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Abstract. Evapotranspiration is important for Earth’s water and energy cycles as it strongly affects air temperature, cloud

cover and precipitation. Leaf stomata are the conduit of transpiration and thus their opening is sensitive to weather and climate

conditions. This feedback can exacerbate heat waves and droughts and can play a role in their spatio-temporal propagation.

Therefore, the plant response to available water is a key element mediating vegetation-atmosphere interactions. Sustained high

temperatures strongly favor high ozone levels with significant negative effects on air quality and thus human health. Our study5

assesses the process representation of evapotranspiration in the atmospheric chemistry model ECHAM/MESSy. Diverse water

stress parametrizations are implemented in a stomatal model based on CO2 assimilation. The stress factors depend on either

soil moisture or leaf water potential and act directly on photosynthetic activity, mesophyll and stomatal conductance. Overall,

the new functionalities reduce the initial overestimation of evapotranspiration in the model globally by more than one order

of magnitude which is most important in the Southern Hemisphere. The intensity of simulated warm spells over continents10

is significantly enhanced. With respect to ozone, we find that a realistic model representation of plant-water stress depresses

uptake by vegetation and enhances its photochemical production in the troposphere. These effects lead to a general increases

in simulated ground-level ozone which is most pronounced in the Southern Hemisphere over the continents. The uncertainties

for plant dynamics representation due to too shallow roots can be addressed by more sophisticated land surface models with

multi-layer soil schemes. In regions with low evaporative loss, however, the representation of precipitation remains the largest15

uncertainty.

1 Introduction

The response of plants to water availability is crucial for climate models since it determines the plant activity and thus photo-

synthesis and transpiration over vegetated land surface. Besides evaporation from open water and soil surfaces, transpiration20

by plants is with 60-75 % the main contributor to evaporation and transpiration (ET: water returned from land to the atmo-

sphere) (Seneviratne et al., 2010). Its strength depends on vegetation coverage, surface wetness, and the availability of soil
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water for vegetation root uptake for transpiration. Evapotranspiration (often also termed as terrestrial evaporation, ET) in turn

has multiple impacts on the hydrological, energy and biogeochemical cycles (Sellers et al., 1997; Seneviratne et al., 2010;

Vicente-Serrano et al., 2022; Wang and Dickinson, 2012). A decrease of ET in response to land drying reduces the flux of la-25

tent heat to the atmosphere, which leads to increased air temperature and decreases the likelihood of rainfall (e.g., Seneviratne

et al., 2010).

A scarcity of soil water (water lower than a critical threshold), strengthens the physical plant-water stress limiting the

transpiration mediated by the stomata (plants’ pores). The resulting change in latent heat flux (of vaporization, λ) decreases

the likelihood of rainfall (Miralles et al., 2019). These conditions, which are predicted to increase due to climate change, could30

potentially amplify droughts and heatwaves (Kala et al., 2016). Thus, the water availability of plants is a key to realistically

represent such weather extremes in the Earth system models (e.g. review by Miralles et al. (2019)). In particular, heatwaves are

projected to increase under climate change and thus land-atmosphere coupling gains in importance (Domeisen et al., 2022).

Furthermore, terrestrial energy fluxes have become even more sensitive to vegetation over the last decades as Forzieri et al.

(2020) found in an observational data set from 1980 to 2016.35

Most models use an empirical reduction factor dependent on the volumetric soil moisture content to represent the response

of plants to dryness currently (see review by Rogers et al. (2017)). However, this factor does not reproduce the plant response

to dryness realistically . Instead, parametrizations based on the independent leaf water potential (ψ) perform better (Verhoef

and Egea, 2014). Leaf water potential is a vital variable to describe the plant dependence on water, the chemical potential

gradient from the root zone to the leaves (Klein, 2014; Sellers et al., 1997) and e.g. Paço et al. (2013) define it as one of40

the most reliable plant-water stress indicators. The inclusion of ψ in stomatal models is consistent with the hypothesis that

stomata regulate transpiration rates in order to avoid cavitation in the xylem. The water potential strongly modulates stomatal

conductance at the evaporating sites within the leaf. This is a well established theoretical assumption for modelling transpiration

(Tuzet et al., 2003, and references therein).

Yet, studies do not determine whether the plant-water stress acts on photosynthesis or directly modifies the stomatal con-45

ductance, which depends on the opening of the stomata (see reviews by De Kauwe et al. (2013); Rogers et al. (2017)). Thus,

models differ largely in this regard. Keenan et al. (2010) have shown that neglecting the water stress acting only on photosyn-

thesis significantly overestimate the stomatal opening. Applying the stress factor only to the stomatal conductance could not

explain the observed reduction of the assimilation rate in the plant, which is often much larger than the decrease in the stomatal

conductance. Further, measurement studies (Drake et al., 2018; Zhou et al., 2013; Egea et al., 2011; Keenan et al., 2010) agree50

that the water stress acts on the stomata as well as on non-stomatal processes in plants. Thus, the sole application of the water

stress to the photosynthesis as done in e.g. the Community Land Model (CLM, Kennedy et al. (2019)) is not sufficient. Egea

et al. (2011) has found that drought stress also has a detrimental effect on the mesophyll conductance, which regulates the

diffusion between the sub-stomatal internal cavities to the chloroplasts.

We use the global atmospheric chemistry model ECHAM/MESSy Atmospheric Chemistry (EMAC) (Jöckel et al., 2016)55

to investigate the multiple feedbacks involved and assess the uncertainty related to the evapotranspiration representation from

land. This model is widely used to address the simulation and prediction of atmospheric chemistry and tackle global air quality
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issues. As part of the Chemistry–Climate Model Initiative (CCMI) (Jöckel et al., 2016), the model community also contributes

to climate research. Here, we explore multiple plant-water stress formulations regarding uncertainties and variability, firstly

implemented in EMAC. We assess the performance of the different sensitivity studies at global scale against plant transpiration60

and evaporation data provided by the GLEAM model and the EUMETSAT satellite, respectively. The consequences of chang-

ing the plant-water stress factor for ground-level air pollution are investigated in the next section. We also assess the impact

of a changed plant-water response on evapotranspiration in a condition with 2xCO2 to account for the global warming. This

paper closes with a general discussion of the approach and the model and a comprehensive summary of the results.

2 Methods65

2.1 Model description

2.1.1 Atmospheric model

We use the ECHAM/MESSy atmospheric chemistry model where MESSy (v2.55; Jöckel et al., 2010) provides a flexible

infrastructure for coupling processes to build comprehensive Earth system models (ESMs). This is utilised here with the

fifth-generation European Centre Hamburg general circulation model (ECHAM5,version 5.3.02; Roeckner et al., 2003) as the70

atmospheric general circulation model. To reproduce the large-scale model dynamics, (i.e jet stream) the horizontal winds

(divergence, vorticity) are nudged towards reanalysis data of ERA5 by Newtonian relaxation. The model thermodynamics,

on the other hand, can freely respond to the process modifications implemented in this study (see Sect. 2.1.3). We perform

(dynamical) simulations with 3-hourly instantaneous and average output for each plant-water stress parametrization at meso-

scale (T106: 1.12 ◦ or ≈ 60km, middle atmosphere) in the period 2017/2018. The warm spell metric is calculated from a75

dynamical simulation at T42 (2.79 ◦ or ≈ 300km) covering 1979-2008. To assess the impact on air pollution (see Sect. 3.5)

we conduct two chemistry simulations (T106, 2017/2018). Two additional chemistry simulations comprise the CO2-doubling

experiments.

2.1.2 Soil and Land representation

The soil water dynamics are represented by a first-generation bucket model including one layer for the water storage (Delworth80

and Manabe, 1988; Seneviratne et al., 2010). The soil wetness results from the amount of precipitation, snowmelt, evapotran-

spiration, runoff, and drainage calculated by ECHAM5. The interception of precipitation is calculated for one canopy (’big

leaf’) layer. Surface runoff is from the overflowing soil water reservoir (Delworth and Manabe, 1988; Roeckner et al., 2003).

The initial state is prescribed by geographically varying field capacity which significantly determines the model performance

(Hagemann, 2002; Robock et al., 1998). The data used here were compiled from the most recent global distribution of major85

ecosystem types made available by the U.S. Geological Survey (Hagemann, 2002). The vegetation density (leaf area index,

LAI in [m2 m−2]), used to scale the leaf stomatal conductance to the canopy level, is prescribed with a 10-daily time-series

observed by the Ocean and Land Colour Instrument (OLCI, visible imaging push-broom radiometer) onboard the Sentinel-3
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platform at the Copernicus Land service at an original grid of 1 km (Thépaut et al., 2018). This represents a realistic prod-

uct according to the reported LAI range of 0-6 (Xiao et al., 2017). This data set replaces the climatology used in EMAC as90

standard.

2.1.3 Evapotranspiration and terrestrial photosynthesis

The process of evapotranspiration partially depends on the opening behaviour of the stomata (Katul et al., 2012). Thus, the

calculation of evapotranspiration incorporates the stomatal conductance (gs). As already described by Schulz et al. (2001), in

ECHAM the model formulation is based on the Monin-Obukov stability theory:95

ET =−LvρCh|v|β(qa−hqsat(Ts,ps)) β = [1 +Ch|v| · 1/gs]−1 (1)

where Lv is the latent heat of vaporisation, ρ the density of air, |v| the absolute value of the horizontal wind speed and the Ch

the transfer coefficient of heat. The later two variables translate to ra = 1/(Ch|v|). qsat and qa are the saturation-specific and

the atmospheric specific humidity, respectively. The relative humidity h at the surface limits the evapotranspiration from bare

soil. β determines the ratio of transpiration between water-stressed plants (β <1) and well-watered plants (β =1) (Giorgetta100

et al., 2013; Schulz et al., 2001). The weighted sum of the evapotranspiration over land, water and ice yields the final value.

Transpiration is accounted by only a part of equation 1, namely where ET is weighted by taking the vegetation fraction in each

grid box. The stomatal conductance is calculated by a photosynthesis scheme (Anet-gs), which is based on Calvet (2000) and

is implemented in the IFS model (ECMWF, 2021). This approach describes the photosynthesis process and its dependence on

CO2, temperature and soil moisture (Jacobs, 1994) treating the plants as mixed crops. Currently, ECHAM/MESSy does not105

distinguish between different land cover types. The photosynthesis model is based on net assimilation rate of CO2 (An) in

the plant varying with environmental conditions (Env) and the CO2 concentration outside the leaves (Cs, [kg CO2 m−3]) and

inside the cavities (Ci, [kg CO2 m−3]) to yield the stomatal conductance (gs):

gs =
An(Env)

Cs−Ci(Env)
(2)

The radiation- and CO2-limited scheme are considered for the calculation of net assimilation rate (An). The saturation of110

photosynthetic capacity Am at high light intensities is calculated as follows:

Am =Am,max [1− exp(−gm(Ci−Γ)/Am,max)] (3)

with Am,max being the maximum photosynthetic capacity, gm the mesophyll conductance, the compensation point at 25 ◦C

Γ =42 [ppm] (for mixed crops). The two schemes are combined afterwards to yield a smooth function for An, which is further

described in ECMWF (2021). gm is a function of temperature and the mesophyll conductance at 25 ◦C where the latter involves115

two different factors for the water state of the atmosphere and the plant-water stress factor (for low and high vegetation) based

on a non-linear, empirical expression by Calvet et al. (2004).
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2.1.4 Water Stress Functions

We investigated several water stress functions and implemented them in the stomatal conductance scheme. The dependence is

commonly parameterised by a fraction of the actual soil water status limited to the availability and the plant wilting (Rogers120

et al., 2017). Based on the bucket model used in EMAC, the default function (REF) and the multiple application (described

later, DEFmulti) employs the actual soil wetness (Ws, [m]), the critical available water (Wcrit, [m]) and the wetness at the

wilting point of plants (Wpwp, [m]) that the plant cannot extract water below this level according to Schulz et al. (2001):

f(Ws) =





1 Ws(t)≥Wcrit(= 75%Fc)
Ws(t)−Wpwp

Wcrit−Wpwp
Wpwp <Ws(t)<Wcrit

0 Ws(t)≤Wpwp(= 35%Fc)

(4)

125

The wilting point depends on soil and vegetation properties such as the soil texture and plant functional type, which is

however only considered indirectly by initialising field capacity (Fc) data and therefore introduces a certain amount of uncer-

tainty. This motivates the usage of the original plant-water stress formulation (noWP) by Delworth and Manabe (1988), which

considers the critical soil wetness as the solely restriction for plants:130

f(Ws) =





1 Ws(t)≥Wcrit(= 75%Fc)
Ws(t)
Wcrit

Ws(t)<Wcrit

(5)

For both parametrizations, the water stress function f(Ws) is considered in the calculation of the mesophyll conductance and

the maximum atmospheric water deficit (in a non-linear way) (Calvet et al., 1998, 2004). Instead of using a soil moisture

dependent function further, we apply the plant-water stress on the ψ according to the findings of Verhoef and Egea (2014). This

is calculated according to Millar et al. (1971), similarly to the formulation employed in Zhang et al. (2003):135

ψ =−0.395− 0.043 ·Tempa (6)

where Tempa is the air temperature (in [◦C]). The stress factor (LWPfrac) is calculated (similarly to Eq. 4) according to Zhang

et al. (2003):

f(ψ) =





1 ψ ≥ ψio
ψ−ψcrit
ψio−ψcrit ψio > ψ > ψcrit

0 ψ ≤ ψcrit

(7)

140

where ψio =− 0.74 MPa is the leaf water potential at initial reduction, and ψcrit =−2.75 MPa the leaf water potential at final

stomatal closure (Verhoef and Egea, 2014).
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However, by evaluating the several stomatal models, Sabot et al. (2022) shows that an exponential dependency of ψ is more

suitable (LWPexp):

f(ψ) =





1 ψ ≥ 0

esMed·ψ
(8)145

where sMed = 2 MPa−1 is a sensitivity parameter. We further implemented the more sophisticated stress factor used in the

common Community Land Model (CLM5, (Kennedy et al., 2019)) as reference (CLM5):

f(ψ) =





1 ψ ≥ 0

2−( ψ
p50 )ck

(9)

150

where the water potential at 50 % loss of stomatal conductance (p50 =−1.75, in [MPa]) and a vulnerability parameter (ck =

2.95) are used. Please note that in CLM5 the soil matric potential is used. However, the leaf water potential can be used as a

proxy (Kozlowski et al., 1991; Verhoef and Egea, 2014).

A quantitative limitation analysis by Egea et al. (2011) found that for a realistic model representation water stress should

act at least on the biochemical capacity and stomatal conductance and alternatively also on the mesophyll conductance. In155

most ecosystem models, however, only biochemical or stomatal limitations are included. Therefore, we apply the plant-water

stress in case DEFmulti, LWPfrac, LWPexp and CLM5 linearly to the stomatal and the mesophyll conductance as well as to the

photosynthetic activity of plants.

An overview of all parametrizations used as plant-water stress factor in the calculation of stomatal conductance is given in

Table 1.160

2.2 Observational data

2.2.1 EUMETSAT

The observational data for evapotranspiration was generated by the European Organisation for the Exploitation of Meteorolog-

ical Satellite (EUMETSAT) with the second generation of geostationary Meteosat satellites which cover the domain of Europe,

Africa and most of South America at 3 km spatial resolution. The Spinning Enhanced Visible and Infrared Imager (SEVIRI)165

radiometer operating (among others) on board obtains the radiation components at the surface. This data together with further

biophysical parameters and soil moisture data from remote sensing, recent land-cover information from the ECOCLIMAP

land cover database and meteorological fields from numerical weather prediction drive a physical model of energy exchange

between the soil-vegetation-atmosphere systems. By this, the flux [in mm h−1] of water evaporated at the Earth-atmosphere

interface (soil, vegetation, water bodies) and transpired by vegetation through stomata (as a consequence of photosynthetic170
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Case Plant-water stress factor current study (original study)

noWP f(Ws) =

 1 Ws(t)≥Wcrit(= 75%Fc)
Ws(t)
Wcrit

Ws(t)<Wcrit

(1) applied in gm calculation (to final gs)

REF f(Ws) =


1 Ws(t)≥Wcrit(= 75%Fc)
Ws−Wpwp
Wcrit−Wpwp Wpwp <Ws <Wcrit

0 Ws(t)≤Wpwp(= 35%Fc)

(2) applied in gm calculation (to final gs)

DEFmulti as REF (1,3) multiplicative factor to gm, gs, Amax

LWPfrac f(ψ) =


1 ψ ≥ ψio
ψ−ψcrit
ψio−ψcrit ψio > ψ > ψcrit

0 ψ ≤ ψcrit

(4) multiplicative factor to gm, gs, Amax

(to gs)

LWPexp f(ψ) =

 1 ψ ≥ 0

esMed·ψ
(5) multiplicative factor to gm, gs, Amax

(to the slope of the sensitivity of gs to

An)

CLM5 f(ψ) =

 1 ψ ≥ 0

2
(− ψ

p50 )ck
(6) multiplicative factor to gm, gs, Amax

Table 1. Parametrizations for plant-water stress used here, originally by Schulz et al. (2001) (1), Delworth and Manabe (1988) (2), Verhoef

and Egea (2014) (3), Zhang et al. (2003) (4), Sabot et al. (2022) (5), CLM5,Kennedy et al. (2019) (6) with gm, gs,Amax being the mesophyll

conductance,and stomatal conductance, the maximum photosynthetic capacity. Ws, Wcrit,Wpwp are the actual soil wetness, critical soil

wetness and soil wetness at wilting point, respectively. Fc is the field capacity (maximum holding capacity of soil moisture). ψ, ψcrit and

ψio are the actual leaf water potential, the critical value, the value at final stomatal closure, respectively. ck, p50 and smed are a vulnerability

parameter, water loss at 50 % stomatal closure and sensitivity parameter, respectively.

processes) is calculated within a Soil-Vegetation-Atmosphere Transport model (SVAT) (saf, 2018):

ET = 3600
LHT

Lv
, LHT =

Lvρ

(ra + rs)
[qsat(Temps)− qa(Tempa)] (10)

where LHT is the latent heat flux of transpiration in [W/m2], Lv the latent heat of water vapor in [J kg−1], ρ the air den-

sity[kg m3], ra and rs are the aerodynamic and stomatal resistances (inverse of the conductances), q the specific humidity

and qsat(Ts)− qa(Ta) atmospheric saturation deficit in [kg/kg]. This product have been downloaded from the website of175

the EUMETSAT land surface analysis (LSA SAF) consortium (https://landsaf.ipma.pt/ChangeSystemProdLong.do?system=

LandSAF+MSG&algo=DMET, last access: 29.06.2023) at a time interval of 3 hours (original frequency: 30 min). For com-

parison with the model results, the downloaded dataset was regridded to the spatial grid of EMAC. The product validation

report found a general accuracy of 20-25 %, equivalent to the accuracy of measurements. Main uncertainties may stem from

the physical formalism of the algorithm, the errors of the input data, surface heterogeneity and sensor performance among180

others (saf, 2018).
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2.2.2 GLEAM

The Global Land surface Evaporation: the Amsterdam Methodology (GLEAM) model estimates the evaporative flux over land

by assimilating satellite observations. The land evapotranspiration is the sum of the bare soil, short vegetation, and tall vege-

tation in each grid box. The soil water content of multiple layers (depending of the land type) is calculated by a water balance185

between the input snowmelt and rainfall (minus interception). Thereby, surface soil moisture observations from satellites are

assimilated (with the Kalman filter approach) at daily time step based on its uncertainty. The Priestly-Taylor equation calculates

the potential latent heat flux λEp [MJm−2]:

λEp = α
∆

∆ + γ
(Rn−G) (11)

as a function of the net radiation (Rn, daily observational data) and the ground-heat flux (G). ∆ is the slope of the temper-190

ature/saturated vapor pressure curve (in [k Pa K−1]). The division by the latent heat of vaporisation λ yields the potential

evaporation (Ep in [mm]). For optimal environmental conditions, α= 0.8 and α= 1.26 at tall and short vegetation (or bare

soil) are used, respectively. An evaporative stress (S) is used to convert Ep to actual transpiration (T in [mmday−1], over

vegetation):

T = SEp (12)195

S is parameterised separately for tall and short canopies as well as for bare soil (then eq.12 yields bare soil evaporation) based

on the observed soil moisture conditions and vegetation optical depth. The canopy interception loss (I) is estimated in a separate

module based on observations of daily rainfall, snow depth, tall canopy fraction and lightning climatology and parameters for

canopy cover, canopy storage, mean rainfall and evaporation rate during saturated canopy conditions. To account for conditions

with wet canopy where water is evaporated (and not intercepted) the factor β = 0.07 is introduced. An extra module estimates200

the snow and ice sublimation for the snow-covered pixels (no stress) where α=0.95. The evaporation from lakes and rivers

is not included. Further details can be found in Miralles et al. (2011). The data was downloaded from the ftp server after

registration https://www.gleam.eu/#downloads, last access: 24.07.2023).

2.2.3 TROPOSIF

Solar-induced chlorophyll fluorescence (SIF ), an electromagnetic signal emitted by the chlorophyll of assimilating plants and205

not used for photosynthesis, can be observed with remote sensing. This can be a proxy for photosynthetic activity because

the SIF signal responds to perturbations by environmental stress (Maes et al., 2020). However, the estimation requires high

spectral resolution and advanced retrieval schemes since the emissions contribute only a small fraction to the radiance. The

TROPOMI (TROPOspheric Monitoring Instrument) instrument aboard the Copernicus Sentinel-5 Precursor mission, launched

in October 2017, measures Top-of-the-Atmosphere radiances. By inversion of a linear forward model these are fitted in the210

far-red spectral region. SIF estimates from the 743-758 nm window are the most robust against atmospheric effects like

cloud contamination. The L2B product used here (SIF dataset from TROPOMI: TROPOSIF) combines all observations at the
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single orbits within one ungridded netCDF4 file (NOVELTI et al., 2021). The evaluation with other SIF products showed a

general consistency in terms of level and amplitude of the retrieved SIF, and seasonality, for vegetated surfaces. The indicative

error threshold for the definition of spatio-temporal bins is 0.2 mW m−2 steradian−1 nm−1 value (about 10 % of the peak215

SIF values observed globally) (Guanter et al., 2015). This translate to 0.064 mm day−1 of transpiration. In addition, the

data product includes a quality flag which is used here for individual quality assurance. The data can be downloaded at http:

//ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/sif/v2.1/l2b/ (NOVELTI et al., 2021; Guanter et al., 2015). According to

Maes et al. (2020) the SIF data can be converted to the latent heat flux of transpiration (LHT in [W/m2]):

LHT = 61.4 ·SIF (13)220

Using the latent heat of water vapor (Lv = 1.5 · 106 in [J kg−1]) gives the transpiration [mm day−1]:

T = LHT /Lv · 3600 (14)

To compare this dataset to the EMAC model we sample the instantaneous output along the satellite orbit at 13:30 UTC.

Estimation method Plant transpiration Evapotranspiration

EMAC considers β only for the vegeta-

tion fraction

ET =−LvρCh|v|β(qa−hqs(Temps,ps))
β = [1 +Ch|v|Rstom]−1

Satellite observations

by EUMETSAT

not provided ET = 3600LE
Lv

LE = Lvρ
(ra+rs)

[qsat(Temps)− qa(Tempa)]
GLEAM model driven

by satellite observa-

tions

T = SEp ET = T + I −βI

Estimate from solar-

induced fluorescence

by TROPOMI

LHT = 61.4 ·SIF
T = LHT /Lv · 3600

not provided

Table 2. Formulae for plant transpiration and evapotranspiration from EMAC and the used observational datasets.

3 Results and Discussion

3.1 Plant-water stress and transpiration225

The stress functions summarized in Table 1 yield a variety of different plant-water stress and thus transpiration. Figure 1

provides a first overview of how the response functions vary with proxies of water stress (soil moisture and leaf water potential).

Lowering ’volumetric’ soil moisture (soil wetness divided by the field capacity) linearly increases the plant-water stress for

the cases REF and DEFmulti (black line) until the wilting point (35 % of the field capacity) is reached. With the noWP

function (gray line), contrarily, plants experience a weaker stress with drying soil, which, however, can increase up to the230
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Figure 1. Plant-water stress factor vs. (volumetric) soil wetness (left) and leaf water potential (right) of described parametrizations.

point of stomatal closure (stress factor= 0). The functions LWPfrac and CLM5 show mostly a linear increase of the stress

with increasing water demand (more negative ψ). The CLM5 function covers also the ψ range between 0 and -1 [MPa] where

the response is much weaker. LWPexp is a simple exponential function with a steep increase of the stress response for ψ

from 0 and -1 [MPa]. In comparison, for most plant species Verhoef and Egea (2014) observed a sigmoidal dependency of

plant water stress on soil water (their Figure 1). The recent modelling study by Harper et al. (2021) applied a function with a235

simple quotient depending on soil moisture similar to the functions REF and DEFmulti. Model improvements were obtained

by replacing the soil moisture with the soil matric potential (Harper et al., 2021), for which ψ applied in LWPfrac can be used

as a proxy (Kozlowski et al., 1991; Verhoef and Egea, 2014). Early observations of increasing stomatal conductance with a

increase of ψ (to lower negative values, see Figure 2B in Sellers et al. (1997)) are in general agreement with these results.

We explore the changes on global and regional scales using spatial (weighted) means for different regions: Europe (oceanic),240

South America Monsoon (tropical monsoon), Arabian Peninsula (hot arid), African Savanna, boreal forest (continental), East

Asia (warm temperate moist). The sensitivity analysis of noWP and DEFmulti simulations shows only small local changes

in transpiration (within the monthly range of variance), impacting the annual estimate only by ±10-15 %. This is because

neglecting the wilting point decreases the plant-water stress (fWs
) by only 10 % in all dry vegetated regions (dry climate:

Ws < 0.35 ∗Fc, see Seneviratne et al. (2010)) and thus transpiration is only marginally affected.245

Figure 2 shows the simulated annual mean maximum photosyntetic capacity (Am,max) and transpiration (T ) and the re-

spective changes. The global distribution (simulated by REF) follows the spatial distribution of air temperature and CO2

concentration in the leaf cavities. Until the up-scaling of stomatal conductance to the canopy level (see ECMWF (2021), eq.

8.123) the intermediate calculations, e.g. for Am,max, are at leaf level. Thus, the distributions over non-vegetated areas like

the Saharian are masked out here. Transpiration (Figure 2b) additionally depends on atmospheric moisture, which explains its250

maxima in the tropical rainforests. The multiple application of the default stress factor (to gm, Am,max, gs: DEFmulti) leads to

small decreases ofAm,max (Figure 2c) in dry areas (SM<Wpwp, soil-moisture limited). Thus, transpiration is not significantly

changed (Figure 2d, max=0.5).

The impact of the plant-water stress functions based on leaf-water potential (e.g. LWPfrac) is more widespread in vegetated

areas since the parametrization is temperature driven. Am,max and also the daily transpiration decreases significantly by 1-255
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Figure 2. Annual mean maximum assimilation rate (Am,max) (a), transpiration (T ) (b) and respective changes to DEFmulti (c,d) and CLM5

(e,f).

2 mm day−1 which is highest in the tropical rainforest (Figure 2f). This can be reasoned by the radiation maximum in the

inner tropics which leads to a higher influence of the 30 % increase of the plant-water stress and subsequent decrease of the

maximum photosynthetic capacity (Figure 2e) and mesophyll conductance (not shown here) in the tropics compared to SH

continents. With the start of the boreal summer in May/June the impact spreads out to Europe and the US while it’s limited to

the evergreen tropical forests on the SH. Note, that also the final stomatal conductance is lowered again by the stress factor.260

The changes of the sensitivity simulations LWPexp and CLM5 (not shown here) have the same spatial distribution only a minor

different change of the plant-water stress and subsequent variables among each other which means that the linear fraction and

the exponential formulation can be interpreted similarly. All three stress functions introduce an additional dependence of the

modelled transpiration to air temperature (except in the arid climate). In fact, this slows down the increase of transpiration with

rising temperature. Accordingly, the amplitude of the diurnal cycles decreases (Figure 3 when introducing the multiple stress265

factor application (LWPfrac, LWPexp, CLM5). On the other hand, the cycle of plant-water stress show firstly variations during

day which is an observed phenomena according to Xiao et al. (2021). In contrast to LWPfrac and CLM5 which predict not only

the same ψ but also the same f(ψ), LWPexp estimates a higher (negative) ψ in most regions (shown in Figure 3). This can
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be explained via the temperature-transpiration feedback expected in dry climates (ARP and African savanna). In addition, the

simple exponential function in LWPexp yields a stress factor close to zero and thus unrealistically shuts down the mesophyll270

conductance and the photosynthetic activity in contrast to LWPfrac and CLM5.

Figure 3. Regional mean diurnal cycle of transpiration in boreal summer.

3.2 Global estimates of transpiration

All EMAC simulations show a realistic spatial variation of annual transpiration (Figure 2b). However, the low VR values

globally (Table 3) indicate that the simulated variability is lower (VR<1) compared to the GLEAM dataset. This cannot be

attributed to an oversimplification of the modelled process because GLEAM is based on the Priestley-Taylor equation, an275

empirical equation dependent on solar radiation and temperature, compared to the physical-based Penman-Monteith approach

used in EMAC (Table 2. The reference simulation of EMAC with the standard plant-water stress overestimates the global

average transpiration calculated with GLEAM by 46 mm yr−1 (16 %, Table 3), which is well within the uncertainty range

of the GLEAM product (± 136 mm yr−1). The LWPfrac and CLM5 stress factors correct for this overestimation regionally.

The global average, however, the new model estimate of 276/277 mm yr−1 is lower than the GLEAM estimate. Compared to280

the GLEAM uncertainty, all model simulations show a higher 1 σ (standard deviation) range indicating a higher uncertainty

which e.g. could be attributed to the representation of precipitation in the model. In GLEAM, instead, precipitation stems

from satellite observations (s. 2.2.2). A lower 1σ in the sensitivity simulations based on the leaf water potential indicate an

improvement due to neglecting the uncertain soil moisture data usually used in the model. Utilising the transpiration estimate

from the TROPOSIF data yields a good comparison with the (monthly mean) model predictions (only low underestimation)285

over areas with high transpiration (e.g. Europe, East Asia) in spring and late autumn. Under strong drought conditions, solar

induced fluorescence by plants decouples from transpiration (Maes et al., 2020) and thus the linear relationship between SIF

and T (applied here) is not valid anymore e.g. during boreal summer (Martini et al., 2022). Compared to GLEAM (masked

for the TROPOSIF region) however, the TROPOSIF dataset predicts a lower daily transpiration during spring and higher
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transpiration during autumn. The seasonality of SIF strongly follows the growing season on the NH which might induce some290

mismatches.

Datasets Transpiration (1σ) NAE VR

[ mm yr−1]

GLEAM 329.1 (± 68) - -

REF 375.7 (± 98) 5.00 0.08

noWP 379.6 (± 100) 5.59 0.07

DEFmulti 370.1 (± 97) 9.80 0.08

LWPfrac 277.2 (± 77) 4.85 0.11

LWPexp 166.9 (± 45) 10.57 0.22

CLM 276.2 (± 76) 4.89 0.11
Table 3. The global estimates of transpiration (1σ - standard deviation), normalised absolute error (NAE) and the variance ratio (VR:
var(mod)
var(obs)

, accounting for grid boxes with more than 1 % vegetation.

The multi-model ET estimate of 18 CMIP6 models (1980-2014, general increase of ET) and the observation-based T/ET

ratio of 64 % by Pan et al. (2020) yield a global transpiration of 384 mm yr−1. From this, it can be concluded that all model

estimates in our study predicted annual transpiration reasonably well. The only exception is the sensitivity simulation LWPexp

showing an unrealistic strong reduction thus a high normalised absolute bias (NAE) which is likely due to the choice of295

parameters constraining the stress factor significantly (s. 8). For the further impact assessment in this study, we use the stress

factor LWPfrac since it overall shows the best performance (slightly better than the CLM5 factor).

3.3 Contribution to global evapotranspiration

The contribution of transpiration to the total ET varies in time and space with vegetation and soil characteristics (Wang and

Dickinson, 2012; Cao et al., 2022; Lian et al., 2018). This spatial variability is reflected by GLEAM and EMAC whereas300

especially the estimates in Europe and Africa mismatch (Figure 4). The dominance of soil evaporation over transpiration in

dry (non-vegetated) regions as reported by Lian et al. (2018) is here also shown in the African desert by a low T/ET ratio

(in GLEAM and EMAC) and non-vegetated parts of China (EMAC). Also, the low T/ET ratio in northernmost areas (partly

snow-covered) of Canada and Siberia (see Lian et al. (2018)) is only captured by EMAC. In humid regions, especially the

tropics, evapotranspiration is driven by transpiration. The contribution can reach up to 87 % over densely vegetated regions.305

For comparison, observations in the Amazonian tropical forest indicate an average T/ET ratio of 0.7 (Wang and Dickinson,

2012; Zhang et al., 2017). This can be consistently represented by EMAC (Figure 4b) although the sensitivity simulations,

e.g. LWPfrac and CLM5, partly reduce the T/ET ratio too much in the south of the South America continent (Figure 4c,d).

According to the simulated and observation-based estimates of T/ET by Lian et al. (2018) (their Figure 1a), all EMAC sim-

ulations represent too low values in most parts of U.S. suggesting a dry model bias. For the central U.S., Dong et al. (2022)310

13

https://doi.org/10.5194/egusphere-2023-2306
Preprint. Discussion started: 13 October 2023
c© Author(s) 2023. CC BY 4.0 License.



indeed confirms that unbiased estimates of summertime daily maximum temperature could be achieved only with a T/ET ratio

of 0.7. Contrarily, GLEAM shows higher values of the T/ET ratio for the east coast of the U.S. as well as for the SH continents,

Europe, and Asia. The incorrect E-T partitioning was identified as an error source of ET estimation in CMIP5 models (Lian

et al., 2018).

Figure 4. Annual mean ratio of transpiration evapotranspiration by (a) GLEAM, (b) REF, (c) DEFmulti, and (d) LWPfrac).

To assess the model estimation of evapotranspiration we compare with ET estimates by GLEAM and EUMETSAT whereas315

GLEAM shows generally higher estimates (Figure 5a, c). ET has its maximum in the tropics while in the high northern latitudes

and sparse-vegetated areas (e.g. South African desert) low values occur. The GLEAM estimate of (EUMETSAT-region) ET

(512 mm yr−1) differs by 30 mm yr−1 (6 %) from the EUMETSAT value (481 mm yr−1) which could be considered to be

within the uncertainty range. However, regionally the difference can be large, as much as 50 %. This is most evident in the

tropics and consistent with recent studies reporting a large spread and a high uncertainty in model estimates for ET at low320

latitudes due to the parametrization of the root water uptake (Pan et al., 2020). According to literature values by (e.g., Elnashar
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et al., 2021), who calculated an annual ET of 540 mm yr−1 (for 2018), the GLEAM estimate is the most consistent with

literature values. Thereby, the models usually differ by 200 mm yr−1 which is about twice the spread of estimates by single

models (minima and maxima) (Wang et al., 2021).

Figure 5. Annual evapotranspiration (ET) of (a) GLEAM, and its difference to (b) the CLM5 sensitivity simulation (CLM5-GLEAM), (c)

EUMETSAT and (d) the difference to the the CLM5 sensitivity simulation.

The global average of annual ET predicted by EMAC with the different plant-water stress parametrizations is about 425-325

480 mm yr−1. ET predicted by the CLM5 sensitivity simulation, which reproduces transpiration the best (see Sec. 3.2, together

with LWPfrac), compares well with the GLEAM annual values. Mainly in some coastal areas like East U.S., NE Amazon

considerable differences occur which could be reasoned by neglected sub-scale hydrology at the coasts (Figure 5b). Compared

to EUMETSAT, EMAC (as well as GLEAM) estimates a higher annual mean ET in tropical rain forests whereas in tropical

monsoon climate region too low values are simulated compared to EUMETSAT (Figure 5d). This pattern of differences sug-330

gests precipitation as a reason since these two climate types differ essentially by the amount of precipitation. This is consistent

with the known precipitation bias of the ECHAM5 climate model (see Figure 7 in Stevens et al. (2013)). Both, EMAC and
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EUMETSAT underestimates the GLEAM global ET where, however, more than 50 % of the mismatch occurs outside the

EUMETSAT region. The difference cannot always be considered to be within the model variability of 20 % due to the model

net radiation depending on the choice of forcing data (Badgley et al., 2015). One reason for the underestimation is likely the335

neglect of diffuse radiation impact in big-leaf models, as used here, enhancing photosynthesis and evapotranspiration (Wang

et al., 2022; Knohl and Baldocchi, 2008). Furthermore, representing also deep plant roots would ensure a more realistic water

holding capacity and avoid a drying out of the soil in the tropical rainforests (Hagemann and Stacke, 2015).

3.4 Impact on air temperature

The changes in ET have significant impacts on air temperature. Here, we compare the temperature predicted by REF to the one340

by LWPfrac. As expected, from a decrease of ET, i.e. less cooling, high daily maximum air temperature values increase, shown

in Figure 6 for warm spells in 2018. We define warm spell conditions as a period of at least 3 consecutive days when daily

mean temperature exceeds the 95 % percentile of the daily mean temperature of the reference period (1979-2008) (Nairn and

Fawcett, 2014). In fact, the difference of the actual temperature to to the climatological percentile (termed ’excess heat factor’

in Nairn and Fawcett (2014) which is a measure of intensity of warm spell conditions increases by 1.5K in Europe and 4K in345

South Africa, in the East U.S. and the Amazon forest due to the changed plant-water stress function of LWPfrac. The global

mean air temperature in the lowest model layer (≈ 60m) increases by 2K. Our results are consistent with recent studies, (e.g.,

Kala et al., 2016), highlighting the role of stomatal stress in the amplification of heatwaves especially affecting the intensity of

warm spells and heat waves (Barriopedro et al., 2023).

Figure 6. The maximum annual difference of warm spell intensity in 2018 due to the plant water stress function.
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3.5 Impacts on air pollution350

The different representations of plant-water stress affect air pollution mainly by influencing 1) dry deposition fluxes of ozone

and 2) meteorological controls on photo-chemistry. Figure 7 shows the respective changes for ozone (O3) which is a major

air pollutant threatening human health as well as the productivity of plants. Figure 7a shows that the dry deposition of O3 in

LWPfrac is decreased by up to 25 %, compared to REF, in the tropics and subtropics where dry deposition exerts a strong

control on air composition due to high vegetation density. Similar changes apply to precursors with similar characteristics as355

O3 which then contributes to the increase of O3 mixing ratio (Emmerichs et al., 2021). Furthermore, the reduced ET in most

vegetated regions exacerbates the atmospheric moisture deficit by which the stomata are additionally stressed. The annual mean

chemical production and loss terms (Figure 7b,c) are only enhanced in the SW of South America (by up to 10 %) although the

increased plant-water stress leads to a significant temperature increase in the entire tropical regions (see previous section) which

is known to favour O3 production (Pusede et al., 2015). The increase of O3 production, shown, here follows the increase of360

OH and HO2 (HOx) production but it is limited to western Amazon. That is because, in the inner tropical rainforest (Amazon,

Congo) the isoprene mixing ratio, an important O3 precursor, decreases (Figure S1b) due to increased loss by hydroxyl radical

(OH) although isoprene emissions are enhanced by higher temperatures (Guenther et al., 2006). The change of the O3 loss has

the same magnitude but is more widespread than the change of the O3 production driven by a relative acceleration of NOx and

HOx chemistry. These effects then lead to an increase of the net O3 loss in the Amazon basin which is overcompensated by365

the decreased O3 uptake by vegetation. Thus, annual mean surface O3 is increased in the tropics and subtropics by up to 10 %

(Figure 7d). This enhances the tropospheric O3 burden by 5 Tg per year.

3.6 Future scenario

A simulation with the double CO2 concentration (futureLWPfrac) was performed to investigate the role of the new plant-water

stress factor in future climate conditions. Besides perturbing the energy balance at the top of the atmosphere, CO2 affects370

the plant sensitivity to water stress in our simulations. Increasing CO2 has a two-fold impact on the plants behaviour. While

it leads to an increased photosynthetic activity, the stomatal conductance is reduced by an average of 40 % (gs, Figure 8a).

Vicente-Serrano et al. (2022) reports a decrease of 22 % (on average) in stomatal conductance from multiple experiments by

doubling only CO2. We also can confirm these findings for equatorial and tropical forests in our simulation. The transpiration

of plants decreases in response to increasing CO2 in these regions due to the dominant decrease of gs as reported by Vicente-375

Serrano et al. (2022). In our simulations, however, the impact of the future conditions on gs is more widespread since the

changed climatic conditions reduce the relative humidity almost world-wide and thus stress the plants. The decrease of gs by

30 % linked to the new plant-water stress function is strengthened by the enhanced CO2. However, this dominates the ET only

on a daily basis while the annual sum increases by 30-100 mm yr−1 in response to an increased evaporative demand. As a

consequence, 2m temperature is almost doubled (Figure 8b) and the relative humidity drops (not shown). These changes are380

linked to the 20-50 % increase of solar irradiation (correlation) due to less low-level clouds. Pollard and Thompson (1995)

also reports on conducting a doubling CO2 scenario leading to an increase in stomatal conductance, temperature and specific

17

https://doi.org/10.5194/egusphere-2023-2306
Preprint. Discussion started: 13 October 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 7. The relative change between LWPfrac and REF of the annual mean of (a) O3 dry deposition, (b) chemical O3 production, (c)

chemical loss and (d) surface O3 mixing ratio.

humidity which reduces relative humidity and cloudiness. Nevertheless, to assess the overall climatic impact of the multiple

interactions between terrestrial vegetation and CO2 also the changing vegetation would have to be considered. However, such

an assessment is far more complex and highly uncertain (Vicente-Serrano et al., 2022).385

4 General discussion

4.1 Default model parametrization

In models, ET is estimated either by the physically-based Penman-Monteith (PM) approach (state-of-the-art) or the empirical

Priestley-Taylor (PT) equation. The latter one (used in GLEAM) assumes that ET only depends on solar radiation and temper-

ature neglecting wind speed, relative humidity and vapour pressure deficit. But because of the link to air temperature, estimates390
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Figure 8. (Boreal) Summer mean change of stomatal conductance (a) and daily 2m maximum temperature (b) when comparing LWPfrac in

normal and future conditions.

by the PT approach show a high correlation to values estimated by the PM equation expect in dry conditions and in areas with

relatively high wind speed (Utset et al., 2004). The key variable for the common parametrization of the water stress in plants

is the soil moisture described in EMAC by the simplistic but conventional bucket model. A bucket model has been used e.g. in

the JSBACH land surface model for a long-time (Boone et al., 2004). The inclusion of the surface resistance term in EMAC as

the so-called "second-generation models" yields a better comparison of estimated evapotranspiration rates with observations395

than utilizing ’pure’ bucket models (Sellers et al., 1997). However, the lack of soil water holding capacity in the bucket model

leads to an immediate remove of water and thus to an unrealistically low soil water in areas with deep roots e.g. tropical forests

(Hagemann and Stacke, 2015), despite the thickness of subsurface layers. Nevertheless, the multi-model evaluation by Robock

et al. (1998) found no significant improvements of sophisticated soil models with multiple layers and even vegetation dynamics

like the CLM or NOAH-LSM over the bucket scheme. More recently, Dong et al. (2022) concluded that most CMIP6 models400

simulate a warm bias in mid-latitude summer because of incorrect partitioning ET in canopy transpiration and soil evaporation

due to a shallow soil. Moreover, even small differences of the input field capacity data can have large effects on the simulated

ET (Hagemann and Stacke, 2015).

4.2 More sophisticated models, remaining uncertainties and future recommendations

Boone et al. (2004) shows that sophisticated land surface models (LSMs) agree with each other regarding latent heat flux and405

total runoff. Nevertheless, we note that comparing different LSMs is very difficult because of the different model components,

parameterizations, and choice of associated parameters. Also, many LSMs only represent shallow soil with a depth down to

maximum 2m (Pan et al., 2020) and therefore cannot account for the storage capacity of the soil in the tropical forests as

shown by Hagemann and Stacke (2015). For the second-generation LSMs Pitman (2003), which calculate transpiration and
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soil moisture across multiple layers, the predicted soil moisture is somewhat better than with the bucket model. However, when410

compared to observations, LSMs show a large spread in performance (Shao and Henderson-Sellers, 1996). This is certainly

due to, but not limited to, the use of different schemes for simulating surface fluxes and soil moisture. Generally, the needed

spin-up time by LSMs with deep soil schemes is often not affordable, especially for climate simulations. Using in addition a

groundwater model ((e.g., Kollet and Maxwell, 2008)) can improve the simulation of the water budget and the groundwater-

land surface interactions (Rahman et al., 2014) but strongly increase the required computational resources.415

The most recent model intercomparison CMIP6 shows on average an overestimated ET by the models compared to an

observational dataset. However, the CMIP6 ensemble mean underestimates ET in regions of high evapotranspiration, such as

the Amazon basin, central Africa, and southeast Asia but overestimates ET in regions with low evapotranspiration, such as the

Sahara desert, the Middle East, southwest Australia, and the Andes Mountains (Wang et al., 2021). A multi-model comparison

by of ET estimates Pan et al. (2020) shows that the uncertainty is largest in the Amazon basin, where the standard deviation420

of LSM estimates is more than 2 times larger than that of benchmark estimates. The potential source of uncertainty is the root

water uptake. Also, the model representation of LAI dynamics or water movement in the soil might cause this uncertainty (Pan

et al., 2020). In arid and semiarid areas, precipitation is a key uncertainty factor for estimates of evapotranspiration (Pan et al.,

2020).

5 Conclusions425

We have investigated the significance of plant-water stress for the predictions of ground-level ozone concentrations in a

warm(er) world. This study has focused on the improvement and assessment of the evapotranspiration simulated by the at-

mospheric chemistry model EMAC. We confirm that evapotranspiration is a key process driving the moisture cycling in the

atmosphere affecting the global distribution of temperature and warm spell intensity. We also find that plant-water stress

has a significant impact on the photo-chemistry and uptake of trace gases by vegetation. For that, we have applied multiple430

plant-water stress factors, which strongly reduce stomatal activity, and have assessed the impacts at local and global scales.

Specifically, we find that:

– The EMAC model represents the spatial variability of transpiration reasonably well

– The global estimates of transpiration are within the literature range whereas a simple exponential dependence on leaf

water dependence (LWPexp) induces a too strong reduction435

– The use of stress factors based on leaf water potential lowers the amplitude of the transpiration diurnal cycle but strength-

ens the model sensitivity to temperature

– The E/T partitioning is generally well simulated by EMAC but in regions like the East U.S. the T/ET ratio is too low,

probably due to the dry model bias

Close to pollution sources, tropospheric ozone is projected to increase in the future as consequence of the climate warming.440

This is often referred to as the ’ozone-climate penalty’ (Rasmussen et al., 2013). However, a recent multi-model projection
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suggests a climate benefit on a global average (Zanis et al., 2022). As many uncertainties remain, a recent analysis call for

a re-examination of the link between extreme events and ground-level ozone (Fu and Tian, 2019). Our results highlight the

importance of evapotranspiration and plant-water stress for the predictions of air pollution during heat waves and droughts.

These extreme events are projected to be more frequent and intense (Domeisen et al., 2022). The magnitude of the effects445

assessed in this study are model-specific. Nevertheless, they provide a general guidance for assessment and improvement of

atmospheric chemistry models without a state-of-the-art description of land surface processes.
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