

- 1 TITLE
- 2 Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA
- 3 in soils
- 4
- 5 Keywords: soil carbon cycling, microbial death, soil microbial processes, microbial temperature response,
- 6 microbial growth optimum
- 7
- 8 AUTHORS
- 9 Jörg Schnecker¹, Theresa Böckle¹, Julia Horak¹, Victoria Martin¹, Taru Sandén², Heide Spiegel²
- 10 AFFILIATIONS
- 11 ¹Centre for Microbiology and Environmental Systems Science, University of Vienna, Austria
- 12 ²Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety (AGES),
- 13 Vienna, Austria
- 14 CORRESPONDING AUTHOR: Jörg Schnecker
- 15 email: joerg.schnecker@univie.ac.at

16

17 ABSTRACT

18 Microbial respiration, growth and turnover are driving processes in the formation and decomposition of 19 soil organic matter. In contrast to respiration and growth, microbial turnover and death currently lack 20 distinct methods to be determined. Here we propose a new approach to determine microbial death rates 21 and to improve measurements of microbial growth. By combining sequential DNA extraction to 22 distinguish between intracellular and extracellular DNA and ¹⁸O incorporation into DNA, we were able to 23 measure microbial death rates. We first evaluated methods to determine and extract intracellular and 24 extracellular DNA separately. We then tested the method by subjecting soil from a temperate agricultural 25 field and a deciduous beech forest to either 20 °C, 30 °C or 45 °C for 24 h. Our results show, that while

26	mass specific respiration and gross growth either increased with temperature or remained stable,
27	microbial death rates strongly increased at 45 $^{\circ}\mathrm{C}$ and caused a decrease in microbial biomass and thus in
28	microbial net growth. We further found that also extracellular DNA pools decreased at 45 $^\circ\mathrm{C}$ compared to
29	lower temperatures, further indicating enhanced uptake and recycling of extracellular DNA along with
30	increased respiration, growth and death rates. Additional experiments including soils from more and
31	different ecosystems as well as testing the effects of factors other than temperature on microbial death
32	are certainly necessary to better understand the role of microbial death in soil C cycling. We are
33	nevertheless confident that this new approach to determine microbial death rates and dynamics of
34	intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in
35	soils in the future.

36

37 1 INTRODUCTION

38 Microorganisms are the driving force that sustains the 1450 Gt carbon (C) in soils globally (Liang et al., 2017; Scharlemann et al., 2014). Active microorganisms take up and convert plant derived C and soil 39 40 organic C into microbial biomass and release C as CO₂ to the atmosphere via respiration. Upon cell death, 41 microbial C is released back to the soil solution and can be stabilized on mineral surfaces or in aggregates. While causes for microbial death in soils can be numerous, ranging from osmotic shock and dehydration 42 43 to viral lysis and predation (Sokol et al., 2022), the relevance of this process and of the microbial 44 necromass pool for soil C cycling is undisputed. Since a large proportion of SOM is passing through the 45 microbial biomass pool (Kallenbach et al., 2016; Miltner et al., 2012), the process of microbial death might 46 be of equal importance as microbial growth for SOM formation.

47 Methodological developments in the last decades have made it possible to measure microbial C uptake
48 (Bååth, 2001; Frey et al., 2013; Rousk and Bååth, 2007). Substrate independent methods, that use ¹⁸O
49 have enabled the measurement of growth of the whole soil microbial community and individual taxa

50 without changing substrate availability for microbes (Blazewicz and Schwartz, 2011; Hungate et al., 2015; 51 Spohn et al., 2016). Recently developed methods even allow these measurements without changing soil 52 water contents (Canarini et al., 2020; Metze et al., 2023). In contrast to uptake and growth, turnover and 53 death rates of the microbial community have not seen a suitable method yet. Microbial turnover can be 54 calculated using only growth rates and the microbial biomass pool (e.g., Prommer et al., 2020; Spohn et 55 al., 2016), under the assumption of a stabile state of the microbial community and no net changes in the 56 living microbial biomass as well as death rates being the same as growth rates. An assumption that might 57 not always be met under natural conditions.

58 A reason for the lack of methods to determine microbial death rates might be that DNA extractions used 59 for ¹⁸O-based methods do not account for extracellular DNA (eDNA). Extracellular DNA is DNA that persists 60 outside of intact microbial cells (Pietramellara et al., 2009). The eDNA pool is on the one hand fed by 61 disintegrated microbial cells (Ascher et al., 2009; Nagler et al., 2020), which could have died as 62 consequence to chemical or physical stressors or lysis caused by predators or viruses (Sokol et al., 2022). On the other hand, it has been shown that DNA is actively exuded by microorganisms as an integral 63 64 component of microbial biofilms in soils (Cai et al., 2019; Das et al., 2013). eDNA can be rather prominent 65 in soils and has been shown to account for up to 80 % of the total DNA extracted (Carini et al., 2016). Such 66 a large pool of DNA, irrespective of its origin has the capacity to mask subtle changes in the pool of DNA 67 inside living microbial cells (iDNA) and to bias measurements of microbial growth that are based on the 68 determination of DNA contents.

Here we propose a novel approach to assess microbial turnover rates. We suggest that separating the eDNA and iDNA pools upon the determination of microbial growth rates based on ¹⁸O-water incorporation into DNA harbors several advantages over the conventional method. The adaptation provides more precise growth rate measurements as it also allows the calculation of only iDNA production rates. Accordingly, changes in the iDNA pool can be used to calculate gross DNA release rates, i.e. microbial

- death rates. Besides providing insights into microbial death rates, observing changes in the iDNA as well
 as eDNA pools holds potential information about microbial processes like microbial DNA uptake and
 recycling.
- 77 In addition to evaluating extraction methods for eDNA and iDNA and evaluation of ¹⁸O incorporation in 78 the two DNA pools over time, we have tested the method by subjecting soils to different temperatures. 79 We used 20 °C, 30 °C and 45 °C assuming that these temperatures represent three distinct but relevant 80 temperatures for microbial activities in the investigated soils. The investigated soils were from two 81 contrasting temperate systems (an agricultural field and a deciduous forest) that regularly experience 20 82 $^{\circ}\mathrm{C}$ and sometimes even 30 $^{\circ}\mathrm{C}$ in the topsoil layers (Schnecker et al., 2022). Around 30 $^{\circ}\mathrm{C}$ is the assumed 83 optimum temperature for microbial activity for microorganisms in many soils (Birgander et al., 2018; 84 Nottingham et al., 2019; Rousk et al., 2012) and 45 $^{\circ}\mathrm{C}$ is a temperature, that has been shown to be beyond 85 the temperature optimum where microbial process rates are reduced in comparison to under 30 °C (Cruz-86 Paredes et al., 2021; Rousk et al., 2012). We expected, that (1) mass specific respiration, would increase from 20 °C to 30 °C and further to 45 °C. We further hypothesized that (2) a previously shown decrease 87 88 in microbial net growth above the temperature optimum at 30 $^{\circ}\mathrm{C}$ would be caused by increased microbial 89 death and a net decrease in microbial biomass.
- 90

91 2 MATERIALS AND METHODS

92 2.1 Sampling sites

Soil samples were collected from an agricultural field site and a deciduous forest. The long-term agricultural field experiment near Grabenegg, in Alpenvorland, Austria (48°12′N 15°15′E), was established in 1986 and previously described in Spiegel et al. (2018). The soil is classified as gleyic Luvisol (Spiegel et al., 2018) and has a silt loam texture (10 % sand, 73 % silt, and 17 % clay). Soil pH is 6.1 (Canarini et al., 2020). The forest study site at the experimental forest Rosalia, Austria (47°42′N, 16°17′E) is dominated by

98 European beech (Fagus sylvatica L.). The soil at the site is a gleyic Cambisol (Leitner et al., 2016). Texture 99 is a sandy loam (55 % sand, 38 % silt, and 7 % clay), soil pH is 4.9 (Canarini et al., 2020). Soils were sampled 100 from 0-5cm depth with a soil corer with a diameter of 2 cm. At both sites, 10 soil cores per each of the 101 four replicate plots were combined to one sample resulting in four field replicates per site. At the 102 agricultural site, the four sampled plots were 7.5 m wide and 28 m long and at least 5 m apart from the 103 next plot. At the forest site, the 3 m by 3 m plots were at least 10 m apart from each other. All samples 104 were homogenized by sieving in the field through a 2 mm mesh before they were transported to the 105 laboratory. 106 2.2 Experimental setup 107 To evaluate the feasibility of eDNA extraction and determination of eDNA pool size, as well as the potential 108 for its use in conjunction with ¹⁸O-based determination of microbial growth, we carried out three tests. 109 1) Comparing methods to collect or remove eDNA 110 2) Dynamics of eDNA over time at constant temperature 111 3) Temperature response of microbial biomass, DNA pools, microbial growth, death, and respiration 2.2.1 Comparing methods to collect or remove eDNA 112 To determine the contribution of eDNA to the total DNA pool, we compared two published methods. The 113 114 first method removes eDNA by addition of DNases (DNase method, (Lennon et al., 2018)), the second 115 method is based on a sequential DNA extraction (Ascher et al., 2009). 116 For this test, soil samples were collected in October 2021 and kept at 4 °C for one week before the experiment. For the DNase method, 400 mg of field moist soil were weighed in two 2 mL plastic tubes 117 118 each. All tubes were then amended with 440 µL buffer consisting of 382.5 µL of ultrapure water, 5 µL of 119 1 M MgCl₂, 2.5 µL of bovine serum albumin (10 mg/ml), and 120 µL of 0.5 M Tris-HCl (pH 7.5). One of the 120 two samples further received 40 μ L DNase I solution (10U/ μ L), the other tube received 40 μ L ultrapure 121 water and served as control. Both samples were incubated in an incubator at 37 °C for 1 h. Afterwards 25

- 122 $\ \mu L$ 0.5M EDTA was added, and the tubes were transferred to an incubator at 75 $^{\circ}C$ to stop DNase activity.
- 123 After 15 min, the samples were centrifuged, the supernatant was discarded, and the remaining sample

124 was extracted using FastDNA[™] SPIN Kit for Soil (MP Biomedicals).

125 For the sequential DNA extraction, we used the chemicals and materials provided in the FastDNA[™] SPIN 126 Kit for Soil (MP Biomedicals). For this approach 400 mg of field moist soil were weighed in the 2 mL Lysing 127 Matrix E tubes from which the contents had been emptied and collected in a 2 mL plastic vial. We added 128 1100 µL sodium phosphate buffer to the soil in the lysing tube and shook the vials gently in a horizontal 129 position at 100 rpm at 4 °C for 20 minutes. After this, the vials were centrifuged at 12500 rpm for 2 min 130 and the supernatant was collected as the eDNA containing fraction. The original content of the Lysing 131 matrix E tubes was returned to the tubes and handled as described in the manufacturer instructions to 132 obtain the iDNA pool. To the eDNA-fraction we then added 250 µL Protein precipitation solution and 133 followed the MP bio instructions after this step, except for additional centrifugation steps for separating 134 binding matrix and the liquid solution. After DNA extraction and purification, DNA extracts were stored at 135 -80C until further use. In addition to these two approaches, the same soils were also extracted regularly using the FastDNA[™] SPIN Kit for Soil (MP Biomedicals) to determine the total extractable DNA pool. The 136 137 DNA concentration of all extracts was determined fluorometrically by a Picogreen assay using a kit (Quant-138 iT[™] PicoGreen[®] dsDNA Reagent, Life Technologies). Content of eDNA determined with the DNase method 139 was calculated by subtracting the DNA content of samples that received DNase I from samples that only 140 received water and served as control.

141

142 2.2.2 Dynamics of eDNA over time at constant temperature

143 In this experiment, we explored the changes in eDNA and iDNA pools over time as well as the 144 incorporation of ¹⁸O from added water into these two distinct DNA pools. Soils were sampled in August 145 2022 and the incubation was started one week later, where samples were stored at 20 °C. For the

6

- 146 experiment, 400 mg of field moist soil were weighed into empty lysing matrix E tubes and amended with 147 ¹⁸O-water to achieve 60 % of the soils water holding capacity and a labelling of 20 atom percent (atm %) 148 of the total water in the soil. From each of the four field replicates, 7 vials were filled, labelled with ¹⁸O 149 water and closed. Immediately after label addition and after 6 h, 12 h, 24 h, 48 h, 72 h and 168 h, eDNA 150 and iDNA was extracted with sequential DNA extraction as described above. DNA concentrations in all 151 DNA fractions were determined using the Picogreen assay. Subsequently, total oxygen content and ¹⁸O 152 enrichment of the purified DNA fractions were measured following Spohn et al. (Spohn et al., 2016) and 153 Zheng et al. (Zheng et al., 2019) using a thermochemical elemental analyzer (TC/EA, Thermo Fisher) 154 coupled via a Conflo III open split system to an isotope ratio mass spectrometer (Delta V Advantage, 155 Thermo Fisher).
- 156

157 2.2.3 Temperature response of microbial biomass, DNA pools, microbial growth, death and respiration 158 In this experiment we subjected the samples to three different temperatures to test the response of 159 microbial communities. Soils were collected in August 2022 and stored at 20 °C for two days before the 160 start of the experiment.

For the incubation, around 400 mg of soil were weighed into empty lysing matrix E tubes. From each field 161 162 replicate, five lysing matrix E tubes were filled. Two sets of samples were amended with natural 163 abundance water and three sets were amended with ¹⁸O-water to achieve 60 % water holding capacity and 20 atm % ¹⁸O in the final soil water, when ¹⁸O-water was added. One set of samples that received 164 natural abundance water was extracted immediately using sequential DNA extraction. The second set of 165 natural abundance samples and one set of samples with ¹⁸O-water were put in an incubator set to 20 °C. 166 A second set was put in an incubator set to 30 °C and the third set of samples was incubated at 45 °C. 167 168 After 24 h in the incubators, all samples were subjected to sequential DNA extraction to recover eDNA 169 and iDNA pools. All obtained DNA extracts were stored at -80 $^{\circ}\mathrm{C}$ before DNA concentrations were

- 170 determined using Picogreen assay and oxygen content and ¹⁸O enrichment were determined as described
- 171 above.

172 In addition to the ¹⁸O-incubation, we determined microbial respiration rates and microbial biomass C following the descriptions in Schnecker et al. (Schnecker et al., 2023). For microbial respiration 400 mg of 173 174 soil were weighed in plastic vials, water was added to achieve 60 % WHC and the open plastic vials 175 containing the soil were inserted into 27 mL headspace vials. The headspace vials were sealed with a 176 rubber septum. This was done in three replicates for each soil sample, with one set being incubated at 20 177 °C, 30 °C and 45 °C respectively. In addition to the headspace vials containing soil samples, 5 empty glass 178 vials were sealed with rubber septa and added for each temperature. After 24 h, we measured the CO₂ 179 concentration in the headspace vials by taking gas samples from a sealed headspace vial and measured it 180 directly with an infrared gas analyzer (EGM4, PP systems). Microbial respiration rate was then calculated 181 as the difference in CO₂ concentrations between the vials containing soil samples and empty glass vials, 182 which contained the air at the start of the incubation. The net increase in CO_2 was divided by the 183 incubation time.

Microbial biomass C (MBC) was determined following an approach based on (Brookes et al., 1985) and described in Schnecker et al. (Schnecker et al., 2023) with parallel determinations for MBC at the three temperatures. MBC was determined in 1M KCl and measured on a TOC/TN analyzer (TOC-L CPH/CPN, Shimadzu). Measured MBC values were divided by 0.45 (Wu et al. 1990) to account for extraction efficiency.

189

For each of the three temperatures, we calculated microbial gross growth rates (gG), microbial net growth
 rates (nG), microbial gross death rates (*DNA_{death}*) and microbial carbon use efficiency (CUE).

192 Microbial gross growth was calculated following Canarini et al (Canarini et al., 2020) as the amount of

193 iDNA produced:

8

194
$$iDNA_{produced} = O_{iDNA\ extr} * \frac{{}^{18}O\ at\%_{iDNA\ L} - {}^{18}O\ at\%_{iDNA\ L.a.}}{{}^{18}O\ at\%_{soil\ water}} * \frac{{}^{100}}{{}^{31.21}}$$

Where O_{iDNA extr} is the total amount of oxygen in the iDNA extract, ¹⁸O at%_{iDNA L} and ¹⁸O at%_{iDNA n.a.} are the
¹⁸O enrichment in the labeled DNA extracts from the different temperatures and unlabeled DNA extracts
respectively, and ¹⁸O at%_{soil} water is the ¹⁸O enrichment of the soil water. The fraction at the end of the
formula accounts for the average oxygen content of DNA (31.21%, (Canarini et al., 2020; Zheng et al.,
2019)).
Mass specific gross growth rate (MSgG) was calculated by dividing *iDNA*_{produced} by the amount of iDNA in
the respective sample.

202 Microbial net growth rate was calculated by subtracting the amount of iDNA in the samples that were 203 extracted immediately from the amount of iDNA at the end of the incubation divided by the incubation 204 time. Mass specific net growth rate (MSnG) was calculated by dividing nG by the iDNA content at the end 205 of the incubation. Microbial gross death rates were calculated by using the following formula:

$$DNA_{death} = |\Delta i DNA - i DNA_{produced}|$$

207

208 Where microbial death rates (DNA_{death}) are determined by subtracting iDNA growth (i $DNA_{produced}$), 209 determined by ¹⁸O incorporation into iDNA, from the net growth rate (Δ iDNA). Mass specific gross death 210 (MSD) was calculated by dividing DNA_{death} by the iDNA content.

211 Microbial CUE was calculated using the following equation (Manzoni et al., 2012):

212
$$CUE = \frac{C_{Growth}}{C_{Growth} + C_{Respiration}}$$

213 Where microbial biomass C produced (C_{Growth}) during the incubation was calculated as i*DNA*_{produced} divided 214 by the total amount of iDNA in the sample and multiplied by MBC values. Microbial respiration (C_{Respiration})

- 215 was calculated from the respiration measurements described above. Mass specific microbial respiration
- 216 (MSR) was calculated as C_{Respiration} divided by MBC.
- 217
- 218 2.3 Statistics

219 All statistical analyses were performed in R 4.1.2 (R Development Core Team, 2013). To determine 220 whether eDNA or iDNA pools or ¹⁸O atom percent access were different from timepoint 0 in Experiment 221 2.2.2 we used two sample comparison tests. We used either t-tests, Welch t-tests when variances were not homogeneous or Wilcoxon rank sum tests when data were not normally distributed. We used Fit 222 223 Linear Model Using Generalized Least Squares (R function 'gls') and Linear Mixed-Effects Models ('Ime'), which are both contained in the R package 'nlme' (Pinheiro et al., 2021) and Estimated marginal means 224 225 ('emmeans') to determine effects of temperature on microbial processes and MBC and DNA pools 226 (Experiment 4) and differences in the extraction assays (Experiment 2.2.1). To account for non-normal 227 distributed residuals, we used log transformations where necessary. If residuals of the models were non-228 homoscedastic, we introduced weights in the respective functions. We also introduced field plots as 229 random effects. Different models including weights and random effects were set up and compared with the ANOVA('anova'). If models were statistically different, we chose the model with the lowest Akaike 230 231 information criterion (AIC). Statistical tests were assumed to be significant at p<0.05.

232

233 3 RESULTS and DISCUSSION

234 3.1 Comparing methods to collect or remove eDNA

To distinguish eDNA and iDNA, we tested two methods. First, eDNA digestion by DNase (Lennon et al., 2018) and sequential extraction (Ascher et al., 2009). Compared to regular DNA extraction, sequential extraction yielded on average 23.1 % less and the DNase method yielded on average 78.2 % less total DNA (Table 1). The DNase digestion also did not work as expected in two out of four replicates at each site.

	agricultural soil				forest soil			
	mean	min.	max.	n	mean	min.	max.	n
regular DNA extraction, total DNA (µg DNA	6.791	6.060	7.285	4	19.67	13.32	22.50	4
g ⁻¹ dry soil)								
sequential DNA extraction, total DNA (μg	4.956	4.556	5.190	4	15.91	12.53	19.69	4
DNA g ⁻¹ dry soil)								
DNase method, total DNA (µg DNA g ⁻¹ dry	0.756	0.712	0.805	4	6.388	5.460	6.830	4
soil)								
Sequential DNA extraction, eDNA (% of	2.447	1.838	3.265	4	6.472	5.957	7.183	4
total)								
DNase method, eDNA (% of total DNA)	-7.063	-32.19	15.14	4	-6.917	-30.14	7.024	4
DNase method, eDNA (% of total DNA),	10.60	6.061	15.14	2	6.053	5.082	7.024	2
corrected for negative values								

239 Table 1 Comparison of methods to estimate eDNA in soil samples from two soil systems.

240

Due to these findings and the fact, that the DNase method uses incubation temperatures of 35 °C and 75 °C, which likely interfere with potential temperature treatments, we decided to use sequential extraction for our further experiments. Sequential extraction also has the advantage that both eDNA and iDNA are recovered and can be used for further analyses. The amounts of eDNA recovered with sequential DNA extraction were on average 2.4 % of total DNA in agricultural soils and 6.5 % of total DNA in forest soils, which is on the lower end of the range found in other studies (Carini et al., 2016; Lennon et al., 2018).

247

Figure 1. Temporal development of DNA pools and ¹⁸O enrichment during incubation with ¹⁸O-water. Upper panels depict iDNA pools and enrichment in a) agricultural soils and b) forest soils. Lower panels depict eDNA pools and enrichment in c) agricultural soils and d) forest soils. Violin plots represent ¹⁸O enrichment of DNA pools (atom percent excess) and dot and line plots DNA pool sizes over time. Asterisks indicate significant differences (p-value < 0.05) from timepoint 0.

253

254 We also determined the change in eDNA and iDNA content as well as the incorporation of ¹⁸O from 255 amended ¹⁸O-labelled water into these two DNA pools over time (Figure 1). We found that only the 256 amount of eDNA in forest soils slightly decreased over time and was significantly lower after 72 h and after 168 h compared to the initial eDNA content (Figure 1d). In forest soils, the iDNA content and both 257 258 DNA pools in the agricultural soil did not change over time (Figure 1 a-c). The amended ¹⁸O was 259 incorporated into both DNA pools at both sites over time, indicating production of iDNA and eDNA. While 260 we could detect ¹⁸O label at the latest after 12 h in both DNA pools of the forest soil and the iDNA pool of the agricultural soil, increased ¹⁸O values could only be found after 48 h in the eDNA pool of the 261 262 agricultural soil. This could indicate, that the eDNA pool in the agricultural soil might mainly be fed by microbial death, and that the ¹⁸O is thus first incorporated in iDNA and only when these newly formed 263 264 cells die, the label is released as eDNA. In the forest soil our findings indicate that eDNA is actively exuded 265 from the beginning on. If eDNA is actively exuded as e.g. part of microbial biofilm (Das et al., 2013; Nagler 266 et al., 2018; Pietramellara et al., 2009) depends on the present microorganisms (Cai et al., 2019). The 267 amount of eDNA produced can also vary for different microorganisms (Figure S1).

268

269 3.2. Temperature response of microbial biomass, DNA pools, microbial growth, death, and respiration To test the combination of sequential DNA extraction and ¹⁸O incorporation in DNA, we subjected soil 270 271 from the agricultural site and the forest site to three different temperatures. Microbial processes and 272 activity have been shown to strongly increase with temperature up to a temperature optimum (Rousk et 273 al., 2012). Above this temperature threshold conditions are adverse and have been shown to lead to a 274 reduction of the microbial biomass (Riah-Anglet et al., 2015). By subjecting the two investigated soil types 275 to 20 °C, 30 °C and 45 °C we found that MBC was not affected by temperature (Figure 2 a,b). The content 276 of iDNA did not change from 20 $^{\circ}$ C to 30 $^{\circ}$ C and decreased significantly when soils were brought to 45 $^{\circ}$ C 277 (Figure 2 c,d). The decrease in iDNA at 45 °C indicated that a part of the microbial community died because

- of the high temperature and DNA might have been lost from within the microbial cells. In agricultural soils, eDNA contents were significantly lower at 30 °C and 45 °C than at 20 °C, while eDNA contents in forest soils only dropped significantly in the 45 °C treatment (Figure 2 e-f). We suggest that decreasing eDNA contents with temperature rather indicate a higher degradation and recycling of eDNA than the reduction of eDNA release from microbial cells.
- 283

- Figure 2. Microbial pool sizes in the two investigated soils after incubation at three different temperatures for 24 h. Results for agricultural soils are shown on plots a, c and e. Forest soils are shown in plots b, d, f. Microbial biomass C is shown in a) and b), iDNA contents are shown in c) and d) and eDNA contents are shown in e) and f). Statistically significant differences between pool sizes at the three investigated temperatures are marked with different letters above the violin plots.
- 290

291 Mass specific respiration increased in both soils from 20 °C over 30 °C to 45 °C (Figure 3 a) confirming 292 previous findings of other studies (Birgander et al., 2018; Cruz-Paredes et al., 2021; Rousk et al., 2012). 293 Mass specific gross growth did not change with temperature in agricultural soils but increased from 20 °C to 30 °C and even to 45 °C in forest soils (Figure 3 b). This is in contrast to previous studies (Birgander et 294 295 al., 2018; Cruz-Paredes et al., 2021; Rousk et al., 2012), which found that microbial uptake of leucine in 296 microbial biomass and acetate in fungal ergosterol, which was used as indicators of growth, showed a 297 clear temperature optimum around 30 °C and concomitant decrease at higher temperatures. These 298 studies however used other methods than we did under the assumption of no net decrease in microbial 299 biomass and equal rates of microbial growth or uptake and microbial death. While our data also show no 300 mass specific net change in microbial biomass from 20 °C to 30 °C, a significant negative mass specific net 301 growth was observed at 45 $^{\circ}\mathrm{C}$ in both soils (Figure 3 c). When we combine MSgG and MSnG the calculated 302 microbial death rates were significantly higher at 45 $^{\circ}$ C than at 20 $^{\circ}$ C and 30 $^{\circ}$ C in both soils (Figure 3 d). 303 Carbon use efficiency decreased with increasing temperature in forest soil, while it stayed constant in 304 agricultural soils (Figure 3 e). This finding adds to an ever-growing list of ambiguous reactions of CUE to 305 soil temperature (e.g. (Hagerty et al., 2014; Schnecker et al., 2023; Simon et al., 2020; Walker et al., 2018)) 306 and once again shows, that CUE should be used with caution to infer soil C cycling. As showcased in our 307 experiment, CUE was low at high temperatures in forest soils while growth as well as death rates were 308 high, thereby indicating fast microbial C cycling.

309

Figure 3. Mass specific microbial process rates and CUE in the two investigated soils after incubation at three different temperatures for 24 h. Results for agricultural soils are shown in purple hues and for forest soils are shown green hues. Statistically significant differences between pool sizes at the three investigated temperatures and respective soil are marked with different letters above the violin plots. Capital letters for differences between agricultural soils and lower-case letters are used to indicate differences for forest soil.

316

317 CONCLUSION

318 In conclusion we here present an approach to determine microbial death rates and turnover by accounting 319 for eDNA dynamics. To our knowledge, this is the first time microbial death rates were investigated in 320 addition to microbial growth rates and net changes in microbial iDNA. With this approach we could show 321 that microbial respiration and microbial growth in the two investigated soils increase with temperature 322 even up to 45 °C, a temperature, that is considered to be way beyond the temperature optimum of most 323 temperate microbial communities. The often observed drop in microbial growth or uptake at high 324 temperatures was however caused by the death of a significant part of the microbial community and 325 higher microbial death rates. While there is certainly room for improving the method and the necessity 326 to investigate its feasibility in other soil systems and under different environmental conditions, we think 327 that this approach will help to shed light on the role of microbial death in soil and a step forward to 328 understand soil C cycling.

329

330 AUTHOR CONTRIBUTION

Jörg Schnecker: Conceptualization (lead); investigation (supporting); methodology (supporting); supervision (lead); formal analysis (lead); writing – original draft (lead) writing – review and editing (equal). Theresa Böckle: investigation (equal); methodology (equal); writing – review and editing (equal). Julia Horak: investigation (equal); methodology (equal); writing – review and editing (equal). Victoria Martin: investigation (supporting); methodology (supporting); writing – review and editing (equal). Taru Sandén: resources (equal); writing – review and editing (equal). Heide Spiegel: resources (equal); writing – review and editing (equal).

338

339 COMPETING INTERESTS

17

- 340 The authors declare that they have no conflict of interest.
- 341 ACKNOWLEDGEMENT
- 342 This research was funded by the Austrian Science Fund (FWF TAI 328). We thank Sophie Zechmeister-
- 343 Boltenstern, University of Natural Resources and Life Sciences for granting access to the field site.
- 344
- 345 REFERENCES
- Ascher, J., Ceccherini, M. T., Pantani, O. L., Agnelli, A., Borgogni, F., Guerri, G., Nannipieri, P., and
- Pietramellara, G.: Sequential extraction and genetic fingerprinting of a forest soil metagenome, Applied
 Soil Ecology, 42, 176–181, https://doi.org/10.1016/j.apsoil.2009.03.005, 2009.
- Bååth, E.: Estimation of fungal growth rates in soil using 14C-acetate incorporation into ergosterol, Soil
 Biology and Biochemistry, 33, 2011–2018, https://doi.org/10.1016/S0038-0717(01)00137-7, 2001.
- 351 Birgander, J., Olsson, P. A., and Rousk, J.: The responses of microbial temperature relationships to
- seasonal change and winter warming in a temperate grassland, Glob Change Biol, 24, 3357–3367,
 https://doi.org/10.1111/gcb.14060, 2018.
- Blazewicz, S. J. and Schwartz, E.: Dynamics of 180 Incorporation from H 2 180 into Soil Microbial DNA,
 Microb Ecol, 61, 911–916, https://doi.org/10.1007/s00248-011-9826-7, 2011.
- Brookes, P. C., Landman, A., Pruden, G., and Jenkinson, D. S.: Chloroform fumigation and the release of
 soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil, Soil
 Biology and Biochemistry, 17, 837–842, http://dx.doi.org/10.1016/0038-0717(85)90144-0, 1985.
- Cai, P., Sun, X., Wu, Y., Gao, C., Mortimer, M., Holden, P. A., Redmile-Gordon, M., and Huang, Q.: Soil
 biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization, Soil
 Ecol. Lett., 1, 85–93, https://doi.org/10.1007/s42832-019-0017-7, 2019.
- Canarini, A., Wanek, W., Watzka, M., Sandén, T., Spiegel, H., Šantrůček, J., and Schnecker, J.: Quantifying
 microbial growth and carbon use efficiency in dry soil environments via ¹⁸ O water vapor equilibration,
 Glob Change Biol, 26, 5333–5341, https://doi.org/10.1111/gcb.15168, 2020.
- Carini, P., Marsden, P. J., Leff, J. W., Morgan, E. E., Strickland, M. S., and Fierer, N.: Relic DNA is abundant
 in soil and obscures estimates of soil microbial diversity, Nat Microbiol, 2, 16242,
- 367 https://doi.org/10.1038/nmicrobiol.2016.242, 2016.
- 368 Cruz-Paredes, C., Tájmel, D., and Rousk, J.: Can moisture affect temperature dependences of microbial
- 369 growth and respiration?, Soil Biology and Biochemistry, 156, 108223,
- 370 https://doi.org/10.1016/j.soilbio.2021.108223, 2021.
- Das, T., Sehar, S., and Manefield, M.: The roles of extracellular DNA in the structural integrity of
- extracellular polymeric substance and bacterial biofilm development: The roles of eDNA in the bacterial

- biofilm development, Environmental Microbiology Reports, 5, 778–786, https://doi.org/10.1111/17582229.12085, 2013.
- Frey, S. D., Lee, J., Melillo, J. M., and Six, J.: The temperature response of soil microbial efficiency and its
- 376 feedback to climate, Nature Clim Change, 3, 395–398, https://doi.org/10.1038/nclimate1796, 2013.
- Hagerty, S. B., Van Groenigen, K. J., Allison, S. D., Hungate, B. A., Schwartz, E., Koch, G. W., Kolka, R. K.,
- and Dijkstra, P.: Accelerated microbial turnover but constant growth efficiency with warming in soil,
- 379 Nature Clim Change, 4, 903–906, https://doi.org/10.1038/nclimate2361, 2014.
- Hungate, B. A., Mau, R. L., Schwartz, E., Gregory Caporaso, J., Dijkstra, P., van Gestel, N., Koch, B. J., Liu,
- 381 C. M., McHugh, T. A., Marks, J. C., Morrissey, E. M., and Price, L. B.: Quantitative microbial ecology
- through stable isotope probing, Applied and Environmental Microbiology, 81, 7570–7581,
- 383 https://doi.org/10.1128/AEM.02280-15, 2015.
- 384 Kallenbach, C. M., Frey, S. D., and Grandy, A. S.: Direct evidence for microbial-derived soil organic matter
- formation and its ecophysiological controls, Nat Commun, 7, 13630,
- 386 https://doi.org/10.1038/ncomms13630, 2016.
- Leitner, S., Sae-Tun, O., Kranzinger, L., Zechmeister-Boltenstern, S., and Zimmermann, M.: Contribution
 of litter layer to soil greenhouse gas emissions in a temperate beech forest, Plant and Soil, 403, 455–
 469, https://doi.org/10.1007/s11104-015-2771-3, 2016.
- Lennon, J. T., Muscarella, M. E., Placella, S. A., and Lehmkuhl, B. K.: How, When, and Where Relic DNA
 Affects Microbial Diversity, mBio, 9, e00637-18, https://doi.org/10.1128/mBio.00637-18, 2018.
- Liang, C., Schimel, J. P., and Jastrow, J. D.: The importance of anabolism in microbial control over soil
 carbon storage, Nat Microbiol, 2, 17105, https://doi.org/10.1038/nmicrobiol.2017.105, 2017.
- Manzoni, S., Taylor, P., Richter, A., Porporato, A., and Agren, G. I.: Environmental and stoichiometric
 controls on microbial carbon-use efficiency in soils., The New phytologist, 196, 79–91,
 https://doi.org/10.1111/j.1469-8137.2012.04225.x, 2012.
- 397 Metze, D., Schnecker, J., Canarini, A., Fuchslueger, L., Koch, B. J., Stone, B. W., Hungate, B. A.,
- Hausmann, B., Schmidt, H., Schaumberger, A., Bahn, M., Kaiser, C., and Richter, A.: Microbial growth
- under drought is confined to distinct taxa and modified by potential future climate conditions, Nat
- 400 Commun, 14, 5895, https://doi.org/10.1038/s41467-023-41524-y, 2023.
- Miltner, A., Bombach, P., Schmidt-Brücken, B., and Kästner, M.: SOM genesis: microbial biomass as a
 significant source, Biogeochemistry, 111, 41–55, https://doi.org/10.1007/s10533-011-9658-z, 2012.
- 403 Nagler, M., Podmirseg, S. M., Griffith, G. W., Insam, H., and Ascher-Jenull, J.: The use of extracellular
- 404 DNA as a proxy for specific microbial activity, Appl Microbiol Biotechnol, 102, 2885–2898,
- 405 https://doi.org/10.1007/s00253-018-8786-y, 2018.
- 406 Nagler, M., Podmirseg, S. M., Mayr, M., Ascher-Jenull, J., and Insam, H.: Quantities of Intra- and
- Extracellular DNA Reveal Information About Activity and Physiological State of Methanogenic Archaea,
 Front. Microbiol., 11, 1894, https://doi.org/10.3389/fmicb.2020.01894, 2020.

- Nottingham, A. T., Bååth, E., Reischke, S., Salinas, N., and Meir, P.: Adaptation of soil microbial growth to
 temperature: Using a tropical elevation gradient to predict future changes, Global Change Biology, 25,
- 411 827–838, https://doi.org/10.1111/gcb.14502, 2019.
- 412 Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M. T., Guerri, G., and Nannipieri, P.: Extracellular
- 413 DNA in soil and sediment: fate and ecological relevance, Biol Fertil Soils, 45, 219–235,
- 414 https://doi.org/10.1007/s00374-008-0345-8, 2009.
- Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and Team., R. C.: nlme: Linear and nonlinear mixed effects
 models. R package version 3.1-142, 2021.
- 417 Prommer, J., Walker, T. W. N., Wanek, W., Braun, J., Zezula, D., Hu, Y., Hofhansl, F., and Richter, A.:
- 418 Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher
- 419 plant diversity, Global Change Biology, 26, 669–681, https://doi.org/10.1111/gcb.14777, 2020.
- 420 R Development Core Team: R: A language and environment for statistical computing, 2013.
- 421 Riah-Anglet, W., Trinsoutrot-Gattin, I., Martin-Laurent, F., Laroche-Ajzenberg, E., Norini, M.-P., Latour,
- 422 X., and Laval, K.: Soil microbial community structure and function relationships: A heat stress
- 423 experiment, Applied Soil Ecology, 86, 121–130, https://doi.org/10.1016/j.apsoil.2014.10.001, 2015.
- 424 Rousk, J. and Bååth, E.: Fungal and bacterial growth in soil with plant materials of different C/N ratios:
- Fungal and bacterial growth with plant materials in soil, FEMS Microbiology Ecology, 62, 258–267,
 https://doi.org/10.1111/j.1574-6941.2007.00398.x, 2007.
- Rousk, J., Frey, S. D., and Bååth, E.: Temperature adaptation of bacterial communities in experimentally
 warmed forest soils, Global Change Biology, 18, 3252–3258, https://doi.org/10.1111/j.13652486.2012.02764.x, 2012.
- 430 Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos, V.: Global soil carbon: understanding and
- 431 managing the largest terrestrial carbon pool, Carbon Management, 5, 81–91,
- 432 https://doi.org/10.4155/cmt.13.77, 2014.
- 433 Schnecker, J., Baldaszti, L., Gündler, P., Pleitner, M., Richter, A., Sandén, T., Simon, E., Spiegel, F., Spiegel,
- H., Urbina Malo, C., and Zechmeister-Boltenstern, S.: Seasonal Dynamics of Soil Microbial Growth,
 Respiration, Biomass, and Carbon Use Efficiency, SSRN Journal, https://doi.org/10.2139/ssrn.4033336,
- 436 2022.
- Schnecker, J., Spiegel, F., Li, Y., Richter, A., Sandén, T., Spiegel, H., Zechmeister-Boltenstern, S., and
 Fuchslueger, L.: Microbial responses to soil cooling might explain increases in microbial biomass in
 winter, Biogeochemistry, 164, 521–535, https://doi.org/10.1007/s10533-023-01050-x, 2023.
- Simon, E., Canarini, A., Martin, V., Séneca, J., Böckle, T., Reinthaler, D., Pötsch, E. M., Piepho, H.-P., Bahn,
 M., Wanek, W., and Richter, A.: Microbial growth and carbon use efficiency show seasonal responses in
 a multifactorial climate change experiment, Commun Biol, 3, 584, https://doi.org/10.1038/s42003-02001317-1, 2020.
- Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., Firestone, M. K.,
 Foley, M. M., Hestrin, R., Hungate, B. A., Koch, B. J., Stone, B. W., Sullivan, M. B., Zablocki, O., LLNL Soil

- 446 Microbiome Consortium, Trubl, G., McFarlane, K., Stuart, R., Nuccio, E., Weber, P., Jiao, Y., Zavarin, M.,
- Kimbrel, J., Morrison, K., Adhikari, D., Bhattacharaya, A., Nico, P., Tang, J., Didonato, N., Paša-Tolić, L.,
 Greenlon, A., Sieradzki, E. T., Dijkstra, P., Schwartz, E., Sachdeva, R., Banfield, J., and Pett-Ridge, J.: Life
- and death in the soil microbiome: how ecological processes influence biogeochemistry, Nat Rev
- 450 Microbiol, 20, 415–430, https://doi.org/10.1038/s41579-022-00695-z, 2022.
- 451 Spiegel, H., Sandén, T., Dersch, G., Baumgarten, A., Gründling, R., and Franko, U.: Chapter 17 Soil
- 452 Organic Matter and Nutrient Dynamics Following Different Management of Crop Residues at Two Sites 453 in Austria, edited by: Muñoz, M. Á., Zornoza, R. B. T.-S. M., and Change, C., Academic Press, 253–265,
- 454 https://doi.org/10.1016/B978-0-12-812128-3.00017-3, 2018.
- Spohn, M., Klaus, K., Wanek, W., and Richter, A.: Microbial carbon use efficiency and biomass turnover
 times depending on soil depth Implications for carbon cycling, Soil Biology and Biochemistry, 96, 74–
 81, https://doi.org/10.1016/j.soilbio.2016.01.016, 2016.
- Walker, T. W. N., Kaiser, C., Strasser, F., Herbold, C. W., Leblans, N. I. W., Woebken, D., Janssens, I. A.,
 Sigurdsson, B. D., and Richter, A.: Microbial temperature sensitivity and biomass change explain soil
 carbon loss with warming, Nature Clim Change, 8, 885–889, https://doi.org/10.1038/s41558-018-0259x, 2018.
- Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Richter, A., and Wanek, W.: Growth explains microbial
 carbon use efficiency across soils differing in land use and geology, Soil Biology and Biochemistry, 128,
- 464 45–55, https://doi.org/10.1016/j.soilbio.2018.10.006, 2019.
- 465
- 466 color).