Desorption Lifetimes and Activation Energies Influencing Gas-Surface Interactions and Multiphase Chemical Kinetics

Daniel A. Knopf1,2,*, Markus Ammann3, Thomas Berkemeier4, Ulrich Pöschl4, Manabu Shiraiwa5,*

1. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA.
2. Department of Chemistry, Stony Brook University, Stony Brook, New York, USA.
3. Laboratory of Environmental Chemistry, Paul Scherrer Institute, Villigen, Switzerland
4. Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
5. Department of Chemistry, University of California Irvine, California, USA

Correspondence to: *daniel.knopf@stonybrook.edu; m.shiraiwa@uci.edu

This Supplement comprises of seven figures (S1-S7).
Figure S1. The temperature dependence of the Henry’s law coefficient is shown using the van’t Hoff equation with solvation enthalpy of 20 kJ mol\(^{-1}\).
Figure S2. Coefficients derived from principal component analysis to examine the dependencies between the desorption energy (E_{des}^0), polarizability (polar, α), dipole moment (dipole, μ), oxygen to carbon ratio ($O:C$), and relative permittivity of the substrates (dielectric, ε_r).
Figure S3. Desorption energy \(E_{\text{des}}^0\) as a function of gas species polarizability \(\alpha\) in panel (a) and as a function of oxidation state of gas species expressed as \(O:C\) (b) using data from Tables A1-A15. Panels (a) and (b) reflect data from Fig. 8.
Figure S4. E^0_{des} values derived from the new parameterization (Eq. (16)) applying arbitrary values of molar mass (M) and $O: C$, the latter coded as symbol color described by the color bar.
Figure S5. The dipole moment (μ) is plotted against the polarizability (α) where color shading indicates the oxidation state ($O:C$). Note that three gas species with $O:C > 1$ (CO$_2$ and formic acid) are included in this plot as having $O:C = 1$ to allow for better visualization of entire data set.
Figure S6. Calculated desorption energies (E_{des}^0) of SOA precursor gases from (Shiraiwa et al., 2014) as a function molar mass and its dependence on $O:C$ (a) and polarizability (b) using parameterization Eq. (16).
Figure S7. Relationship between calculated desorption energies (E_{des}^0) of SOA precursor gases from (Shiraiwa et al., 2014) and species’ glass transition temperature (T_g) and its dependence on $O:C$ (a) and molar mass (b) using parameterization Eq. (16).
References