

1 TITLE
2 Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA
3 in soils

4

5 Keywords: soil carbon cycling, microbial death, soil microbial processes, microbial temperature response,
6 microbial growth optimum

7

8 AUTHORS

9 Jörg Schnecker¹, Theresa Böckle¹, Julia Horak¹, Victoria Martin¹, Taru Sandén², Heide Spiegel²

10 AFFILIATIONS

11 ¹Centre for Microbiology and Environmental Systems Science, University of Vienna, Austria

12 ²Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety (AGES),
13 Vienna, Austria

14 CORRESPONDING AUTHOR: Jörg Schnecker

15 email: joerg.schnecker@univie.ac.at

16

17 ABSTRACT

18 Microbial respiration, growth and turnover are driving processes in the formation and decomposition of
19 soil organic matter. In contrast to respiration and growth, microbial turnover and death currently lack
20 distinct methods to be determined. Here we propose a new approach to determine microbial death rates
21 and to improve measurements of microbial growth. By combining sequential DNA extraction to
22 distinguish between intracellular and extracellular DNA and ¹⁸O incorporation into DNA, we were able to
23 measure microbial death rates. We first evaluated methods to determine and extract intracellular and
24 extracellular DNA separately. We then tested the method by subjecting soil from a temperate agricultural
25 field and a deciduous beech forest to either 20 °C, 30 °C or 45 °C for 24 h. Our results show, that while

26 mass specific respiration and gross growth either increased with temperature or remained stable,
27 microbial death rates strongly increased at 45 °C and caused a decrease in microbial biomass and thus in
28 microbial net growth. We further found that also extracellular DNA pools decreased at 45 °C compared to
29 lower temperatures, further indicating enhanced uptake and recycling of extracellular DNA along with
30 increased respiration, growth and death rates. Additional experiments including soils from more and
31 different ecosystems as well as testing the effects of factors other than temperature on microbial death
32 are certainly necessary to better understand the role of microbial death in soil C cycling. We are
33 nevertheless confident that this new approach to determine microbial death rates and dynamics of
34 intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in
35 soils in the future.

36

37 1 INTRODUCTION

38 Microorganisms are the driving force that sustains the 1450 Gt carbon (C) in soils globally (Liang et al.,
39 2017; Scharlemann et al., 2014). Active microorganisms take up and convert plant derived C and soil
40 organic C into microbial biomass and release C as CO₂ to the atmosphere via respiration. Upon cell death,
41 microbial C is released back to the soil solution and can be stabilized on mineral surfaces or in aggregates.
42 While causes for microbial death in soils can be numerous, ranging from osmotic shock and dehydration
43 to viral lysis and predation (Sokol et al., 2022), the relevance of this process and of the microbial
44 necromass pool for soil C cycling is undisputed. Since a large proportion of SOM is passing through the
45 microbial biomass pool (Kallenbach et al., 2016; Miltner et al., 2012), the process of microbial death might
46 be of equal importance as microbial growth for SOM formation.

47 Methodological developments in the last decades have made it possible to measure microbial C uptake
48 (Bååth, 2001; Frey et al., 2013; Rousk and Bååth, 2007). Substrate independent methods, that use ¹⁸O
49 have enabled the measurement of growth of the whole soil microbial community and individual taxa

50 without changing substrate availability for microbes (Blazewicz and Schwartz, 2011; Hungate et al., 2015;
51 Spohn et al., 2016). Recently developed methods even allow these measurements without changing soil
52 water contents (Canarini et al., 2020; Metze et al., 2023). In contrast to uptake and growth, turnover and
53 death rates of the microbial community have not seen a suitable method yet. Microbial turnover can be
54 calculated using only growth rates and the microbial biomass pool (e.g., Prommer et al., 2020; Spohn et
55 al., 2016). This is done under the assumption of a stable state of the microbial community and no net
56 changes in the living microbial biomass as well as death rates being the same as growth rates. An
57 assumption that might not always be met under natural conditions.

58 A reason for the lack of methods to determine microbial death rates might be that DNA extractions used
59 for ^{18}O -based methods do not account for extracellular DNA (eDNA). Extracellular DNA is DNA that persists
60 outside of intact microbial cells (Pietramellara et al., 2009). The eDNA pool is on the one hand fed by
61 disintegrated microbial cells (Ascher et al., 2009; Nagler et al., 2020), which could have died as
62 consequence to chemical or physical stressors or lysis caused by predators or viruses (Sokol et al., 2022).
63 On the other hand, it has been shown that DNA is actively exuded by microorganisms as an integral
64 component of microbial biofilms in soils (Cai et al., 2019; Das et al., 2013). Pools of eDNA can be rather
65 prominent in soils and has been shown to account for up to 80 % of the total DNA extracted (Carini et al.,
66 2016). Such a large pool of DNA, irrespective of its origin has the capacity to mask subtle changes in the
67 pool of DNA inside living microbial cells (iDNA) and to bias measurements of microbial growth that are
68 based on the determination of DNA contents.

69 Here we propose a novel approach to assess microbial turnover rates. We suggest that separating the
70 eDNA and iDNA pools upon the determination of microbial growth rates based on ^{18}O -water incorporation
71 into DNA harbors several advantages over the conventional method. The adaptation provides more
72 precise growth rate measurements as it also allows the calculation of only iDNA production rates.
73 Accordingly, changes in the iDNA pool can be used to calculate gross DNA release rates, i.e. microbial

74 death rates. Besides providing insights into microbial death rates, observing changes in the iDNA as well
75 as eDNA pools holds potential information about microbial processes like microbial DNA uptake and
76 recycling.

77 In addition to evaluating extraction methods for eDNA and iDNA and evaluation of ^{18}O incorporation in
78 the two DNA pools over time, we have tested the method by subjecting soils to different temperatures.
79 We used 20 °C, 30 °C and 45 °C assuming that these temperatures represent three distinct but relevant
80 temperatures for microbial activities in the investigated soils. The investigated soils were from two
81 contrasting temperate systems (an agricultural field and a deciduous forest) that regularly experience 20
82 °C and sometimes even 30 °C in the topsoil layers (Schnecker et al., 2022). Around 30 °C is the assumed
83 optimum temperature for microbial activity in many soils (Birgander et al., 2018; Nottingham et al., 2019;
84 Rousk et al., 2012). At 45 °C microbial process rates are reduced in comparison to the temperature
85 optimum at 30 °C (Cruz-Paredes et al., 2021; Rousk et al., 2012). We expected, that (1) mass specific
86 respiration, would increase from 20 °C to 30 °C and further to 45 °C. We further hypothesized that (2) a
87 previously shown decrease in microbial net growth above the temperature optimum at 30 °C would be
88 caused by increased microbial death and a net decrease in microbial biomass.

89
90 2 MATERIALS AND METHODS
91 2.1 Sampling sites
92 Soil samples were collected from an agricultural field site and a deciduous forest. The long-term
93 agricultural field experiment near Grabenegg, in Alpenvorland, Austria (48°12'N 15°15'E), was established
94 in 1986 and previously described in Spiegel et al. (2018). The soil is classified as gleyic Luvisol (Spiegel et
95 al., 2018) and has a silt loam texture (10 % sand, 73 % silt, and 17 % clay). Soil pH is 6.1 (Canarini et al.,
96 2020). The forest study site at the experimental forest Rosalia, Austria (47°42'N, 16°17'E) is dominated by
97 European beech (*Fagus sylvatica* L.). The soil at the site is a gleyic Cambisol (Leitner et al., 2016). Texture

98 is a sandy loam (55 % sand, 38 % silt, and 7 % clay), soil pH is 4.9 (Canarini et al., 2020). Soils were sampled
99 from 0-5cm depth with a soil corer with a diameter of 2 cm. At both sites, 10 soil cores per each of the
100 four replicate plots were combined to one sample resulting in four field replicates per site. At the
101 agricultural site, the four sampled plots were 7.5 m wide and 28 m long and at least 5 m apart from the
102 next plot. At the forest site, the 3 m by 3 m plots were at least 10 m apart from each other. All samples
103 were homogenized by sieving in the field through a 2 mm mesh before they were transported to the
104 laboratory.

105 2.2 Experimental setup

106 To evaluate the feasibility of eDNA extraction and determination of eDNA pool size, as well as the potential
107 for its use in conjunction with ^{18}O -based determination of microbial growth, we carried out three tests.

108 1) Comparing methods to collect or remove eDNA
109 2) Dynamics of eDNA over time at constant temperature
110 3) Temperature response of microbial biomass, DNA pools, microbial growth, death, and respiration

111 2.2.1 Comparing methods to collect or remove eDNA

112 To determine the contribution of eDNA to the total DNA pool, we compared two published methods. The
113 first method removes eDNA by addition of DNases (DNase method, (Lennon et al., 2018)), the second
114 method is based on a sequential DNA extraction (Ascher et al., 2009).

115 For this test, soil samples were collected in October 2021 and kept at 4 °C for one week before the
116 experiment. For the DNase method, 400 mg of field moist soil were weighed in two 2 mL plastic tubes
117 each. All tubes were then amended with 440 μL buffer consisting of 382.5 μL of ultrapure water, 5 μL of
118 1 M MgCl_2 , 2.5 μL of bovine serum albumin (10 mg/ml), and 120 μL of 0.5 M Tris-HCl (pH 7.5). One of the
119 two samples further received 40 μL DNase I solution (10U/ μL), the other tube received 40 μL ultrapure
120 water and served as control. Both samples were incubated in an incubator at 37 °C for 1 h. Afterwards 25
121 μL 0.5M EDTA was added, and the tubes were transferred to an incubator at 75 °C to stop DNase activity.

122 After 15 min, the samples were centrifuged, the supernatant was discarded, and the remaining sample
123 was extracted using FastDNA™ SPIN Kit for Soil (MP Biomedicals).
124 For the sequential DNA extraction, we used the chemicals and materials provided in the FastDNA™ SPIN
125 Kit for Soil (MP Biomedicals). For this approach 400 mg of field moist soil were weighed in the 2 mL Lysing
126 Matrix E tubes from which the contents had been emptied and collected in a 2 mL plastic vial. We added
127 1100 µL sodium phosphate buffer to the soil in the lysing tube and shook the vials gently in a horizontal
128 position at 100 rpm at 4 °C for 20 minutes. After this, the vials were centrifuged at 12500 rpm for 2 min
129 and the supernatant was collected as the eDNA containing fraction. The original content of the Lysing
130 matrix E tubes was returned to the tubes and handled as described in the manufacturer instructions to
131 obtain the iDNA pool. To the eDNA-fraction we then added 250 µL Protein precipitation solution and
132 followed the MP bio instructions after this step, except for additional centrifugation steps for separating
133 binding matrix and the liquid solution. After DNA extraction and purification, DNA extracts were stored at
134 -80C until further use. In addition to these two approaches, the same soils were also extracted regularly
135 using the FastDNA™ SPIN Kit for Soil (MP Biomedicals) to determine the total extractable DNA pool. The
136 DNA concentration of all extracts was determined fluorometrically by a Picogreen assay using a kit (Quant-
137 iT™ PicoGreen® dsDNA Reagent, Life Technologies). Content of eDNA determined with the DNase method
138 was calculated by subtracting the DNA content of samples that received DNase I from samples that only
139 received water and served as control.

140

141 2.2.2 Dynamics of eDNA and iDNA over time at constant temperature

142 In this experiment, we explored the changes in eDNA and iDNA pools over time as well as the
143 incorporation of ¹⁸O from added water into these two distinct DNA pools. Soils were sampled in August
144 2022 and the incubation was started one week later, where samples were stored at 20 °C. For the
145 experiment, 400 mg of field moist soil were weighed into empty lysing matrix E tubes and amended with

146 ^{18}O -water to achieve 60 % of the soils water holding capacity and a labelling of 20 atom percent (atm %)
147 of the total water in the soil. From each of the four field replicates, 7 vials were filled, labelled with ^{18}O
148 water and closed. Immediately after label addition and after 6 h, 12 h, 24 h, 48 h, 72 h and 168 h, eDNA
149 and iDNA was extracted with sequential DNA extraction as described above. DNA concentrations in all
150 DNA fractions were determined using the Picogreen assay. Subsequently, total oxygen content and ^{18}O
151 enrichment of the purified DNA fractions were measured following Spohn et al. (Spohn et al., 2016) and
152 Zheng et al. (Zheng et al., 2019) using a thermochemical elemental analyzer (TC/EA, Thermo Fisher)
153 coupled via a Conflo III open split system to an isotope ratio mass spectrometer (Delta V Advantage,
154 Thermo Fisher).

155
156 2.2.3 Temperature response of microbial biomass, DNA pools, microbial growth, death and respiration
157 In this experiment we subjected the samples to three different temperatures to test the response of
158 microbial communities. Soils were collected in August 2022 and stored at 20 °C for two days before the
159 start of the experiment.

160 For the incubation, around 400 mg of soil were weighed into empty lysing matrix E tubes. From each field
161 replicate, five lysing matrix E tubes were filled. Two sets of samples were amended with natural
162 abundance water and three sets were amended with ^{18}O -water to achieve 60 % water holding capacity
163 and 20 atm % ^{18}O in the final soil water, when ^{18}O -water was added. One set of samples that received
164 natural abundance water was extracted immediately using sequential DNA extraction. The second set of
165 natural abundance samples and one set of samples with ^{18}O -water were put in an incubator set to 20 °C.
166 A second set was put in an incubator set to 30 °C and the third set of samples was incubated at 45 °C.
167 After 24 h in the incubators, all samples were subjected to sequential DNA extraction to recover eDNA
168 and iDNA pools. All obtained DNA extracts were stored at -80 °C before DNA concentrations were

169 determined using Picogreen assay and oxygen content and ^{18}O enrichment were determined as described
170 above.

171 In addition to the ^{18}O -incubation, we determined microbial respiration rates and microbial biomass C
172 following the descriptions in Schnecker et al. (Schnecker et al., 2023). For microbial respiration 400 mg of
173 soil were weighed in plastic vials, water was added to achieve 60 % WHC and the open plastic vials
174 containing the soil were inserted into 27 mL headspace vials. The headspace vials were sealed with a
175 rubber septum. This was done in three replicates for each soil sample, with one set being incubated at 20
176 $^{\circ}\text{C}$, 30 $^{\circ}\text{C}$ and 45 $^{\circ}\text{C}$ respectively. In addition to the headspace vials containing soil samples, 5 empty glass
177 vials were sealed with rubber septa and added for each temperature. After 24 h, we measured the CO_2
178 concentration in the headspace vials by taking gas samples from a sealed headspace vial and measured it
179 directly with an infrared gas analyzer (EGM4, PP systems). Microbial respiration rate was then calculated
180 as the difference in CO_2 concentrations between the vials containing soil samples and empty glass vials,
181 which contained the air at the start of the incubation. The net increase in CO_2 was divided by the
182 incubation time.

183 Microbial biomass C (MBC) was determined following an approach based on (Brookes et al., 1985) and
184 described in Schnecker et al. (Schnecker et al., 2023) with parallel determinations for MBC at the three
185 temperatures. MBC was determined in 1M KCl and measured on a TOC/TN analyzer (TOC-L CPH/CPN,
186 Shimadzu). Measured MBC values were divided by 0.45 (Wu et al. 1990) to account for extraction
187 efficiency.

188
189 For each of the three temperatures, we calculated microbial gross growth rates , microbial net growth
190 rates , microbial gross death rates ($\text{DNA}_{\text{death}}$) and microbial carbon use efficiency (CUE).
191 Microbial gross growth was calculated following Canarini et al (Canarini et al., 2020) as the amount of
192 iDNA produced:

193 $iDNA_{produced} = O_{iDNA\ extr} * \frac{\frac{^{18}O\ at\%_{iDNA\ L} - ^{18}O\ at\%_{iDNA\ n.a.}}{^{18}O\ at\%_{soil\ water}} * \frac{100}{31.21}}$

194 Where $O_{iDNA\ extr}$ is the total amount of oxygen in the iDNA extract, $^{18}O\ at\%_{iDNA\ L}$ and $^{18}O\ at\%_{iDNA\ n.a.}$ are the
 195 ^{18}O enrichment in the labeled DNA extracts from the different temperatures and unlabeled DNA extracts
 196 respectively, and $^{18}O\ at\%_{soil\ water}$ is the ^{18}O enrichment of the soil water. The fraction at the end of the
 197 formula accounts for the average oxygen content of DNA (31.21%, (Canarini et al., 2020; Zheng et al.,
 198 2019)).

199 Mass specific gross growth rate (MSgG) was calculated by dividing $iDNA_{produced}$ by the amount of iDNA in
 200 the respective sample.

201 Microbial net growth rate was calculated by subtracting the amount of iDNA in the samples that were
 202 extracted immediately from the amount of iDNA at the end of the incubation divided by the incubation
 203 time. Mass specific net growth rate (MSnG) was calculated by dividing microbial net growth rates by the
 204 iDNA content at the end of the incubation. Microbial gross death rates were calculated by using the
 205 following formula:

206 $DNA_{death} = |\Delta iDNA| - iDNA_{produced}|$

207
 208 Where microbial death rates (DNA_{death}) are determined by subtracting iDNA growth ($iDNA_{produced}$),
 209 determined by ^{18}O incorporation into iDNA, from the net growth rate ($\Delta iDNA$). Mass specific gross death
 210 (MSD) was calculated by dividing DNA_{death} by the iDNA content.

211 Microbial CUE was calculated using the following equation (Manzoni et al., 2012):

212 $CUE = \frac{C_{Growth}}{C_{Growth} + C_{Respiration}}$

213 Where microbial biomass C produced (C_{Growth}) during the incubation was calculated as $iDNA_{produced}$ divided
 214 by the total amount of iDNA in the sample and multiplied by MBC values. Microbial respiration ($C_{Respiration}$)

215 was calculated from the respiration measurements described above. Mass specific microbial respiration
216 (MSR) was calculated as $C_{\text{Respiration}}$ divided by MBC.

217

218 2.3 Statistics

219 All statistical analyses were performed in R 4.1.2 (R Development Core Team, 2013). To determine
220 whether eDNA or iDNA pools or ^{18}O atom percent access were different from timepoint 0 in Experiment
221 2.2.2 we used two sample comparison tests. We used either t-tests, Welch t-tests when variances were
222 not homogeneous or Wilcoxon rank sum tests when data were not normally distributed. We used Fit
223 Linear Model Using Generalized Least Squares (R function 'gls') and Linear Mixed-Effects Models ('lme'),
224 which are both contained in the R package 'nlme' (Pinheiro et al., 2021) and Estimated marginal means
225 ('emmeans') to determine effects of temperature on microbial processes and MBC and DNA pools
226 (Experiment 4) and differences in the extraction assays (Experiment 2.2.1). To account for non-normal
227 distributed residuals, we used log transformations where necessary. If residuals of the models were non-
228 homoscedastic, we introduced weights in the respective functions. We also introduced field plots as
229 random effects. Different models including weights and random effects were set up and compared with
230 the ANOVA('anova'). If models were statistically different, we chose the model with the lowest Akaike
231 information criterion (AIC). Statistical tests were assumed to be significant at $p < 0.05$.

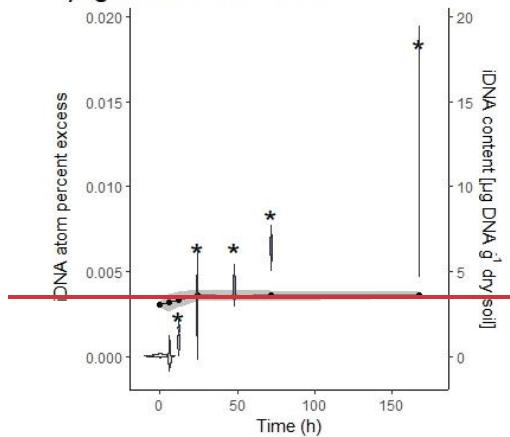
232

233 3 RESULTS and DISCUSSION

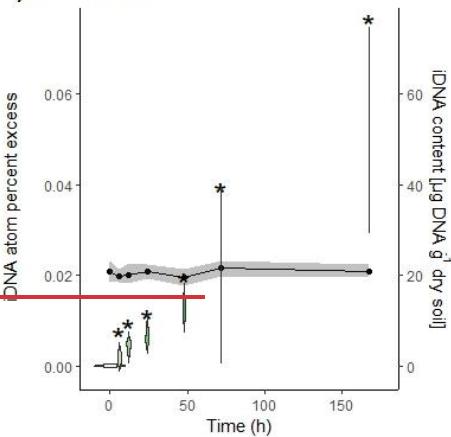
234 3.1 Comparing methods to collect or remove eDNA

235 To distinguish eDNA and iDNA, we tested two methods. First, eDNA digestion by DNase (Lennon et al.,
236 2018) and sequential extraction (Ascher et al., 2009). Compared to regular DNA extraction, sequential
237 extraction yielded on average 23.1 % less and the DNase method yielded on average 78.2 % less total DNA
238 (Table 1). The differences between regular extraction and sequential extraction were only statistically

239 significant in the agricultural soil but not in forest soil. Lower yields in total DNA extracted with sequential
240 extraction could be explained by the additional pipetting and cleaning steps used for this approach, which
241 can have an impact on extraction efficiency (Pold et al., 2020). The DNase digestion yielded significantly
242 less total DNA than the two other methods and also did not work as expected in two out of four replicates
243 at each site.

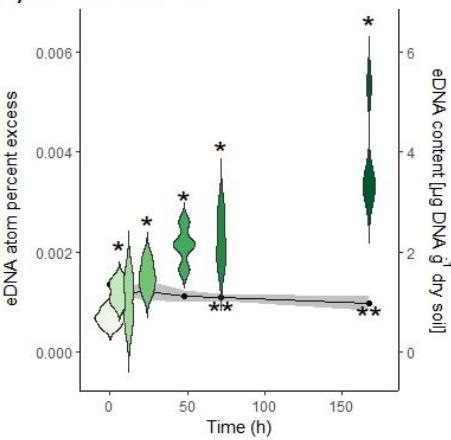

244 Table 1 Comparison of methods to estimate eDNA in soil samples from two soil systems. The column
245 "stat" indicates statistical differences in total DNA amounts between the three extraction methods.

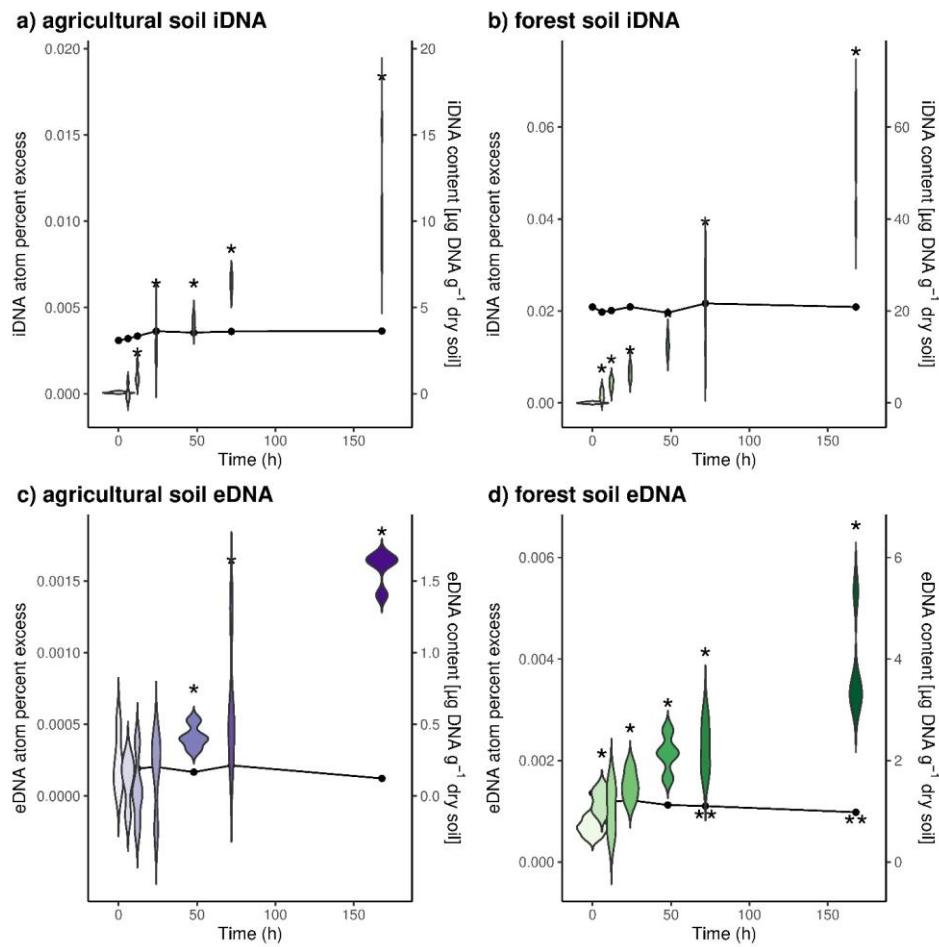
	agricultural soil					forest soil				
	mean	min.	max.	n	stat	mean	min.	max.	n	stat
regular DNA extraction, total DNA ($\mu\text{g DNA g}^{-1}$ dry soil)	6.791	6.060	7.285	4	a	19.67	13.32	22.50	4	a
sequential DNA extraction, total DNA ($\mu\text{g DNA g}^{-1}$ dry soil)	4.956	4.556	5.190	4	b	15.91	12.53	19.69	4	a
DNase method, total DNA ($\mu\text{g DNA g}^{-1}$ dry soil)	0.756	0.712	0.805	4	c	6.388	5.460	6.830	4	b
Sequential DNA extraction, eDNA (% of total)	2.447	1.838	3.265	4	-	6.472	5.957	7.183	4	-
DNase method, eDNA (% of total DNA)	-7.063	-32.19	15.14	4	-	-6.917	-30.14	7.024	4	-
DNase method, eDNA (% of total DNA), excluding negative values	10.60	6.061	15.14	2	-	6.053	5.082	7.024	2	-


246

247 Due to these findings and the fact, that the DNase method uses incubation temperatures of 35 °C and 75
248 °C, which likely interfere with potential temperature treatments, we decided to use sequential extraction
249 for our further experiments. Sequential extraction also has the advantage that both eDNA and iDNA are
250 recovered and can be used for further analyses. The amounts of eDNA recovered with sequential DNA
251 extraction were on average 2.4 % of total DNA in agricultural soils and 6.5 % of total DNA in forest soils,
252 which is on the lower end of the range found in other studies (Carini et al., 2016; Lennon et al., 2018).
253 However, agricultural soils examined by Carini et al (2016) fell on the lower end of the wide range of eDNA
254 contents. Another reason for our low eDNA values could be that our soils were stored in the lab for at
255 least a couple of days. During this time eDNA might have already been degraded.

a) agricultural soil iDNA


b) forest soil iDNA



c) agricultural soil eDNA

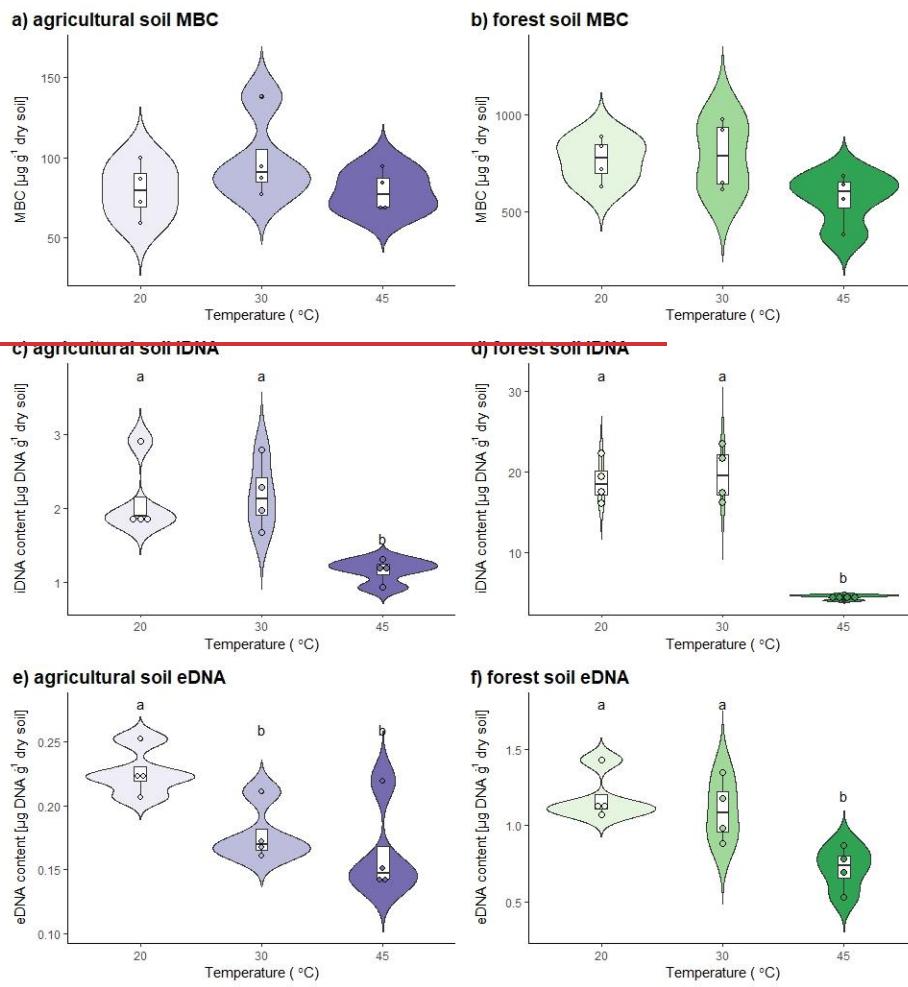
d) forest soil eDNA

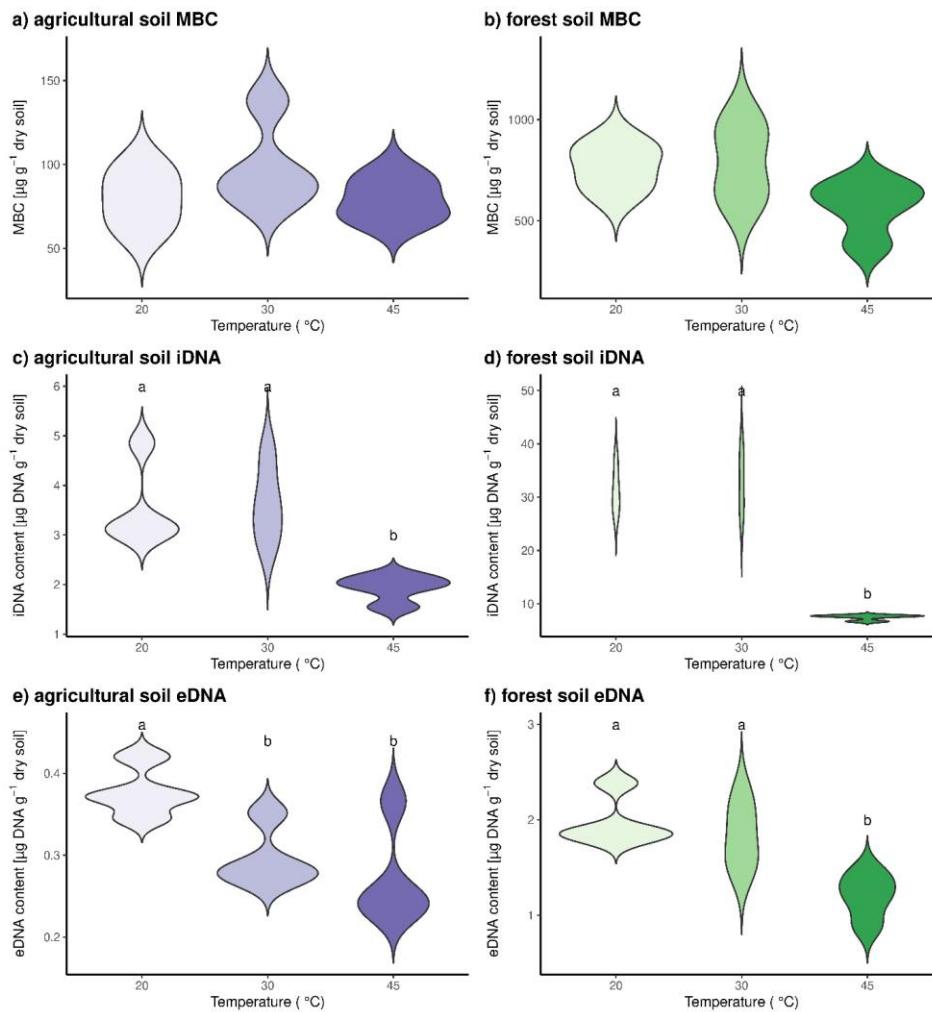
258 Figure 1. Temporal development of DNA pools and ^{18}O enrichment during incubation with ^{18}O -water.

259 Upper panels depict iDNA pools and enrichment in a) agricultural soils and b) forest soils. Lower panels
 260 depict eDNA pools and enrichment in c) agricultural soils and d) forest soils. Violin plots represent ^{18}O
 261 enrichment of DNA pools (atom percent excess) and dot and line plots DNA pool sizes over time. Asterisks
 262 indicate significant differences (p -value < 0.05) from timepoint 0.

263

264 3.2. Dynamics of eDNA and iDNA over time at constant temperature

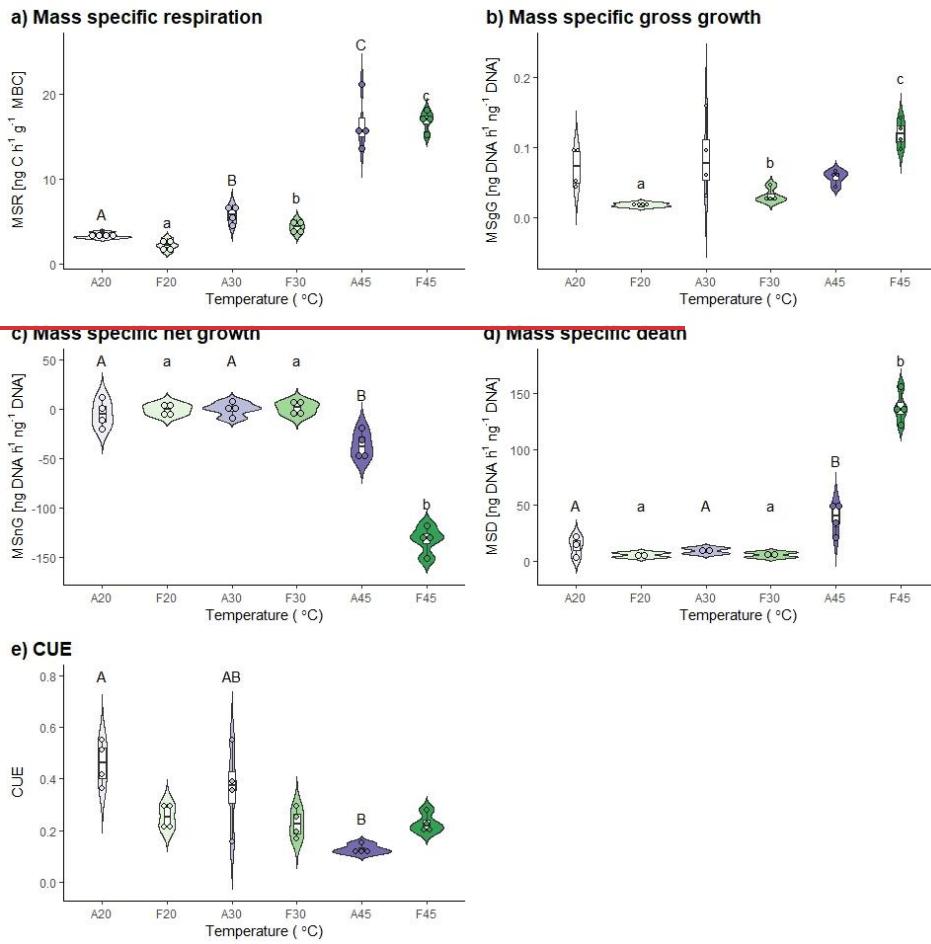

265 We also determined the change in eDNA and iDNA content as well as the incorporation of ^{18}O from
266 amended ^{18}O -labelled water into these two DNA pools over time (Figure 1). We found that only the
267 amount of eDNA in forest soils slightly decreased over time and was significantly lower after 72 h and
268 after 168 h compared to the initial eDNA content (Figure 1d). In forest soils, the iDNA content and both
269 DNA pools in the agricultural soil did not change over time (Figure 1 a-c). The amended ^{18}O was
270 incorporated into both DNA pools at both sites over time, indicating production of iDNA and eDNA. While
271 we could detect ^{18}O label at the latest after 12 h in both DNA pools of the forest soil and the iDNA pool of
272 the agricultural soil, increased ^{18}O values could only be found after 48 h in the eDNA pool of the
273 agricultural soil. This could indicate, that the eDNA pool in the agricultural soil might mainly be fed by
274 microbial death, and that the ^{18}O is thus first incorporated in iDNA and only when these newly formed
275 cells die, the label is released as eDNA. In the forest soil our findings indicate that eDNA is actively exuded
276 from the beginning on. It should be noted, that the detection of label in eDNA early on could also indicate
277 that freshly formed cells were lysed during the eDNA extraction. However, If eDNA is actively exuded as
278 e.g. part of microbial biofilm (Das et al., 2013; Nagler et al., 2018; Pietramellara et al., 2009) depends on
279 the present microorganisms (Cai et al., 2019). The amount of eDNA produced can also vary for different
280 microorganisms (Figure S1).

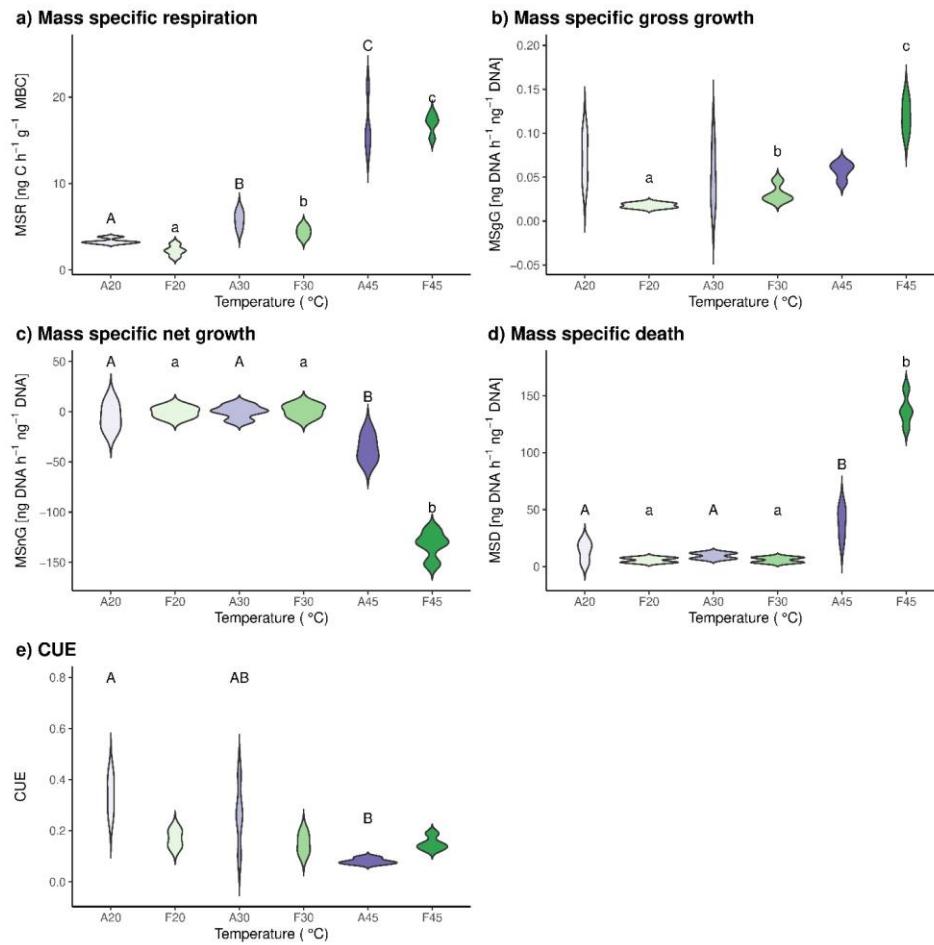

281

282 3.3. Temperature response of microbial biomass, DNA pools, microbial growth, death, and respiration

283 To test the combination of sequential DNA extraction and ^{18}O incorporation in DNA, we subjected soil
284 from the agricultural site and the forest site to three different temperatures. Microbial processes and
285 activity have been shown to strongly increase with temperature up to a temperature optimum (Rousk et
286 al., 2012). Above this temperature threshold conditions are adverse and have been shown to lead to a
287 reduction of the microbial biomass (Riah-Anglet et al., 2015). By subjecting the two investigated soil types

288 to 20 °C, 30 °C and 45 °C we found that MBC was not affected by temperature (Figure 2 a,b). The content
289 of iDNA did not change from 20 °C to 30 °C and decreased significantly when soils were brought to 45 °C
290 (Figure 2 c,d). The decrease in iDNA at 45 °C indicated that a part of the microbial community died because
291 of the high temperature and DNA might have been lost from within the microbial cells. In agricultural soils,
292 eDNA contents were significantly lower at 30 °C and 45 °C than at 20 °C, while eDNA contents in forest
293 soils only dropped significantly in the 45 °C treatment (Figure 2 e-f). As we observed an increase in mass
294 specific death rate and a concomitant decrease in the eDNA pool we concluded that the efflux from the
295 eDNA pool must be increased. This could be eDNA uptake or degradation of eDNA. We thus suggest that
296 decreasing eDNA contents with temperature rather indicate a higher degradation and recycling of eDNA
297 than the reduction of eDNA release from microbial cells.


299


300 Figure 2. Microbial pool sizes in the two investigated soils after incubation at three different temperatures
 301 for 24 h. Results for agricultural soils are shown on plots a, c and e. Forest soils are shown in plots b, d, f.
 302 Microbial biomass C is shown in a) and b), iDNA contents are shown in c) and d) and eDNA contents are
 303 shown in e) and f). Statistically significant differences between pool sizes at the three investigated
 304 temperatures are marked with different letters above the violin plots.

305

306 Mass specific respiration increased in both soils from 20 °C over 30 °C to 45 °C (Figure 3 a) confirming
307 previous findings of other studies (Birgander et al., 2018; Cruz-Paredes et al., 2021; Rousk et al., 2012).
308 Mass specific gross growth did not change with temperature in agricultural soils but increased from 20 °C
309 to 30 °C and even to 45 °C in forest soils (Figure 3 b). This is in contrast to previous studies (Birgander et
310 al., 2018; Cruz-Paredes et al., 2021; Rousk et al., 2012), which found that microbial uptake of leucine in
311 microbial biomass and acetate in fungal ergosterol, which was used as indicators of growth, showed a
312 clear temperature optimum around 30 °C and concomitant decrease at higher temperatures. These
313 studies however used other methods than we did under the assumption of no net decrease in microbial
314 biomass and equal rates of microbial growth or uptake and microbial death. While our data also show no
315 mass specific net change in microbial biomass from 20 °C to 30 °C, a significant negative mass specific net
316 growth was observed at 45 °C in both soils (Figure 3 c). When we subtracted mass specific gross growth
317 from mass specific net growth the calculated microbial death rates were significantly higher at 45 °C than
318 at 20 °C and 30 °C in both soils (Figure 3 d).

319 Carbon use efficiency decreased with increasing temperature in forest soil, while it stayed constant in
320 agricultural soils (Figure 3 e). This finding adds to an ever-growing list of ambiguous reactions of CUE to
321 soil temperature (e.g. (Hagerty et al., 2014; Schnecker et al., 2023; Simon et al., 2020; Walker et al., 2018))
322 and once again shows, that CUE should be used with caution to infer soil C cycling. As showcased in our
323 experiment, CUE was low at high temperatures in forest soils while growth as well as death rates were
324 high, thereby indicating fast microbial C cycling.

326

327 Figure 3. Mass specific microbial process rates and CUE in the two investigated soils after incubation at
 328 three different temperatures for 24 h. Results for agricultural soils are shown in purple hues and for forest
 329 soils are shown in green hues. A20, A30 and A45 indicate agricultural soils incubated at 20 °C, 30 °C and 45
 330 °C, respectively. F20, F30 and F45 indicate forest soils incubated at 20 °C, 30 °C and 45 °C, respectively.
 331 Statistically significant differences between pool sizes at the three investigated temperatures and

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) +Body (Calibri)

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) +Body (Calibri)

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) +Body (Calibri)

332 respective soil are marked with different letters above the violin plots. Capital letters for differences
333 between agricultural soils and lower-case letters are used to indicate differences for forest soil.

334 3.4. Caveats and potential of the approach

335 To our knowledge this is the first attempt to combine ¹⁸O-labelling of DNA to measure microbial growth
336 and sequential extraction to determine microbial death rates. Both of these methods have their individual
337 caveats and biases. Growth measurements depend on extractions of DNA and MBC. These extractions
338 have varying efficiencies, depending on e.g. soil type, fungal:bacteria ratios and much more (Pold et al.
339 2020). Sequential extraction methods to extract eDNA often have to use rather large amounts of soil to
340 capture the low amounts of eDNA. In our approach we had to accept tradeoffs between how practical our
341 method would be (e.g. using commercially available soil extraction kits) and how precise it is (e.g. using
342 less soil). And while there is room to improve both methods individually and also the combination of them,
343 we think that our approach provides a first step in doing this. We hope that our approach will be picked
344 up by the scientific community and will be developed further to improve practicality and precision, especially
345 since we have only taken a first glimpse at its potential. Besides determination of growth and death, this
346 method could be used to study eDNA and iDNA dynamics separately which could help understand
347 exudation but also degradation and recycling of eDNA as well as the formation of microbial necromass as
348 well as extracellular polymeric substance in soils.

349 CONCLUSION

350 In conclusion we here present an approach to determine microbial death rates and turnover by accounting
351 for eDNA dynamics. To our knowledge, this is the first time microbial death rates were investigated in
352 addition to microbial growth rates and net changes in microbial iDNA. With this approach we could show
353 that microbial respiration and microbial growth in the two investigated soils increase with temperature
354 even up to 45 °C, a temperature, that is considered to be way beyond the temperature optimum of most
355 temperate microbial communities. The often observed drop in microbial growth or uptake at high

Formatted: Superscript

356 temperatures was however caused by the death of a significant part of the microbial community and
357 higher microbial death rates. While there is certainly room for improving the method and the necessity
358 to investigate its feasibility in other soil systems and under different environmental conditions, we think
359 that this approach will help to shed light on the role of microbial death in soil and a step forward to
360 understand soil C cycling.

361

362 AUTHOR CONTRIBUTION

363 **Jörg Schnecker:** Conceptualization (lead); investigation (supporting); methodology (supporting);
364 supervision (lead); formal analysis (lead); writing – original draft (lead) writing – review and editing (equal).
365 **Theresa Böckle:** investigation (equal); methodology (equal); writing – review and editing (equal). **Julia**
366 **Horak:** investigation (equal); methodology (equal); writing – review and editing (equal). **Victoria Martin:**
367 investigation (supporting); methodology (supporting); writing – review and editing (equal). **Taru Sandén:**
368 resources (equal); writing – review and editing (equal). **Heide Spiegel:** resources (equal); writing – review
369 and editing (equal).

370

371 COMPETING INTERESTS

372 The authors declare that they have no conflict of interest.

373 ACKNOWLEDGEMENT

374 This research was funded by the Austrian Science Fund (FWF TAI 328). We thank Sophie Zechmeister-
375 Boltenstern, University of Natural Resources and Life Sciences for granting access to the field site.

376

377 REFERENCES

378 Ascher, J., Ceccherini, M. T., Pantani, O. L., Agnelli, A., Borgogni, F., Guerri, G., Nannipieri, P., and
379 Pietramellara, G.: Sequential extraction and genetic fingerprinting of a forest soil metagenome, Applied
380 Soil Ecology, 42, 176–181, <https://doi.org/10.1016/j.apsoil.2009.03.005>, 2009.

381 Bååth, E.: Estimation of fungal growth rates in soil using ^{14}C -acetate incorporation into ergosterol, *Soil*
382 *Biology and Biochemistry*, 33, 2011–2018, [https://doi.org/10.1016/S0038-0717\(01\)00137-7](https://doi.org/10.1016/S0038-0717(01)00137-7), 2001.

383 Birgander, J., Olsson, P. A., and Rousk, J.: The responses of microbial temperature relationships to
384 seasonal change and winter warming in a temperate grassland, *Glob Change Biol*, 24, 3357–3367,
385 <https://doi.org/10.1111/gcb.14060>, 2018.

386 Blazewicz, S. J. and Schwartz, E.: Dynamics of ^{18}O Incorporation from H_2^{18}O into Soil Microbial DNA,
387 *Microb Ecol*, 61, 911–916, <https://doi.org/10.1007/s00248-011-9826-7>, 2011.

388 Brookes, P. C., Landman, A., Pruden, G., and Jenkinson, D. S.: Chloroform fumigation and the release of
389 soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil, *Soil*
390 *Biology and Biochemistry*, 17, 837–842, [http://dx.doi.org/10.1016/0038-0717\(85\)90144-0](http://dx.doi.org/10.1016/0038-0717(85)90144-0), 1985.

391 Cai, P., Sun, X., Wu, Y., Gao, C., Mortimer, M., Holden, P. A., Redmile-Gordon, M., and Huang, Q.: Soil
392 biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization, *Soil*
393 *Ecol. Lett.*, 1, 85–93, <https://doi.org/10.1007/s42832-019-0017-7>, 2019.

394 Canarini, A., Wanek, W., Watzka, M., Sandén, T., Spiegel, H., Šantrůček, J., and Schnecker, J.: Quantifying
395 microbial growth and carbon use efficiency in dry soil environments via ^{18}O water vapor equilibration,
396 *Glob Change Biol*, 26, 5333–5341, <https://doi.org/10.1111/gcb.15168>, 2020.

397 Carini, P., Marsden, P. J., Leff, J. W., Morgan, E. E., Strickland, M. S., and Fierer, N.: Relic DNA is abundant
398 in soil and obscures estimates of soil microbial diversity, *Nat Microbiol*, 2, 16242,
399 <https://doi.org/10.1038/nmicrobiol.2016.242>, 2016.

400 Cruz-Paredes, C., Tájmel, D., and Rousk, J.: Can moisture affect temperature dependences of microbial
401 growth and respiration?, *Soil Biology and Biochemistry*, 156, 108223,
402 <https://doi.org/10.1016/j.soilbio.2021.108223>, 2021.

403 Das, T., Sehar, S., and Manefield, M.: The roles of extracellular DNA in the structural integrity of
404 extracellular polymeric substance and bacterial biofilm development: The roles of eDNA in the bacterial
405 biofilm development, *Environmental Microbiology Reports*, 5, 778–786, <https://doi.org/10.1111/1758-2229.12085>, 2013.

407 Frey, S. D., Lee, J., Melillo, J. M., and Six, J.: The temperature response of soil microbial efficiency and its
408 feedback to climate, *Nature Clim Change*, 3, 395–398, <https://doi.org/10.1038/nclimate1796>, 2013.

409 Hagerty, S. B., Van Groenigen, K. J., Allison, S. D., Hungate, B. A., Schwartz, E., Koch, G. W., Kolka, R. K.,
410 and Dijkstra, P.: Accelerated microbial turnover but constant growth efficiency with warming in soil,
411 *Nature Clim Change*, 4, 903–906, <https://doi.org/10.1038/nclimate2361>, 2014.

412 Hungate, B. A., Mau, R. L., Schwartz, E., Gregory Caporaso, J., Dijkstra, P., van Gestel, N., Koch, B. J., Liu,
413 C. M., McHugh, T. A., Marks, J. C., Morrissey, E. M., and Price, L. B.: Quantitative microbial ecology
414 through stable isotope probing, *Applied and Environmental Microbiology*, 81, 7570–7581,
415 <https://doi.org/10.1128/AEM.02280-15>, 2015.

416 Kallenbach, C. M., Frey, S. D., and Grandy, A. S.: Direct evidence for microbial-derived soil organic matter
417 formation and its ecophysiological controls, *Nat Commun*, 7, 13630,
418 <https://doi.org/10.1038/ncomms13630>, 2016.

419 Leitner, S., Sae-Tun, O., Kranzinger, L., Zechmeister-Boltenstern, S., and Zimmermann, M.: Contribution
420 of litter layer to soil greenhouse gas emissions in a temperate beech forest, *Plant and Soil*, 403, 455–
421 469, <https://doi.org/10.1007/s11104-015-2771-3>, 2016.

422 Lennon, J. T., Muscarella, M. E., Placella, S. A., and Lehmkuhl, B. K.: How, When, and Where Relic DNA
423 Affects Microbial Diversity, *mBio*, 9, e00637-18, <https://doi.org/10.1128/mBio.00637-18>, 2018.

424 Liang, C., Schimel, J. P., and Jastrow, J. D.: The importance of anabolism in microbial control over soil
425 carbon storage, *Nat Microbiol*, 2, 17105, <https://doi.org/10.1038/nmicrobiol.2017.105>, 2017.

426 Manzoni, S., Taylor, P., Richter, A., Porporato, A., and Agren, G. I.: Environmental and stoichiometric
427 controls on microbial carbon-use efficiency in soils., *The New phytologist*, 196, 79–91,
428 <https://doi.org/10.1111/j.1469-8137.2012.04225.x>, 2012.

429 Metze, D., Schnecker, J., Canarini, A., Fuchslueger, L., Koch, B. J., Stone, B. W., Hungate, B. A.,
430 Hausmann, B., Schmidt, H., Schaumberger, A., Bahn, M., Kaiser, C., and Richter, A.: Microbial growth
431 under drought is confined to distinct taxa and modified by potential future climate conditions, *Nat
432 Commun*, 14, 5895, <https://doi.org/10.1038/s41467-023-41524-y>, 2023.

433 Miltner, A., Bombach, P., Schmidt-Brücken, B., and Kästner, M.: SOM genesis: microbial biomass as a
434 significant source, *Biogeochemistry*, 111, 41–55, <https://doi.org/10.1007/s10533-011-9658-z>, 2012.

435 Nagler, M., Podmirseg, S. M., Griffith, G. W., Insam, H., and Ascher-Jenull, J.: The use of extracellular
436 DNA as a proxy for specific microbial activity, *Appl Microbiol Biotechnol*, 102, 2885–2898,
437 <https://doi.org/10.1007/s00253-018-8786-y>, 2018.

438 Nagler, M., Podmirseg, S. M., Mayr, M., Ascher-Jenull, J., and Insam, H.: Quantities of Intra- and
439 Extracellular DNA Reveal Information About Activity and Physiological State of Methanogenic Archaea,
440 *Front. Microbiol.*, 11, 1894, <https://doi.org/10.3389/fmicb.2020.01894>, 2020.

441 Nottingham, A. T., Bååth, E., Reischke, S., Salinas, N., and Meir, P.: Adaptation of soil microbial growth to
442 temperature: Using a tropical elevation gradient to predict future changes, *Global Change Biology*, 25,
443 827–838, <https://doi.org/10.1111/gcb.14502>, 2019.

444 Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M. T., Guerri, G., and Nannipieri, P.: Extracellular
445 DNA in soil and sediment: fate and ecological relevance, *Biol Fertil Soils*, 45, 219–235,
446 <https://doi.org/10.1007/s00374-008-0345-8>, 2009.

447 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and Team., R. C.: nlme: Linear and nonlinear mixed effects
448 models. R package version 3.1-142, 2021.

449 Pold, G., Domeignoz-Horta, L. A., and DeAngelis, K. M.: Heavy and wet: The consequences of violating
450 assumptions of measuring soil microbial growth efficiency using the ^{18}O water method, *Elem Sci Anth*,
451 8, 069, <https://doi.org/10.1525/elementa.069>, 2020.

452 Prommer, J., Walker, T. W. N., Wanek, W., Braun, J., Zezula, D., Hu, Y., Hofhansl, F., and Richter, A.:
453 Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher
454 plant diversity, *Global Change Biology*, 26, 669–681, <https://doi.org/10.1111/gcb.14777>, 2020.

455 R Development Core Team: R: A language and environment for statistical computing, 2013.

456 Riah-Anglet, W., Trinsoutrot-Gattin, I., Martin-Laurent, F., Laroche-Ajzenberg, E., Norini, M.-P., Latour,
457 X., and Laval, K.: Soil microbial community structure and function relationships: A heat stress
458 experiment, *Applied Soil Ecology*, 86, 121–130, <https://doi.org/10.1016/j.apsoil.2014.10.001>, 2015.

459 Rousk, J. and Bååth, E.: Fungal and bacterial growth in soil with plant materials of different C/N ratios:
460 Fungal and bacterial growth with plant materials in soil, *FEMS Microbiology Ecology*, 62, 258–267,
461 <https://doi.org/10.1111/j.1574-6941.2007.00398.x>, 2007.

462 Rousk, J., Frey, S. D., and Bååth, E.: Temperature adaptation of bacterial communities in experimentally
463 warmed forest soils, *Global Change Biology*, 18, 3252–3258, <https://doi.org/10.1111/j.1365-2486.2012.02764.x>, 2012.

465 Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos, V.: Global soil carbon: understanding and
466 managing the largest terrestrial carbon pool, *Carbon Management*, 5, 81–91,
467 <https://doi.org/10.4155/cmt.13.77>, 2014.

468 Schnecker, J., Baldaszti, L., Gündler, P., Pleitner, M., Richter, A., Sandén, T., Simon, E., Spiegel, F., Spiegel,
469 H., Urbina Malo, C., and Zechmeister-Boltenstern, S.: Seasonal Dynamics of Soil Microbial Growth,
470 Respiration, Biomass, and Carbon Use Efficiency, *SSRN Journal*, <https://doi.org/10.2139/ssrn.4033336>,
471 2022.

472 Schnecker, J., Spiegel, F., Li, Y., Richter, A., Sandén, T., Spiegel, H., Zechmeister-Boltenstern, S., and
473 Fuchsleger, L.: Microbial responses to soil cooling might explain increases in microbial biomass in
474 winter, *Biogeochemistry*, 164, 521–535, <https://doi.org/10.1007/s10533-023-01050-x>, 2023.

475 Simon, E., Canarini, A., Martin, V., Séneca, J., Böckle, T., Reinthal, D., Pötsch, E. M., Piepho, H.-P., Bahn,
476 M., Wanek, W., and Richter, A.: Microbial growth and carbon use efficiency show seasonal responses in
477 a multifactorial climate change experiment, *Commun Biol*, 3, 584, <https://doi.org/10.1038/s42003-020-01317-1>, 2020.

479 Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., Firestone, M. K.,
480 Foley, M. M., Hestrin, R., Hungate, B. A., Koch, B. J., Stone, B. W., Sullivan, M. B., Zablocki, O., LLNL Soil
481 Microbiome Consortium, Trubl, G., McFarlane, K., Stuart, R., Nuccio, E., Weber, P., Jiao, Y., Zavarin, M.,
482 Kimbrel, J., Morrison, K., Adhikari, D., Bhattacharaya, A., Nico, P., Tang, J., Didonato, N., Paša-Tolić, L.,
483 Greenlon, A., Sieradzki, E. T., Dijkstra, P., Schwartz, E., Sachdeva, R., Banfield, J., and Pett-Ridge, J.: Life
484 and death in the soil microbiome: how ecological processes influence biogeochemistry, *Nat Rev
485 Microbiol*, 20, 415–430, <https://doi.org/10.1038/s41579-022-00695-z>, 2022.

486 Spiegel, H., Sandén, T., Dersch, G., Baumgarten, A., Gründling, R., and Franko, U.: Chapter 17 - Soil
487 Organic Matter and Nutrient Dynamics Following Different Management of Crop Residues at Two Sites
488 in Austria, edited by: Muñoz, M. Á., Zornoza, R. B. T.-S. M., and Change, C., Academic Press, 253–265,
489 <https://doi.org/10.1016/B978-0-12-812128-3.00017-3>, 2018.

490 Spohn, M., Klaus, K., Wanek, W., and Richter, A.: Microbial carbon use efficiency and biomass turnover
491 times depending on soil depth - Implications for carbon cycling, *Soil Biology and Biochemistry*, 96, 74-
492 81, <https://doi.org/10.1016/j.soilbio.2016.01.016>, 2016.

493 Walker, T. W. N., Kaiser, C., Strasser, F., Herbold, C. W., Leblans, N. I. W., Woebken, D., Janssens, I. A.,
494 Sigurdsson, B. D., and Richter, A.: Microbial temperature sensitivity and biomass change explain soil
495 carbon loss with warming, *Nature Clim Change*, 8, 885-889, <https://doi.org/10.1038/s41558-018-0259-x>, 2018.

497 Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Richter, A., and Wanek, W.: Growth explains microbial
498 carbon use efficiency across soils differing in land use and geology, *Soil Biology and Biochemistry*, 128,
499 45-55, <https://doi.org/10.1016/j.soilbio.2018.10.006>, 2019.

500

501 color).