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Abstract 15 

While global hydrological models (GHMs) are affected by large uncertainties regarding model 

structure, forcing and calibration data, and parameters, observations of model output variables 

are rarely used to calibrate the model. Pareto dominance-based multi-objective calibration, often 

referred to as Pareto-Optimal Calibration (POC), may serve to estimate model parameter sets 

and analyse trade-offs among different objectives during calibration. Within a POC framework, 20 

we determined optimal parameter sets for the WaterGAP Global Hydrology Model (WGHM) 

in the two largest basins of the Indian subcontinent—the Ganges and the Brahmaputra, 

collectively supporting nearly 580 million inhabitants. The selected model parameters, 

determined through a multi-variable multi-signature sensitivity analysis, were estimated using 

up to four types of observations: in-situ streamflow (Q), GRACE and GRACE Follow-On total 25 

terrestrial water storage anomalies (TWSA), LandFlux evapotranspiration (ET), and surface 

water storage anomalies (SWSA) derived from multi-satellite observations. While our 

sensitivity analysis assured that the model parameters that are most influential for the four 

variables were identified in a transparent and comprehensive way, the rather large number of 

calibration parameters, 10 for the Ganges and 16 for the Brahmaputra, had a negative impact on 30 

parameter identifiability during the calibration process. Calibration against observed Q resulted 

to be crucial for reasonable streamflow simulations, while additional calibration against TWSA 

was crucial for the Ganges basin and helpful for the Brahmaputra basin to obtain a reasonable 
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simulation of both Q and TTWSA.  Calibrating also against the other two observation types 

enhanced the overall model performance and enabled a more accurate representation of the 35 

water balance.  We identified several trade-offs among the calibration objectives, with the 

nature of these trade-offs closely tied to the physiographic and hydrologic characteristics of the 

study basins.  The trade-offs were particularly pronounced in the Ganges basin, in particular 

between Q and SWSA, as well as between Q and ET. When considering the observational 

uncertainty of the calibration data, model performance decreases in most cases. This indicates 40 

an overfitting to the singular observation time series by the calibration algorithm. We therefore 

propose a transparent algorithm to identify high-performing Pareto solutions under 

consideration of observational uncertainties of the calibration data. Recognizing these 

uncertainties, we anticipate that actual model performance may be lower in roughly 90% of 

cases.  45 

 

1 Introduction 

Global Hydrological Models (GHM), which quantify water fluxes and storage changes on the 

continents, are essential tools for understanding large-scale water dynamics (Grogan et al., 

2022; Gudmundsson et al., 2012), for analysing the impact of humans on freshwater systems 50 

(Huang et al., 2015; Döll and Zhang, 2010), for developing scenarios of the future (Gu et al., 

2022; Zheng et al., 2018; Giuntoli et al., 2015), and for supporting a sustainable water manage-

ment (Ai and Hanasaki, 2023; Banda et al., 2022) in a globalized world. Even more than local 

to regional hydrological models, GHMs suffer from high predictive uncertainties which stem 

from input data and climate forcing uncertainties, incomplete knowledge about hydrological 55 

processes and their imprecise mathematical- description, unknown initial and boundary condi-

tions, and uncertain parameters (Moges et al., 2021). It is state of the art to decrease predictive 

uncertainties of local to regional hydrological models by estimating model parameters through 

model calibration, i.e. by comparing the model output to observations and then identifying 

model parameters that lead to an optimal fit to observations. This is not yet general practice for 60 

global hydrological models (Yoshida et al., 2022).  

There are many practical challenges of parameter calibration for GHMs. First, a GHM 

contains thousands of spatially distributed parameters. For example, the WaterGAP (Water – 

Global Assessment and Prognosis) Global Hydrological Model (WGHM; Müller Schmied et 

al., 2021) has more than 30 parameters for each of its 68,420 0.5° grid cells. Second, 65 

commensurable observations of most hydrological variables are scarce. While streamflow 

observations aggregate over the upstream drainage areas, streamflow records are lacking in 



3 

 

many regions of the Earth. Other observations, such as groundwater recharge, are mostly point 

estimates that are difficult to relate to the behaviour in 0.5° grid cells that cover about 2000 km2 

(depending on the geographic latitude). In addition, observations may suffer from substantial 70 

uncertainties that are challenging to quantify (Di Baldassarre and Montanari, 2009). Third, 

despite the increase in computational power over the last few decades and the availability of 

high-capacity supercomputing facilities, the high runtimes of current GHMs do not allow most 

optimization algorithms to explore the high dimensional decision space (i.e., parameter space) 

in sufficient details, which results in premature termination in most cases before true 75 

convergence could be reached (Cheng et al., 2005). Due to these difficulties, GHMs are rarely 

calibrated at all or are calibrated against streamflow only. In its standard version, WGHM is 

calibrated in a simple manner against mean annual streamflow observed at more than 1300 

gauging stations, by adjusting one to three parameters (Müller Schmied et al., 2021). For most 

GHMs, the estimation of distributed parameters is accomplished by transferring knowledge 80 

from gauged to ungauged basins through parameter regionalization (Beck et al., 2016; 

Hrachowitz et al., 2013). For example, Arheimer et al. (2020) used daily and monthly 

streamflow observations at more than 5000 gauging stations in a stepwise calibration approach 

for the GHM World-Wide HYPE (WWH; HYPE–Hydrological Predictions for the 

Environment), where process-specific parameters for representative catchments of different 85 

physiographic categories were calibrated in each step, and the parameters were transferred to 

similar catchments worldwide. Similarly, Beck et al. (2020) performed global-scale parameter 

regionalization for the hydrological model HVB using streamflow observations of over 4000 

catchments.  

The equifinality thesis proposed by Beven (1993) challenges the notion of a singular 90 

optimal model – whether in terms of structure, input, or parameters – particularly in the presence 

of multifaceted uncertainties. Instead, it suggests that there can be alternative models that 

exhibit comparable predictive capabilities while differing in their specific configurations. The 

equifinality thesis of (Beven, 1993) opposes the assumption of the existence of an optimal 

model regarding model structure, input and parameters in the presence of multifaceted 95 

uncertainties; rather it supports the possibility of having alternative models that are very similar 

in their predictive capacity. The fundamental causes of equifinality of model parameter sets are 

the uncertain model structure and inputs (e.g., climate or soil data) as well as the observations 

(and their errors) that are used to estimate model parameters or evaluate model outputs (Beven, 

2006). It is common knowledge that different “optimal” parameter sets would be obtained from 100 

calibrations against observations of different periods or if a different model evaluation criterion 
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were used, even though the calibration technique remains unchanged (Beven and Binley, 1992; 

Kirchner, 2006).  Given all these uncertainties, a large number of model parameter sets is 

“optimal”; it is expected that the number of “optimal” parameter sets increases with the number 

of parameters that are adjusted. In addition, individual parameters can vary strongly among the 105 

“optimal” parameter sets due to balancing effects among the parameters. For example, in a 

humid basin, a high soil water storage capacity may decrease streamflow while a low value for 

a parameter in the equation for potential evapotranspiration may increase it in a similar way; 

then, the values of each parameter in two equally “optimal” parameter sets can differ strongly, 

and an “optimal” parameter value cannot be identified. Nevertheless, non-identifiability can 110 

also arise when input parameters have little or no impact on the output variable of a model when 

compared to observations (Herrera et al., 2022). It is assumed that the identifiability of model 

parameters is enhanced by 1) adjusting only a small number of parameters, those to which 

model output is most sensitive, and 2) increasing the information content of observations, either 

by taking into account multiple characteristics (signatures) of the same observation time series 115 

or by using observations of more than one model output variable (Bai et al., 2018; Hosseini-

Moghari et al., 2020). Jakeman and Hornberger (1993) demonstrated that conventional rainfall-

runoff data provide sufficient information to constrain a simple hydrological model with a 

maximum of four free parameters. Gupta et al. (1998) recognized that parameter estimation for 

any hydrological model is inherently a multi-objective problem. Observations in addition to 120 

streamflow provide information on the behaviour of specific fluxes or storages and constrain 

parameters better than just streamflow observations.  

The basis of any hydrological model is the water balance equation P = ET + R + ΔTWS. 

That is, the only system input precipitation (P) has to be partitioned into evapotranspiration 

(ET), runoff (R) and terrestrial water storage change (ΔTWS) during a specific period. Clearly, 125 

the prediction accuracy of such a model may be significantly improved if the model could be 

constrained using observations of all three response variables of the water balance equation. 

Historically, the streamflow observations alone, i.e., aggregated and routed R from the upstream 

catchment area, have been used in most model calibration experiments. In the context of multi-

objective calibration, Efstratiadis and Koutsoyiannis (2010) recommended a 1:5 or 1:6 ratio 130 

between the number of objectives and the number of calibration parameters to optimize 

parameter identifiability and to facilitate the search algorithm to find a robust solution of the 

given optimization problem. Developing criteria based on different features of the same 

observations could potentially increase the ratio of objectives to the number of parameters. 

However, this approach is not favoured, as the overall information content within any 135 
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observation dataset is inherently limited.  Thus, observations of multiple model output variables 

become essential to successful calibration (e.g., Denager et al., 2023). Advances in remote 

sensing technologies and the related generation of data products provide more large-scale 

information that often is the only source of observation for many data-scarce regions of the 

world. The Gravity Recovery and Climate Experiment (GRACE) mission and its successor 140 

GRACE Follow-On, for example, provide global observations of total terrestrial water storage 

anomaly (TWSA) starting from April 2002 onwards. Following these ideas of multi-variable 

parameter estimation, a more detailed calibration of six to eight parameters of WGHM was 

done by Werth and Güntner (2010) for 28 large basins worldwide using monthly time series of 

streamflow (Q) and total terrestrial water storage anomaly (TWSA) observations following the 145 

multi-objective calibration methodology proposed by Werth et al. (2009). Hosseini-Moghari et 

al. (2020) performed a multi-objective calibration of WGHM parameters for the Lake Urmia 

basin using three observation variables, streamflow, TWSA, and groundwater storage, after 

adjusting the model input of human water use using observational data in the first step. More 

than three observation types have rarely been used for hydrological model calibrations (Meyer 150 

Oliveira et al., 2021).   

The basis of any hydrological model is the water balance equation P = ET + R + ΔS. That is, 

the only system input precipitation (P) has to be partitioned into evapotranspiration (ET), runoff 

(R) and total water storage change (ΔS) during a specific period. Clearly, the prediction 

accuracy of such a model may be significantly improved if the model could be constrained 155 

using observations of all three response variables of the water balance equation. Historically, 

the streamflow observations alone, i.e., aggregated and routed upstream R, have been used in 

most model calibration experiments. Since TWSA from GRACE mission became available, 

TWSA observations have been added to in-situ streamflow observations as the measure of 

storage change (ΔS) in GHM calibration studies (Dembélé et al., 2020; Hosseini-Moghari et 160 

al., 2020; Demirel et al., 2019; Bai et al., 2018; Schumacher et al., 2018; Nijzink et al., 2018; 

Kittel et al., 2018; Rakovec et al., 2016; Milzow et al., 2011; Lo et al., 2010; Werth and Güntner, 

2010; Werth et al., 2009). Döll et al. (2024) also used observations of Q and TWSA to calibrate 

WGHM alternatively for determining pareto-optimal parameter sets for the Mississippi basin 

as a whole or individually for each of five sub-basins. The whole-basin approach improved the 165 

fit to sub-basin observations in all sub-basins as compared to the uncalibrated model (with the 

exception of one sub-basin for Q). It did not degrade the fit to TWSA for three sub-basins 

compared to the computationally more demanding sub-basin approach but this was only the 

case in one sub-basin regarding Q. In contrast, only a few studies have attempted to incorporate 
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global-scale ET products into hydrological model calibration, primarily because of their low 170 

reliability and high errors (Liu et al., 2022; Meyer Oliveira et al., 2021; Huang et al., 2020; 

Nijzink et al., 2018; López López et al., 2017). Demirel et al. (2018) demonstrated successful 

enhancement of spatial pattern performance in a distributed hydrological model through multi-

objective calibration using discharge and remote-sensing-based ET observations. Additionally, 

Demirel et al. (2024) provide a discussion on the trade-offs between temporal and spatial pattern 175 

calibration of the same distributed model using discharge and ET observations. To the best of 

our knowledge, only a few studies have attempted to simultaneously use all three variables on 

the right-hand side of the water balance equation to condition a hydrological model (Yang et 

al., 2022; Dembélé et al., 2020; Livneh and Lettenmaier, 2012). While the study by Huang et 

al. (2020) employed streamflow data for bias correction of the ET dataset, they utilized the bias-180 

corrected ET and TWSA for parameterization of a hydrological model, aiming to establish a 

streamflow-independent calibration scheme. Similarly, in a study by Nijzink et al. (2018), in-

situ streamflow observations were utilized to benchmark the performance of five hydrological 

models across 27 very small European catchments (area < 1600 km2). In that study, ten remote 

sensing data products, including TWSA and ET, were employed for model calibration, with the 185 

exclusion of streamflow observations. In their study, Meyer Oliveira et al. (2021) calibrated a 

hydrological model using several remote sensing products, including total terrestrial water 

storage anomaly and evapotranspiration, while employing streamflow observations solely for 

benchmarking. Hulsman et al. (2021) utilized in-situ discharge, satellite-based 

evapotranspiration (ET), and GRACE Terrestrial Water Storage Anomaly (TWSA) data to 190 

calibrate a process-based distributed hydrological model in a large semi-arid basin in Africa, 

aiming to incrementally improve the process representation of the model. Also, Liu et al. (2022) 

calibrated 59 large basins worldwide using ET and TWSA observations, with streamflow 

observations exclusively utilized for validating the calibration results. Trautmann et al. (2018) 

and Trautmann et al. (2022) calibrated a global model at the scale of selected grid cells with 195 

TWSA, ET and a gridded runoff product, instead of using streamflow at the basin scale. For a 

slightly different purpose, Pellet et al. (2020) utilized observations of all the variables in the 

water balance equation to derive total terrestrial water storage changes by reconstructing the 

water cycle in five southern Asian basins, including the Ganges and the Brahmaputra river 

basins. 200 

The terms ‘multi-objective’ and ‘multi-variable’ are not always interchangeable, as 

multiple objectives can stem from the same variable and multiple variables can contribute to a 

single composite objective. We use these terms contextually based on their literal meanings. 
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Our multi-objective calibration analyses involve multiple objectives and multiple variables, 

with one objective corresponding to each variable. A ‘signature’ of a data series consists of 205 

quantitative metrics or indices that describe its statistical or dynamic properties (McMillan, 

2021). In this context, the term ‘multi-signature’ refers to a scenario where multiple quantitative 

properties of a data series are considered simultaneously. 

In this study, we present a comprehensive multi-objective calibration framework for 

estimating optimal basin-specific parameter values for a global hydrological model by taking 210 

into account observations of multiple model output variables. The framework consists of 1) an 

approach for selecting model parameters that is based on a global sensitivity analysis and 

considers multiple signatures of each variable and 2) a multi-objective parameter optimization 

that includes multiple variables. We apply the framework to WGHM and estimate, for the 

Ganges and the Brahmaputra basins of the Indian subcontinent, the most important model 215 

parameters using multi-variable multi-signature sensitivity analysis and multi-variable 

parameter optimization. In this study, we present a comprehensive multi-objective calibration 

framework for the WGHM and apply it in the Ganges and the Brahmaputra basins of the Indian 

subcontinent. In the calibration framework, we incorporated a multi-variable multi-signature 

sensitivity analysis prior to the multi-objective model calibration that used a state-of-the-art 220 

optimization algorithm (Borg-MOEA of Hadka and Reed (2013)) with a maximum of four 

objectives, tailored towards optimizing WGHM predictions for Q, TWSA, ET, and surface 

water storage anomaly (SWSA), respectively. We then analysed the calibration outcome to 

answer the following scientific questions. 

- How does a multi-variable multi-signature sensitivity analysis enhance the 225 

identification of important model parameters? 

- Does the inclusion of observations of multiple variables in model calibration increase 

parameter identifiability and thus reduce model equifinality?  

- To what degree does the inclusion of TWSA, ET, and SWSA observations, in addition 

to Q observations, improve the simulation of important hydrologic variables by a GHM 230 

such as WGHM, and what is the value of streamflow observations? 

- What is the impact of uncertainties on the calibration outcome? Can we integrate 

knowledge about observation uncertainties when selecting the so-called compromise 

solution? 



8 

 

The remainder of this paper is organized as follows: Sect. 2 presents the Study area. Sect. 3 is 235 

devoted to Data and Methods. Sect. 4 presents the Results and Discussion and Sect. 5 concludes 

the study. 

2 Study area 

The transboundary basins of the Ganges and Brahmaputra (Fig. 1) exert significant socio-

economic, geo-political, and ecological influence in the region. These two basins are home to 240 

approximately 580 million human inhabitants and cover an aggregated area of 1.63 million 

square kilometres shared among India, China, Bangladesh, Nepal, and Bhutan (India-WRIS, 

2014b, a; FAO, 2011). With a population density of 355 inhabitants per square kilometer and 

the necessity to irrigate crops outside the monsoon period, the basins and their inhabitants 

experience significant water stress. As a result of climate change and the rapid pace of economic 245 

growth aimed at lifting a large population out of poverty, the region's water scarcity is expected 

to intensify rapidly in the coming decades (Gain and Wada, 2014). The Ganges and 

Brahmaputra rivers collectively account for over 40% of the total freshwater discharge into the 

Bay of Bengal, which constitutes approximately 25% of the total freshwater inflow received by 

the Bay of Bengal (Papa et al., 2010). Streamflow in both rivers significantly influences delta 250 

formation, sediment deposition, and salinity dynamics in the coastal region (Becker et al., 2020; 

Akhil et al., 2014).  
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Figure 1: Spatial extent of the two calibration units: the Ganges and the Brahmaputra 

river basins, delineated as the upstream of the two streamflow gauging stations Hardinge 255 

Bridge (Ganges) and Bahadurabad (Brahmaputra) 

In the current study, the Ganges and Brahmaputra basins were treated as two distinct calibration 

units, with calibration parameters adjusted uniformly within each unit. Drainage basins were 

defined as the upstream areas from the gauging stations at Hardinge Bridge and Bahadurabad, 

respectively, for the Ganges and Brahmaputra units (Fig. 1). This delineation was based on the 260 

drainage direction map DDM30 (Döll and Lehner, 2002). A detailed description of the basin's 

physiographic properties is provided in the supplementary materials in Sect. S1. Table 1 

presents key characteristics of the two basins. 

 

Table 1. Key characteristics of the study basins Granges and Brahmaputra 
 

Ganges Brahmaputra 

Area [km2] 1.09 million [b] 543400 [e] 

Population [millions] 448 [b, c] 130 [b, d] 

Annual precipitation [mm/yr] 760-2290 1347 [a]; 2371 [d], 

2143 [f] 

Mean summer1 temperature [°C] 23-3128.72 [c] -10-17 [a] 33.852 [d] 

Mean winter1 temperature [°C] 15-2119.62 [c] 7-27 [a] 25.52 [d] 

Mean annual streamflow [m3/s] 11300 [e] 20000 [a, e, h] 
1  Apr-Oct considered summer months and Nov-Mar considered winter months 265 
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2  Calculated with data from 1969 to 2004 

Sources: (a) Immerzeel (2008) (b) FAO (2011), (c) India-WRIS (2014b), (d) India-WRIS 

(2014a) (e) Masood et al. (2015), (f) Khan et al. (2015), (g) Ray et al. (2015), (h) Wang et al. 

(2023)  

3 Data and methods 270 

3.1 WaterGAP Global Hydrological Model (WGHM) and forcing data 

WaterGAP Global Hydrological Model (WGHM; Müller Schmied et al., 2021, 2014) simulates 

the continental water cycle to estimate water storage dynamics in ten different storage 

compartments and water fluxes (ET and streamflow) for all continents (except Antarctica) at 

0.50 spatial and daily temporal resolution. In this study, we consider the sum of water storage 275 

in lakes, wetlands, man-made reservoirs, and rivers as surface water storage (SWS), and the 

sum of SWS, canopy, snow, soil, and groundwater storage as the total terrestrial water storage 

(TWS). Glacier dynamics could not be taken into account in the WGHM version that was 

available for this study. For some storage compartments such as lakes and groundwater, 

WGHM does not simulate absolute values of storage but only storage anomalies such that 280 

SWSA and TWSA with respect to a temporal mean over a reference period are analysed, 

consistent with observations of TWSA and SWSA. The conceptual framework of the model is 

based on solving the vertical water balance of precipitation, snow accumulation and melt, 

interception by the vegetation canopy, evapotranspiration, soil water storage and groundwater 

recharge, and the lateral water movement of generated surface runoff and groundwater outflow 285 

through the surface water bodies until it reaches to the ocean or inland sinks. The vertical water 

balance and the horizontal water movement depend on various geomorphological and 

physiographic characteristics including soil storage capacity, land cover specific interception 

capacity and root depth, area of surface water bodies and drainage directions. WGHM account 

for the impact of man-made reservoirs and human water use on water flows and storages. It is 290 

driven by potential net abstractions from groundwater and surface water bodies that are 

computed by other modules of WaterGAP. For a detailed description of WGHM, see (Müller 

Schmied et al., 2021).  

The WGHM model in its standard version is calibrated for one parameter (the runoff 

coefficient, SL-RC) against river discharge observations of 1319 gauging stations worldwide 295 

such that the simulated long-term mean annual river discharge of the corresponding river basin 

is within a 10% error range of the observed mean. Upon failure of the above calibration target, 

two additional correction factors (i.e., the areal correction factor – CFA, and the station 
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correction factor – CFS) are introduced in the standard model version for synthetic runoff 

adjustment (Müller Schmied et al., 2021). To suppress these corrections for the calibration 

experiments in this study, we set both correction factors to 1.0 in all cells. A total of 24 model 

parameters, including the runoff coefficient SL-RC, were considered in this study (Table 2Table 

2). The spatial distribution of parameter values is according to one of the following schemes: 325 

(U) Uniform parameter value in all 0.5° cells of a river basin; (S) parameter values are specific 

to sub-areas of the river basin, e.g., in the case of the Priestley-Taylor coefficients, all cells in 

the arid or humid part of the river basin have the same parameter value, respectively; (M) 

multiplier parameters are uniform throughout the river basin but multiply the spatially 

distributed cell-specific values of their base parameter. For example, a value of 1.5 of the river 330 

roughness coefficient multiplier (SW-RRM) parameter increases the cell-specific roughness 

coefficient values by 50% in all cells in a basin. Out of the 24 parameters, two multipliers – the 

net radiation multiplier (EP-NM) and the precipitation multiplier (P-PM) alter the climate input 

variables radiation and precipitation, respectively. They were excluded from the sensitivity 

analysis because of their predominating influence on the target model variables which masks 335 

the relative importance of the rest of the parameters. Nevertheless, P-PM was selected as an 

additional calibration parameter because precipitation forcing data, in contrast to radiation data, 

contain high uncertainties and biases which need to be corrected during model calibration, if 

possible. Recently, Goteti & Famiglietti (2024) pointed out the underestimation of precipitation 

in data sets of India that need to be corrected (here by P-PM) to avoid non-physical or process-340 

based compensation by calibration of other parameters. Nevertheless, P-PM was selected as 

one of the parameters to be adjusted by model calibration. 

Table 2. WGHM parameters with a-priori parameter ranges; spatial scheme U (uniform), 

M (multiplier), S (sub-area specific) (see text for details). The parameters are categorized 

according to the storage compartments or processes that they directly affect. P: 

precipitation, EP: potential evapotranspiration, CA: canopy, SN: snow, SL: soil, SW: 

surface water, GW: groundwater, NA: net abstraction of water by human 

Compartment Parameter name 

[units if not unitless] 

 Acronym Spatial 

scheme 

Range Standard 

WGHM 

value 

P Precipitation multiplier  P-PM M 0.5-2 1 

EP Net radiation multiplier EP-NM M 0.5-2 1 

Priestley-Taylor coefficient 

(humid) 

EP-PTh S 0.885-1.65 1.26 

Formatted: Font: (Default) Times New Roman, 12 pt,
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Priestley-Taylor coefficient 

(semi-arid/arid) 

EP-PTa S 1.365-

2.115 

1.74 

CA Max. canopy water height 

[mm] 

CA-MC U 0.1-1.4 0.3 

LAI Multiplier CA-LAIM M 0.2-2.5 1 

SN Snow-freeze temperature [°C] SN-FT U -1-3 0 

Snow-melt temperature [°C] SN-MT U -3.75-3.75 0 

Degree-day factor multiplier  SN-DM M 0.5-2 1 

Temperature gradient [°C/m] SN-TG U 0.001-0.01 0.006 

SL Runoff coefficient SL-RC U 0.3-3 Variable1 

Smax
2

 multiplier SL-MSM M 0.5-3 1 

Maximum EP (mm/d) SL-MEP U 6-22 15 

SW River roughness coefficient 

multiplier 

SW-RRM M 1-5 3 

Active lake depth [m] SW-LD U 1-20 5 

Active wetland depth [m] SW-WD U 1-20 2 

SW discharge coefficient [1/d] SW-DC U 0.001-0.1 0.01 

ET reduction factor multiplier SW-ERM M 0.33-1.5 1 

GW GW recharge factor multiplier GW-RFM M 0.3-3 1 

Max. GW recharge multiplier GW-MM M 0.3-3 1 

Critical precipitation for GW 

recharge (arid/semi-arid) 

[mm/d] 

GW-CP S 2.5-20 12.5 

GW discharge coefficient 

[1/d] 

GW-DC U 0.001-0.02 0.01 

NA Net SW abstraction multiplier NA-SM M -2-2 1 

Net GW abstraction multiplier NA-GM M -2-2 1 

1 Spatially variable among grid-cells 
2 Maximum soil water storage in the effective root zone 

WGHM is driven by a climate forcing dataset which is a homogenized combination of 345 

WFD (WATCH Forcing Data based on ERA40; Weedon et al., 2011) for 1901-1978 and 

WFDE5 (WATCH Forcing Data methodology applied to ERA5 reanalysis data; Cucchi et al., 

2020) for 1979-2019, with precipitation data being bias corrected using monthly precipitation 

from GPCC (Global Precipitation Climatology Centre) according to Schneider et al. (2015). 
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The climate forcing dataset includes precipitation, air temperature, downward shortwave 350 

radiation and downward longwave radiation.  

3.2 Observations 

3.2.1 Surface water storage anomaly (SWSA) 

Based on multi-satellite observations of surface water extent and water level, Salameh et al. 

(2017) produced a 15-years data set of SWSA for the Ganges and the Brahmaputra basins by 355 

analysing pixel-wise hypsographic curves that represent area-volume relationships. A detailed 

description of the method can be found in Papa et al. (2013) and Papa and Frappart (2021). Two 

different Global Digital Elevation Models (GDEM) were used: (i) ASTER (Advance 

Spaceborne Thermal Emission and Reflection Radiometer) GDEM and (ii) HyMAP 

(Hydrological Modelling and Analysis Platform) based on SRTM30 (Shuttle Radar 360 

Topography Mission) GDEM. Thus, two SWSA observation products were produced for the 

period 1993-2007 on an equal area (773 km2) grid of 0.250 resolution at the equator. We used 

the basin-scale monthly mean values of the two products in our analysis. As we considered the 

river basin area upstream of the last gauging station only, our SWSA basin-scale value for 

Ganges and Brahmaputra are substantially smaller than those presented in Salameh et al. 365 

(2017). 

The uncertainties in data products like the one of Salameh et al. (2017) is difficult to 

assess. Nevertheless, we provide a maximum error estimate from other similar SWS products 

combining GIEMS and radar altimetry. Frappart et al. (2012) estimated SWS uncertainty of 

23% over the Amazon and Papa et al. (2015) estimated the uncertainty to be 24% over the 370 

Ganges-Brahmaputra. Based on these two similar estimates we used an error estimate of 25% 

for the basin-average monthly SWS data in our study. 

3.2.2 Actual evapotranspiration (ET) 

We used the benchmark ET product LandFlux-EVAL of Mueller et al. (2013) which is a merged 

synthesis of available global ET products covering observation-based estimations, estimations 375 

from several Land Surface Models (LSM), and from atmospheric reanalyses. Many studies have 

used or compared this product in recent years (Lienert and Joos, 2018; Nanteza et al., 2016; 

Orth and Seneviratne, 2015; Tsarouchi et al., 2014; Liu et al., 2014). Here, we used the 

LandFlux-EVAL product that was merged from 14 data sets for the period 1989 to 2005. We 

used the ensemble mean as monthly ET observation. The standard deviation (σ with N = 14) of 380 

the mean is also provided in the dataset as an estimate of the monthly observation error; we 
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used 2-σ range as the uncertainty of the ET observations in our analysis. The errors are provided 

in absolute terms with the unit of mm water equivalent for each month, which equivalenting 

relative terms corresponds to 25% in the Ganges basin and 24% in the Brahmaputra basin.  

Table 3. Availability of observation variables and their error estimates  

Observation variables Unit Period Estimated error Source 

Streamflow (Q) at the 

outlet of the basin 

[m3s-1] 1980-2012 20% of monthly value Masood et 

al. (2015) 

Basin average of total 

water storage anomaly 

(TWSA)  

[mm] 2003-2012 Propagated 2-σ GRACE 

errors for each month 

Personal 

communicat

ion1 

Basin average of 

evapotranspiration (ET) 

[mm] 1989-2005 2-σ monthly error 

 

Mueller et 

al. (2013) 

Basin average of surface 

water storage anomaly 

(SWSA)  

[km3] 1993-2007 25% of monthly value Salameh et 

al. (2017) 

1 Personal communication with the Astronomical, Physical and Mathematical Geodesy Group, Institute of 385 

Geodesy and Geoinformation, University of Bonn, Germany 

3.2.3 Total Terrestrial water storage anomalies (TWSA) 

The TWSA dataset is based on Level-2 data (Spherical Harmonic Coefficient, SHC) of the 

GRACE and GRACE Follow-On of TU Graz monthly solutions (Mayer-Gürr et al., 2018) up 

to degree and order 96, and by applying the anisotropic DDK3 filter (Kusche et al., 2009) to 390 

correct the degree-related correlated noise. Further corrections were necessary to eliminate 

errors related to low-degree effects such as glacial isostatic adjustment (Gerdener et al., 2020). 

The residual geoid changes due to two large earthquake signals with magnitude over 9.0 (West 

Coast of Northern Sumatra, Indonesia on 24 Dec 2004 and near the East Coast of Honshu, off 

Tohoku, Japan on 11 Mar 2011) were removed according to the estimated values following 395 

Einarsson et al. (2010). The TWSA data were aggregated to area-average monthly time-series 

from 2003-2019 for the two study basins. The anomalies were computed by using the mean of 

the period 2003-2009 as the reference mean. 

2-sigma errors based on the full variance-covariance matrix of the TU Graz data, which 

accounts for orbital effects and the meridional behaviour of errors, were propagated to estimate 400 

the uncertainty of the TWSA data. The resultant time series of propagated errors is used to 

bracket the monthly uncertainty of TWSA observations.  
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3.2.4 Streamflow (Q) 

We use monthly river discharge from 1980-2012 at the Hardinge Bridge and the Bahadurabad 

gauging stations (Figure 1Figure 1) derived by Masood et al. (2015), using daily water level 

observations acquired from the Hydrology Department of the Bangladesh Water Development 

Board (BWDB) and rating curves developed by the Institute of Water Modelling, Bangladesh 440 

(IWM).  We assume an error of monthly discharge values of 20% following McMillan et al. 

(2012) who compared reported streamflow uncertainties and concluded that the uncertainty 

varies between 10-20% for medium to high in-bank flows, 50-100% for low flows, and over 

40% for out of bank flows. Considering the large average streamflow in the two study basins 

(11,300 m3s-1 in the Ganges and 20,000 m3s-1 in the Brahmaputra basin), we took a pessimistic 445 

range of error of 20% which aligns with the estimate of Sir William Halocrow and Partners Ltd. 

(1991 cited in Mirza, 2003) who reported that uncertainty of streamflow could reach 20% in 

those stations due to the method of velocity measurement from non-anchored boats and 

inaccurate measurement of depths of current meters. 

3.2.5 Water balance closure of observations 450 

To avoid an ill-posed calibration problem in particular when using all major terms of the water 

balance equation as forcing (P) or calibration variables (Q, ET, ΔSΔTWS), it is important to 

check to which extent the water balance is closed in the observations. For this purpose, we 

calculated the water balance (P – ET – Q – ΔSΔTWS) of the observation data using annual 

mean values over the available data period. ΔS from GRACE TWSA was computed as the 455 

difference between the December values of consecutive years. Observation gaps were filled for 

all variables through linear regressions for individual months, accounting for seasonality and 

trends. It is worth noting that the water balance of WGHM is closed at all time intervals. 

The mean values of annual precipitation, streamflow, ET, and ΔS for the Ganges basin used in 

this study as observation data are 1119 mm, 402 mm, 621 mm, and -14 mm, respectively. This 460 

results in an annual mean non-closure of the water balance of +109 mm. While reconciling the 

water budget for the entire India, Narasimhan (2008) argued that ET estimation in India is 

significantly underestimated. However, in a recent study, Kushwaha et al. (2021) estimated ET 

for the Ganges basin to be in the range of 511-622 mm yr-1, which closely aligns with our 

observed mean. In the Brahmaputra basin, the discrepancy is even more pronounced (-436.6 465 

mm). The mean values of P, Q, ET, and ΔS from GRACE for the Brahmaputra basin are 1490 

mm, 1361 mm, 564 mm, and -11 mm, respectively. In the case of the Brahmaputra basin, input 

precipitation is significantly underestimated (Schneider et al., 2017; Michailovsky et al., 2013), 
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a phenomenon attributed to convective rainfall (Bookhagen and Burbank, 2006) resulting from 

pronounced differences in basin topology. In their study, Schneider et al. (2017) used a scaling 

factor of 1.4 to correct the input precipitation and achieve a reasonable water balance closure, 

while Michailovsky et al. (2013) applied a factor of 1.25 to scale the TRMM 3B42 precipitation 

data for the Brahmaputra basin in their work. This also underscores the importance of using the 500 

WGHM parameter P-PM, a multiplicative factor to adjust the precipitation amount of the 

forcing data, in the calibration experiments. 

It is important to note that mismatches in water balance can also occur in data-rich regions. For 

example, Rakovec et al. (2016) reported water balance closure errors (P – Q – ET) in some 

European basins, ranging from -200 mm to 100 mm per year for most of the 179 considered 505 

basins. 

3.3 Sensitivity analysis 

We used the multi-start perturbation Sensitivity Analysis (SA) method of Morris (1991), also 

known as Elementary Effect Test (EET). Elementary Effect (EE) is expressed as the derivative 

of a response variable with respect to change in a parameter. The EET method measures the 510 

sensitivity to a parameter as the average of elementary effects (EE) at many locations of the 

parameter space. The sensitivity index (SI) of ith parameter (i ∈ {1,2, … m}; m denotes total 

number of parameters) is calculated as: 

𝑆𝐼𝑖 =
1

𝑟
∑

𝑓(𝜃𝑝𝑒𝑟) − 𝑓(𝜃𝑟𝑒𝑓)

∆𝑖
𝑗

× 𝐶𝑖

𝑟

𝑗=1

   

 =
1

𝑟
∑

𝑓(𝜃1, 𝜃2, … 𝜃𝑖 + ∆𝑖
𝑗
, . . 𝜃𝑚) − 𝑓(𝜃1, 𝜃2, … 𝜃𝑖 , . . 𝜃𝑚)

∆𝑖
𝑗

× 𝐶𝑖

𝑟

𝑗=1

   (1) 

where, r is the total number of EEs at random locations of the parameter space; ϴref and ϴper 

(ϴref ∈  Rm; ϴpre ϴper ∈  Rm) are respectively a reference parameter set and a perturbed parameter 515 

set where only ith parameter being perturbed from the reference parameter set; Δi
j (j ∈ {1,2, … 

r}) is the amount of change in ith parameter at jth location (j ∈ {1,2, … r}); f (ϴ) is the model 

response of parameter set ϴ (ϴ ∈  Rm); and Ci is the scaling factor of ith parameter. The scaling 

factors (Ci) correspond to the range of the respective parameter values (Table 2Table 2) and 

facilitate inter-parameter comparisons in parameter ranking, for instance, as the parameters 520 

mostly have differing units and ranges. While the Morris method does not explicitly show 

interaction terms, it produces a variance term for the elementary effect that accounts for 
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parameter interactions and the functional non-linearity of the model response. We computed 

the standard error of the sensitivity index from this variance term and used it for parameter 

selection (Algorithm 4 in section S2 of the supplementary material).  

As a measure of change in the model response (i.e., f(ϴper) – f(ϴref)), we used the Root 

Mean Squared Deviation (RMSD) between simulated values of a response variable using a 560 

reference parameter set (ϴref) and simulated values of that variable using the perturbed 

parameter set (ϴper). The sensitivity index of the EET method averages out the local influences 

by taking samples from many locations in the parameter space, making it a global sensitivity 

analysis method (Pianosi et al., 2016). The sensitivity index of the EET method averages out 

the local influences as well as influences due to parameter interactions as samples are taken at 565 

many locations from the parameter space (Pianosi et al., 2016). The method is computationally 

inexpensive and recommended for ranking and screening purposes by Pianosi et al. (2016). 

1000 random reference samples were taken using Latin Hypercube Sampling (LHS) which were 

then perturbed one-at-a-time based on radial-design (Campolongo et al., 2011). We used SAFE 

MATLAB toolbox developed by Pianosi et al. (2015) for sampling and later computing the 570 

sensitivity index. We included 22 WGHM model parameters during the SA from Table 2Table 

2 (excluding EP-NM and P-PM as stated earlier). During the SA, a total of 23,000 samples were 

analysed for each of the river basins. Model simulations were conducted for the period 1990-

2019, with the spin-up period from 1985 to 1989. The initial year of the spin-up was run five 

times to allow water storages to reach an equilibrium state. For the sensitivity analysis, model 575 

simulations for the period 1990-2019 were used, with 1985-1989 taken as the model spin-up 

period and the first year of the spin-up was run 5 times to allow the water storages to fill up to 

an equilibrium state. 

Parameter sensitivity differs among the response variables and their statistics, i.e., 

hydrological signatures. To identify parameters that are important for characterizing different 580 

features of the target response variables, i.e., those against which the model will be calibrated, 

we performed a multi-variable multi-signature sensitivity analysis on the four variables with 

available observations (Q, ET, TWSA, SWSA), considering four signatures, 1) the continuous 

monthly time series (MTS), 2) the ‘climatology’ or seasonality, i.e., the 12 mean monthly 

values, averaged over the study period (MM), 3), the time series of annual means (ATS), and 585 

4) the time series of the seasonal amplitudes computed as the difference between the largest 

and the smallest monthly values of a year (SNA). The sensitivity indices for each signature 

were computed separately. We observed that the sensitivities of the four response variables to 

Formatted: Font: (Default) Times New Roman, 12 pt,

Complex Script Font: Times New Roman, 12 pt



18 

 

the individual parameters as well as the share of cumulative effect of top-ranking parameters to 

the “total effect” (sum of sensitivity indices for all parameters) vary considerably among the 

response variables (Figure 2Figure 2). Thus, we decided to select, for each response variable, 

those top-ranking parameters that together contribute at least 50% of the combined total effect. 620 

Application of this threshold ensures that (i) only the most influential parameters for a given 

signature of a given variable are selected; and (ii) the total number of selected parameters does 

not become very large.  

 

Figure 2. Cumulative effect in percent of the “total effect” (sum of all effects of all 625 

parameters) of top-ranked parameters up to different cut-off ranks. The function of the 

cumulative effect and the cut-off level differ among the four response variables Q, TWSA, 

ET, and SWSA in the two basins – Ganges (a) and Brahmaputra (b). Sensitivity to 

parameters in this example was for the monthly time-series (MTS) of the four target 

response variables. The grey line indicates the cut-off threshold at 50% of the “total 630 

effect” that must be surpassed by the top-ranked parameters for each variable and for 

each signature. For example, the cumulative effect of the three highest-ranked parameters 

on TWSA in the Ganges basin accounts for 58% of the total combined effects of all 

parameters on this variable, while the cumulative effect of the top three parameters on Q 

is only 38% of the total combined effects of all parameters in the basin.  635 

3.4 Calibration 

We used the Borg Multi-Objective Evolutionary Algorithm (Borg-MOEA; Hadka and Reed, 

2013) to identify non-dominated Pareto-optimal parameter sets of WGHM against one to a 

maximum of four objectives. A parameter set is considered non-dominated if it outperforms all 

other competing sets in at least one objective. The objectives are to maximize values of the 640 

Nash-Sutcliffe Efficiency (NSE; Eq. 2; Nash and Sutcliffe, 1970) of streamflow (NSEQ), total 

water storage anomaly (NSETWSA), evapotranspiration (NSEET), and surface water storage 

anomaly (NSESWSA).  

𝑁𝑆𝐸 = 1 −
∑ (𝑠𝑖𝑚(𝑡)−𝑜𝑏𝑠(𝑡))

2𝑇
𝑡=1

∑ (𝑠𝑖𝑚(𝑡)−𝜇obs)
2𝑇

𝑡=1

= 1 −  
𝑀𝑆𝐸

𝜎𝑜𝑏𝑠
2                                                                                    (2) 
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where sim(t) and obs(t) are the simulated and observed monthly values at time step t respectively, 645 

and µobs is the mean of the observations; σobs is the standard deviation of observations and MSE 

is the Mean Squared Error. NSE serves as a good indicator for inter-basin comparison since it 

normalizes the MSE by the observed variance (Livneh and Lettenmaier, 2012). While four 

signatures (MTS, ATS, MM, and SATS) analysed by the SA, we restricted the parameter 

estimation to using the monthly time series data (MTS) as observations, which has the least 650 

aggregation of temporal information among the four. However, the calibration parameters were 

selected considering the sensitivities of all four signatures (Sect. 4.1). 

The Borg-MOEA has been successfully used for hydrological model calibration in many 

studies (Fernandez-Palomino et al., 2020; Chilkoti et al., 2018)  because of its superior 

performance over many state-of-the-art multi-objective algorithms (Reed et al., 2013; Hadka 655 

and Reed, 2013). The critical features of the Borg-MOEA include amalgamation of multiple 

(six) search operators and strategies from benchmark optimization algorithms (e.g., NSGA-II 

of Deb et al. (2002), ε-MOEA of Deb et al. (2005),  ε-NSGA-II of Kollat and Reed (2006), 

GDE3 of Kukkonen and Lampinen (2005), and others), an auto-adaptive recombination 

mechanism for search operators based on operators’ success rates of producing non-dominated 660 

solutions over time, a restart mechanism upon detection of a search stagnation, and straight-

forward adaptation of the algorithm in parallel computation framework (Reed and Hadka, 

2014). Except for the initial population size, all algorithmic parameters were kept to their 

recommended values of Hadka and Reed (2013). The ε-precision level for all objectives was 

set to 0.005 to obtain a detailed Pareto front consisting of a high number of solutions. We 665 

deployed a master-slave parallel implementation of Borg-MOEA and ran the algorithm on 401 

nodes of a cluster machine operating under Scientific Linux 7 environment. Related to this 

configuration, the initial population size 400 was used which was equal to the number of slave 

processes. 

The objectives are to maximize values of the Nash-Sutcliffe Efficiency (NSE; Eq. 2; Nash and 670 

Sutcliffe, 1970) of streamflow (NSEQ), terrestrial water storage anomaly (NSETWSA), 

evapotranspiration (NSEET), and surface water storage anomaly (NSESWSA).  

𝑁𝑆𝐸 = 1 −
∑ (𝑠𝑖𝑚(𝑡)−𝑜𝑏𝑠(𝑡))

2𝑇
𝑡=1

∑ (𝑠𝑖𝑚(𝑡)−𝜇obs)
2𝑇

𝑡=1

= 1 −  
𝑀𝑆𝐸

𝜎𝑜𝑏𝑠
2                                                                                    (2) 

where sim(t) and obs(t) are the simulated and observed monthly values at time step t respectively, 

and µobs is the mean of the observations; σobs is the standard deviation of observations and MSE 675 

is the Mean Squared Error. NSE serves as a good indicator for inter-basin comparison since it 
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normalizes the MSE by the observed variance (Livneh and Lettenmaier, 2012). While four 

signatures (MTS, ATS, MM, and SATS) analysed by the SA, we restricted the parameter 

estimation to using the monthly time series data (MTS) as observations, which has the least 

aggregation of temporal information among the four. However, the calibration parameters were 705 

selected considering the sensitivities of all four signatures (Sect. 4.1). 

Fifteen calibration experiments were carried out for each of the two basins, covering all possible 

combinations of objectives. Each experiment was repeated eight times with different initial 

populations generated by varying random seeds. The experiments and their objective(s) are 

listed in Table 4Table 4. The maximum number of model runs was limited to 20,000, which 710 

proved sufficient for approximating the Pareto front (PF), representing the frontier formed by 

the set of non-dominated parameter sets. This adequacy is evident from the relatively small 

difference in PFs between 10,000 and 20,000 model runs (as shown in Figure 3Figure 3a for a 

two-objective case), and the stabilization of the mean objective value of the compromise 

solution occurring well before reaching 20,000 runs in most experiments (Figure 3Figure 3b). 715 

 

Figure 3. Convergence of single and multi-objective calibrations of the Brahmaputra 

basin. (a) Pareto fronts of a 2-objective calibration experiment (Experiment-QT with 

objectives NSEQ and NSETWSA) after one, five, ten, and twenty thousand model 

evaluations. (b) the mean objective value (NSE) of the compromise solution of all 720 

calibration experiments as a function of no. of model evaluations. The Pareto fronts and 

the compromise solutions have been determined after merging all solutions in all 

replications. 

The “compromise” solution or parameter set is said to have the “best” overall 

performance among the non-dominated solutions, and it is determined by finding the solution 725 

with the lowest Euclidian distance (ED, Eq. (3)) in the objective space from the point of 
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theoretical best values of the objectives, known as the “utopia” point. Separate compromise 

solutions were determined for each replication of an experiment, and an “overall compromise 

solution”, which is the result of merging all solutions from the eight replications, was also 760 

determined. 

𝐸𝐷 = √∑ (𝑈𝑖 − 𝑂𝑖)2𝑛
𝑖=1                                                                                                 (3) 

where n is the number of objectives, and Ui and Oi represent respectively the best value 

of the ith objective and the ith object of a solution parameter set.  

The observation datasets available for this study cover different periods (Table 3Table 765 

3).  The only overlapping period of all four observables are the three years of 2003 to 2005. We 

considered this period insufficiently short for calibration. Thus, we used observations in partly 

non-overlapping periods for model calibration while still trying to include overlapping data sets 

as far as possible. The calibration period was set to 1980-2009. Like in the sensitivity analysis, 

the model run started 5 years before the start of the calibration period; additionally, the first 770 

year was repeated 5 times. The initial 5 years (1975-1979) were considered as the spin-up 

period. 

3.5 Validation 

The validation period was set to 2010-2012, while using the same start time (year 1975) of 

model runs as for calibration. Validation covered Q and TWSA only as no observations for 775 

validating ET and SWSA were available for this period. For validation, we also used several 

performance metrics including Root Mean Squared Error (RMSE), Mean Absolute Deviation 

(MAD), Pearson correlation coefficient (r), and the Nash and Sutcliffe efficiency (NSE) for the 

four signatures MTS, MM, ATS, and SNA. Furthermore, a thorough visual inspection of the 

simulation results was also performed.   780 

3.6 Uncertainty estimation 

To account for the uncertainty of the observation data in the calibration results in its entirety, 

we would need to repeat the calibration multiple times with alternative realizations of the 

observation time series. This is not feasible given its high computational demand. Alternatively, 

Werth and Güntner (2010) defined an error ellipse around the compromise solution after the 785 

regular calibration against the original observation time series. For defining the length of one 

axis of the ellipse, they generated 5000 perturbed observation time series of the observable 

according to its assumed error characteristics and calculated the performance indices of the 
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simulated time series for each of them. The axis length was then determined by the standard 

deviation of the performance indices. We recognized that the method of Werth and Güntner 

(2010) does not consider the uncertainty of the compromise solution itself given the fact that a 

different solution will probably result as the compromise solution if the parameter search by 825 

the algorithm starts from a different starting location, a different initial population is used, or 

simply a different realization of the observational time series was used in the calibration. With 

the change of the compromise solution, the axis lengths of the error ellipse are also expected to 

change. In our analysis, we employed a Monte Carlo process to generate 1000 realizations of 

observation time series for each variable, taking into account the given uncertainty range. 830 

Subsequently, we computed the objective values (NSE) for all variables using the 1000 

observation time series for each variable, separately for each of the eight compromise solutions 

(with one compromise solution per replication). We established thresholds for each objective 

to extract high-performing solutions from the combined set of solutions across all replications 

and referred to them as “acceptable” Pareto solutions, accounting for observation uncertainty. 835 

These solutions can be viewed as “equivalent” to the compromise solution in the context of 

uncertain observations. By applying thresholds to subset solutions, we effectively delineate a 

hyperrectangle in the objective space, which is conceptually similar to the error ellipsoid used 

by Werth and Güntner (2010).  

4. Results and discussion 840 

4.1 Parameter importance 

The sensitivity to parameters varies among the response variables in the two river basins and in 

many cases, it also varies among the different signatures of a response variable (Figure 4Figure 

4). The response variables, especially streamflow (Q) and TWSA, represent an aggregate 

response of many complex processes over various temporal and spatial scales. Thus, they are 845 

often sensitive to parameters associated with many storage compartments or processes (Table 

2Table 2) such as ET, soil (SL), surface water (SW), groundwater (GW), snow (SN) 

(predominantly in the Brahmaputra basin), and net abstraction (NA) by human water use 

(mainly in the Ganges basin). In addition to the SW parameters, SWSA is highly sensitive to 

one soil parameter (SL-MSM), a few groundwater-related parameters (GW-RFM, GW-MM 850 

and GW-DC) with varying importance depending on the considered signature, two snow 

parameters (SN-MT, SN-TG) and the ET parameter EP-PTh only in the Brahmaputra basin. ET 

is computed as the sum of evaporation and transpiration from canopy, snow, soil, and surface 

water bodies. However, the soil component dominates total ET, and ET is highly sensitive to 
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the parameter SL-MSM which governs the soil water storage capacity. ET is also sensitive to 

the snow melt (SN-SM) in the Brahmaputra basin as apparently sublimation in the basin 

contributes substantially to total ET. Apart from these storage parameters, the EP-PTh which 

scales potential ET in the humid zone highly influences the simulated actual ET.  880 

Several parameters influence most or all response variables across various signatures. 

However, certain parameters affect only one or two signatures of the response variables. For 

instance, the Runoff Coefficient (SL-RC) – which is one of the parameters considered in the 

standard WGHM calibration – significantly influences monthly means (MM) of ET in the 

Ganges basin and MTS of streamflow. Similarly, the snow melt temperature (SN-MT) is 885 

important for some cases in snow-dominated catchments in the Brahmaputra basin. These 

parameters may also affect other response variables and signatures to some extent but do not 

meet the defined threshold for calibration selection (Figure 4) The relative contributions of all 

parameters to all response variables and signatures are presented in Table S2 and Table S3. 

 890 

Figure 4: Most influential parameters for the Ganges (a) and the Brahmaputra (b) river 

basin based on the sensitivity of four signatures S1 to S4 - monthly time-series (MTS; blue), 

monthly means (MM; orangegold), annual time series (ATS; greenorange), and seasonal 

amplitude (SNA; reddarkgreen) of simulated Q, TWSA, ET, and SWSA. The size of each 

box represents the effect of a parameter relative to the “total effect”, i.e. the sum of the 895 

effects of all parameters. The final set of calibration parameters with a significant impact 

on any signature of the four variables is shown on the right of each plot (cyan boxes). For 

parameter abbreviations, see Table 2. 
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Based solely on sensitivity to streamflow and TWSA, we identified seven influential 

parameters in the Ganges basin and twelve influential parameters in the Brahmaputra basin 925 

(Figure 4Figure 4). Additionally, three SW parameters in the Brahmaputra basin and one in the 

Ganges basin were selected due to their significant impact on SWSA. Furthermore, one 

additional parameter in the Ganges basin was found to be sufficiently influential on ET and was 

included as a calibration parameter. After including the P-PM parameter for both basins, we 

selected 10 WGHM parameters for calibration in the Ganges basin and 16 parameters in the 930 

Brahmaputra basin (Table 4).  

The use of multiple signatures from various variables ensures that key parameters 

governing all critical hydrological processes in the model are identified. For instance, if only 

one signature were considered, 5-9 parameters in the Ganges basin and 9-12 parameters in the 

Brahmaputra basin would have been selected for calibration. Similarly, if parameter sensitivity 935 

was assessed based on Q or TWSA only, influential parameters governing other important 

observables could have been overlooked. However, the method of parameter selection is not 

without challenges. Parameters with significant impacts may be excluded if the cut-off 

threshold (e.g., 50% of the total effect, as used in this study) is surpassed by only a few top-

ranked parameters. For example, in the Brahmaputra basin, despite contributing a substantial 940 

12% to the total impact, the parameter SL-RC deemed non-influential for ET according to this 

threshold (Table S3). Raising the threshold would result in the selection of a larger number of 

parameters, potentially leading to an unnecessary expansion of the decision space. This could 

increase computational demands and exacerbate issues of equifinality (Sect. 4.2.3). 

 945 

Table 4: Selected WGHM parameters to be calibrated for the two basins 

Basin Selected Parameter List Count 

Ganges P-PM, EP-PTh, SL-RC, SL-MSM, SW-RRM, SW-WD, SW-DC, 

GW-MM, NA-SM, NA-GM 

10 

Brahmaputra P-PM, EP-PTh, SN-FT, SN-MT, SN-DM, SN-TG, SL-RC,  

SL-MSM, SW-RRM, SW-LD, SW-WD, SW-DC, GW-RFM,  

GW-MM, GW-DC, NA-GM 

16 

4.2 Model Calibration 

Calibration experiments with all 15 possible combinations of the four objectives (NSEQ, 

NSETWSA, NSEET, and NSESWSA) were carried out for the two study basins. Furthermore, each 
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of the experiments was repeated 8 times with random seeds, resulting a total number of 240 

calibrations. Overall, the study involved the evaluation of 4.8 million samples, requiring 950 

approximately 3.21 million CPU hours of model run time. In total, 4.8 million samples were 

evaluated during the study which approximately consumed over 3.22 million CPU hours of 

execution time for the WGHM model to assess those samples.  The configuration of the 

experiments is shown in Table 5.  

Table 4: Configuration of the 15 calibration experiments, with the observed variable(s), 

number of objectives, number of replications, minimum and maximum number of non-

dominated (Pareto-optimal) solutions (i.e. estimated parameter sets) obtained among the 

8 replications, and the total number of non-dominated solutions over all 8 replications. 

 No. of non-dominated solutions 

Ganges Brahmaputra 

Experiment 

Name Observed variable(s) 

No. of 

Objs.a  

Repli-

cations Min/Max Total Min/Max Total 

 

(1) Q Q 1 8 1/1 8 1/1 8  

(2) T TWSA 1 8 1/1 8 1/1 8  

(3) E ET 1 8 1/1 8 1/1 8  

(4) S SWSA 1 8 1/1 8 1/1 8  

(5) QT Q, TWSA 2 8 3/5 34 2/3 20  

(6) QE Q, ET 2 8 5/6 45 1/1 8  

(7) QS Q, SWSA 2 8 10/13 94 1/2 15  

(8) TE TWSA, ET 2 8 6/7 49 1/2 10  

(9) TS TWSA, SWSA 2 8 14/17 123 1/4 18  

(10) ES ET, SWSA 2 8 7/9 63 1/2 10  

(11) QTE Q, TWSA, ET 3 8 106/146 1006 6/11 60  

(12) QTS Q, TWSA, SWSA 3 8 402/472 3526 3/11 63  

(13) QES Q, ET, SWSA 3 8 546/637 4712 2/16 30  

(14) TES TWSA, ET, SWSA 3 8 65/84 616 3/12 63  

(15) QTES Q, TWSA, ET, SWSA 4 8 1031/1155 8705 20/77 339  

a NSE used as calibration objective 955 

4.2.1 Added value of multi-objective calibration and trade-offs among objectives 

 

1 The execution time for a single run of the WGHM model was approximately 40 minutes but exhibited significant 

variations depending on the specific CPU used and the concurrent I/O traffic on the cluster machine during the 

model run 
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A high cardinality, i.e., a high number of solutions in the non-dominated Pareto solution set, 

was obtained in most multi-objective calibrations  (Table 4). The cardinality depends on the 

shape of the Pareto frontier (PF) and the allowed crowding distance, which was constant (0.005) 980 

for all objectives in all experiments. A wider PF resulting in high cardinality reflects a high 

trade-off between the objectives. The high cardinality observed in the Ganges experiments 

indicates marked trade-offs among objectives, especially between NSEQ and NSESWSA, as well 

as between NSESWSA and NSETWSA.We obtained a good number of non-dominated solutions, 

i.e. Pareto-optimal parameter sets, in most of the multi-objective calibrations (Table 5). The 985 

cardinality (number of solutions) of the non-dominated solution set of a multi-objective 

calibration depends mainly on the shape of the Pareto frontier (PF) and the crowding distance 

of the members. The crowding distance is controlled in the Borg algorithm by the epsilon 

parameters which was 0.005 for all objectives. The greater solution cardinality in the Ganges 

basin experiments, when compared to those in the Brahmaputra basin, already indicates 990 

heightened trade-offs among the objectives, especially between NSEQ and NSESWSA, as well as 

between NSESWSA and NSETWSA. This observation is further supported by the experiments 

involving solely those objective pairs, which yielded a larger number of solutions. The 3-

objective calibration TES has a lower cardinality than the other 3-objective cases, which 

indicates the simulation of Q is in a rather strong conflict with the simulation of the three other 995 

variables. This is supported by the poor fits to streamflow observations of the TES calibration 

variant for both basins (Table 5Table 5 and Table 6Table 6). As expected, the 4-objective 

calibration produced the highest number of non-dominated solutions. 
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Figure 5: The Pareto front of 4-objective calibration experiments of the Ganges basin and 

for both the Brahmaputra basin. The 3-D view of the 4-D PF of Ganges (a) and 

Brahmaputra (b), while the 4th dimension is colour coded. Only solutions having NSE 1020 

greater than 0.5 are shown. The 2-D projection is shown with crosses. The bottom row 

shows the 2-D view of each pair of objectives for the Ganges (c) and the Brahmaputra (d) 

basin. All non-dominated solutions are shown in grey, the compromise solution of each 

replication in red, the overall compromise solution in black, and the candidate 

compromise solutions in orange.   1025 

The single-objective calibration experiments obtained the best NSE values for the 

specific objective under consideration (Table 5Table 5 and Table 6Table 6). This is a common 

occurrence in multi-objective optimization scenarios (Meyer Oliveira et al., 2021; Livneh and 

Lettenmaier, 2012). However, this comes at the cost of performance loss for the other variables 

that were not considered for calibration. The standard calibration of WGHM for mean annual 1030 

streamflow (Müller Schmied et al., 2021) resulted in poorer results for all performance criteria 

in both the Ganges and Brahmaputra basins than the uncalibrated model for both basins. The 

mean NSE of all four objectives (µNSE,ALL) was used as a simple indicator of the overall 

performance of an experiment. In multi-objective calibrations, although the objective values for 
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each individual objective decrease slightly, the overall performance tends to increase when 

more objectives are included. In the Brahmaputra basin, the highest µNSE,ALL increases from 0.84 1070 

for single-objective calibration to 0.90 for 2-objective calibrations, to 0.93 for 3-objective 

calibration and to 0.95 for 4-objective calibration. In the Ganges basin, the highest µNSE, ALL is 

slightly smaller in 3-objective calibrations than in 2-objective calibrations. Nevertheless, the 4-

objective calibration experiments achieved the highest overall performances in the basin. In 

their study, Livneh and Lettenmaier (2012) demonstrated that the overall performance of the 1075 

calibrated model improved with the inclusion of ET and TWSA observations in addition to 

streamflow observations. In contrast, Mei et al. (2023) observed a reduction in the overall 

performance of a three-objective calibration, including observations of Q, soil moisture, and 

ET, when compared to single and two-objective calibrations. This reduction was attributed to 

suspected model structural errors and/or erroneous observations. 1080 

Different from the Brahmaputra, calibration against only Q in the Ganges basin resulted 

in worse fits to all three other variables as compared to the uncalibrated model version. Multi-

variable calibration, however, works best if streamflow observations are included. Excluding 

NSEQ as an objective in any calibration resulted in significantly poorer performance in 

streamflow simulation (Table 5 and Table 6). Different from the Brahmaputra, calibration 1085 

against only Q in the Ganges basin (both the calibration method presented here and the standard 

WGHM method) resulted in worse fits to all three other variables as compared to the 

uncalibrated model version. Multi-variable calibration, however, works best if streamflow 

observations are included because the average fit to all observations is, in the case of both 2-

objective and 3-objective calibration cases, highest if NSEQ is one of the calibration targets 1090 

(Table 6 and Table 7). The importance of streamflow observations in model calibration is well 

documented in the literature, with a particular focus on multi-variable calibration scenarios 

(Dembélé et al., 2020; Livneh and Lettenmaier, 2012). Liu et al. (2022) reported that calibrating 

model with ET and TWSA observations can occasionally produce reasonable streamflow 

simulations in certain basin.  In their study, Livneh and Lettenmaier (2012)(Livneh and 1095 

Lettenmaier, 2012) concluded that calibrating the model with either ET or TWSA alone was 

insufficient to achieve good performance in streamflow simulation. We also discovered that 

calibrating with these two variables resulted in high NSEQ (> 0.8) only in a few replications in 

the Brahmaputra basin. However, in the majority of the calibration cases, the performance in 

streamflow simulation was very poor when the model was not constrained by streamflow 1100 

observations. 
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Table 5: Mean and standard deviation of model performance indicator NSE for the 

compromise solutions (N = 8) of the calibration experiments in the Ganges river basin 

during calibration period. The WGHM model was rerun using parameters from the 

compromise solutions to compute NSEs of all variables. The µNSE, ALL represents the mean 

NSE across all objectives over all eight compromise solutions per experiment. The highest 

NSE for each objective is highlighted using bold face, also the highlighted mean across 

objectives (µNSE, ALL) show the highest value in each group (2-objective, 3-objective, and 

4-objective). The objective obtained in the standard calibration and in the uncalibrated 

model is also shown.  

 Mean ± Std. Deviation  

Experiment NSEQ NSETWSA NSEET NSESWSA µNSE, ALL 

Q 0.97± 0.002 -4.07± 3.572 0.54± 0.135 0.56± 0.088 -0.5 

T 0.70± 0.030 0.85± 0.001 0.89± 0.007 0.63± 0.021 0.77 

E -14.83± 0.739 -2.56± 6.952 0.96± 0.000 -4.39± 2.476 -5.21 

S -2.40± 1.453 0.57± 0.095 0.07± 0.064 0.92± 0.001 -0.21 

QT 0.95± 0.003 0.84± 0.001 0.87± 0.001 0.64± 0.008 0.83 

QE 0.96± 0.001 -5.93± 0.588 0.93± 0.001 -0.09± 0.092 -1.03 

QS 0.94± 0.003 -23.73± 5.807 -0.35± 0.035 0.89± 0.002 -5.56 

TE 0.52± 0.026 0.85± 0.000 0.93± 0.001 0.61± 0.016 0.73 

TS -2.64± 0.775 0.81± 0.001 0.88± 0.025 0.88± 0.004 -0.02 

ES -6.24± 0.206 0.66± 0.004 0.94± 0.003 0.89± 0.001 -0.94 

QTE 0.94± 0.004 0.83± 0.002 0.92± 0.003 0.60± 0.028 0.82 

QTS 0.93± 0.005 0.79± 0.008 0.63± 0.057 0.80± 0.008 0.79 

QES 0.92± 0.013 -13.91± 6.842 0.87± 0.010 0.77± 0.007 -2.83 

TES -3.42± 0.106 0.80± 0.002 0.93± 0.005 0.87± 0.002 -0.2 

QTES 0.91± 0.015 0.81± 0.009 0.89± 0.015 0.76± 0.009 0.84 

Std.  Calibrationa 0.96 0.80 -0.39 0.70 0.52 

Uncalibratedb 0.84 0.80 0.55 0.76 0.74 
a SL-RC and two correction factors are calibrated by adjusting mean annual streamflow was calibrated against 

observed values (Müller-Schmied et al., 2021). 
b SL-RC is set to the default 2.0 and correction factors were set to 1 1105 

 

Table 6: Mean and standard deviation of model performance for the compromise 

solutions (N = 8) of the calibration experiments of the Brahmaputra basin. µNSE, ALL 

represents the mean across the four objectives. The highest objective values in all 

experiments and in each group are highlighted. Objectives of the standard calibration and 

uncalibrated model is also shown. 

 Mean ± Std. Deviation  

Experiment NSEQ NSETWSA NSEET NSESWSA µNSE, ALL 

Q 0.95± 0.001 0.74± 0.052 0.79± 0.208 0.86± 0.043 0.84 

T 0.23± 0.978 0.97± 0.004 0.72± 0.335 0.70± 0.166 0.66 

E 0.01± 0.589 0.79± 0.108 0.96± 0.002 0.66± 0.169 0.61 

S -0.19± 0.709 0.77± 0.065 0.74± 0.178 0.95± 0.002 0.57 

QT 0.94± 0.003 0.96± 0.003 0.73± 0.221 0.79± 0.073 0.86 

QE 0.95± 0.001 0.83± 0.027 0.96± 0.004 0.85± 0.037 0.9 

QS 0.95± 0.002 0.73± 0.095 0.69± 0.209 0.94± 0.001 0.83 

TE -0.19± 0.965 0.96± 0.003 0.96± 0.005 0.83± 0.024 0.64 
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TS -0.12± 0.698 0.96± 0.005 0.71± 0.339 0.94± 0.002 0.62 

ES -0.32± 0.606 0.86± 0.044 0.96± 0.004 0.94± 0.001 0.61 

QTE 0.94± 0.003 0.96± 0.003 0.96± 0.001 0.84± 0.065 0.93 

QTS 0.94± 0.002 0.96± 0.003 0.71± 0.268 0.94± 0.002 0.89 

QES 0.95± 0.002 0.87± 0.020 0.96± 0.003 0.94± 0.001 0.93 

TES -0.14± 0.590 0.95± 0.003 0.96± 0.002 0.94± 0.003 0.68 

QTES 0.94± 0.003 0.95± 0.005 0.96± 0.004 0.94± 0.001 0.95 

Std.  Calibration 0.90 0.77 0.26 0.64 0.64 

Uncalibrated 0.72 0.81 0.68 0.57 0.70 

In comparison to the standard calibration, the 4-objective calibration resulted in better 

performance in the Brahmaputra for all four response variables, and in all variables except 

streamflow in the Ganges basin, where the standard calibration leads to a very high NSEQ of 1135 

0.96 (Table 6Table 6). As the streamflow simulation for the single objective calibration with Q 

only is better in the two basins than the standard calibration, this suggests that the slight decrease 

of streamflow performance in 4-objective calibration in the Ganges basin is due to some trade-

offs among the objectives. The improvement in ET by the 4-objective calibration was much 

higher than the improvement in other variables which underpins the need to include ET as a 1140 

calibration variable. This is corroborated by the observation that the standard calibration 

procedure of Müller Schmied et al. (2021) with Q only degrades the ET simulation even in 

comparison to the uncalibrated WGHM. This, in fact, contradicts the conclusion of the study 

by Nijzink et al. (2018), in which they analysed the potential of several remote sensing products 

to constrain hydrological models and calibrated five hydrological models for 27 small 1145 

catchments in Europe. They concluded that remote sensing-based ET observations were less 

effective at adequately constraining the posterior parameter distribution compared to other 

observations such as soil moisture, TWSA, and snow. One probable cause could be the fact that 

the catchment size in that study was too small (< 1600 km2) for the ET products to be effective; 

in our study, the catchment size is significantly larger. 1150 

As mentioned above, multi-objective calibration enhances the overall model 

performance at the expense of a slight decrease in the performance of individual variables, 

which is common and often expected. Many studies have reported a reduction in the 

performance of streamflow simulation when the model is calibrated with streamflow and 

TWSA observations, as compared to models calibrated solely with streamflow data (Li et al., 1155 

2018; Bai et al., 2018; Yassin et al., 2017; Rakovec et al., 2016; Livneh and Lettenmaier, 2012). 

The trade-offs among other variables are not well-documented in the literature. Mei et al. (2023) 

compiled a list of the previous studies that incorporated streamflow observations and 

observations of some additional variables in model calibration. They documented changes in 
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performance in four target variables—streamflow, ET, soil moisture, and TWS—as a result of 

incorporating additional variables in those studies. In addition to the trade-offs between 

streamflow and TWSA, we also observed substantial trade-offs between NSEQ and NSESWSA, 1195 

between NSETWSA and NSESWSA, and NSESWSA and NSEET (Figure 5Figure 5). The trade-offs 

among the objectives behave differently in the two basins as the shape of the Pareto Front (PF) 

of non-dominated solutions differs significantly between the basins. In general, PFs of the 

Ganges experiments have a smooth curvature with extended spread near the theoretical 

optimum of the objectives, while the Pareto fronts in the Brahmaputra basin are mostly very 1200 

steep resembling right angles (Figure 5Figure 5). Due to the conflicts among objectives, the 

number of non-dominated solutions in the Ganges basin became much larger than in the 

Brahmaputra where the trade-offs are much smaller. 

 In contrast to the apparent trade-offs among objectives, there could be other non-

traditional interactions among the objectives. For instance, in all replications of the calibration 1205 

with only NSEQ in the Ganges basin, we observed negative NSETWSA (not shown). But using 

only NSETWSA as the calibration objective, we consistently observed very high values in NSEQ 

for all replications. Likewise, when NSEET is used as the only calibration objective, NSEQ 

exhibited a significant decrease across replications in the two basins. However, when NSEQ is 

employed as the only objective, reasonable performance in ET simulation is observed. Hence, 1210 

the nature of the association between a pair of objectives, when attempting to describe the trade-

offs, is neither unidirectional nor easily traceable through correlation analysis. Furthermore, 

there could be three-way trade-offs and so forth in a high-dimensional objective space, making 

them challenging to detect. While the association and causality of such relationships are indeed 

intriguing, examining the nature of trade-offs among the objectives is beyond the scope of the 1215 

current study.  

The substantial variations of the performance values of the compromise solutions across 

the calibration repetitions, which can be regarded as the “uncertainty” of the calibration method 

itself, further complicates the assessment of trade-offs among objectives. Bai et al. (2018) 

observed inconsistent conclusions in the literature regarding the impact on streamflow 1220 

situations simulations when incorporating GRACE data for model calibration in addition to 

streamflow observations. Some studies reported a "positive" impact, while others reported a 

"negative" impact. We argue that the source of such inconsistency could be attributed to (i) the 

failure to account for the uncertainty in the calibration method, (ii) the lack of convergence to 

the Pareto front, and (iii) an ill-posed problem formulation resulting from the choice of an 1225 
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inappropriate model, non-identifiable parameters, or inadequate data. Thus, the uncertainty of 

the calibration outcome should be considered whenever possible when discussing trade-offs. 

While we consider the impact of observational uncertainty in the next chapter of this study, we 

found here that the uncertainty stemming from the calibration method differed significantly 

between the two basins. In the Ganges basin, the highest uncertainties were observed in single-1230 

objective calibration cases involving only NSEQ and only NSEET. Among the 3-objective 

calibrations, the highest level of uncertainty was observed in calibrations without NSETWSA and 

without NSEQ. High variations were observed in those objectives that were not used in the 

calibration. In the Brahmaputra basin, among the single objective calibration cases, calibrations 

with only NSETWSA and with only NSEET exhibited the highest level of variation. When one 1235 

object is omitted from calibration, the calibrations without NSEQ and without NSEET generated 

the highest degree of uncertainty in the objectives NSEQ and NSEET, respectively. Probably the 

most important calibration cases for trade-off analysis are the bivariate cases with two 

objectives, which in our case exhibit an insignificant level of uncertainty resulting from the 

calibration method itself. This indicates the high reliability of our findings regarding the trade-1240 

offs among objectives discussed in the earlier paragraphs. 

In the Ganges, calibrating against ET leads to negative NSE values for TWSA and 

SWSA. This conflict between ET and TWSA results in the only positive NSEQ value that was 

obtained in two-objective calibrations without Q. In a single-objective calibration against ET, 

the calibration algorithm aims at keeping storage as high as possible to ensure that there is 1245 

enough water for evaporation and there is no penalty for overestimating storage. However, 

including TWSA forces the algorithm to release some of the storage to achieve a good fit for 

TWSA, which leads to a better simulation of Q compared to a single calibration against ET. 

Calibration against ET and SWSA does not improve Q in the Ganges, suggesting that the 

adjustment of TWSA is likely related to soil storage. In the Brahmaputra basin, the trade-off 1250 

between ET and TWSA is very small and the two-objective calibration against ET and TWSA 

does not improve Q. 

4.2.2 Impact of observation uncertainty on the calibration outcome 

The uncertainties associated with individual data points in the observation time series alter the 

values of the performance criteria. We conducted an assessment of this effect by perturbing all 1255 

observations using their respective uncertainties through a Monte Carlo simulation, resulting in 

1000 perturbed time series for each variable. Subsequently, we calculated the objective (NSE) 

values for the compromise solutions across all eight replications of the 4-objective calibration. 
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The largest deviations of NSE from the reference values, i.e., the values of the compromise 

solutions with the original observation time series, were found in streamflow for both the 1285 

Ganges and the Brahmaputra basins (on average 0.26 and 0.12 respectively), followed by ET 

(0.12 and 0.10) (Figure 6Figure 6-b, c). Low deviation in the range of 0.05-0.07 was observed 

for both storage variables (TWSA and SWSA) for which the means are always zero in both the 

simulation values and observation data. The changes of the objective function values with the 

perturbed time series may result in different Pareto solutions. For this reason, we propose a 1290 

mechanism to objectively identify a group of solutions that could be considered alternatives to 

the compromise solution.  

 

Figure 6: Uncertainty in NSE of the compromise solutions (CS) in the repeated 

experiments of 4-objective calibration, obtained by propagation of observational 1295 

uncertainties into objectives. (a) Scatter plot of objective values (NSE) of (i) all Pareto 

solutions, (ii) the compromise solutions (NSECS) and (iii) the compromise solutions 

computed for 1000 perturbed observation time series (NSEOU) for the Ganges basin.  

Three thresholds (M2, M3, M4) are visualized as options to delineate the space of 

compromise solutions under consideration of observational uncertainties (see text for 1300 

details). Density functions (CDFs and PDFs) of NSEOU in the Ganges basin (b) and in the 

Brahmaputra basin (c). PDFs represent the deviations NSEOU – NSECS. The black dashed 

vertical lines in the density plots delineate the zones of NSE decrease and NSE increase. 

Densities of NSEOU for each compromise solution of a single repetition are plotted in grey 

and the density function of NSEOU of all compromise solutions are in black. The black 1305 

dots show the objective values of the compromise solutions.  

We tested several objective thresholding methods to delineate the space of solutions that 

can be considered equivalent to the compromise solution in view of the observation 
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uncertainties. In the following, we name them “acceptable Pareto solutions considering 

observation uncertainties”. The minimum NSE value of all compromise solutions (Min NSECS) 

in the repeated experiments is discarded as a threshold (M1) as it represents the uncertainty due 

to the random start of the parameter search in the calibration algorithm only, but not the 

observation uncertainties themselves (Table 7Table 7). The second threshold (M2) is computed 1335 

by subtracting the standard deviation of all the objective values obtained with perturbed 

observation time-series (Std. dev. NSEOU) from Min NSECS. The third threshold (M3) is 

computed by subtracting the mean absolute deviation of objective values with perturbed time 

series from the reference values (MAD NSEOU, REF; the objectives of compromise solutions are 

used as reference values), the threshold is set at Min NSECS – MAD NSEOU, REF. Threshold M4 1340 

is the 5th percentile of NSEOU which ensures 95% of NSEOU remain above the threshold. For 

the most unrestricted option (M5) the minimum value of NSEOU is taken as the threshold.  

Table 7: Metrics related to the spread of the objectives of the compromise solutions (CS) 

for two sources of uncertainties – observation uncertainty and uncertainty due to the 

calibration method, i.e., random starting population used during the parameter search. 

Observation uncertainty is propagated by perturbation of the observation with a Monte-

Carlo process within the estimated uncertainty bound of an observable and then 

computing objectives for those perturbed observation time series (NSEOU) (N = 1000). 

Source of 

uncertainty 

 Ganges Brahmaputra 

Metric Q 

TWS

A ET 

SWS

A Q TWSA ET SWSA 

Optimization 

algorithm 
Min NSECS 0.883 0.794 0.870 0.743 0.932 0.944 0.952 0.934 

Range NSECS 0.050 0.029 0.037 0.023 0.011 0.016 0.009 0.006 

Observations Min NSEOU  0.620 0.748 0.715 0.678 0.803 0.894 0.770 0.852 

The 5th Percentile of 

NSEOU 

0.719 0.773 0.759 0.708 0.838 0.917 0.819 0.882 

Std. dev NSEOU 0.080 0.013 0.022 0.017 0.034 0.010 0.015 0.019 

MAD of NSEOU, REF 0.063 0.015 0.092 0.016 0.036 0.019 0.113 0.019 

In some instances, we found that the standard deviation of NSEOU (Std. dev. NSEOU) 

and MAD NSEOU are smaller than the range of objectives in the compromise solutions of the 

repeated experiments. For this reason, we argue M2 and M3 are incapable of distinguishing the 1345 

objective uncertainty attributed to the observational uncertainty from other sources of 

uncertainty like the randomness in the calibration method itself. Thus, we rejected them as 

appropriate thresholds for identifying candidates for the compromise solution, although they 

could find a reasonable number of good solutions (Table S5). Worth noting, Werth and Güntner 

(2010) used a similar strategy like M2 for identifying the uncertainty in objectives. We also 1350 

rejected the least restrictive threshold M5 as a singular extreme low value of an objective can 

extremely limit the efficacy of the threshold. On the contrary, the threshold M4 holds a balance 
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between restrictedness and efficacy. While it excludes the poor extremes, 95% of good 1380 

objective values are kept in the final set. Using M4, we obtained over 1400 solutions (16% of 

the total number) in the Ganges basin and 221 solutions (65%) in the Brahmaputra basin having 

model performance the threshold. Overall, the performance of the “acceptable” Pareto solutions 

considering observation uncertainties is seen generally higher with smaller dispersion in the 

Brahmaputra basin than those of the Ganges basin.  1385 

Table 9: Number of the acceptable Pareto solutions considering observation uncertainties 

in the 4-objective calibration, for the different thresholds M1 to M5 in delineating the set 

of “acceptable” solutions.  

Basin 

Total 

Solutionsa 

M1: 

MINCS 

M2: MINCS 

–MADOBJOU 

M3: 

MINCS – 

STDOBJOU 

M4:  

Q05, OBJOU 

M5:  

MIN 

OBJOU 

Ganges 8705 43 647 483 1419 2506 

Brahmaputra 339 38 154 118 221 259 
a total number of non-dominated Pareto solutions in 8 replications 

Any perturbation of the ET observation time series within its uncertainty ranges leads 

to a lower NSE than the reference value in both basins (Figure 6Figure 6). In all cases, NSEOU 

is worse than the objectives of the compromise solutions. A similar performance decrease was 

observed in NSEOU for all variables, except for streamflow in the Ganges basin where only 1390 

about half of the uncertainty-perturbed time series lead to a decrease in NSEOU while the rest 

causes NSEOU to increase. The aforementioned indicates that during calibration the parameters 

are so finely tuned to the (undisturbed) observation time series that any modification of the time 

series leads to a deterioration of the objective values. On the one hand, this corroborates the 

strength of the optimization algorithm. On the other hand, it clearly indicates overfitting of the 1395 

parameters. This raises questions about their usability in scenarios where variations in 

observations are anticipated such as model predictions in a different time period or when 

extrapolating parameters for uncalibrated basins (parameter regionalization). The reason why 

streamflow in the Ganges behaves differently in this regard is not very clear; one probable cause 

could be that during the choice of the compromise solutions, most high-performing solutions 1400 

for the streamflow variable were rejected due to low performance in other variables (the 

maximum NSEQ in all solutions is 0.97 but max. NSEQ in the compromise solutions is 0.93).  

It is also noteworthy to observe that the shape of the density function for changes in 

objectives (Figure 6Figure 6 b, c) is closely associated with the error structure of observations. 

An average percentage bias was considered as error of the streamflow and SWSA observables, 1405 

whereas for TWSA and ET absolute errors were assumed. When converted to the percentage 
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error, it was observed that the TWSA and ET observation error has a sinusoidal seasonal 

structure. In contrast, the constant percent bias in streamflow and SWSA causes high errors in 

the monsoon season in the perturbed observations and added only very small bias in the dry 

winter season. This ultimately causes a left skewness to the distribution of deviations of NSEOU 1430 

for streamflow and SWSA (Figure 6Figure 6 b,c). 

 

Figure 7: The distribution of parameters of the compromise solutions in the 8 repeated 4-

objective calibration experiments (greendarkorange), and the “acceptable” Pareto 

solutions considering observation uncertainties (orangecyan), and all Pareto solutions in 1435 

all replications (grey). The overall compromise solution (red black dashed vertical line) 

represents the compromise solution among all solutions in all replications. The parameter 

value of the standard WGHM is shown with the black red dashed vertical line. 

When comparing the parameter values of the eight compromise solutions (group 1) to 

those of the “acceptable” Pareto solutions considering observation uncertainties (group 2) 1440 

(Figure 7Figure 7), the parameter distributions of these two groups are very similar in most 

cases, although the total number of solutions in group 2 is very high. Mostly we observed 

flattening and widening of the density curves for the parameter values in the solutions of group 

2. The peak of the density curves of two groups matches most of the time with few exceptions 

with slight horizontal shifts. The overall compromise solution, which is the compromise 1445 

solution among all outcomes of all replications, does however not always coincide with the 
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peak of the density distributions. The standard WGHM parameter values significantly differ 

from the calibrated values for most parameters in the two basins. 

The impact of observation uncertainty is often overlooked in hydrological model calibrations, 

largely due to the lack of strategies for incorporating this uncertainty into the calibration framework. 1450 

These uncertainties can severely limit the applicability of calibrated models, as they are often overfitted 

to mean or single observation values. Even small fluctuations in the observations can degrade the  

performance of the model, potentially disqualifying it as a non-dominated solution. This, in turn, reduces 

the reliability of what is considered a compromise solution. Conversely, identifying solutions similar to 

the compromise solution that account for observation uncertainty, while maintaining an acceptable level 1455 

of performance, could enhance the reliability of the calibration outcomes. However, scrutinizing these 

“acceptable solutions considering observation uncertainties”, comes with challenges. The influence of 

observational uncertainties varies across variables and depends on the objective functions used in 

calibration as well as the nature of the data uncertainties. 

4.2.3 Parameter identifiability and equifinality 1460 

Figure 8 illustrates that the 4-objective calibration effectively reduced the parameter space 

substantially in the two basins for most parameters, particularly when comparing the 

compromise solutions across repeated experiments. Even when we consider the acceptable 

Pareto solutions considering observation uncertainties, a significant reduction in the a-priori 

parameter range was achieved for most cases, except two parameters in the Ganges and five in 1465 

Brahmaputra basin. This already indicates that a good level of identifiability has been achieved. 

A parameter is considered identifiable for a given set of observations if the true value of the 

parameter can be inferred with confidence (Wu et al., 2019). The degree of identifiability is 

usually measured by the posterior standard deviation for individual parameters and posterior 

covariance matrix for multiple parameters (Wu et al., 2019; Arendt et al., 2012a, b). Cibin et 1470 

al. (2010) determined parameter identifiability in the Soil and Water Assessment Tool (SWAT) 

model through visual inspection of scatter plots of model parameters against their 

corresponding performance metric, considering a parameter as identifiable if a distinct 

performance metric maximum was observable in the scatter plot. In the absence of a posterior 

distribution, we measured the degree of identifiability as the ratio of the parameter range in the 1475 

compromise solutions of the eight replications to the a-priori parameter range (Table S8Error! 

Reference source not found. and Table S9). 
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Figure 8: Parallel coordinate plot of all Pareto solutions (grey), the compromise 

parameter sets (N=8, black dashed darkorange), the overall compromise solution (black 1480 

solid cyan), and the set of “acceptable Pareto solutions considering observation 

uncertainty” (Greendark green) of the 4-objective calibration in the Ganges basin (a) and 

the Brahmaputra (b) basin 

Due to the fewer parameters involved in the Ganges calibration experiments, better 

parameter identifiability is observed within the basin compared to experiments in the 1485 

Brahmaputra basin. We investigated how individual observations influence parameter 

identifiability during calibration and explored the impact of sensitivity on parameter 

identifiability. We found that the parameters in the Ganges basin were usually better identified 

in comparison to parameters in the Brahmaputra basin. The least satisfactory result was 

obtained for the calibration with Q only where the ranges of only two parameters (P-PM and 1490 

SL-RC) in the compromise solutions are less than 15% of the a-priori range. Five parameters 

(P-PM, EP-PTh, SL-MSM, SL-RC, and SW-RRM) are better constrained by the calibration 

with TWSA alone. Two sets of six parameters are best constrained by the ET and the SWSA 

variables, respectively. For ET, they are P-PM, EP-PTh, SL-MSM, SL-RC, GW-MM, and SW-

DC; for SWSA the parameters are SL-MSM, SL-RC, SW-RRM, SW-WD, NA-GM, and NA-1495 

SM. Compared to the sensitivity indices (mean EET, Table S2Error! Reference source not 

found.), the parameters that are better identified in the SWSA-only calibration are those with 

the highest sensitivity for this variable. Wu et al. (2019) demonstrated that identifiability is 

largely related to the sensitivity or significance of the calibration parameters with respect to 
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response variables. For ET, however, SW-DC and GW-MM are well constrained by the 

calibration but are not among the influential parameters for any signature of ET in the SA. For 

TWSA and Q the relationships between parameter identifiability based on the range ratio and 1535 

the most sensitive signatures from SA are more diverse. In their study, Soares and Calijuri 

(2021) also observed a clear disparity between the results of their identifiability analysis and 

sensitivity analysis, although the majority of the results in the two analyses were similar. One 

should keep in mind, though, that the objective function used in calibration is only one of the 

signatures that was used to measure sensitivity in the SA. Nevertheless, we usually observe 1540 

high correlations among the objectives and the parameters for at least one of the variables (Table 

S4). 

In 2- or more-objective calibrations in the Ganges basin, the degree of parameter 

identifiability varies with the participating variables. Interestingly, parameters are best 

identifiable in the experiment ES in which the range of all parameters after calibration is less 1545 

than 2.2% of the a-priori range except one for which the range ratio is only 11%. In the case of 

the 4-objective calibration, most parameter range ratios are below or around 20%, only two 

parameters have a range ratio of more than 30%. Arendt et al. (2012a) demonstrated that 

employing multiple responses, which exhibit mutual dependencies on a common set of 

parameters, can enhance the identifiability of those parameters. However, if the dependencies 1550 

among themselves exhibit inverse relationships, parameter identifiability may worsen, as 

observed in the case of the 4-objective calibration.  

In the Brahmaputra basin, four parameters (P-PM, SN-MT, SN-TG, and SL-RC) are 

constrained well (i.e., they have low coverage of their a-priori range in the compromise solution 

sets) with the variable Q, two parameters (SN-MT and SL-MSM) by the ET variable, and two 1555 

(SN-TG and SW-RRM) by the SWSA observations.In the Brahmaputra basin, the identifiability 

of parameters tends to be lower than in the Ganges basin. Four parameters (P-PM, SN-MT, SN-

TG, and SL-RC) are constrained well (i.e., they have low coverage of their a-priori range in the 

compromise solution sets) with the variable Q, two parameters (SN-MT and SL-MSM) by the 

ET variable, and two (SN-TG and SW-RRM) by the SWSA observations. However, TWSA 1560 

seems to have no discernible control on any of the parameters in the basin. Parameters with a 

strong inverse correlation, such as GW-MM and GW-RFM (correlation of -0.90, Table 

S7Error! Reference source not found.) leading to reduced identifiability in both the 

parameters in Brahmaputra basin (Figure 8Figure 8), may become better identifiable if one 

parameter is omitted from the calibration process.  1565 
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Non-uniqueness, or equifinality, arises from the fact that a singular set of parameters is 

incapable of generating a unique set of model responses. This occurs because there are 1590 

numerous pathways to achieve the same target (Beven and Binley, 1992), or the capacity for 

uniqueness is compromised, whether observation data is absent or present, often as a 

consequence of summarizing the response variable (Wagener et al., 2003). In the presence of 

input and data uncertainties, the degree of equifinality increases, even if the structural 

discrepancies within the model remain unchanged. As the non-uniqueness problem intensifies, 1595 

it is expected that non-identifiability also rises. If, however, the equifinality arises from an 

inverse correlation among parameters, a parameter can still be identifiable if the opposing 

parameter is omitted. For example, GW-MM exhibits a strong negative correlation (-0.90, Table 

S7Error! Reference source not found.) with the parameter GW-RFM among the “acceptable” 

Pareto solutions considering observation uncertainties, which reduced identifiability in both the 1600 

parameters in Brahmaputra basin (Figure 8Figure 8). If one of them is omitted from the 

calibration process, the other may become identifiable. 

The analysis of parameter identifiability does not provide clear evidence that including 

additional observables in the calibration process necessarily enhances identifiability, 

particularly in the presence of strong correlations among parameters. On the contrary, 1605 

interactions among highly sensitive parameters must be carefully considered when selecting 

parameters for calibration, especially in multi-variable calibration scenarios. However, a strong 

relationship was observed between parameter identifiability and the number of parameters 

being optimized. Specifically, in almost all single and multi-objective calibrations within the 

Ganges basin, the parameter ranges were significantly reduced compared to the calibration 1610 

experiments conducted in the Brahmaputra basin (Tables S8 and S9). 

Table 10: Correlation between parameter values and the calibration objectives in all 

compromise solutions of all calibration experiments 

 Pearson Correlation Coefficient (r) 
 

 Ganges Brahmaputra 
 

Parameters NSEQ NSETWSA NSEET NSESWSA NSEQ 

NSETWS

A NSEET NSESWSA 

P-PM -0.94 0.33 0.42 -0.58 -0.69 0.19 0.02 0.29 

EP-PTh 0.17 -0.61 -0.73 0.10 0.21 0.20 0.44 0.08 

SN-FT     0.50 0.09 -0.20 0.04 

SN-MT     0.18 0.11 0.11 0.03 

SN-DM     0.37 0.12 -0.05 0.29 

SN-TG     0.54 -0.38 -0.06 0.14 

SL-MSM 0.00 0.45 0.89 -0.02 0.06 -0.06 0.44 0.05 
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SL-RC 0.40 0.27 0.47 0.08 -0.52 -0.38 0.01 -0.09 

GW-RFM     -0.44 0.05 -0.06 -0.11 

GW-MM -0.02 0.23 0.28 0.15 0.42 -0.32 0.04 0.35 

GW-DC     0.12 -0.21 0.09 -0.08 

SW-RRM -0.50 -0.21 0.00 -0.88 0.33 0.18 0.00 -0.58 

SW-LD     0.19 -0.25 0.00 0.09 

SW-WD -0.45 -0.07 0.23 -0.71 0.05 -0.09 -0.16 -0.34 

SW-DC 0.46 -0.37 -0.41 0.25 0.48 0.14 -0.05 0.33 

NA-GM 0.16 -0.74 -0.28 -0.19 -0.34 -0.35 -0.12 -0.20 

NA-SM 0.46 -0.21 -0.10 0.15     

 

4.2.4 Validation 

We compare the simulations of the four variables of the overall compromise solution 

and the ensemble of the acceptable Pareto solutions considering observation uncertainties (Sect. 

4.2.2) of the 4-objective calibration experiment with the observations. Except in one to two 1630 

months during monsoon, the simulation with the overall compromise solution overestimates 

monthly streamflow in the Ganges basin (Figure 9Figure 9). This led to an overestimation of 

monthly means for all months. The annual streamflow amplitudes are also overestimated in all 

years except one (2002). In comparison, the standard WGHM calibration with only streamflow 

observation resulted in a better fit in streamflow simulations with a lower magnitude of under- 1635 

and overestimations of monthly means, annual amplitudes, and annual means. Surprisingly, the 

uncalibrated model simulates the streamflow in the basin better than the compromise solutions 

in all signatures except in the seasonal amplitude (Table 8Table 8). The uncalibrated model 

mostly performed well to represent the low-flows. 
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Figure 9: Simulations of streamflow (a, b), TWSA (c, d), ET (e, f), and SWSA (g, h) in the 1655 

Ganges basin with the overall compromise solution of the 4-objective calibration. The 

simulation results with the acceptable Pareto solutions considering observation 

uncertainties (greendarkgreen), with uncalibrated WGHM (red dotted line), and with the 

calibrated model with standard approach (dashed greyred solid) are also shown; monthly 

time series (a, c, e, g) and monthly mean values (b, d, f, h). The mean was computed over 1660 

the entire period with available observations. 

In the Brahmaputra basin, the simulation with the compromise solution underestimates 

streamflow for the monthly time series and annual averages (Figure 10Figure 10a). However, 

except for few high rainfall years, the seasonal amplitude was mostly overestimated (Figure 

10Figure 10b). In comparison to the model that was calibrated with the standard approach, the 1665 

compromise solution in this basin performed better with lower mean absolute deviation in all 

aspects of streamflow simulation (Table 8Table 8).  

Table 8: Comparing the overall compromise solution of the 4-objective calibration, 

standard calibration, and uncalibrated model across four signatures: monthly time series 

(MTS), monthly means (MM), annual time series (ATS), and seasonal amplitude (SNA). 

The mean absolute deviation (MAD) was computed by comparing observations and 

simulations across the entire observation period, expressed as a percentage of the 

observation mean. Observation gaps were filled using linear regressions (𝑦 = 𝛽₀ + 𝛽₁𝑥) for 

individual months, accounting for seasonality and trends. 

  Mean Absolute Deviation (MAD) as fractions of observation mean 

  Ganges Brahmaputra 

 

Sig 

Obs. 

Meana,b 

Comp. 

Sol. 

Std. 

calibration 

Un-

calibrated  

Obs. 

Mean 

Comp. 

Sol. 

Std. 

calibration 

Un-

calibrated 

Q 
MT

S 

11855.8 30.6% 16.7% 28.2% 22140.2 14.3% 19.4% 34.7% 
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MM 26.8% 7.5% 24.7% 7.5% 13.6% 34.6% 

ATS 26.8% 8.1% 24.7% 7.0% 7.0% 34.6% 

SN

A 

43274.4 20.4% 11.0% 34.0% 48345.7 13.9% 17.1% 16.9% 

TWSA 
SN

A 

323.4 11.7% 19.4% 13.4% 270.0 7.3% 28.9% 25.0% 

ET 

MT

S 

51.7 11.3% 41.9% 26.5% 46.7 6.1% 33.3% 17.9% 

MM 10.2% 39.5% 25.2% 3.2% 33.3% 17.0% 

ATS 9.7% 5.1% 13.0% 1.9% 33.3% 9.6% 

SN

A 

65.0 6.9% 105.3% 48.6% 52.7 8.0% 7.6% 45.1% 

SWSA 
SN

A 

187.8 15.4% 31.2% 19.0% 245.6 5.8% 55.8% 61.2% 

a units for Q is [m3s-1] and [mm] for all other variables 
b means of seasonal amplitude in [mm year-1]  

Negative trends of TWSA are clearly visible in observations of both the Ganges and the 

Brahmaputra basins (Figure 9Figure 9c and Figure 10Figure 10c). Because we used only few 

years of TWSA data in calibration (2003-2009) and within this period the trend was not very 1695 

obvious, all calibrations fail to represent the TWSA decrease in the two basins. Nevertheless, 

beyond the calibration period, the seasonality and peaks are correctly represented (with high 

correlation coefficients between observation and simulation in 2010-2019, Table 9Table 9) by 

the simulations with the compromise solutions of the two basins. Also, the mean deviation of 

TWSA is 11.7% and only 7.3% of mean annual amplitude in the Ganges and the Brahmaputra 1700 

basin respectively. The model’s inability to produce the negative TWSA trends causes an 

overestimation of TWSA in the later years of the simulation time series. The performance of 

the calibrated model with standard calibration in simulating the TWSA is worse than that of the 

compromise solution and even worse than the uncalibrated model.  

ET simulation with the compromise solution in the Ganges basin mostly underestimates 1705 

the observed values except for a few winter months. It should be noted that the interannual 

variability of amplitude is very small in the ET observation in the two basins (13.6 mm in the 

Ganges and 11mm in the Brahmaputra). The seasonal amplitude is underestimated by the 

compromise solution in most years in the Ganges basin; whereas, slightly overestimated in the 

Brahmaputra basin in most years. The monthly means in the Ganges is underestimated for all 1710 

months except March. In the Brahmaputra basin the monthly means match well with the 

observations with only 3% of mean absolute deviation; the annual mean in the basin also has a 

very small deviation from the observations.  
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 1735 

Figure 10: Simulations of streamflow (a, b), TWSA (c, d), ET (e, f), and SWSA (g, h) in 

the Brahmaputra basin with different solutions. See description of Figure 9Figure 9. 

For SWSA, the simulation with the compromise solutions is limited in accurately 

reproducing the mean seasonality of the observed SWSA: the seasonal peak of the simulated 

SWSA is on average one month delayed relative to the observations. The earlier increase of 1740 

SWSA by one month as compared to the simulations could be explained by the detection of 

rice paddies or wet soil signal by the satellite method (Papa et al., 2006)  which are not captured 

by the model. 

 The seasonal amplitude is slightly underestimated by the simulations, especially in the 

later observational years (2002-2007) (Figure 9Figure 9h). In contrast, in the Brahmaputra 1745 

basin, the compromise solution simulates the SWSA dynamics very well (Figure 10Figure 10g, 

h).  

The simulation results with the ensemble of compromise solutions obtained by 

consideration of observation uncertainties (group 2) usually show similar dynamics to the 

compromise solution itself. The uncertainty of the group 2 simulation results, i.e., the bandwidth 1750 

around the compromise solution, is smaller than the observation uncertainty bandwidth (Table 

S13Error! Reference source not found.) except for streamflow and SWSA simulations in the 

Ganges basin. The bandwidth of ET in the group 2 solutions is the lowest (32.2% and 23.8% of 

the observed mean in the Ganges and Brahmaputra basins respectively in comparison to 

observation average uncertainty band width of 53.4% and 50.5% in the two basins). In the 1755 
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Brahmaputra basin, the monthly streamflow simulations with the group 2 solutions fall mostly 

within the observation while in the Ganges basin the monthly streamflow peaks are mostly 1780 

overestimated and pass beyond the upper limit of observation uncertainty. Although the group 

2 simulation bandwidth was smaller for TWSA for the two basins than the observation 

uncertainty bands, the simulation bandwidth follows the observation uncertainty band only in 

the Brahmaputra basin. In the Ganges basin, with the exception of a few years, the group 2 

simulation uncertainty band misses the observation uncertainty band even in the calibration 1785 

period. The group 2 uncertainty of ET simulations falls within the observation uncertainty band 

in both basins. For SWSA, due to the better representation of its seasonality in Brahmaputra, 

also the uncertainty of SWSA simulations is better covered by the observation uncertainty than 

in the Ganges basin. 

As discussed before, due to the unavailability of observation data in ET and SWSA in 1790 

the validation period, model validation was only possible for the Q and TWSA simulations of 

the compromise solution (Table 9Table 9). The simulation error (RMSE) in the validation 

period increased by factors of 2 to 5 relative to the calibration in most cases, indicating strong 

degradation of model performance in the validation period. The performance in monthly values 

(MTS) and mean monthly values (MM) is slightly better than the annual means (ATS) and 1795 

seasonal amplitudes (SNA) in both basins because the calibration objectives were monthly time 

series. The performance with respect to these last two signatures is worse also in the calibration 

period. However, all the signatures stay with high correlations in the validation period which 

implies the timing and the seasonal dynamics were well captured by the simulations with the 

compromise solutions. The validation metrics should be carefully interpreted as the amount of 1800 

validation data is small. 

Table 9: Performance metrics of the overall compromise solution of the 4-objective 

calibration of the Ganges and Brahmaputra basin for all observables and for four 

signatures: monthly time-series (MTS), annual average time-series (ATS), monthly mean 

(MM), and seasonal amplitude (SNA). Calibration period is until 2009 from the start of 

observation availability and validation period starts from 2010 till the last observation 

year 

 NSE/Correlationa (r)/RMSEb  

 Calibration [variable year – 2009] Validation [2010 – variable year]  

 MTS ATS MM SNA MTS ATS MM SNA 

 Ganges  

Q 0.91/0.98/ 

4978.1 

 

0.72/0.98/ 

3378.6 

0.95/1.00/3

407.6 

-0.01/0.86/ 

8930.3 

0.55/0.96

/9560.1 

-4.68/0.99/ 

5826.1 

 

0.66/0.97/7

704.2 

-17.99/0.38/ 

21303.2 
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TWSA 0.81/0.92/4

7.0 

 

0.15/0.61/4

2.1 

 

0.95/0.99/2

1.1 

 

0.54/0.90/ 

38.2 

 

0.20/0.88

/114.4 

-1.13/0.82/ 

114.8 

0.18/0.97/9

8.6 

0.22/0.87/ 

56.6 

ET 0.88/0.96/ 

8.0 

-8.34/0.83/ 

5.2 

 

0.90/0.97/7

.2 

 

-1.32/0.49/ 

5.3 

 

    

SWSA 0.77/0.88/ 

31.5 

 

-6.83/0.15/ 

10.2 

 

0.84/0.92/2

5.6 

 

-2.72/0.24/ 

35.3 

 

    

 Brahmaputra  

Q 0.94/0.98/ 

4038.8 

0.56/0.82/ 

1828.5 

0.98/1.00/ 

2042.4 

0.56/0.80/ 

7411.8 

0.85/0.97

/7323.5 

-0.28/0.92/ 

4942.3 

0.87/0.99/6

109.9 

-1.95/0.79/ 

13054.9 

TWSA 0.96/0.98/ 

20.7 

0.94/0.99/ 

10.2 

0.99/1.00/9

.3 

0.78/0.92/ 

22.4 

0.72/0.96

/54.5 

-0.58/0.92/ 

54.3 

0.78/1.00/4

5.6 

0.55/0.85/ 

26.0 

ET 0.96/0.98/ 

3.7 

-0.98/0.18/ 

1.1 

0.99/1.00/ 

1.7 

-3.63/-

0.09/5.5 

    

SWSA 0.94/0.97/ 

22.3 

0.43/0.66/ 

8.8 

0.98/0.99/ 

11.0 

0.50/0.74/ 

18.3 

    

a Pearson correlation coefficient 
b unit of RMSE for Q is m3s-1 and mm for the rest of the variables 

5 Conclusions 

In this study, we introduced a multi-objective calibration framework for estimating 1805 

basin-specific optimal parameter sets for large-scale hydrological models. The framework can 

make use of observations for multiple model output variables as well as for multiple signatures 

of each variable. Applying this approach to the Ganges and Brahmaputra basins with the global 

hydrological model WGHM, we analysed the impacts, benefits and challenges of multi-variable 

multi-signature sensitivity analysis and multi-variable calibration. 1810 

The multi-variable multi-signature sensitivity analysis facilitates the identification of 

important parameters that would remain unidentified if not all variables or signatures were 

considered. Due to the different hydrological characteristics of the modelling units to be 

calibrated, the sensitivity analysis has to be carried out individually for each unit, resulting in 

identification of different influential parameters and in different numbers of parameters to be 1815 

calibrated. The proposed parameter selection method is based on the relative impact of 

individual parameters compared to all parameters. The method can be adjusted with respect to 

the impact thresholds and by weighting variables and signatures depending on the modelling 

purpose and is thus an approach that can be used in a flexible way in other studies.  

The results of this study show that parameter identifiability is inversely related to the 1820 

number of parameters that were selected for calibration. Although a reasonably good level of 

parameter identifiability in the multi-variable calibrations was achieved, the results do not 

provide evidence that using multiple observational variables generally enhances parameter 

identifiability. Certain combinations of observations used for calibration resulted in a high 
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parameter identifiability, e.g., calibration with ET and SWSA or with TWSA, ET, and SWSA 1825 

in the Ganges basin but this is not the case of the Brahmaputra basin. While in the Ganges basin, 

all 2-variable calibrations lead to a better identifiability than all 1-variable calibrations, 

calibration against Q only results in a better identifiability than all the 2-variable calibration 

except calibration with Q and SWSAöThus it depends on the basin as well as on the selected 

calibration parameters, to what degree the inclusion of observations of multiple variable in the 1830 

model calibration increase parameter identifiability. 

Including additional observations in the calibration consistently improved the overall 

model performance. The highest overall performance is achieved by the calibration that takes 

into account all four output variables. The value of calibrating with Q and TWSA observations 

for the overall model performance was higher than that of ET and SWSA observations. The 1835 

degree of improvements depends on basin characteristics as well as on the trade-offs and 

interactions among the objectives. This, in turn, depends on the capability of the model to 

represent the relevant hydrological processes in the basin. In line with Döll et al. (2024), we 

found that using streamflow observations in the calibration is essential for achieving good 

streamflow simulations, which are the primary target for most hydrological model applications. 1840 

In contrast, good simulation results for TWSA could also be achieved in the Brahmaputra basin 

even when TWSA was not used for calibration but Q and ET. 

In this study, we considered two sources of uncertainty in the calibration process: (i) 

those arising from the search algorithm used to identify the non-dominated Pareto-optimal 

parameter sets and (ii) those stemming from observational errors. As the random seeds used in 1845 

the BORG algorithm lead to non-negligible variations in the calibration results and model 

performances, in particular for the variables that were not used for calibration, a sufficient 

number of replications of the calibration runs with different initial parameter sets is vital. The 

results show that a large part of the variations of “optimal” parameter sets can be attributed to 

observational uncertainties, a factor often overlooked in calibration exercises. We demonstrated 1850 

that in the presence of observational uncertainty, relying solely on a ‘best solution’ or a 

compromise solution can become unreliable, leading to decreased overall efficiency. To address 

this challenge, we propose a method to select an ensemble of ‘acceptable’ solutions from the 

Pareto solutions derived by the search algorithm, taking into account uncertainties in the 

observation data used for calibration.  1855 

The multi-variable multi-signature parameter selection and calibration methodology 

presented in this study is suggested for other calibration studies with GHMs or other large-scale 

hydrological models for all large river basins of the globe where diverse observations of model 
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output variables are available. While the methodology also allows for considering the effect of 

observational uncertainties on the multi-criterial calibration results, it is imperative to further 1860 

explore how accounting for observation uncertainties can enhance the robustness of calibration 

outcomes. Developing uncertainty-based performance metrics would represent a significant 

advancement in this direction. In regions with limited data availability, leveraging remote 

sensing-based streamflow observations such as HydroSAT (http://hydrosat.gis.uni-stuttgart.de) 

or SWOT can provide new insights, complementing TWSA data from GRACE, GRACE-FO, 1865 

and GRACE-C (GRACE-Continuity). Given the availability of numerous contemporary ET 

products, future calibration efforts should explore the benefits of considering these ET data 

sources. 

 

In line with the research questions outlined at the beginning of this paper, we draw the following 1870 

conclusions from the sensitivity and calibration analyses conducted in this study: 

How does a multi-variable multi-signature sensitivity analysis enhance the 

identification of critical parameters? Had we only considered one signature, we would have 

identified 5-9 parameters in the Ganges basin and 9-12 parameters in the Brahmaputra basin 

instead of 10 and 16 parameters, respectively. Similarly, if the sensitivity to parameters was 1875 

based on Q or TWSA only, we would have missed some of the influential parameters of 

hydrological processes that govern the remaining observables. Furthermore, using multiple 

signatures captured various facets of a response variable and ensured that influential parameters 

were identified. However, the method of parameter selection is not without pitfalls. Parameters 

with significant impacts may not be selected because the cut-off threshold (e.g., 50% of the 1880 

total effect as employed in this study) has been surpassed by only a few of the top-ranked 

parameters. For example, in the Brahmaputra basin, despite making a substantial 12% 

contribution to the total impact, the parameter SL-RC appeared non-influential for ET (Table 

S3, Figure 4). Increasing the threshold, however, would result in selecting a larger number of 

parameters, potentially leading to unnecessary expansion of the decision space and, 1885 

consequently, an increase in computational demand and a higher degree of equifinality (Sect. 

4.2.3).  In the case of the Brahmaputra, a large number of 16 parameters were identified as 

highly influential with a 50% "total effect" threshold. We refrained from manually adjusting 

the automated calibration parameter selection algorithm because manually inspecting parameter 

effects and hand-picking influential parameters is impractical when dealing with the thousands 1890 

of basins or modelling units to be covered by a GHM. 



49 

 

Does the inclusion of observations of multiple variables in model calibration increase 

parameter identifiability and thus reduce model equifinality? Several factors influence 

parameter identifiability in model calibration, including (i) the sensitivity of the target variables 

to the selected parameters, (ii) the interactions, especially inverse correlations, among the 1895 

parameters, (iii) the degree of equifinality in the model, (iv) the dimensionality of the decision 

space or parameter space, and (v) the ability of the calibration algorithm to converge to the true 

solution.  We observed that, in the calibration experiments in the Ganges basin, the parameters 

were better constrained by the observations than in the Brahmaputra basin. The lower 

identifiability in the Brahmaputra basin indicates a higher degree of equifinality. The number 1900 

of parameters in the Brahmaputra basin was higher, and we observed some negative correlations 

among parameters among the acceptable Pareto solutions (Table S5), which contributed to the 

larger degree of equifinality in the basin. However, when the correlation among parameters in 

the compromise solutions was analysed, a high positive correlation was observed in both basins 

(not shown). Comparing the coverage ratio of the a-priori parameter range in the compromise 1905 

solutions across calibration experiments (Table S6 and Table S7) provides some indications that 

the inclusion of multiple variables does increase parameter identifiability (Sect. 4.2.3). 

Nevertheless, the impact of multivariable calibration on identifiability relies on the capability 

of the participating variables to enhance identifiability. 

To what degree does the inclusion of observations of TWSA, actual evapotranspiration, 1910 

and surface water storage anomalies, in addition to streamflow observations, improve the 

simulation of important hydrologic variables by a GHM such as WGHM? In calibration 

experiments where TWSA observations were not used for the Ganges basin, the experiment 

failed to generate solutions that satisfactorily simulated TWSA. In contrast, for the Brahmaputra 

basin, the inclusion of TWSA observations improved the already reasonable TWSA simulation 1915 

results. The overall performance of the calibrated model, when TWSA observations were added 

to Q, improved in both study basins. Further enhancements were observed when ET and SWSA 

were additionally included as calibration objectives. However, the contribution of these latter 

two variables was only marginal in the Ganges basin and ranged from low to medium in the 

Brahmaputra basin. The inclusion of any additional observational variable in model calibration 1920 

consistently resulted in an overall performance improvement, and using all four observational 

variables for calibration led to the best overall fit in both river basins. Streamflow observations 

are crucial in model calibration to achieve reasonable streamflow simulations. We observed a 

very poor fit of streamflow in most of the experiments where streamflow observations were 

excluded, which aligns with findings from many previous studies (Sect. 4.1.1). As the 1925 
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availability of in-situ streamflow observations is decreasing, concerns are growing within the 

community regarding the future calibration of models without streamflow observations. While 

there are currently several remote sensing-based streamflow products available, they often 

contain significant uncertainties.  

What is the impact of uncertainties on the calibration outcome? Can we integrate 1930 

knowledge about observation uncertainties when selecting acceptable or compromise Pareto 

solutions? We quantified two sources of uncertainties in the calibration process – uncertainties 

arising from the calibration algorithm and uncertainties stemming from observational errors. 

Uncertainties stemming from randomness in the optimization algorithm can arise from factors 

such as the use of a different set of initial populations, which may influence the search algorithm 1935 

to follow different paths toward convergence in the vicinity of the true solution. Additionally, 

asynchronous randomization, caused by variable loads and traffic in a multiprocessing 

environment (e.g., a high-performance cluster computing system), can lead to the evaluation of 

samples in a different order. This, in turn, can introduce variations in the dynamics of the 

solution archive (the repository for non-dominated solutions at any given point in time). 1940 

Consequently, this variability could result in a distinct set of Pareto solutions, even when the 

same initial population is employed. A sufficient number of replications of the calibration 

experiment are vital for reaching meaningful conclusions and mitigating errors caused by 

uncertainties in the calibration process. The second category of uncertainty, namely 

uncertainties arising from observational errors, has an even larger influence on the calibration 1945 

outcome. However, this influence varies among the variables and depends on the objective 

function used in calibration. When we propagated observational uncertainties into the objective 

values of the compromise solutions, we found that a decrease in the model performance score 

occurred. This raises questions about the reliability of the so-called compromise solutions. For 

this reason, we implemented a method to identify a set of solutions that demonstrate similar 1950 

performance to the compromise solution. Simulations with these acceptable Pareto solutions 

considering observation uncertainties largely fell within the bands of observation uncertainty 

in our examples, affirming the effectiveness of this method in identifying a reliable ensemble 

of high-quality solutions. We acknowledge that the concept of the “acceptable” solution bears 

similarities to the “behavioral” solutions described by Hornberger and Spear (1981), and there 1955 

may be a need to reconcile these terms. The method utilized in our study holds the potential to 

objectively identify a behavioral threshold while taking into account observation uncertainties. 

In this study, we employed uncorrected ET observations in the calibration experiments. Huang 

et al. (2020) demonstrated that bias-corrected ET data significantly improve model calibration 
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compared to using uncorrected data. In future calibration experiments of the WGHM model, 1960 

bias-corrected ET data should be considered. Additionally, the ET data we utilized only extends 

up to the year 2007. Given the availability of numerous contemporary ET products spanning a 

longer period, future calibration efforts should investigate the advantages of incorporating these 

additional ET data sources. In regions with limited data availability, remote sensing-based 

streamflow observations such as HydroSAT (http://hydrosat.gis.uni-stuttgart.de) or SWOT 1965 

offer new perspectives, in addition to TWSA from GRACE, GRACE-FO, and GRACE-C 

(GRACE-Continuity).  

For GHMs, parameter estimation at the global scale is crucial. Therefore, the methodology 

presented here should be tested for calibrating other river basins where observations of different 

model output variables are available. Furthermore, we should explore how observation 1970 

uncertainties can be used to enhance the robustness of calibration outcomes. More 

methodological investigations are required to incorporate observation uncertainties directly into 

the calibration process. The identification and development of uncertainty-based performance 

metrics would represent a significant step forward in this direction. 

 1975 
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