1	Desorption Li	ifetimes a	nd Activation	Energies	Influencing	Gas-Surface	Interactions	and
2	Multiphase Cl	hemical K	inetics					

4	Daniel A. Knopf ^{4,2,*} , Markus Ammann ³ , Thomas Berkemeier4, Ulrich Pöschl ⁴ , Manabu Shiraiwa ^{5,*}						
5	1.	School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New					
6	York,	York, USA.					
7	2.	Department of Chemistry, Stony Brook University, Stony Brook, New York, USA.					
8	3.	Laboratory of Environmental Chemistry, Paul Scherrer Institute, Villigen, Switzerland					
9	4.	Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany					
10	5.	Department of Chemistry, University of California Irvine, California, USA					
11	Correspondence to: *daniel.knopf@stonybrook.edu; m.shiraiwa@uci.edu						

12 This Supplement comprises of seven figures (S1-S7).

15 Figure S1. The temperature dependence of the Henry's law coefficient is shown using the van't

- 16 Hoff equation with solvation enthalpy of 20 kJ mol^{-1} .

- 43 A1-A15. Panels (a) and (b) reflect data from Fig. 8.

Figure S4. E_{des}^0 values derived from the new parameterization (Eq. (16)) applying arbitrary values of molar mass (*M*) and *O*: *C*, the latter coded as symbol color described by the color bar.

Figure S5. The dipole moment (μ) is plotted against the polarizability (α) where color shading indicates the oxidation state (O: C). Note that three gas species with O: C > 1 (CO₂ and formic acid) are included in this plot as having O: C = 1 to allow for better visualization of entire data set.

Figure S6. Calculated desorption energies (E_{des}^0) of SOA precursor gases from (Shiraiwa et al., 2014) as a function molar mass and its dependence on O: C (a) and polarizability (b) using parameterization Eq. (16).

Figure S7. Relationship between calculated desorption energies (E_{des}^0) of SOA precursor gases from (Shiraiwa et al., 2014) and species' glass transition temperature (T_g) and its dependence on O: C (a) and molar mass (b) using parameterization Eq. (16).

124 **References**

- 125 Shiraiwa, M., Berkemeier, T., Schilling-Fahnestock, K. A., Seinfeld, J. H., and Pöschl, U.:
- 126 Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary
- 127 organic aerosol, Atmos. Chem. Phys., 14, 8323-8341, 10.5194/acp-14-8323-2014, 2014.