding Q95 Total rain falling on days exceeding Q95 Proportional of annual total derived from very heavy rain, calculated as P95/PRCPTOT

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: 10 pt, Bold

Formatted: Font: 10 pt, Bold

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: 10 pt, Bold

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: 10 pt, Bold

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: 10 pt, Bold

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: (Default) Times New Roman, 10 pt, Bold

Formatted: Font: 10 pt, Bold

Formatted: Font: 10 pt, Bold

Hydro- meteorological Responses	Typical Water Management Decision	Metric	Description	Formatted: Font: (Default) Times New Roman, 10 pt, Bold
	Water supply planning and drought	Consecutive dry days	Maximum duration of spell with consecutive days	Formatted: Font: (Default) Times New Roman, 10 pt, Bold
Rainfall extreme (dry)	monitoring/planning including water rights and restrictions.	(CDD)	measuring < 1 mm precipitation	Formatted: Font: 10 pt, Bold
Rainfall extreme	Stormwater management, water	Consecutive wet days	Maximum duration of spell with consecutive days	Formatted: Font: 10 pt, Bold Formatted: Font: (Default) Times New
(wet)	supply planning	(CWD)	measuring≥1 mm precipitation	Roman, 10 pt, Bold Formatted: Font:
	Reservoir management and flood control, water quality management	Annual maximum runoff	Annual maximum daily volume of basin-wide	(Default) Times New Roman, 10 pt, Bold Formatted: Font: 10
High streamflow	and water supply management, including use of supplemental water supplies	(QMax) Description (JMaxF) Description (HFD)	runoff Julian day of QMax/ day of the water year Duration of high flows	pt, Bold Formatted: Font: (Default) Times New Roman, 10 pt, Bold
	Water supply management,	Annual minimum runoff	Annual minimum daily volume of basin-wide	Formatted: Font: (Default) Times New Roman, 10 pt, Bold
Low streamflow	assessment of water shortages with respect	(QMin) Description (JMinF) Description (LFD)	runoff Julian day of QMin/ day of the water year	Formatted: Font: 10 pt, Bold
	to seasonal demands		Duration of low flows Daily volume of basin-	(Formatted: Font: (Default) Times New Roman, 10 pt, Bold
Streamflow	Water supply planning, water quality management, reservoir operations	7-day mean runoff (Q7)	wide runoff averaged over 7 days. Often presented as percentage of annual total	Formatted: Font: (Default) Times New Roman, 10 pt, Bold
	management, planning future investment needs		volume of runoff or Pardé coefficient (Pardé, 1933)	Formatted: Font: 10 pt, Bold
	Water quality management for		7-day averaged basin-wide	Formatted: Font: 10 pt, Bold Formatted: Font:
Very low streamflow	discharge permits, conservation management, drought	7-day "10-year" low runoff (7Q10)-	lowest volume of runoff with <10% annual probability of occurring.	(Default) Times New Roman, 10 pt, Bold
	planning		Estimated from Qmin series.	Formatted: Font: (Default) Times New Roman, 10 pt, Bold
Very high flow	Flood management and planning, reservoir	7-day "10-year" high	7-day averaged basin-wide highest volume of runoff with <10% annual	Formatted [Formatted [
	operations	runoff (7Q90) <u></u>	probability of occurring. Estimated from Qmax series.	Formatted[: Formatted[:
Streamflow	Water supply planning, reservoir operations management	Central Tendency (CT) Description (Q25, Q50, Q75)	Day of the water year when the cumulative annual runoff exceeds 50% of the total annual runoff Annual quartiles of cumulative annual runoff	Formatted
				Formatted ([9] Formatted ([10]

Hydro- meteorological Responses	Typical Water Management Decision	Metric	Description
			estimated from daily streamflow.
Snowpack	Reservoir operations and flood management, water supply planning	Snow Water Equivalent (SWE) Maximum (SWEMax) SWEMax Date SWE Duration	Volume of peak snow water equivalent Day of the water year when peak SWE occurs Total length of snow accumulation and ablation
Snowmelt	Flood management and reservoir operations	Snowmelt onset	Day of water year of snowmelt onset

462 Appendix B

- 463 Schematic of the Community Earth System Model version 2 (CESM2) model components, reproduced from
- 464 Danabasoglu et al. (2020) Figure 1.

467 Appendix C

468Seasonal Mean Precipitation for Winter (top row), Spring (row 2), Summer (row 3) and Fall (bottom row) as shown in469Livneh (left column) and CESM2 (middle column), and difference CESM2-Livneh (right column)

472 Appendix D

ð.

474 475 476 -50 -75

477 Data availability

All data generated for this study (e.g., CESM2 and Livneh-VIC calculated indices) along with Jupyter notebooks
 to recreate tables and figures are available in the repository https://github.com/maritye/PSIF water avail

480 Author Contribution

Conceptualization, M.T., J.R., E.G., A.N., A.W. and R.M.; Methodology, M.T., J.R., E.G.; Investigation, M.G.,
M.T.; Data Curation, M.G., M.T.; Writing - original draft, M.T., A.R., and R.M.; Writing – reviewing and editing,
M.T., J.R., E.G., A.N., A.W., R.M., A.R., F.L., C.B., and S.H.; Visualization, C.B., M.G. and M.T.; Supervision,
J.R., E.G., A.N., F.L. and A.W.; Funding Acquisition, J.R., E.G., A.N., A.W., F.L., C.B., S.H. and M.T.; Project
Administration J.R.

486 **Competing Interests**

487 The authors declare that they have no conflict of interest.

488 Acknowledgements

- 489 This material is based upon work supported by the National Center for Atmospheric Research (NCAR), which is
- 490 a major facility sponsored by the National Science Foundation (NSF) under Cooperative Agreement No. 1852977.
- 491 Computing resources were provided by the Climate Simulation Laboratory at NCAR's Computational and
- 492 Information Systems Laboratory (CISL). The CESM project is supported primarily by NSF. We thank all the
- 493 scientists, software engineers, and administrators who contributed to the development of CESM2. For the CESM2
- 494 Large Ensemble output we thank the CESM2 Large Ensemble Community Project and the supercomputing
- 495 resources provided by the IBS Center for Climate Physics in South Korea. This research was primarily supported
- 496 by the UCAR President's Strategic Initiative Fund. Portions of this study were supported by the Regional and
- 497 Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the
- 498 U.S. Department of Energy's Office of Biological & Environmental Research (BER) under Award Number DE-
- 499 SC0022070.

500 References

- 501 ASCE: Standard Guidelines for the Design of Urban Stormwater Systems, Standard Guidelines for Installation of
- Urban Stormwater Systems, and Standard Guidelines for the Operation and Maintenance of Urban Stormwater
 Systems, 45th ed., American Society of Civil Engineers, Reston, VA, <u>https://doi.org/10.1061/9780784408063</u>,
- 2006.
 Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Knutson, C., Smith, K. H., Wall,
- 506 N., Fuchs, B., Crossman, N. D., and Overton, I. C.: Drought indicators revisited: the need for a wider consideration
- 507 of environment and society, WIREs Water, 3, 516–536, <u>https://doi.org/10.1002/wat2.1154</u>, 2016.
- 508 Brekke, L. D.: Addressing Climate Change in Long-Term Water Resources Planning and Management: User
- 509 Needs for Improving Tools and Information, Bureau of Reclamation, Technical Service Center, Denver, 2011.

- 510 Brekke, L. D., Kiang, J. E., Olsen, J. R., Pulwarty, R. S., Raff, D. A., Turnipseed, D. P., Webb, R. S., and White,
- 511 K. D.: Climate change and water resources management—A federal perspective, U.S. Geological Survey, 2009.
- 512 Bremer, L. L., Hamel, P., Ponette-González, A. G., Pompeu, P. V., Saad, S. I., and Brauman, K. A.: Who Are we
- Measuring and Modeling for? Supporting Multilevel Decision-Making in Watershed Management, Water
 Resources Research, 56, <u>https://doi.org/10.1029/2019WR026011</u>, 2020.
- 515 Briley, L., Kelly, R., Blackmer, E. D., Troncoso, A. V., Rood, R. B., Andresen, J., and Lemos, M. C.: Increasing
- 516 the Usability of Climate Models through the Use of Consumer-Report-Style Resources for Decision-Making,
- 517 Bulletin of the American Meteorological Society, 101, E1709-E1717, https://doi.org/10.1175/BAMS-D-19-
- 518 <u>0099.1</u>, 2020.
- 519 Brugger, J., Meadow, A., and Horangic, A.: Lessons from First-Generation Climate Science Integrators, Bulletin
- 520 of the American Meteorological Society, 97, 355–365, <u>https://doi.org/10.1175/BAMS-D-14-00289.1</u>, 2016.
- 521 Brunner, M. I., Slater, L., Tallaksen, L. M., and Clark, M.: Challenges in modeling and predicting floods and
- 522 droughts: A review, WIREs Water, 8, <u>https://doi.org/10.1002/wat2.1520</u>, 2021.
- 523 Cantor, A., Kiparsky, M., Kennedy, R., Hubbard, S., Bales, R., Pecharroman, L. C., Guivetchi, K., McCready, C.,
- 524 and Darling, G.: Data for Water Decision Making: Informing the Implementation of California's Open and
- 525 Transparent Water Data Act through Research and Engagement, Wheeler Water Institute, Center for Law, Energy
- 526 & the Environment, UC Berkeley School of Law, Berkeley, CA., 2018.
- 527 Chen, D., Dai, A., and Hall, A.: The Convective-To-Total Precipitation Ratio and the "Drizzling" Bias in Climate
- 528 Models, JGR Atmospheres, 126, e2020JD034198, https://doi.org/10.1029/2020JD034198, 2021.
- 529 Chen, M., Dickinson, R. E., Zeng, X., and Hahmann., A. N.: Comparison of Precipitation Observed over the
- 530 Continental United States to That Simulated by a Climate Model, Journal of Climate, 9, ,9, 2233–49,
 531 https://doi.org/10.1175/1520-0442(1996)009<2233:COPOOT>2.0.CO;2, 1996
- 532 Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P., Kumar, M., Leung,
- L. R., Mackay, D. S., Maxwell, R. M., Shen, C., Swenson, S. C., and Zeng, X.: Improving the representation of hydrologic processes in Earth System Models, Water Resour. Res., 51, 5929–5956,
- 534
 hydrologic
 processes
 in
 Earth
 System
 Models,
 Water
 Resour.
 Res.,
 51,
 5929–5956,

 535
 https://doi.org/10.1002/2015WR017096, 2015.
- Clifford, K. R., Travis, W. R., and Nordgren, L. T.: A climate knowledges approach to climate services, Climate
 Services, 18, 100155, <u>https://doi.org/10.1016/j.cliser.2020.100155</u>, 2020.
- 538 Dai, A.: Precipitation Characteristics in Eighteen Coupled Climate Models, Journal of Climate, 19, 18, 4605–30,
- 539 https://doi.org/10.1175/JCLI3884.1, 2006
- Danabasoglu, G. and Lamarque, J.-F.: Building a Better Model to View Earth's Interacting Processes, Eos, 102,
 https://doi.org/10.1029/2021E0155818, 2021.
- 542 Danabasoglu, G., Lamarque, J. -F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K.,
- 543 Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D.
- 544 M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B.,
- 545 Phillips, A. S., Sacks, W., Tilmes, S., Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer,
- 546 C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore,
- 547 J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version
- 548 2 (CESM2), J. Adv. Model. Earth Syst., 12, <u>https://doi.org/10.1029/2019MS001916</u>, 2020.

- 549 Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the role of natural variability in future North American climate, Nature Clim Change, 2, 775-779, https://doi.org/10.1038/nclimate1562, 2012.
- 550
- 551 Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C., Fyfe,
- J. C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S., 552 Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from Earth system model initial-condition 553
- 554 large ensembles and future prospects, Nat. Clim. Chang., 10, 277-286, https://doi.org/10.1038/s41558-020-0731-
- 555 **2**, 2020.
- 556 Dilling, L., Daly, M. E., Kenney, D. A., Klein, R., Miller, K., Ray, A. J., Travis, W. R., and Wilhelmi, O.: Drought

in urban water systems: Learning lessons for climate adaptive capacity, Climate Risk Management, 23, 32-42, 557 558 https://doi.org/10.1016/j.crm.2018.11.001, 2019.

- 559 Donat, M. G., Angélil, O., and Ukkola, A. M.: Intensification of precipitation extremes in the world's humid and water-limited regions, Environ. Res. Lett., 14, 065003, https://doi.org/10.1088/1748-9326/ab1c8e, 2019. 560
- Ek, M. B.: Land Surface Hydrological Models, in: Handbook of Hydrometeorological Ensemble Forecasting, 561
- 562 edited by: Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H. L., and Schaake, J. C., Springer Berlin
- 563 Heidelberg, Berlin, Heidelberg, 1-42, https://doi.org/10.1007/978-3-642-40457-3 24-1, 2018.
- Ekström, M., Gutmann, E. D., Wilby, R. L., Tye, M. R., and Kirono, D. G. C.: Robustness of hydroclimate metrics 564
- for climate change impact research, Wiley Interdisciplinary Reviews: Water, 5, e1288, 565 566 https://doi.org/10.1002/wat2.1288, 2018.
- 567 Feng, R., Otto-Bliesner, B. L., Brady, E. C., and Rosenbloom, N.: Increased Climate Response and Earth System Sensitivity From CCSM4 to CESM2 in Mid-Pliocene Simulations, J. Adv. Model. Earth Syst., 12, 568 https://doi.org/10.1029/2019MS002033, 2020. 569
- 570 Fisher, R. A. and Koven, C. D.: Perspectives on the Future of Land Surface Models and the Challenges of
- 571 Representing Complex Terrestrial Systems, J. Adv. Model. Earth Syst., 12,
- https://doi.org/10.1029/2018MS001453, 2020. 572
- 573 Fowler, H. J., Wasko, C., and Prein, A. F.: Intensification of short-duration rainfall extremes and implications for
- flood risk: current state of the art and future directions, Phil. Trans. R. Soc. A., 379, 20190541, 574 https://doi.org/10.1098/rsta.2019.0541, 2021. 575
- Gervais, M., Gyakum, J. R., Atallah, E., Tremblay, L. B., and Neale, R. B.: How Well Are the Distribution and 576
- 577 Extreme Values of Daily Precipitation over North America Represented in the Community Climate System
- 578 Model? A Comparison to Reanalysis, Satellite, and Gridded Station Data, Journal of Climate, 27, 5219-5239,
- https://doi.org/10.1175/JCLI-D-13-00320.1, 2014. 579
- Gettelman, A. and Rood, R. B.: Usability of Climate Model Projections by Practitioners, in: Demystifying Climate 580
- Models, vol. 2, Springer Berlin Heidelberg, Berlin, Heidelberg, 221-236, https://doi.org/10.1007/978-3-662-581 582 48959-8 12, 2016.
- Gettelman, A., Geer, A. J., Forbes, R. M., Carmichael, G. R., Feingold, G., Posselt, D. J., Stephens, G. L., van 583
- den Heever, S. C., Varble, A. C., and Zuidema, P.: The future of Earth system prediction: Advances in model-584 585 data fusion, Sci Adv, 8, eabn3488, https://doi.org/10.1126/sciadv.abn3488, 2022.
- Haines, A. T., Finlayson, B. L., and McMahon, T. A.: A global classification of river regimes, Applied Geography, 586
- 587 8, 255-272, https://doi.org/10.1016/0143-6228(88)90035-5, 1988.

- 588 IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the
- 589 Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts,
- 590 D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller,
- 591 V., Okem, A., and Rama, B., Cambridge University Press, 2022.
- 592 Jagannathan, K., Jones, A. D., and Ray, I.: The Making of a Metric: Co-Producing Decision-Relevant Climate
- 593 Science, Bulletin of the American Meteorological Society, 102, E1579–E1590, https://doi.org/10.1175/BAMS-
- 594 <u>D-19-0296.1</u>, 2021.
- Jeanine Jones: Drought and lessons learned: <u>https://mavensnotebook.com/2023/03/01/jeanine-jones-drought-and-</u>
 <u>lessons-learned/</u>, last access: 2 May 2023.
- 597 Jones, P. W.: First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates,
- 598 Mon. Wea. Rev., 127, 2204–2210, <u>https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2</u>,
 599 1999.
- Kim, Y.-H., Min, S.-K., Zhang, X., Sillmann, J., and Sandstad, M.: Evaluation of the CMIP6 multi-model 600 601 ensemble for climate extreme indices, Weather and Climate Extremes, 29, 100269, 602 https://doi.org/10.1016/j.wace.2020.100269, 2020.
- 603 Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire,
- 604 B., Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks,
- 605 W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., Broeke, M., Brunke,
- 606 M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A.
- 607 M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W.
- 608 H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A.,
- 609 Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The Community Land Model Version 5:
- 610 Description of New Features, Benchmarking, and Impact of Forcing Uncertainty, J. Adv. Model. Earth Syst., 11,
- 611 4245–4287, <u>https://doi.org/10.1029/2018MS001583</u>, 2019.
- 612 Lehner, F., Deser, C., and Terray, L.: Toward a New Estimate of "Time of Emergence" of Anthropogenic
- 613 Warming: Insights from Dynamical Adjustment and a Large Initial-Condition Model Ensemble, Journal of
- 614 Climate, 30, 7739–7756, <u>https://doi.org/10.1175/JCLI-D-16-0792.1</u>, 2017.
- Lehner, F., Wood, A. W., Vano, J. A., Lawrence, D. M., Clark, M. P., and Mankin, J. S.: The potential to reduce
 uncertainty in regional runoff projections from climate models, Nat. Clim. Chang., 9, 926–933,
- 617 <u>https://doi.org/10.1038/s41558-019-0639-x</u>, 2019.
- Lempert, R. J.: Measuring global climate risk, Nat. Clim. Chang., 11, 805–806, <u>https://doi.org/10.1038/s41558-</u>
 021-01165-9, 2021.
- 620 Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land surface
- water and energy fluxes for general circulation models, J. Geophys. Res., 99, 14415,
 https://doi.org/10.1029/94JD00483, 1994.
- 623 Livneh, B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K. M., Maurer, E. P., and Lettenmaier,
- 624 D. P.: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United
- 625 States: Update and Extensions, J. Climate, 26, 9384–9392, https://doi.org/10.1175/JCLI-D-12-00508.1, 2013.

- Lukas, J. and Payton, E.: Colorado River Basin Climate and Hydrology: State of the Science,
 https://doi.org/10.25810/3HCV-W477, 2020.
- 628 Mach, K. J., Lemos, M. C., Meadow, A. M., Wyborn, C., Klenk, N., Arnott, J. C., Ardoin, N. M., Fieseler, C.,
- 629 Moss, R. H., Nichols, L., Stults, M., Vaughan, C., and Wong-Parodi, G.: Actionable knowledge and the art of
- 630 engagement, Current Opinion in Environmental Sustainability, 42, 30–37,
 631 <u>https://doi.org/10.1016/j.cosust.2020.01.002</u>, 2020.
- Mankin, J. S., Lehner, F., Coats, S., and McKinnon, K. A.: The Value of Initial Condition Large Ensembles to
 Robust Adaptation Decision-Making, Earth's Future, 8, <u>https://doi.org/10.1029/2020EF001610</u>, 2020.
- 634 McCrary, R. R., McGinnis, S., and Mearns, L. O.: Evaluation of Snow Water Equivalent in NARCCAP
- Simulations, Including Measures of Observational Uncertainty, Journal of Hydrometeorology, 18, 2425–2452,
 https://doi.org/10.1175/JHM-D-16-0264.1, 2017.
- 637 McCrary, R. R., Mearns, L. O., Hughes, M., Biner, S., and Bukovsky, M. S.: Projections of North American snow
- from NA-CORDEX and their uncertainties, with a focus on model resolution, Climatic Change, 170, 20,
 https://doi.org/10.1007/s10584-021-03294-8, 2022.
- McMillan, H. K.: A review of hydrologic signatures and their applications, WIREs Water, 8, e1499,
 https://doi.org/10.1002/wat2.1499, 2021.
- 642 Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., Dixon, K., Giorgetta, M. A.,
- 643 Greene, A. M., Hawkins, E., Hegerl, G., Karoly, D., Keenlyside, N., Kimoto, M., Kirtman, B., Navarra, A.,
- Pulwarty, R., Smith, D., Stammer, D., and Stockdale, T.: Decadal Prediction, Bulletin of the American
 Meteorological Society, 90, 1467–1485, <u>https://doi.org/10.1175/2009BAMS2778.1</u>, 2009.
- 646 Mizukami, N., Rakovec, O., Newman, A. J., Clark, M. P., Wood, A. W., Gupta, H. V., and Kumar, R.: On the
- choice of calibration metrics for "high-flow" estimation using hydrologic models, Hydrol. Earth Syst. Sci., 23,
 2601–2614, https://doi.org/10.5194/hess-23-2601-2019, 2019.
- 649 Moise, A., Wilson, L., Grose, M., Whetton, P., Watterson, I., Bhend, J., Bathols, J., Hanson, L., Erwin, T., Bedin,
- T., Heady, C., and Rafter, T.: Evaluation of CMIP3 and CMIP5 models over the Australian region to inform
- 651 confidence in projections, AMOJ, 65, 19–53, <u>https://doi.org/10.22499/2.6501.004</u>, 2015.
- 652 Mukherjee, S., Mishra, A., and Trenberth, K. E.: Climate Change and Drought: a Perspective on Drought Indices,
- 653 Curr Clim Change Rep, 4, 145–163, <u>https://doi.org/10.1007/s40641-018-0098-x</u>, 2018.
- 654 Newman, A. J., Clark, M. P., Craig, J., Nijssen, B., Wood, A., Gutmann, E., Mizukami, N., Brekke, L., and Arnold,
- 55 J. R.: Gridded Ensemble Precipitation and Temperature Estimates for the Contiguous United States, Journal of
- 656 Hydrometeorology, 16, 2481–2500, <u>https://doi.org/10.1175/JHM-D-15-0026.1</u>, 2015.
- 657 O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van
- 658 Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
- socioeconomic pathways describing world futures in the 21st century, Global Environmental Change, 42, 169–
 180, <u>https://doi.org/10.1016/j.gloenvcha.2015.01.004</u>, 2017.
- 661 Pacchetti, M. B., Dessai, S., Bradley, S., and Stainforth, D. A.: Assessing the Quality of Regional Climate
- 662 Information, Bulletin of the American Meteorological Society, 102, E476–E491, https://doi.org/10.1175/BAMS-
- 663 <u>D-20-0008.1</u>, 2021.
- 664 Pardé, M.: Fleuves et Rivières, Collection Armand Collin. Section de Géographie (France), Fre No. 155, 1933.

- 665 Phillips, A., Deser, C., Fasullo, J., Schneider, D. P., and Simpson, I. R.: Assessing Climate Variability and Change
- in Model Large Ensembles: A User's Guide to the "Climate Variability Diagnostics Package for Large
 Ensembles," https://doi.org/10.5065/H7C7-F961, 2020.
- 668 Pierce, D. W., Su, L., Cayan, D. R., Risser, M. D., Livneh, B., and Lettenmaier, D. P.: An extreme-preserving
- 669 long-term gridded daily precipitation data set for the conterminous United States, Journal of Hydrometeorology,
- 670 https://doi.org/10.1175/JHM-D-20-0212.1, 2021.
- 671 Raff, D. A., Brekke, L. D., Werner, K. V., Wood, A. W., and White, K. D.: Short-Term Water Management
- Decisions: User Needs for Improved Climate, Weather, and Hydrologic Information, Bureau of Reclamation, U.S.
 Army Corps of Engineers and National Oceanic and Atmospheric Administration, 2013.
- 674 Reba, M. L., Marks, D., Seyfried, M., Winstral, A., Kumar, M., and Flerchinger, G.: A long-term data set for
- 675 hydrologic modeling in a snow-dominated mountain catchment: A 25 YEAR DATA SET FOR HYDROLOGIC
- 676 MODELING, Water Resour. Res., 47, <u>https://doi.org/10.1029/2010WR010030</u>, 2011.
- 677 Reclamation: Technical Guidance for Incorporating Climate Change Information into Water Resources Planning
- 678 Studies, U.S. Department of the Interior. Bureau of Reclamation, Denver, Colorado, 2014.
- 679 Reclamation: SECURE Water Act Section 9503(c) Reclamation Climate Change and Water. Prepared for United
- 680 States Congress., U.S. Department of the Interior. Bureau of Reclamation, Denver, Colorado, 2016.
- 681 Reed, K. A., Goldenson, N., Grotjahn, R., Gutowski, W. J., Jagannathan, K., Jones, A. D., Leung, L. R., McGinnis,
- 682 S. A., Pryor, S. C., Srivastava, A. K., Ullrich, P. A., and Zarzycki, C. M.: Metrics as tools for bridging climate
- science and applications, Wiley Interdisciplinary Reviews: Climate Change, 13, e799, 2022.
- 684 Regional Water Authority: Sacramento Regional Water Bank: A sustainable storage and recovery program, 2019.
- 685 Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink,
- 686 R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S.,
- 687 Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti,
- 688 V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M.,
- 689 Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H.,
- 690 Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land use,
- and greenhouse gas emissions implications: An overview, Global Environmental Change, 42, 153–168,
 https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
- 693 Rodgers, K. B., Lee, S.-S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Edwards, J., Kim, J.-
- 694 E., Simpson, I. R., Stein, K., Stuecker, M. F., Yamaguchi, R., Bódai, T., Chung, E.-S., Huang, L., Kim, W. M.,
- 695 Lamarque, J.-F., Lombardozzi, D. L., Wieder, W. R., and Yeager, S. G.: Ubiquity of human-induced changes in
- 696 climate variability, Earth Syst. Dynam., 12, 1393–1411, <u>https://doi.org/10.5194/esd-12-1393-2021</u>, 2021.
- 697 Rugg, A., Gutmann, E. D., McCrary, R. R., Lehner, F., Newman, A. J., Richter, J. H., Tye, M. R., and Wood, A.
- 698 W.: Mass-Conserving Downscaling of Climate Model Precipitation over Mountainous Terrain for Water Resource
- Applications, Geophysical Research Letters, 50, 20, e2023GL105326. http://dx.doi.org/10.1029/2023GL105326,
 2023.
- 701 Seaber, P. R., Kapinos, F. P., and Knapp, G. L.: Hydrologic Unit Maps, U.S. Geological Survey, 1987.
- 702 Sedláček, J. and Knutti, R.: Half of the world's population experience robust changes in the water cycle for a 2
- 703 °C warmer world, Environ. Res. Lett., 9, 044008, https://doi.org/10.1088/1748-9326/9/4/044008, 2014.

- 704 Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dima-West, I. M., Fowler, H. J., James, R., Maraun, D.,
- 705 Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, B., Trenberth, K. E., Hurk, B. J., Watkin, N. W.,
- 706 Wilby, R. L., and Zenghelis, D. A.: Storylines: An alternative approach to representing uncertainty in physical
- 707 aspects of climate change, Climatic Change, 151, 555–571, <u>https://doi.org/10.1007/s10584-018-2317-9</u>, 2018.
- 708 Simpson, I. R., Lawrence, D. M., Swenson, S. C., Hannay, C., McKinnon, K. A., and Truesdale, J. E.:
- 709 Improvements in Wintertime Surface Temperature Variability in the Community Earth System Model Version 2
- 710 (CESM2) Related to the Representation of Snow Density, J Adv Model Earth Syst, 14,
 711 <u>https://doi.org/10.1029/2021MS002880</u>, 2022.
- 712 Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections, Philosophical
- Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2053–2075,
 <u>https://doi.org/10.1098/rsta.2007.2076</u>, 2007.
- 715 Tebaldi, C., Dorheim, K., Wehner, M., and Leung, R.: Extreme metrics from large ensembles: investigating the
- reffects of ensemble size on their estimates, Earth Syst. Dynam., 12, 1427–1501, https://doi.org/10.5194/esd-12-
- 717 <u>1427-2021</u>, 2021.
- Tye, M.: Water Availability Metrics August 2021 Workshop Report, Open Science Framework,
 https://doi.org/10.17605/OSF.IO/M7NXD, 2023.
- 720 Tye, M. R., Holland, G. J., and Done, J. M.: Rethinking failure: time for closer engineer-scientist collaborations
- on design, Proceedings of the Institution of Civil Engineers Forensic Engineering, 168, 49–57,
 <u>https://doi.org/10.1680/feng.14.00004</u>, 2015.
- Underwood, E. C., Hollander, A. D., Flint, L. E., Flint, A. L., and Safford, H. D.: Climate change impacts on
 hydrological services in southern California, Environ. Res. Lett., 13, 124019, <u>https://doi.org/10.1088/1748-</u>
- 725 <u>9326/aaeb59</u>, 2018.
- 726 Vano, J. A., Udall, B., Cayan, D. R., Overpeck, J. T., Brekke, L. D., Das, T., Hartmann, H. C., Hidalgo, H. G.,
- 727 Hoerling, M., McCabe, G. J., Morino, K., Webb, R. S., Werner, K., and Lettenmaier, D. P.: Understanding
- Uncertainties in Future Colorado River Streamflow, Bulletin of the American Meteorological Society, 95, 59–78,
 <u>https://doi.org/10.1175/BAMS-D-12-00228.1, 2014.</u>
- Wagener, T., Reinecke, R., and Pianosi, F.: On the evaluation of climate change impact models, WIREs Climate
 Change, 13, e772, https://doi.org/10.1002/wcc.772, 2022.
- 732 Wood, R. R., Lehner, F., Pendergrass, A. G., and Schlunegger, S.: Changes in precipitation variability across time
- scales in multiple global climate model large ensembles, Environ. Res. Lett., 16, 084022,
 https://doi.org/10.1088/1748-9326/ac10dd, 2021.
- Wright, D. B., Bosma, C. D., and Lopez-Cantu, T.: U.S. Hydrologic Design Standards Insufficient Due to Large
 Increases in Frequency of Rainfall Extremes, Geophys. Res. Lett., 46, 8144–8153,
- 737 <u>https://doi.org/10.1029/2019GL083235</u>, 2019.
- 738 Yuan, H., Toth, Z., Peña, M., and Kalnay, E.: Overview of Weather and Climate Systems, in: Handbook of
- 739 Hydrometeorological Ensemble Forecasting, edited by: Duan, Q., Pappenberger, F., Wood, A., Cloke, H. L., and
- 740 Schaake, J. C., Springer, Berlin, Heidelberg, 35–65, <u>https://doi.org/10.1007/978-3-642-39925-1_10</u>, 2019.

- 741 Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B., and Zwiers, F. W.:
- 742 Indices for monitoring changes in extremes based on daily temperature and precipitation data, Wiley
- 743 Interdisciplinary Reviews: Climate Change, 2, 851–870, <u>https://doi.org/10.1002/wcc.147</u>, 2011.

Page 21: [1] Formatted	Mari R Tye	9/23/24 2:36:00 PM
Font: 10 pt, Bold		
Page 21: [2] Formatted	Mari R Tye	9/23/24 2:36:00 PM
Font: 10 pt, Bold		
Page 21: [3] Formatted	Mari R Tye	9/23/24 2:36:00 PM
Font: (Default) Times New Roman, 10 p	pt, Bold	
Page 21: [4] Formatted	Mari R Tye	9/23/24 2:36:00 PM
Font: 10 pt, Bold		
Page 21: [5] Formatted	Mari R Tye	9/23/24 2:36:00 PM
Font: (Default) Times New Roman, 10 p	pt, Bold	
Page 21: [6] Formatted	Mari R Tye	9/23/24 2:35:00 PM
Font: (Default) Times New Roman, 10 p	pt, Bold	
Page 21: [7] Formatted	Mari R Tye	9/23/24 2:35:00 PM
Font: 10 pt, Bold		
Page 21: [8] Formatted	Mari R Tye	9/23/24 2:35:00 PM
		9/23/24 2:35:00 PM
Font: (Default) Times New Roman, 10 p		9/23/24 2:35:00 PM 9/23/24 2:35:00 PM
Page 21: [8] Formatted Font: (Default) Times New Roman, 10 p Page 21: [9] Formatted Font: (Default) Times New Roman, 10 p	pt, Bold Mari R Tye	
Font: (Default) Times New Roman, 10 p Page 21: [9] Formatted Font: (Default) Times New Roman, 10 p	pt, Bold Mari R Tye	
Font: (Default) Times New Roman, 10 p Page 21: [9] Formatted	pt, Bold Mari R Tye pt, Bold	9/23/24 2:35:00 PM

I

I

l

I

I

I

I

I

I

l

I