Hydrogen solubility of stishovite provides insights into water transportation to deep Earth

Mengdan Chen¹, Changxin Yin¹, Danling Chen¹, Long Tian¹, Liang Liu¹, and Lei Kang¹

¹Department of Geology, Northwest University/State Key Laboratory of Continental Dynamics, Xi'an, 710069, China

Correspondence to: Lei Kang (kanglei@nwu.edu.cn); Liang Liu (liuliang@nwu.edu.cn)

Abstract. Water dissolved in nominally anhydrous minerals (NAMs) can be transported to deep regions of the Earth through subducting slabs, thereby significantly influencing the physicochemical properties of deep Earth materials and impacting dynamic processes in the deep Earth. Stishovite, a prominent mineral found in subducting slabs, remains stable at mantle conditions ranging from pressure of 9-50 GPa and can incorporate varying amounts of water (H⁺, OH⁻, and H₂O) within its crystal structure. Consequently, stishovite plays a crucial role in transporting water into deep Earth through subducting slabs. This paper provides a comprehensive review of the research progress concerning water (hydrogen) solubility in stishovite. The key factors that govern water solubility in stishovite are summarized as temperature, pressure, water fugacity and aluminum content. Combined with published results on the dependence of water solubility on the aforementioned parameters, this paper proposes a new equation for water solubility in Al-bearing stishovite can be described by the relationship. Calculation results based on this equation suggest that stishovite may effectively absorb water released from processes such as hydrous mineral breakdown, dehydration reactions, and volume reduction, ultimately contributing to the presence of a water-rich transition zone.

1 Introduction

Water plays a crucial role not only in the origin and evolution of life but also in various Earth processes, including slab subduction, crust-mantle reaction and recycling. During slab subduction, water is transported from the Earth's surface to its interior through subduction zones, and a significant amount of water returns to the surface mainly through magmatism, thus forming a large-scale water cycle (Fig. 1). In subducting slabs, water exists both explicitly and implicitly. Explicit water components include H₂O, OH⁻ and H⁺ in melts, fluids, fluid inclusions, and hydrous minerals such as amphibole and mica (Johnson, 2006; Libowitzky, 2006; Litasov and Ohtani, 2007). Implicit water primarily occurs as hydroxyl (OH⁻) in nominally anhydrous minerals (NAMs) at defects in crystal structures (Bell et al., 1995; Rossman, 1996; Xia et al., 1998). Most hydrous minerals in subducting slabs decompose and release water before reaching a depth of 300 km (Poli and Schmidt, 2002). Part of this water returns to the surface through magmatism, while the remainder is incorporated into NAMs in ultrahigh-pressure metamorphic rocks (Magni et al., 2014; Walter, 2021) and subsequently transported to deep mantle by subducting slabs (Ishii et al., 2022).
Numerous studies indicate that major constituent minerals in deep mantle, such as olivine, pyroxene, and garnet, as well as their high-pressure polymorphs, are NAMs (Litasov and Ohtani, 2007; Liu et al., 2016). Although the phase of SiO$_2$ does not typically appear in the mantle (Kaminsky, 2012) (Fig. 2), it is a significant constituent mineral in silica-riched slabs and can stably exist at upper to lower mantle depths through high-pressure polymorphic phase transitions. Both experimental and computational studies have demonstrated that stishovite’s crystal structure can incorporate a certain amount of water. Given its prevalence as a major mineral in subducting slabs at mantle depths (>300 km), stishovite likely plays a significant role in water transport to deep earth (Spektor et al., 2011; Lin et al., 2022; Ishii et al., 2022). In this paper, we provide a systematic review of previous understandings and research progress regarding water solubility, water incorporation mechanisms, and factors influencing water solubility in stishovite. Combined with published results, we establish an empirical model for water solubility in Al-stishovite, and discuss the significance of stishovite in transporting water from subducting slabs to the deep mantle and its implications for deep Earth dynamics. Finally, we highlight key unresolved scientific questions in the research on water solubility in stishovite.

2 Crystal structure and stability of stishovite

Phase of SiO$_2$ undergoes multiple high-pressure polymorphic transitions as pressure increases (Petersen et al., 2021) (Fig. 3). Under average geothermal gradient, coesite is the dominant phase of SiO$_2$ at pressures ranging from 2.7 to 9 GPa. At approximately 10 GPa, coesite transforms into the denser stishovite (Ono et al., 2017). The transition pressure from coesite to stishovite is dependent on temperature, as described by the equation P (GPa) = 4.7 + 0.0032 × T (K) (Ono et al., 2017). This phase transition is believed to contribute to the seismic discontinuity observed at around 300 km depth (Ono et al., 2017). As pressure increases further to 23-50 GPa, stishovite undergoes a transformation into the CaCl$_2$-type SiO$_2$ structure (Pnnm), commonly referred to as post-stishovite.
Previous studies show that stishovite constitutes 10 vol. % and 20 vol. % of subducting ocean ridge basalt (MORB) in the upper and lower mantle, respectively (Irifune et al. 1986; Ono et al., 2001). In subducted continental crust at upper mantle depth (<660 km), stishovite can reach approximately 20-25 vol. % (Irifune et al., 1994; Poli and Schmidt, 2002; Ishii et al., 2012). However, due to the exhumation of subducted slabs from ~300 km depth (referred as "depth of no return" in literatures, e.g., Irifune et al., 1994; Liu et al., 2007; Wu et al., 2009) to the surface is extremely difficult, and/or the preservation conditions of stishovite are very harsh, naturally formed stishovite that can be found is extremely rare. Previously, the micro-exsolution structure (Liu et al., 2007) and pseudomorphs after stishovite (Liu et al., 2018) were only found in the South Altyn ultra-high pressure metamorphic belt in western China. Recently, Thomas et al. (2022) identified coesite and stishovite inclusions in Waldheim granulite. In addition, other naturally occurring stishovite is found sporadically in meteorite impact craters (e.g., Chao et al., 1962) or meteorites (e.g., Holtstam et al., 2003). Therefore, the current research on stishovite mainly relies on high-temperature and high-pressure experiments and theoretical calculations (e.g., Litasov et al., 2007; Lin et al., 2022; Ishii et al., 2022).

Stishovite was first synthesized by Stishov and Popova (1961) at 20 GPa (equivalent to approximately 600 km depth in Earth’s interior) and 1100°C from α-quartz. It possesses a rutile-type structure with tetragonal symmetry (P4_2/mmm). The Si atoms are coordinated by six O atoms in octahedral arrangements (Pawley et al. 1993; Spektor et al., 2011; Lin et al., 2022). These SiO₆ octahedra align and form linear chains along the c-axis. This arrangement results in a highly dense packing of O atoms, with slightly elongated Si-O bonds compared to SiO₄ tetrahedra. Previous studies have demonstrated that the density of stishovite is 46% higher than coesite and 60% higher than α-quartz (Keskar et al., 1991). Therefore, the formation of...
stishovite during slab subduction at depths exceeding 300 km increases the density of subducting slabs (Lin et al., 2022; Ishii et al., 2022), enhancing their negative buoyancy for further subduction into the mantle transition zone (410-660 km) or even deeper regions.

![Stishovite phase diagram](https://doi.org/10.5194/egusphere-2023-2316)

Figure 3: SiO$_2$ phase diagram as recommended in the reference literature (density values are indicated in brackets) (Gutzow et al., 2014). The diagram also illustrates the SiO$_4$ tetrahedron and SiO$_6$ octahedron, along with their corresponding distances.

3 Water solubility and incorporation mechanisms in stishovite

3.1 Water solubility

Research on water solubility in stishovite has primarily been conducted through high-pressure experiments (Chung and Kagi, 2002; Bromiley et al., 2006; Litasov et al., 2007; Spektor et al., 2011; NISR et al., 2017; Lin et al., 2022; Ishii et al., 2022). Fourier transform infrared spectroscopy (FTIR) is the primary technique used to determine water content in experimental products, although results from different studies often show significant discrepancies, as detailed in Yan and Liu (2021). In this paper, we compile the experimental conditions (temperature, pressure, initial water content) and results (water and Al$_2$O$_3$ contents in stishovite products) from previous studies (Table 1).

As shown in Table 1, water solubility in stishovite is significantly influenced by temperature, pressure, and Al content, with variations more than one order of magnitude from a few ppm to a few percent. However, even under specific pressure conditions, water contents obtained by different researchers can differ by more than one order of magnitude. For example, at
20-25 GPa, some studies obtained 25-2700 wt. ppm water in stishovite (Litasov et al., 2007; Zhang et al., 2022), while others reported 0.5-3 wt. % water (Spektor et al., 2011; 2016). These discrepancies may partially be attributed to different water content measurement methods. Most FTIR studies obtained water contents at the ppm level, while other methods yielded water contents at the wt. % level. Additionally, the discrepancies may relate to variations in experimental conditions of temperature, and Al content in stishovite, as detailed in Sect. 4.

Table 1 Water contents in stishovite from previous studies.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Pressure (GPa)</th>
<th>Initial Water content (wt. %)</th>
<th>Al₂O₃ (wt. %)</th>
<th>Water content (wt. ppm)</th>
<th>From references</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>10</td>
<td>saturated</td>
<td>0-1.51</td>
<td>7-82⁺</td>
<td>Pawley et al., 1993</td>
</tr>
<tr>
<td>1200-1500</td>
<td>15-21</td>
<td>saturated</td>
<td>0</td>
<td>2.5-72ᵇ</td>
<td>Bolfan-Casanova et al., 2000</td>
</tr>
<tr>
<td>1200-1400</td>
<td>10-15</td>
<td>saturated</td>
<td>0.612-1.341</td>
<td>210-759ᵇ</td>
<td>Chung and Kagi, 2002</td>
</tr>
<tr>
<td>1740-3700</td>
<td>30-62.9</td>
<td>0.2</td>
<td>unspecified</td>
<td>76-487ᵃ</td>
<td>Panero et al. 2003</td>
</tr>
<tr>
<td>1227</td>
<td>25</td>
<td>saturated</td>
<td>unspecified</td>
<td>3000*</td>
<td>Panero and Stixrude, 2004</td>
</tr>
<tr>
<td>1500</td>
<td>15</td>
<td>saturated</td>
<td>0-2.95</td>
<td>3-456ᵃ</td>
<td>Bromiley et al., 2006</td>
</tr>
<tr>
<td>1800</td>
<td>20-25</td>
<td>saturated</td>
<td>0-7.62</td>
<td>25-3010ᵇ</td>
<td>Litasov et al., 2007</td>
</tr>
<tr>
<td>800-1240</td>
<td>8-12.3</td>
<td>1-4</td>
<td>trace</td>
<td>53-187ᶜ</td>
<td>Thomas et al., 2009</td>
</tr>
<tr>
<td>450-550</td>
<td>10</td>
<td>saturated</td>
<td><60</td>
<td>0.9-1.75 wt. %*</td>
<td>Spektor et al., 2011</td>
</tr>
<tr>
<td>627-1654</td>
<td>12</td>
<td>0-1.73</td>
<td>0-2.24</td>
<td>108-1354ᵇ</td>
<td>Yoshino et al., 2014</td>
</tr>
<tr>
<td>350-550</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>0.5-3 wt. %*</td>
<td>Spektor et al., 2016</td>
</tr>
<tr>
<td>450</td>
<td>9</td>
<td>—</td>
<td>unspecified</td>
<td>3.2 wt. %*</td>
<td>Nisr et al., 2017</td>
</tr>
<tr>
<td>950</td>
<td>8.4-9.1</td>
<td>—</td>
<td>unspecified</td>
<td>246-376ᶜ</td>
<td>Frigo et al., 2019</td>
</tr>
<tr>
<td>967-1562</td>
<td>32.5-52</td>
<td>—</td>
<td>0</td>
<td>4.6-9.9 wt. %*</td>
<td>Lin et al., 2020</td>
</tr>
<tr>
<td>1700</td>
<td>28</td>
<td>5</td>
<td>4.36</td>
<td>2700ᵇ</td>
<td>Ishii et al., 2022</td>
</tr>
<tr>
<td>973-1592</td>
<td>53-72.5</td>
<td>0.5-15.2</td>
<td>0</td>
<td>0.62-3.61 wt. %*</td>
<td>Lin et al., 2022</td>
</tr>
<tr>
<td>1700</td>
<td>20</td>
<td>saturated</td>
<td>3.43-5.37</td>
<td>2500-2700ᵇ</td>
<td>Zhang et al., 2022</td>
</tr>
</tbody>
</table>

Note: Most studies used Fourier transform infrared spectroscopy (FTIR) to determine water contents in stishovite with the calculation method from a. Pawley et al. (1993); b. Paterson (1982); and c. Libowitzky and Rossman (1997). * represents other methods.

3.2 Hydrogen incorporation mechanisms

Previous studies indicate two primary mechanisms for water incorporation in stishovite: (1) "hydrogarnet" substitution by 4H⁺ → Si⁴⁺; and (2) coupled substitution of H⁺ and Al³⁺ for Si⁴⁺ (Al³⁺ + H⁺ → Si⁴⁺). Hydrogarnet substitution is a common mechanism in pure SiO₂ stishovite. Studies by Litasov et al. (2007) have shown that stishovite can dissolve up to 5 wt. % Al₂O₃, which can further increase to 9 wt. % with the presence of water (Ono, 1999). Numerous high-pressure experiments demonstrate that Al can directly couple with H by substituting Si to increase water solubility in Al-bearing stishovite, with the
coupled substitution mechanism of $\text{Al}^{3+} + \text{H}^+ \rightarrow \text{Si}^{4+}$ (Pawley et al., 1993; Chung and Kagi, 2002; Bromiley et al., 2006; Lakshtanov et al., 2007). However, Litasov et al. (2007) found that $\text{H}^+ (\text{OH})$ can only co-replace Si^{4+} with up to 40% Al^{3+}, which makes the Al/H ratio in stishovite far greater than 1/1, that is, Al in stishovite is much higher than H. At this point, most Al will occupy the oxygen vacancy (OV) and balance the charge by $2\text{Al}^{3+} + \text{OV}^{2+} \rightarrow 2\text{Si}^{4+}$ (Pawley et al., 1993; Chung and Kagi, 2002; Litasov et al., 2007; Zhang et al., 2022).

In addition to Al^{3+}, stishovite contains minor amounts of other trivalent cations such as B^{3+}, Fe^{3+}, V^{3+}, and Cr^{3+}, which can also facilitate H incorporation into the stishovite structure by similar mechanisms as Al^{3+} (Irifune and Ringwood, 1993; Pawley et al., 1993). In summary, multiple mechanisms exist for H incorporation in stishovite with $\text{Al}^{3+} + \text{H}^+ \rightarrow \text{Si}^{4+}$ being the most important.

4 Factors Dominating Water Solubility in Stishovite

Numerous studies demonstrate that water solubility in stishovite is primarily controlled by temperature, pressure, and Al content.

4.1 Temperature and Pressure

Numerous experiments have constrained the water solubility in Al-bearing stishovite as a function of temperature and pressure. Panero et al. (2003) showed that at 30-38 GPa, water contents in stishovite significantly increase with increasing temperature from ~100 wt. ppm at 1500 K to 400 wt. ppm at 3500 K. Litasov et al. (2007) found that at 20-25 GPa and 1000-1200 °C, H_2O contents are positively correlated with temperature, but decrease with increasing temperature from 1200-1800 °C, likely due to increased melt proportions. This can be simply explained by the fact that water preferably dissolves into the melt. Therefore, the occurrence of melt at high-temperature can significantly reduce H_2O contents in stishovite. Panero et al. (2003) showed that at 10-60 GPa, water solubility in stishovite increases with increasing pressure. Panero and Stixrude (2004) suggested that the water solubility in stishovite is ~0.3 wt. % H_2O at 25 GPa and 1500 K, and increases to 1.15 wt. % H_2O at 60 GPa, indicating increasing solubility with pressure.

By comparing previous studies, it is evident that water solubility in Al-bearing stishovite shows an overall weak positive correlation with temperature but a significant decrease when melt is present. The pressure dependence is more complex, with a positive correlation below 20 GPa but a negative correlation above 20 GPa, suggesting an optimal water solubility in stishovite at ~20 GPa (Fig. 4).

4.2 Al Content

Given that natural systems always contain some Al, its effect on water solubility in stishovite has been a focus of research. Pawley et al. (1993) found that for stishovite with >1 wt. % Al_2O_3, the H_2O content (82 wt. ppm) is ten times higher than Al-free stishovite (7 wt. ppm). Chung and Kagi (2002) showed that at 15 GPa and 1400 °C, with increasing trivalent cations
(mostly Al) from 0.612 wt. % to 1.341 wt. %, H₂O contents in stishovite increase from 128 wt. ppm to 536 wt. ppm. Litasov et al. (2007) obtained the maximum 3010 wt. ppm H₂O in Al-bearing stishovite (4.4 wt. % Al₂O₃) versus 16-30 wt. ppm H₂O in Al-free stishovite at 20 GPa and 1400 °C. Recent work by Ishii et al. (2022) also demonstrated the positive correlation between water solubility and Al₂O₃ content in stishovite. In contrast, Lin et al. (2022) showed decreasing water solubility in pure stishovite with increasing temperature and pressure, markedly different from Al-bearing systems. Therefore, increasing Al significantly enhances water solubility in stishovite. Statistically compiling previous data demonstrates the positive correlation between Al and water contents in stishovite (Fig. 5).

Figure 4: Previous experimental studies on water solubility in stishovite. (a) Water content versus temperature; (b) Water content versus pressure (Only FTIR data are included) (Data from Pawley et al., 1993; Bolfan-Casanova, 2000; Chung and Kagi, 2002; Panero et al., 2003; Bromiley et al., 2006; Litasov et al., 2007; Frigo et al., 2019; Ishii et al., 2022; Zhang et al., 2022)

However, the behavior of Al itself also depends on pressure and temperature. Liu et al. (2006) showed that Al solubility in stishovite decreases with pressure but increases with temperature at <2000 °C in anhydrous experiments at 15-25 GPa and 1350 °C-2150 °C. Therefore, quantitatively constraining water solubility in natural stishovite requires considering the effects of variable Al solubility under different P-T conditions. Additionally, Al expands the unit cell volume of stishovite (Litasov et al., 2007), enhancing the diffusion rate and facilitating water loss.

4.3 Other Factors

Apart from aluminum (Al), other impurity ions likely play a role in affecting water solubility in stishovite. Several studies have suggested (Ono et al., 2002; Chung and Kagi, 2002; Panero et al., 2003; Panero and Stixrude, 2004) that stishovite formed from subducted MORB (Mid-Ocean Ridge Basalt) might incorporate a variety of trivalent cations, such as Al³⁺, Cr³⁺, Fe³⁺, and V³⁺. These cations could potentially increase water content through coupled substitution. However, the work of Litasov et al. (2007) demonstrated that the H₂O content is similar between Fe-bearing stishovite (likely containing Fe³⁺) and Al- and Fe-
free stishovite. Consequently, the implications of Fe$^{3+}$, Ti$^{3+}$, and other elements on water solubility in stishovite need further investigation.

In addition, oxygen fugacity (f_{O_2}) stands as a crucial thermodynamic parameter that describes the oxidation state within the Earth. Its impact on water solubility within NAMs is considerable. For instance, the water solubility in olivine and orthopyroxene displays positive and negative correlations with f_{O_2}, respectively (Yang, 2016; Liu and Yang, 2020). However, the specific influence of f_{O_2} on stishovite's water solubility remains to be accurately determined and requires further investigation to provide clear insights.

5 Water solubility in stishovite as a function of pressure, temperature, water fugacity, and Al content

Numerous studies have revealed that the water content in NAMs basically follows an relationship with temperature, pressure and water fugacity as shown in Eq. (1) (Kohlstedt et al., 1996; Zhao et al., 2004; Karato, 2010):

$$ \text{COH} = A \cdot f_{H_2O}^n \cdot \exp\left(\frac{-\Delta E + \Delta V \cdot P}{R \cdot T}\right), $$

where COH is the water content, A is a constant, $f_{H_2O}^n$ is the water fugacity, the value of n depends on the hydrogen incorporation mechanism, and ΔE and ΔV denote the energy and volume changes associated with hydrogen dissolution.

Considering the notable influence of aluminum (Al) on hydrogen solubility in stishovite (Al$^{3+}$ + H$^+$→ Si$^{4+}$), we here propose a new model for water solubility in Al-bearing stishovite based on Eq. (2):
\[C_{OH}^\text{St} = A \cdot f_{H_2O}^n \cdot \exp\left(\frac{-\Delta E + \Delta V \cdot P}{R \cdot T}\right) \cdot \exp\left(\frac{B \cdot X_{Al}}{R \cdot T}\right) \]

(2)

In Eq. (2), \(C_{OH}^\text{St} \) is water solubility in Al-bearing stishovite, \(B \) is a constant, and \(X_{Al} \) is the molar fraction of Al in stishovite. Given that the dominant hydrogen incorporation mechanism corresponds to \(\text{Al}^{3+} + \text{H}^+ \rightarrow \text{Si}^{4+} \) (Pawley et al., 1993), yielding \(C_{OH}^\text{St} \propto f_{H_2O}^{0.5} \), thus \(n = 0.5 \) (Kohlstedt et al., 1996; Karato, 2010).

To eliminate disparities arising from diverse analytical methods, we only included published FTIR data on \(H_2O \) contents in Al-bearing stishovite (Chung and Kagi, 2002; Litasov et al., 2007; Ishii et al., 2022; Zhang et al., 2022) for fitting into Eq. (2). The obtained parameters are as follows: \(n = 0.5 \), \(A = 0.239 \text{ ppm/bar}^{0.5} \), \(\Delta E = -3.065 \text{ KJ/mol} \), \(\Delta V = 4.29 \text{ cm}^3/\text{mol} \), \(B = 7.69 \text{ KJ/mol} \). Consequently, Eq. (2) can now be used to estimate the water solubility in Al-bearing stishovite across various temperature, pressure, and \(f_{H_2O} \) conditions.

We here conducted calculations to determine the water solubility in stishovite containing 3 mol. % aluminum at temperatures ranging from 800 °C to 1400 °C and pressures from 10 GPa to 40 GPa (Fig. 6). The results indicate that up to 30 GPa, water content experiences a marginal decline as temperature rises, while beyond 30 GPa, a positive correlation emerges between water content and temperature. This could be attributed to a lowered solidus under reduced pressures, leading to diminished water solubility as high-temperature, water-rich melts form. Conversely, at pressures surpassing 30 GPa, the heightened solidus counteracts the melt effect. Moreover, the solubility of water experiences a marked increase at pressures below 22 GPa to 32 GPa, followed by a decrease at pressures beyond this range, signifying an optimal solubility window. This aligns well with the overarching experimental data trend (Fig. 6b).

6 Implications for water transport to the deep Earth

Subduction zones serve as the exclusive pathway for surface water to infiltrate the Earth's deep interior. The transport and quantities of water within subducting slabs have profound impacts on surface environments, deep Earth properties and dynamics (Shillington, 2018). Existing experimental and geophysical data suggest the mantle transition zone distributes potentially water-rich regions with >1 wt. % \(H_2O \) (Pearson et al., 2014). However, the origins of this water remain a subject of debate. One perspective posits that the deep mantle has retained intrinsic wetness since Earth's formation. Alternatively, NAMs in subducting slabs may carry an amount of water to deep mantle (Peslier et al., 2017). However, it is essential to note that most hydrous minerals within subducting slabs will break down at various depths, typically having stability limits below 9 GPa, which limits the transport of water to greater mantle depths (>300 km) (Zheng et al., 2016). For instance, minerals like antigorite/phlogopite and lawsonite, which can survive to maximum depths in cold slabs, tend to dehydrate at around 300 km (Poli and Schmidt, 2002). Therefore, a fundamental question arises: can the released water from these minerals be further carried to even greater depths by NAMs?
Existing research demonstrates that water storage capacities within upper mantle NAMs generally increase with depth (Yang and Li, 2016). Nevertheless, it is imperative to investigate how phase transitions and breakdown reactions of NAMs influence the transport of water in subducting slabs at greater depths. For instance, Gavrilenko, 2008, showed that water solubility in clinopyroxene (Cpx) decreases along a geotherm from 585 wt. ppm at 10 GPa to 135 wt. ppm at 16 GPa. Given the concurrent decomposition of Cpx from approximately 65 vol. % at 9 GPa to 0 vol. % at 16 GPa, an estimated 322 wt. ppm of water would be released from Cpx within subducted oceanic crust.

We further conducted calculations to assess the evolution of water storage capacities in major minerals within subducted Mid-Ocean Ridge Basalt (MORB) and continental sediments along a representative geotherm (Litasov and Ohtani, 2007) (Fig. 7). The results indicate that garnet and stishovite serve as primary carriers of water, with higher water storage capacities observed in subducted oceanic crust compared to sediments. In subducted MORB and continental crusts down to mantle depths, stishovite comprises 10-20 vol. % (Irifune et al., 1986; Ono et al., 2001) and >20 vol. % (Ishii et al., 2019), respectively. Our model demonstrates that stishovite water solubility increases from 612 ppm at 14 GPa to 906 ppm at 22 GPa along the geotherm.

Consequently, stishovite may theoretically sequester water released from the breakdown of hydrous minerals, dehydration during mineral decomposition, and volume reduction. Additionally, stishovite water solubility peaks at 22-32 GPa (746-800 ppm at 800-1600 °C) (Fig. 6) and declines at higher pressure-temperature (P-T) conditions. Taking into account the occurrence of melts, the optimal solubility likely falls within the water-rich transition zone at pressures below 22 GPa. Consequently, stishovite emerges as a key transporter supplying water to the mantle transition zone.
Figure 7: Evolution of water solubility in subducted crust. The hatched area represents the mantle transition zone (MTZ). WS represents water solubility. Mineral abundances follow Fig. 2; Geotherm is from (Zheng et al., 2016); Water solubility models: Grt from Yin and Kang, 2023 (in preparation), Cpx from Gavrilenko, 2008, St from this study. Dashed and solid lines represent nominal water solubilities and actual water contents considering modal fractions during subduction.

7 Conclusions and outlook

To sum up, the comprehensive review and exploration in this paper have encompassed water solubility in stishovite, hydrogen incorporation mechanisms and governing factors. We've constructed a new model for water solubility in Al-bearing stishovite and delved into stishovite’s role in transporting water through subducting crust and implications for water distribution in deep Earth. The key conclusions can be as follows:

1. Water solubility in stishovite exhibits a positive correlation with Al content which increases water concentrations via coupled substitution $\text{Al}^{3+} + \text{H}^+ \rightarrow \text{Si}^{4+}$, as well as enhances interstitial H_2O solubility by Al substitution-induced expansion of the stishovite structure.

2. The relationship between water solubility of Al-bearing stishovite and water fugacity, temperature, pressure, and Al content can be described as $C_{\text{H}_2\text{O}}^{\text{St}} = A \cdot f_{\text{H}_2\text{O}}^n \cdot \exp \left(-\frac{\Delta E + \Delta V \cdot P}{R \cdot T} \right) \cdot \exp \left(\frac{B \cdot X_{\text{Al}}}{R \cdot T} \right)$ with $n = 0.5$, $A = 0.239$ ppm/bar$^{0.5}$, $\Delta E = -3.065$ KJ/mol, $\Delta V = 4.29$ cm3/mol, $B = 7.69$.

3. The calculation results from Eq. (2) demonstrate that stishovite’s water solubility strongly depends on pressure, exhibiting a positive correlation below 22-32 GPa and a negative correlation above, indicating a peak solubility range at 22-32 GPa. While temperature dependence is weakly negative up to 30 GPa and weakly positive beyond.
Following a mantle geotherm, stishovite's water solubility increases from 612 wt. ppm at 14 GPa to 906 wt. ppm at 22 GPa. This suggests that stishovite can potentially absorb water released during hydrous mineral breakdown, dehydration reactions, and volume reduction, contributing to the water-rich transition zone.

However, several crucial unanswered questions persist in stishovite water solubility research: 1. The behavior of Al and its impact on water solubility across varying pressure-temperature conditions requires clarification; 2. The roles of minor elements like Fe and Ti, as well as oxygen fugacity, remain unclear; 3. Partitioning coefficients governing water distribution between stishovite, other major minerals (e.g., Cpx, Grt) and melts during slab subduction are not yet understood; 4. Equation (2) proposed in this paper needs refinement through systematic experiments conducted under controlled conditions. These issues are essential for understanding how water transports into deep Earth during subduction and require further detailed experimental and simulation-based investigations to address.

Author contribution. Mengdan Chen: Data curation, formal analysis and writing-original draft. Lei Kang: Writing - review & editing, foundation support. Danling Chen and Liang Liu: Writing - review & editing. Changxin Yin and Long Tian: Review and language modification.

Competing interest. The authors declare that they have no conflict of interest.

Acknowledgments. We are grateful to Dr. Xin Li for the discussions on Al behavior in stishovite that significantly improved this article.

Financial support. This study is supported by the Natural Science Foundation of China (Grant No. 42030307, 41972058, 42372064) and the MOST Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University (Grant No. 201210233).

References

