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Appendix A: Elementary Effect Test (EET) method of Morris (1991) 

A1.1 Background 

Morris's method of sensitivity analysis, also known as the Elementary Effect Test (EET) 
method, involves calculating local derivatives of a response variable 𝑦𝑦 (where 𝑦𝑦=𝑓𝑓(𝜃𝜃); 
𝜃𝜃∈𝑅𝑅𝑚𝑚; 𝑚𝑚 being the number of input parameters) with respect to each parameter 𝜃𝜃𝑖𝑖, referred 
to as the Elementary Effect (EE) of 𝜃𝜃𝑖𝑖, at multiple random reference points 𝜃𝜃ref,𝑗𝑗   (where 
𝑗𝑗∈{1,2,…,𝑟𝑟}; 𝑟𝑟 being the total number of elementary effects for a single parameter) in the 
parameter space Ω (where Ω⊆𝑅𝑅𝑚𝑚). The elementary effect of the 𝑖𝑖th parameter is computed as 
follows: 

𝐸𝐸𝐸𝐸(𝑖𝑖,𝑗𝑗) = 𝑓𝑓�𝜃𝜃(𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑗𝑗)�−𝑓𝑓(𝜃𝜃(𝑝𝑝𝑝𝑝𝑟𝑟,𝑗𝑗))
∆(𝑖𝑖,𝑗𝑗)

                                                                                                   (I) 

where, 𝜃𝜃(ref, j) = ( 𝜃𝜃(1, j), 𝜃𝜃(2, j) , …, 𝜃𝜃(i, j) , …, 𝜃𝜃(m, j) ) is the jth reference parameter set and 𝜃𝜃(per, i, j) 
= ( 𝜃𝜃(1, j), 𝜃𝜃(2, j) , …, 𝜃𝜃(i, j)  + Δ(i,j), …, 𝜃𝜃(m, j) ) is the perturbed parameter set where the ith parameter 
has been perturbed by Δ(i,j). 

The average of the elementary effects is expressed as the sensitivity index (SI) of the ith 
parameter as follows, 

𝑆𝑆𝑆𝑆𝑖𝑖 = 𝐶𝐶𝑖𝑖 × 1
𝑟𝑟

∑ 𝐸𝐸𝐸𝐸(𝑖𝑖,𝑗𝑗)
𝑟𝑟
𝑗𝑗=1                                                                                                          (II) 

Ci is a scaling constant used for intercomparison of the indices (SI) among parameters and 
enables ranking of these indices. Typically, the parameter range (RANGEi = MAXi – MINi) is 
used as the scaling constant. The method of Morris also produces an unbiased estimator of the 
variance S2 that reflects the combined effect of nonlinearity of the model response and 
interactions among input parameters (Morris, 1991). 

𝑆𝑆𝑖𝑖
2 = 𝑉𝑉𝑉𝑉𝑅𝑅(𝐸𝐸𝐸𝐸(𝑖𝑖,𝑗𝑗))                                                                                                                 (III) 

The unbiased standard error of the mean, i.e., the standard error of the sensitivity index, can be 
estimated as follows. 



𝑆𝑆𝐸𝐸𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖

√𝑟𝑟
                                                                                                                             (IV) 

Campolongo et al. (2011) proposed a slight modification of (II) to use absolute elementary 
effect, which is necessary for non-monotonic models, e.g., 

𝑆𝑆𝑆𝑆𝑖𝑖
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In the current study, we followed the sampling design proposed by Campolongo et al. (2011). 
However, the modification described in (V) was not applied in this study for two reasons: (1) 
our model response was not a scalar value but rather a time-series, and (2) the measure of 
change in the target response variable was computed as the Root Mean Squared Deviation 
(RMSD) of model responses between perturbed and reference parameter sets, only after both 
runs had finished. Because the model response consists of a monthly time-series, the RMSD 
was computed as follows: 
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where S(per, k) and S(ref, k) refer to simulated model responses at the kth point in time (i.e., month) 
with the perturbed parameter set (𝜃𝜃per) and the reference parameter set (𝜃𝜃ref) and N is the number 
of time points in the response time-series. 

The total number of model runs required by the EET methods is r × (m + 1). 

A1.2 Workflow 

Below, we present the workflow of the EET sensitivity analysis, adapted from the workflow 
presented in Pianosi et al. (2015). In the following algorithms, vectors and matrices are shown 
in boldface, indices are presented in parentheses, and procedures are described with 
parentheses in regular font.  

Algorithm 1: Workflow of EET Sensitivity Analysis 
Step 1: Create the EET design matrix X following the radial-design of Campolongo et al. 

(2011), as in Algorithm 2. The size of X is n × m; n := r × (m + 1) is the number of 
sample, m is the number of parameters, and r is the number of EEs to be computed. 

Step 2: Run the simulation model with each parameter set represented by each row of X and 
compute Y = RMSD(S1, S2) as in Equation (VI) 

Input: X := the sampling matrix 
Output: Y := f(X), the model response which is the RMSD between two runs 
Set n ← no. of rows in X  
Create a matrix Y with size n × 1 
Set i ← 0 
For i ← 0 to (n - 1) do 

𝜃𝜃 ← X (i, :) 
S1 ← WGHM (𝜃𝜃), given WGHM is a predefined procedure that describes 

the WaterGAP GHM 
If i is divisible by (m + 1) then 



S2 ← S1 
Y (i) ← 0 

Else do 
Y (i) ← RMSD (S1, S2), given RMSD procedure computes the root 

mean squared deviation between two 
simulated time-series 

End if 
End for 
 
Alternative approach (for scalar model response): 
Input: X := the sampling matrix 
Output: Y := f(X), the scalar model response 
 
Set n ← no. of rows in X  
Create a matrix Y with size n × 1 
Set i ← 0 
For i ← 0 to (n-1) do 

𝜃𝜃 ← X (i, :) 
Y (i) ← f(𝜃𝜃), given f(.) is the procedure defining the model 

End for 

Step 3: Compute EET Indices 

Input: X := the sampling matrix, Y := f(X), RNG := a vector of size m with parameter 
ranges 

Output: mi := a vector of the mean sensitivity indices of m parameters, sigma :=  a 
vector of standard deviations of sensitivity indices for all parameters 

 
Set r ← no. of elementary effects, m ← no. of parameters, n ← r * (m + 1) 
Set mi ← a vector of m zeros, sigma ← a vector of m zeros, EE ← an r-by-m matrix 

of zeros 
 
Set i ← 0, k ← 0 
While i < n do 
 

Set j ← 0 
For j ← 0 to (m-1) do 

△𝜃𝜃 ← X (i, j) – X((i + j + 1), j) 
△Y ← Y(i) – Y (i + j + 1) 
 
EE (k, j) ← |△Y / △𝜃𝜃 | * RNG(j) 

End for 
 
k ← (k + 1) 
i ← i + (m + 1) 

End while 
 
For j ← 0 to (m-1) do 

mi (j) ← mean(EE(:,j)), given the procedure mean (...) computes the mean 



sigma(j) ← std(EE(:,j)), given the procedure std(…) computes standard 
deviation 

End for  

Step 4: Select influential parameters according to Algorithm 3 

 

Algorithm 2: Generation of EET Sampling Matrix following the radial design of 
Campolongo et al. (2011) 

Input: r := number of elementary effects per parameter, m := number of parameters, etc := 
parameter PDFs and additional information 

Output: X := an n-by-m sampling matrix where n = r * (m + 1) 

Step 1: Generate reference and auxiliary samples using Latin Hypercube Sampling (LHS) 
strategies. The procedure lhcube(…) produces an n-by-m sample matrix, where n is 
the number of samples and m is the number of parameters, respecting probability 
distribution functions (PDF) of each parameter. The lhcube(…) procedure requires 
three arguments: (i) n, (ii) m, and (iii) etc := parameter PDFs and additional 
information. See the SAFE toolbox of Pianosi et al. (2015) for detailed 
implementation of lhcube(…) procedure and its usage for drawing samples from 
parameter PDFs. 

Set n ← r * 2 
AB ← lhcube(n, m, etc) 
Set A ← the first half of AB as the reference or baseline points 
Set B ← the last half of AB as the auxiliary points. The auxiliary points is used to 

deviate parameter values from baseline one at a time 

Step 2: Create the sampling matrix X using the r-by-m baseline matrix A and r-by-m auxiliary 
matrix B. Each parameter value in a baseline sample is replaced one at a time by the 
respective parameter value in an auxiliary sample to produce m perturbed samples 
for each reference sample. Finally, stack all perturbed samples along with the 
reference of the baseline sample to form the final sampling matrix X. 

Set n ← r  * (m + 1), X ← an n-by-m matrix with zero values 
Set i ← 0 
For k ← 0 to (r – 1) do 

Set a ← A(k, :), b ← B(k, :) 
Set c ← m-by-m matrix by replicating the a vector m times  
For j ← 0 to (m – 1) do c (j, j) ← b(j) End 
X(i, :) ← a i.e., copy all elements of a into the ith row of X 
For j ← 0 to (m – 1) do X ((i+j+1), :) ← c(j, :) End 
i ← i + (m + 1) 

End for 
 

 

A1.3 Parameter Selection 



In the multi-variable, multi-signature setting of sensitivity analysis, our goal was to select 
parameters that exerted sufficient influence on any of the target response variables across all 
chosen signatures. Therefore, we individually selected influential parameters for each variable 
and for each signature, and then we aggregated these selections across all cases. Additionally, 
during the selection process, we considered the uncertainty associated with sensitivity indices 
and implemented a Monte Carlo simulation procedure to repeatedly run the selection process, 
thereby producing a robust solution for parameter selection. 

For practical reasons and to limit the number of selected parameters, we employed a selection 
strategy that ensured a minimum share of all effects produced by all parameters for a response 
variable and its associated signature were accounted for by the selected parameters. In this 
study, we chose a threshold of at least 50% of the combined total effect to define the minimum 
share. The selection algorithm is presented in Algorithms 3 and 4. 

Algorithm 3: Parameter selection for Multi-variable Multi-signature SA 
Input: mi := mean indices for each variable and for each signature, sigma := the standard 

deviation of the sensitivity indices, r := no. of elementary effects considered to 
compute the mean index, th := selection threshold, n := number of Monte Carlo runs 

Output: S := a vector of true/false indicating which parameters should be selected 

Set S ← a vector of Booleans initialized to false 
For each response variable do 

For each signature do 
mi ← get mean sensitivity indices for the target variable and signature 
sigma ← get standard deviation of the indices 
 
Set sem ← a vector of m zeros 
For j ← 0 to (m – 1) do sem(k) ← sigma(k) / sqrt(r) End 
 
s ← ParameterSelection(mi, sem, th, n), the procedure 

ParameterSelection(…) finds top influential parameter. 
The procedure details are provided in Algorithm 4. 

 
For j ← 0 to (m – 1) do  

If s(j) = true then S(j) ← true 
End for  

End for 
End for 
 

 

Algorithm 4: S = ParameterSelection (mi, sem, th, n); a procedure to find top influential 
parameters that cover at least a given share of the combined total effect, accounting 
for the uncertainty in the sensitivity indices  

Input: mi := mean sensitivity indices, sem := standard errors of the mean indices, th := 
selection threshold of cumulative effect, n := no. of Monte-Carlo runs 



Output: S := a vector of m true/false values representing whether each parameter should be 
selected 

Step 1: Generate n set of sensitivity indices by Monte Carlo simulation 
Set m ← size of mi 
Set MM ← an n-by-m matrix of zeros 
For j ← 0 to (m – 1) do  

low ← mi(j) – sem (j) 
high ← mi(j) + sem (j) 
MM(:, j) = uniform(low, high, n) i.e., fill each column of MM with random n 

values uniformly distributed between the ‘low’ and the ‘high’. The 
procedure uniform(…) produces random values from a uniform 
distribution. 

End for 

Step 2: For each set of sensitivity indices, sort the parameters by their effects on a response 
variable and compute share of each parameters effect to the sum of all effects. 
Compute cumulative effect of the sorted parameter list and finally select parameters 
sequentially until the cumulative effect reaches or exceeds the specific threshold 
Set S ← a Boolean vector of size m, initialized to false  
Set a ← a vector of m zeros, e1 ← a vector of m zeros, e2 ← a vector of m zeros 
For i ← 0 to (n – 1) do  

a ← MM(i, :) 
e1 ← a(:)/sum(a) i.e., the relative effect for each parameter 
jj ← indices of sorted e1 in descending order 
e2(jj) ← cumsum(e1(jj)) i.e., given the cumsum(…) procedure computes the 

cumulative sum of a vector, produce the cumulative sums with 
the sorted e1 values and store them in proper order in e2. 

 
Set temp ← e2(jj), k ← 0 
While k  < m do 

i_sel ← jj(k) 
S(i_sel) ← true   i.e., select high influential parameters until cumulative 

effect reaches or exceeds the threshold  
If temp(k) >= th then  

break  
End if 
k ← k + 1 

End while 
End for  

 
 


