
Appendices of
The benefits and trade-offs of multi-variable calibration of
WGHM in the Ganges and Brahmaputra basins
H. M. Mehedi Hasan et al.

Correspondence to: H.M. Mehedi Hasan (mehedi.hasan@gfz-potsdam.de)

Appendix A: Elementary Effect Test (EET) method of Morris (1991)

A1.1 Background

Morris's method of sensitivity analysis, also known as the Elementary Effect Test (EET)
method, involves calculating local derivatives of a response variable 𝑦𝑦 (where 𝑦𝑦=𝑓𝑓(𝜃𝜃);
𝜃𝜃∈𝑅𝑅𝑚𝑚; 𝑚𝑚 being the number of input parameters) with respect to each parameter 𝜃𝜃𝑖𝑖, referred
to as the Elementary Effect (EE) of 𝜃𝜃𝑖𝑖, at multiple random reference points 𝜃𝜃ref,𝑗𝑗 (where
𝑗𝑗∈{1,2,…,𝑟𝑟}; 𝑟𝑟 being the total number of elementary effects for a single parameter) in the
parameter space Ω (where Ω⊆𝑅𝑅𝑚𝑚). The elementary effect of the 𝑖𝑖th parameter is computed as
follows:

𝐸𝐸𝐸𝐸(𝑖𝑖,𝑗𝑗) = 𝑓𝑓�𝜃𝜃(𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖,𝑗𝑗)�−𝑓𝑓(𝜃𝜃(𝑝𝑝𝑝𝑝𝑟𝑟,𝑗𝑗))
∆(𝑖𝑖,𝑗𝑗)

 (I)

where, 𝜃𝜃(ref, j) = (𝜃𝜃(1, j), 𝜃𝜃(2, j) , …, 𝜃𝜃(i, j) , …, 𝜃𝜃(m, j)) is the jth reference parameter set and 𝜃𝜃(per, i, j)
= (𝜃𝜃(1, j), 𝜃𝜃(2, j) , …, 𝜃𝜃(i, j) + Δ(i,j), …, 𝜃𝜃(m, j)) is the perturbed parameter set where the ith parameter
has been perturbed by Δ(i,j).

The average of the elementary effects is expressed as the sensitivity index (SI) of the ith
parameter as follows,

𝑆𝑆𝑆𝑆𝑖𝑖 = 𝐶𝐶𝑖𝑖 × 1
𝑟𝑟

∑ 𝐸𝐸𝐸𝐸(𝑖𝑖,𝑗𝑗)
𝑟𝑟
𝑗𝑗=1 (II)

Ci is a scaling constant used for intercomparison of the indices (SI) among parameters and
enables ranking of these indices. Typically, the parameter range (RANGEi = MAXi – MINi) is
used as the scaling constant. The method of Morris also produces an unbiased estimator of the
variance S2 that reflects the combined effect of nonlinearity of the model response and
interactions among input parameters (Morris, 1991).

𝑆𝑆𝑖𝑖
2 = 𝑉𝑉𝑉𝑉𝑅𝑅(𝐸𝐸𝐸𝐸(𝑖𝑖,𝑗𝑗)) (III)

The unbiased standard error of the mean, i.e., the standard error of the sensitivity index, can be
estimated as follows.

𝑆𝑆𝐸𝐸𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖

√𝑟𝑟
 (IV)

Campolongo et al. (2011) proposed a slight modification of (II) to use absolute elementary
effect, which is necessary for non-monotonic models, e.g.,

𝑆𝑆𝑆𝑆𝑖𝑖
∗ = 𝐶𝐶𝑖𝑖 × 1

𝑟𝑟
∑ �𝐸𝐸𝐸𝐸(𝑖𝑖,𝑗𝑗)�𝑟𝑟

𝑗𝑗=1 (V)

In the current study, we followed the sampling design proposed by Campolongo et al. (2011).
However, the modification described in (V) was not applied in this study for two reasons: (1)
our model response was not a scalar value but rather a time-series, and (2) the measure of
change in the target response variable was computed as the Root Mean Squared Deviation
(RMSD) of model responses between perturbed and reference parameter sets, only after both
runs had finished. Because the model response consists of a monthly time-series, the RMSD
was computed as follows:

𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅 = 𝑓𝑓�𝜃𝜃𝑝𝑝𝑝𝑝𝑟𝑟� − 𝑓𝑓�𝜃𝜃𝑟𝑟𝑝𝑝𝑓𝑓� = �1
𝑁𝑁

∑ �𝑆𝑆(𝑝𝑝𝑝𝑝𝑟𝑟,𝑘𝑘) − 𝑆𝑆(𝑟𝑟𝑝𝑝𝑓𝑓,𝑘𝑘)�
2𝑁𝑁

𝑘𝑘=1 (VI)

where S(per, k) and S(ref, k) refer to simulated model responses at the kth point in time (i.e., month)
with the perturbed parameter set (𝜃𝜃per) and the reference parameter set (𝜃𝜃ref) and N is the number
of time points in the response time-series.

The total number of model runs required by the EET methods is r × (m + 1).

A1.2 Workflow

Below, we present the workflow of the EET sensitivity analysis, adapted from the workflow
presented in Pianosi et al. (2015). In the following algorithms, vectors and matrices are shown
in boldface, indices are presented in parentheses, and procedures are described with
parentheses in regular font.

Algorithm 1: Workflow of EET Sensitivity Analysis
Step 1: Create the EET design matrix X following the radial-design of Campolongo et al.

(2011), as in Algorithm 2. The size of X is n × m; n := r × (m + 1) is the number of
sample, m is the number of parameters, and r is the number of EEs to be computed.

Step 2: Run the simulation model with each parameter set represented by each row of X and
compute Y = RMSD(S1, S2) as in Equation (VI)

Input: X := the sampling matrix
Output: Y := f(X), the model response which is the RMSD between two runs
Set n ← no. of rows in X
Create a matrix Y with size n × 1
Set i ← 0
For i ← 0 to (n - 1) do

𝜃𝜃 ← X (i, :)
S1 ← WGHM (𝜃𝜃), given WGHM is a predefined procedure that describes

the WaterGAP GHM
If i is divisible by (m + 1) then

S2 ← S1
Y (i) ← 0

Else do
Y (i) ← RMSD (S1, S2), given RMSD procedure computes the root

mean squared deviation between two
simulated time-series

End if
End for

Alternative approach (for scalar model response):
Input: X := the sampling matrix
Output: Y := f(X), the scalar model response

Set n ← no. of rows in X
Create a matrix Y with size n × 1
Set i ← 0
For i ← 0 to (n-1) do

𝜃𝜃 ← X (i, :)
Y (i) ← f(𝜃𝜃), given f(.) is the procedure defining the model

End for

Step 3: Compute EET Indices

Input: X := the sampling matrix, Y := f(X), RNG := a vector of size m with parameter
ranges

Output: mi := a vector of the mean sensitivity indices of m parameters, sigma := a
vector of standard deviations of sensitivity indices for all parameters

Set r ← no. of elementary effects, m ← no. of parameters, n ← r * (m + 1)
Set mi ← a vector of m zeros, sigma ← a vector of m zeros, EE ← an r-by-m matrix

of zeros

Set i ← 0, k ← 0
While i < n do

Set j ← 0
For j ← 0 to (m-1) do

△𝜃𝜃 ← X (i, j) – X((i + j + 1), j)
△Y ← Y(i) – Y (i + j + 1)

EE (k, j) ← |△Y / △𝜃𝜃 | * RNG(j)

End for

k ← (k + 1)
i ← i + (m + 1)

End while

For j ← 0 to (m-1) do

mi (j) ← mean(EE(:,j)), given the procedure mean (...) computes the mean

sigma(j) ← std(EE(:,j)), given the procedure std(…) computes standard
deviation

End for

Step 4: Select influential parameters according to Algorithm 3

Algorithm 2: Generation of EET Sampling Matrix following the radial design of
Campolongo et al. (2011)

Input: r := number of elementary effects per parameter, m := number of parameters, etc :=
parameter PDFs and additional information

Output: X := an n-by-m sampling matrix where n = r * (m + 1)

Step 1: Generate reference and auxiliary samples using Latin Hypercube Sampling (LHS)
strategies. The procedure lhcube(…) produces an n-by-m sample matrix, where n is
the number of samples and m is the number of parameters, respecting probability
distribution functions (PDF) of each parameter. The lhcube(…) procedure requires
three arguments: (i) n, (ii) m, and (iii) etc := parameter PDFs and additional
information. See the SAFE toolbox of Pianosi et al. (2015) for detailed
implementation of lhcube(…) procedure and its usage for drawing samples from
parameter PDFs.

Set n ← r * 2
AB ← lhcube(n, m, etc)
Set A ← the first half of AB as the reference or baseline points
Set B ← the last half of AB as the auxiliary points. The auxiliary points is used to

deviate parameter values from baseline one at a time

Step 2: Create the sampling matrix X using the r-by-m baseline matrix A and r-by-m auxiliary
matrix B. Each parameter value in a baseline sample is replaced one at a time by the
respective parameter value in an auxiliary sample to produce m perturbed samples
for each reference sample. Finally, stack all perturbed samples along with the
reference of the baseline sample to form the final sampling matrix X.

Set n ← r * (m + 1), X ← an n-by-m matrix with zero values
Set i ← 0
For k ← 0 to (r – 1) do

Set a ← A(k, :), b ← B(k, :)
Set c ← m-by-m matrix by replicating the a vector m times
For j ← 0 to (m – 1) do c (j, j) ← b(j) End
X(i, :) ← a i.e., copy all elements of a into the ith row of X
For j ← 0 to (m – 1) do X ((i+j+1), :) ← c(j, :) End
i ← i + (m + 1)

End for

A1.3 Parameter Selection

In the multi-variable, multi-signature setting of sensitivity analysis, our goal was to select
parameters that exerted sufficient influence on any of the target response variables across all
chosen signatures. Therefore, we individually selected influential parameters for each variable
and for each signature, and then we aggregated these selections across all cases. Additionally,
during the selection process, we considered the uncertainty associated with sensitivity indices
and implemented a Monte Carlo simulation procedure to repeatedly run the selection process,
thereby producing a robust solution for parameter selection.

For practical reasons and to limit the number of selected parameters, we employed a selection
strategy that ensured a minimum share of all effects produced by all parameters for a response
variable and its associated signature were accounted for by the selected parameters. In this
study, we chose a threshold of at least 50% of the combined total effect to define the minimum
share. The selection algorithm is presented in Algorithms 3 and 4.

Algorithm 3: Parameter selection for Multi-variable Multi-signature SA
Input: mi := mean indices for each variable and for each signature, sigma := the standard

deviation of the sensitivity indices, r := no. of elementary effects considered to
compute the mean index, th := selection threshold, n := number of Monte Carlo runs

Output: S := a vector of true/false indicating which parameters should be selected

Set S ← a vector of Booleans initialized to false
For each response variable do

For each signature do
mi ← get mean sensitivity indices for the target variable and signature
sigma ← get standard deviation of the indices

Set sem ← a vector of m zeros
For j ← 0 to (m – 1) do sem(k) ← sigma(k) / sqrt(r) End

s ← ParameterSelection(mi, sem, th, n), the procedure

ParameterSelection(…) finds top influential parameter.
The procedure details are provided in Algorithm 4.

For j ← 0 to (m – 1) do

If s(j) = true then S(j) ← true
End for

End for
End for

Algorithm 4: S = ParameterSelection (mi, sem, th, n); a procedure to find top influential
parameters that cover at least a given share of the combined total effect, accounting
for the uncertainty in the sensitivity indices

Input: mi := mean sensitivity indices, sem := standard errors of the mean indices, th :=
selection threshold of cumulative effect, n := no. of Monte-Carlo runs

Output: S := a vector of m true/false values representing whether each parameter should be
selected

Step 1: Generate n set of sensitivity indices by Monte Carlo simulation
Set m ← size of mi
Set MM ← an n-by-m matrix of zeros
For j ← 0 to (m – 1) do

low ← mi(j) – sem (j)
high ← mi(j) + sem (j)
MM(:, j) = uniform(low, high, n) i.e., fill each column of MM with random n

values uniformly distributed between the ‘low’ and the ‘high’. The
procedure uniform(…) produces random values from a uniform
distribution.

End for

Step 2: For each set of sensitivity indices, sort the parameters by their effects on a response
variable and compute share of each parameters effect to the sum of all effects.
Compute cumulative effect of the sorted parameter list and finally select parameters
sequentially until the cumulative effect reaches or exceeds the specific threshold
Set S ← a Boolean vector of size m, initialized to false
Set a ← a vector of m zeros, e1 ← a vector of m zeros, e2 ← a vector of m zeros
For i ← 0 to (n – 1) do

a ← MM(i, :)
e1 ← a(:)/sum(a) i.e., the relative effect for each parameter
jj ← indices of sorted e1 in descending order
e2(jj) ← cumsum(e1(jj)) i.e., given the cumsum(…) procedure computes the

cumulative sum of a vector, produce the cumulative sums with
the sorted e1 values and store them in proper order in e2.

Set temp ← e2(jj), k ← 0
While k < m do

i_sel ← jj(k)
S(i_sel) ← true i.e., select high influential parameters until cumulative

effect reaches or exceeds the threshold
If temp(k) >= th then

break
End if
k ← k + 1

End while
End for

