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Abstract. Magnetic reconnection is a crucially important process for energy conversion in plasma physics, the substorm cycle

of Earth’s magnetosphere and solar flares being prime examples. While 2D models have been widely applied to study recon-

nection, investigating reconnection in 3D is still in many aspects an open problem. Finding sites of magnetic reconnection in

a 3D setting is not a trivial task, with several approaches from topological skeletons to Lorentz transformations proposed to

tackle the issue. This work presents a complementary method by noting that the magnetic field structures near reconnection5

lines exhibit two-dimensional features that can be identified in a suitably chosen local coordinate system. We present appli-

cations of this method to a hybrid-Vlasov Vlasiator simulation of the Earth’s magnetosphere, showing the complex magnetic

topologies created by reconnection. We also overview the dimensionalities of magnetic field structures in the simulation to

support the use of such coordinate systems.

1 Introduction10

A long-standing issue in analysing data from magnetospheric simulations has been the identification of topological features

in the magnetic field, especially in relation to reconnection and flux transfer events. These features include magnetic neutral

lines, separators and, loosely, X- and O-lines. In a two-dimensional configuration, the problem is tractable via the use of a flux

function (as employed by, e.g., Hoilijoki et al., 2017; Palmroth et al., 2017; Hoilijoki et al., 2019), while a generalized flux

function can be defined in certain three-dimensional configurations (Yeates and Hornig, 2011). Global ideal magnetohydrody-15

namic (MHD) simulations present a relatively simple reconnection topology that is tractable via the four-field junction (FFJ)

method that identifies reconnection topologies from global magnetic field connectivity (whether or not field lines connect to

the Earth or to the solar wind) (Laitinen et al., 2006). However, more detailed simulations, such as Vlasiator ion-kinetic sim-

ulations, produce complex reconnection topologies impossible for FFJ to parse completely (see Pfau-Kempf et al., 2020). As

such, the space physics community is challenged to find and develop new tools for analyzing these topologies.20
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Reviewing the definitions of the topological structures of reconnecting 3D magnetic fields by Parnell et al. (2010), we can

summarize three different, but related concepts: Magnetic null points (with several subtypes), where the magnetic field B

completely vanishes; separatrices, planes that delimit different magnetic domains, and separators, lines connecting magnetic

null points and defined as intersections of paired separatrix surfaces, laying at the boundary of four different magnetic domains.

The behaviour of magnetic null points has been studied in much detail, in 3D as well (e.g. Greene, 1988), for their usefulness25

in reconnection analysis. Detection and classification of null points can be done readily with existing methods: Olshevsky et al.

(2015, 2016) use the Poincaré index method to detect and characterize null points (where B(r) = 0) in local MHD and particle-

in-cell (PIC) simulations, which can be applied to spacecraft data as well. Haynes and Parnell (2007) detail methods of finding

null points within a cubic cell, using a tri-linear method to find common zero-crossings for all magnetic field components. Fu

et al. (2015) introduced the first-order Taylor expansion (FOTE) method for reconstructing the magnetic field topology around30

nulls and finding null points from multi-point spacecraft data.

As e.g. Lau and Finn (1990) note, the magnetic field lines connecting specific null point pairs—separators—are important

for reconnection. Several methods for finding separator lines have been developed. For example, Komar et al. (2013) trace

related separators by stepping from magnetic null points and inspecting magnetic connectivity of candidate points, akin to

the FFJ method used by Laitinen et al. (2006). This is used by Eggington et al. (2022) to find the main magnetospheric35

separator through tracing magnetic connectivity, noting that they found it complicated to find the initial magnetic nulls for

tracing. On the other hand, Olshevsky et al. (2016) show a plethora of null points found in a magnetospheric simulation,

representing a challenge for mapping the pairwise connections of null points. Glocer et al. (2016) track magnetic separators in

MHD simulations and compare different techniques for it, while Haynes and Parnell (2010) introduced generalized methods

for constructing the topological skeletons of magnetic fields. This includes null points, separatrices and the separator lines, not40

tied to specific coordinate systems, with involved field-line tracing procedures. Recently, also Bujack et al. (2021) introduced

similar tools. Such tools are likewise being explored in Vlasiator 3D magnetospheric simulations by Bouri et al. (2023), to

apply machine learning methods to the topic. Machine learning methods have also seen use in analysis of plasma simulations

by e.g. Bussov and Nättilä (2021).

Closely related to the concept of separators are the magnetic X and O lines. As the intersections of separatrix surfaces, the45

separators delimit different magnetic domains. In the classic picture of reconnection, inspecting the magnetic field lines on a

plane normal to the tangent of the reconnection line displays an X-topology, with the in-plane components of B changing signs

at the X-line (or an X-point, when constrained to such a plane). This holds regardless of an out-of-plane B component as noted

by Sonnerup (1974): the hyperbolic structure remains visible in the in-plane components. Likewise, the in-plane magnetic field

components change signs at an O-line (or O-point). This can be used to extend the definition from a true null line, defined as50

a continuous line with exactly zero B, which is structurally unstable (Priest and Titov, 1996) and is expected to split into null

points connected by a separator. As this definition of a null line is not consequently fulfilled in practice, and as we would like to

identify null lines whether or not a magnetic guide field is present, we use the term "in-plane" null line (and more specifically,

"in-plane" X- and O-lines) in this paper to mean such sets of points that satisfy the zero-crossing condition for the in-plane
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magnetic field components, allowing for a common category of null lines that covers both X and O lines, with and without55

guide field.

To ensure an accurate description of magnetic field structures, including e.g. current sheets (CSs), null lines, and flux ropes,

it is crucial to define a local coordinate system. Methods such as Minimum Variance Analysis (MVA) are widely used in space-

craft observational studies to investigate structures in the proper coordinate system. Observational methods for construction

of local coordinate systems may require some situational adjustments as in Gosling and Phan (2013) and Hietala et al. (2018)60

with a hybrid MVA coordinate system. The magnetic field structures that are more frequently investigated (such as CSs and

flux ropes) often display more variability in some dimensions than in others, allowing for some simplifications based on the

dimensionality of the structures. Methods for inspecting the dimensionality and for forming local coordinate systems are re-

viewed by Shi et al. (2019). Particularly, the Minimum Directional Derivative (MDD) and Minimum Gradient Analysis (MGA)

methods may be used to define local coordinate systems based on the Jacobian of magnetic field B, which we will build upon65

in this work. These are detailed in Sect. 1.1.

Global magnetospheric simulations use global coordinate systems such as Geocentric solar ecliptic (GSE) or Geocentric

solar magnetospheric (GSM), similarly to spacecraft observations. However, local magnetic structures are not necessarily

aligned with the axis of the simulation coordinate system. In particular CSs, flux ropes and reconnection topologies can develop

unconstrained by the domain boundaries and can be oriented in virtually any direction. In this situation, methods developed to70

analyse spacecraft data can inspire new ways to investigate data from global simulations. Palmroth et al. (2023) used justified

assumptions about the geometry of the problem to obtain useful proxies from global coordinate systems, and the aim of this

paper is to generalize the approach to local coordinate system.

To review our region of interest, Figure 1 shows a sketch of the Earth’s magnetosphere, based on the Vlasiator simulation

described by Palmroth et al. (2023). Solar wind flows in from the right, carrying with itself the interplanetary magnetic field75

(IMF), which is aligned purely southward in this. As the solar wind encounters the Earth’s magnetic field, a bow shock (gray)

and a heated magnetosheath (light brown) are formed (both are shown clipped along the meridional plane). The magnetopause

(purple, clipped along the equatorial plane) delimits the magnetosphere proper—the volume in which Earth’s magnetic field

dominates the plasma behaviour. The solar wind driving draws the magnetosphere into a long tail, with northern and southern

tail lobes having opposite magnetic fields and the tail current sheet (CS, light blue) separating the lobes. Southward IMF driving80

is especially interesting, as it allows for magnetic reconnection on the dayside magnetopause, where the opposing magnetic

fields form X-topologies (dark red lines with crosses) and allow for the transfer of energy and mass across the magnetopause

and a change in global magnetic topology. The global reconnection line described by Laitinen et al. (2006) is correspondingly

shown as the closed, dark red line marked as FFJ. The reconnected magnetic field lines form into flux transfer events (FTEs, or

plasmoids) characterized by O-topologies (blue lines with disks). Similarly, the opposing magnetic fields of the tail lobes may85

reconnect at the tail CS, forming plasmoids in the tail current sheet. Palmroth (2023) shows complex reconnection topologies

forming in the tail, represented by the ellipsis-terminated red and blue lines in the tail of Figure 1, with similar sketches of

multiple reconnection lines and flux transfer events given on the dayside magnetopause.
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Figure 1. A schematic view of the Earth’s magnetosphere under southern IMF driving, with zoomed-in detail panels of the dayside magne-

topause and the magnetotail, sketched on the Vlasiator run described by Palmroth et al. (2023). The magnetosphere proper is delimited by

the magnetopause (purple surface). Magnetic field lines on the meridional plane are shown in black, with X (red, crosses; global FFJ line

annotated) and O (blue, disks; marked with FTE and plasmoid) topologies marked as lines close to the meridional plane (and one X-topology

circling the near-Earth region with northward magnetic field). The white-light blue equatorial cross-section follow the magnetic equator and

the tail current sheet, with North/South magnetic field marked respectively as out-of-/into the plane.

4

https://doi.org/10.5194/egusphere-2023-2300
Preprint. Discussion started: 23 October 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 2. Schematic drawing of the a) MGA and b) MDD eigenvectors L̂,M̂, N̂ , corresponding to largest, middle and minimum eigenvalues

in a 1D CS, along Shi et al. (2019). For both eigensystems, the vector L̂ is well-defined, while the M̂,N̂ vectors lie on the plane perpendicular

to the L̂ vectors.

In this paper we introduce and discuss alternative, physically-motivated local methods for finding X- and O-lines in the

magnetic field of global 3D magnetospheric simulations, by inspecting the magnetic field in a suitable local coordinate basis.90

To extend the global proxies used in Palmroth et al. (2023) we introduce a local coordinate system based on the work reviewed

by Shi et al. (2019), with an approach similar to the one presented by Denton et al. (2010), and describe both contouring and

cell-wise FOTE methods for finding null lines, both X and O, within a global magnetospheric plasma simulation, from the

magnetic field and its Jacobian matrix.

1.1 Local coordinate systems and dimensionality95

Let us consider two methods reviewed by Shi et al. (2019): Minimum Directional Derivative (MDD) and Minimum Gradient

Analysis (MGA; analogous to Minimum Variance Analysis), both defined using the Jacobian
↔
G=∇B of the magnetic field.

Local, orthogonal coordinate directions can be obtained from the eigenbases of
↔
G

⊺↔
G (MGA) and

↔
G
↔
G

⊺
(MDD). However, this

method only provides information about the direction and not on the sign of the eigenvectors.

MGA produces a set of basis vectors where the eigenvector corresponding to the largest eigenvalue (λ1) is aligned with100

the vector that has maximal variation (L̂MGA), the second one (λ2) corresponding to the intermediate (M̂MGA) and third

(λ3) the least variation (N̂MGA). On the other hand, the MDD method produces a set of basis vectors where the eigenvector

corresponding to the largest eigenvalue shows the direction of the displacement which produces the largest variation in B

(L̂MDD). Correspondingly, for the eigenvectors corresponding to the intermediate and least eigenvalues we use M̂MDD and

N̂MDD. Denton et al. (2010) employ the MDD eigenbasis in their method, while we use both MDD and MGA eigenvectors as105

described later in Sect. 2.1.

Both of these eigensystems have the same eigenvalues, but the eigenvectors differ and are not necessarily aligned with each

other. We note here that for a one-dimensional structure, both of these eigensystems have only one well-defined eigenvector.

For example, in a 1D Harris (1962)-type CS defined by

B(z) = B0 tanh(z) x̂ (1)110

for some constant B0, the eigensystems are shown in Figure 2, with L̂MGA aligned with x̂ and L̂MDD aligned with ẑ.
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MDD also gives a way to define the local dimensionality of a structure (Rezeau et al., 2018) from the eigenvalues of the

matrix
↔
G
↔
G

⊺
, with e.g. a purely one-dimensional structure varying only as a function of single coordinate. The quantities D1,

D2, D3 describe the one-, two- or three-dimensionality of the magnetic field and are obtained from the ratios of square roots

of the eigenvalues λ1 ≥ λ2 ≥ λ3 of
↔
G
↔
G

⊺
.115

Definitions for D1, D2, D3 are given below, modified to use the square roots of eigenvalues as suggested by Shi et al. (2019)

(as the square roots of the eigenvalues then have the units of Tm−1):

D1 =
√

λ1−
√

λ2√
λ1

(2)

D2 =
√

λ2−
√

λ3√
λ1

(3)

D3 =
√

λ3√
λ1

. (4)120

These quantities are defined to lie in the range [0,1] and their sum is one. For D1 ≈ 1, the magnetic field structure is primarily

one-dimensional, such as a CS with B ≈B(z) for a direction z normal to the CS. Correspondingly, for D2 ≈ 1, the structure

is primarily a function of two coordinates, etc. These measures allow us to quantify whether or not the locally 2D treatment for

neutral lines is well-founded, and we return to the topic of dimensionality in Sect. 4.3.

1.2 Vlasiator125

In this study, the methods discussed above will be applied to a global simulation of the Earth’s magnetosphere performed with

the hybrid-Vlasov code Vlasiator. Vlasiator is a supercomputer-scale 6D (3D+3V; three spatial dimensions and three velocity-

space dimensions) ion-hybrid plasma simulation (von Alfthan et al., 2014; Palmroth et al., 2018), solving the Vlasov equation

for ion components and treating electrons as a charge-neutralizing, massless fluid. Previously, Vlasiator has been used to study

reconnection in 5D (2D+3V) simulations for the global magnetosphere (e.g. Hoilijoki et al., 2017; Palmroth et al., 2017), and130

locally on the magnetopause in full 6D (Pfau-Kempf et al., 2020). Recently, computational advances (Ganse et al., 2023) have

expanded the capabilities of the model to include fully 6D global simulations (Palmroth et al., 2023; Horaites et al., 2023;

Grandin et al., 2023).

We use the global Vlasiator simulation described by Palmroth et al. (2023) as a prototype case for the discussed methods. The

simulation is of the Earth’s global magnetosphere, with a simplified inner boundary condition that does not include ionospheric135

coupling. The simulation uses the GSE coordinate system (centered at the Earth, with the X–axis pointing towards the Sun,

the Z-axis is normal to the ecliptic in the northward direction) and no dipole tilt, so the dipole moment is aligned with the

Z–axis. The simulation is set up with a predefined mesh refinement with 1000km maximum spatial resolution in the tail CS

and on the dayside magnetopause, with the simulation domain spanning [−111,50]RE in the X direction and [−58,58]RE in

Y and Z, with driving provided by the fast (Usw = 750kms−1) solar wind at the temperature of Tsw = 500kK and density of140

nsw = 1cm−3 and a purely southward magnetic field BIMF = (0,0,−5)nT.

Despite the solar wind and IMF being constant, the kinetic physics involved in the simulation still produce a remarkably

dynamic environment. Palmroth et al. (2023) described the dynamics of tail reconnection in the Vlasiator run, showing the
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Figure 3. Neutral point classification in a well-defined local coordinate system. On the plane where BL = 0 and on the subset of that plane

where BN = 0, the O-points have ∂BN/∂L < 0, and X-points ∂BN/∂L > 0. Note that this classification assumes a right-handed coordinate

system.

interplay of plasma instabilities and reconnection on the tail CS. Notably, they presented a complex picture of small, indepen-

dent plasmoids being generated in a bursty fashion, followed by a tail-wide reconfiguration through the merging of smaller145

plasmoids and their reconnection lines. Notably, the simulation setup is an idealized case, and with more realistic solar wind

and IMF inputs including a flow-aligned IMF component, dipole tilt, and magnetosphere-ionosphere coupling, we expect to

see even more complex behaviour, including e.g. tilted CSs (see, e.g., Shen et al., 2008).

2 Methods: applying the local coordinate systems to Vlasiator

2.1 Local LMN coordinates150

If the eigenvalues are not well-separated, the directions obtained from MGA and MDD may be ambiguous (see Shi et al., 2019).

For example, for the CS with dimensionality 1, MGA obtains the field-aligned direction (above and below the CS), while MDD

obtains the normal direction to the CS, with two other directions potentially ambiguous. The directions obtained from MGA

and MDD are, however, approximately orthogonal at the CS. Since we are especially interested in CS-like structures, we choose

to use the unit vectors L̂MGA and L̂MDD (described in section 1.1) as the basis on which to build our coordinate system.155

The electric current density J ∝∇×B can be used to define a right-handed coordinate system, by selecting L̂MGA as a

primary vector L̂, L̂MDD as secondary vector, and J as tertiary vector, so that L̂×J ∥ L̂MDD. For example, on an idealized

CS (Equation 1), we see that L̂ ∥ x̂, N̂ ∥ ẑ, and J ∥ L̂× N̂ . L̂ and L̂MDD are exactly orthogonal in this case, as in Figure 2.

To summarize the definition of our local LMN coordinate system L̂,M̂, N̂ , we orthogonalize the set of basis vectors with

the following:160

1. L̂ = L̂MGA

2. N̂ = L̂MDD− (L̂MDD · L̂)L̂, with N̂ multiplied by −1, if necessary, so that (N̂ × L̂) ·J > 0

3. Lastly, M̂ = N̂ × L̂,

7
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Figure 4. Absolute value of the dot products of the primary and secondary vectors |L̂MGA · L̂MDD| used in the construction of the LMN

systems, shown on the planes Y = 0,Z = 0. We note that the vectors are nearly orthogonal especially in the vicinity of the magnetopause

and the tail current sheet, where we wish to employ the orthogonalized coordinate system.

resulting in a right-handed coordinate system with M̂ oriented in the same direction as J (but not necessarily parallel). This

still only requires data from
↔
G, and allows classifying a null line to X and O in this LN plane via inspection of ∂BN/∂L (see165

Figure 3).

The sign of L̂ and N̂ in the global coordinates remains unfixed: multiplying both L̂ and N̂ by −1 does not affect the

generality of the system. For now, this is left to be defined depending on the specific application.

Figure 4 shows the global magnetosphere as reproduced by the Vlasiator simulation, with Earth at the origin, Sun on the

low right (pointed towards by the positive X axis), and the Earth’s dipole field is aligned to have the North pole on the positive170
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Z-axis. The figure displays the absolute value of the dot product L̂MGA ·L̂MDD, a measure of non-orthogonality for the primary

and secondary vectors of our LMN coordinate system on the Y = 0,Z = 0 planes. In regions such as the magnetopause (X ≈
10RE, at the subsolar point) and the bow shock (X ≈ 15RE), hosting boundaries and CSs that are expected to be 1D structures,

we see that the non-orthogonality is low. The magnetotail lobes and parts of the magnetosheath display consistent alignment

of the primary and secondary vectors, indicating that the most-varying component of B varies most in the same direction, e.g.175

when approaching the polar regions along the magnetic field. This shows that care must be taken when considering these LMN

coordinates especially in the lobes and inner magnetosphere. The transition between the CS and the lobes especially displays

complex structure.

While the above local coordinate system is defined where there is some variation in B, such that |L̂MGA · L̂MDD|< 1 and

a non-zero electric current density J , our interest lies in reconnection-supporting CS structures, which naturally fulfill these180

conditions.

2.2 Contouring method

2.2.1 Finding reconnection-supporting CSs

In Palmroth et al. (2023), the CS center was defined by the zero-crossing of the Earth-centered radial magnetic field component,

Br = 0. This selects the crossover plane between the north and south lobes in the tail, with Br = 0 accounting for some radial185

component closer to the flanks. Bx = 0 gives similar results in this case.

The local coordinate system, as given above, allows us to define an LMN system at each spatial cell of the simulation,

analogous to the definition at each time in a time series for spaceraft observations. Finding BL = 0 surfaces shows approximate

centres of CSs where the locally most-varying component of B changes its sign. These we deem the most interesting on the

basis of supporting reconnection. With contouring algorithms, regions of consistent orientation of the LMN system need to be190

selected, however. As an example, the LMN coordinates of a Vlasiator tail CS, as shown in Figure 5, have been homogenized by

requiring L̂·x̂ > 0, and focused onto the CS by requiring |J |> 2nAm−2. The Figure 5 demonstrates, firstly, correct extraction

of the CS midplane, and secondly, details of the local LMN basis vectors: the L̂ vector tracks the orientation of the lobe fields,

the N̂ vector tracks the CS normal and the M̂ vector is in-plane and pointing in the general direction of the current.

2.2.2 Null lines195

In Palmroth et al. (2023), the CS center proxy Br = 0 serves as a basis for finding null lines on the sheet via the additional

constraint of Bz = 0. An example of these proxies and the flapping of the CS is shown in Figure 6a. The sign of Bz serves as

a proxy for field topology (given as sheet color). We note that strong flapping of the CS causes the CS normal component to

deviate strongly from the Z direction at points. Using the LMN basis allows us to take into consideration the local behaviour

of the CS, improving upon the proxy model.200

Finding the surfaces with BL = 0 and further intersecting those with the surfaces of BN = 0 yields a set of connected lines,

as shown in Figure 6b. For example, the contouring operator used by VisIt (Childs et al., 2012) finds these lines with topological
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Figure 5. A Vlasiator tail CS (t = 1267s). The CS center plane is located by a contouring algorithm for BL = 0, forming a wavy sheet,

which is colored by the current density |J |. For reference, the current density is also shown on the X =−15RE plane, indicating a match

with the actual location of the CS. The local LMN basis vectors are shown on the CS (red: L̂, green: M̂ , blue: N̂ ), and the B vectors are

shown above and below the CS on a Y =−9RE slice (magenta).

Figure 6. (a) Null lines obtained from Br = 0 and Bz = 0 on the Vlasiator tail CS, local zoom-in of the simulation within the domain

presented in Figure 5. (b) LMN-contoured null lines. Both sheets are colored by positive/negative Bz or BN , respectively, with the null

lines (in both cases) colored by ∂LBN . The strong CS flapping leads the former to miss a plasmoid on the flap as shown by the field lines

(magenta).
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Figure 7. Schema of LN sign ambiguity and its effect. The sign of L and N vectors are not fixed by the construction and may vary arbitrarily.

On the left, a correct evaluation of a BN = 0 (vertical dashed line) value between two points A and B, while on the right an incorrect

evaluation of a BN = 0 value (vertical dashed line) between points B and C. The LN directions are locally correct, but not necessarily

consistent between neighbouring cells.

connectivity. The left-hand side panel of Figure 6 shows an example of the Br = Bz = 0 contouring missing a plasmoid at a

prominent CS flap, whereas the LMN method correctly finds the axis of the plasmoid. We note that the overall structure of the

tail X and O lines is still well-described by the previous method outside of the region with large-amplitude flapping.205

Above, and in general, we assume the existence of the normal component BN for the detection of in-plane nulls. The

potential degenerate case with BN = 0 over the entire CS (a tangential discontinuity) is hardly encountered in practice.

To use the LMN coordinate system and the components of magnetic field BL,BM ,BN for contouring requires the LMN

coordinate systems to be consistently oriented: if the ambiguity in the sign of L and N coordinates happens to flip between

neighbouring cells, the BL,BN components will naturally change signs as well, as illustrated in Figure 7. This is a source210

of false detections, which can be fixed by re-orienting neighbouring coordinate systems. However, it may not be possible to

provide a consistent orientation for the LMN coordinates in an entire domain, such as a global magnetospheric simulation. As

long as there is a consistent orientation, the simple contouring operation works for current-sheet like structures and produces

topologically connected neutral lines.

When there is no consistent orientation available, naïve contouring does not work in an off-the-shelf manner. For exam-215

ple, in the case of the upstream solar wind, where Vlasiator shows very little variation in IMF, the LMN coordinate system

is dominated by numerical precision artefacts, leading to inconsistent orientation showing up as noise in these contouring

methods.
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2.3 Cell-wise FOTE method

An alternative that does not require choices on orientation is to use the local data of B and
↔
G to construct first the local220

coordinate system and secondly a linear expansion of the components BL,BN at the cell center. This sidesteps the ambiguity

in the sign of the LN directions. Solving for the planes of BL = 0, BN = 0 and their intersection is then straightforward in this

linear approximation: BL +∇BL · r = 0 is solved via an exact, single-step gradient descent along the negative gradient:

r =− BL

|∇BL|
· ê∇BL

, (5)

where ê∇BL
is the unit vector in the direction of the gradient. This defines the plane BL = 0 with the normal direction ê∇BL

225

and a point r relative to the cell center. Similarly, we find BN = 0, and the intersection line of these two planes.

The line where BL = 0 = BN would then again signify a null line, but the linear approximation can only be considered

good within a small neighborhood, that is, in the cell. It is then also straightforward to check whether or not this line intersects

with the cell being analysed in the simulation coordinate system—if yes, we can consider the cell to contain a neutral line.

We minimize a signed distance function (SDF) to the cell along the line. A SDF describes the distance of a point to the230

surface of an object, with positive values indicating the point lies outside the object, and negative values inside. Therefore,

a SDF gives a continuous measure on the distance of the line with the cell, with negative values indicating the neutral line

intersecting the cell, and positive values indicating no intersection. This allows some evaluation and acceptance of near misses.

A discriminating value of SDF ≈ 0.25...0.36 is found to produce uninterrupted null lines in the tail, as expected based on field

topology. Figure 10 shows examples of the FOTE method in use on Vlasiator data.235

Further, we may evaluate the derivative ∂LBN at the cell, and again classify the possible neutral line with it. Eigenvalues of
↔
G might as well be used for this purpose, as for degenerate nulls in Parnell et al. (1996), but we opt to use a straight derivative

for a clear physical meaning. The main disadvantage for now is that this method does not provide a ready-made topology, only

sets of cells that are considered to contain a segment of an X/O line.

3 Validation with an ideal case240

We take the southward-IMF initial configurations of Hu et al. (2009); Komar et al. (2013) for a test case that has null lines, and

who also provide analytical solutions for the magnetosphere using the methods by Yeh (1976). The current-free initial condition

is not suitable to apply our method to, since we use the current density vector to define the handedness of our coordinate basis.

However, we choose to propagate the initial condition for a short time (7.048ms), using background plasma (with a radial taper

of temperature and velocity from the inner boundary to the solar wind values) to break the exact current-free condition. This245

enables the use of our methods to extract the X line in the case with IMF clock angle θ = 150◦ (mostly southward IMF). To

guard against current-free edge cases, we can use, as a fall-back case, the MGA maximum and medium variance coordinates

for L and N directions instead.

Figure 8 shows a comparison between the FOTE method and the analytical solution. The cells detected by the FOTE method

enclose the analytical separator nearly everywhere, but they show, in addition, few extra null line segments further away.250
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Figure 8. (a) Komar et al. (2013) 150◦ case reproduction: FOTE null lines (blue translucent cells) compared to analytical separator

(magenta) and B field line stubs (light gray, from Y = 0 plane) after slight propagation; note that the analytical separator is almost

everywhere contained by the cells marked by the FOTE method.

Bottom panels (b and c): LN slices at M = 0 with magnetic field lines of in-plane components in blue, BL = 0 in black, BN = 0 in magenta.

Background color shows in-plane magnetic field magnitude.

(b) This figure shows a detection of an X line in the vacuum superposition case (origin at cell marked by arrow b).

(c) This figure shows an unexpected, but correct detection of an X line in the vacuum superposition case (cell marked by arrow c).
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Figure 9. Komar et al. (2013) 150◦ case reproduction: Contoured null lines (blue tubes) compared to analytical separator (magenta) and B

field line stubs (light gray, from Y = 0 plane) along Hu et al. (2009); Komar et al. (2013) after slight propagation.

Figure 8 shows details of the X-line detection by plotting L−N cross-sections of the in-plane nulls. The origins of these

cross-sections are placed in the cells with a FOTE-detected in-plane nulls, with the cross-sections taken at M = 0. The LMN

basis is the local basis from the detection cell, extrapolated to the immediate neighborhood. The slices show projections of the

magnetic field lines in the LN plane and zero-crossing lines for BN and BL. The cross-sections confirm these cells do contain

in-plane null lines as per our definition, but which are not described by the analytical solution for the separator. Figure 8 shows255

that these are, indeed valid detections with an X-topology.

Figure 9 shows a comparison between the contouring method and the analytical solution. Here, the LMN coordinate system

has been regularized so that the L direction is chosen to fulfill L̂ · ẑ > 0. For this particular case, the dipole field produces

prominent cones where the coordinate system is not oriented consistently, and the data to be contoured is pre-filtered to lie

within 1 cell of a FOTE null line. Less stringent filtering can be used for other, more local cases (see e.g. , Sect. 4.1). Good260

agreement with the analytical solution is also seen in this case.
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Figure 10. (a) The tail CS from Vlasiator simulation (EGI, t = 1267s). Similar format to Figure 6 LMN plot, with contoured X and O lines.

(b) FOTE detections of X and O topologies (outlined cubic cells), compared with the contoured detections of panel a (black curves)

(c) and (d) Details from points marked by c and d, showing a slice of the local L-N plane with in-plane magnetic field lines and zero contours

of these components annotated. The slices show point c is correctly identified as an O topology, and point d is correctly identified as an X

topology. The background color is the strength of the in-plane magnetic field.

4 Results in Vlasiator

4.1 CS null lines in detail

Figures 10 a and b show a section of the Vlasiator tail CS (a subset of Figure 5). Firstly, panel a shows the in-plane null lines as

found by the contouring method, colored with ∂LBN (red colors signifying X topologies, blue O topologies). The CS is colored265

by BN , positive values blue and negative values beige, extending the north-south classification in Figure 6a to a flapping CS.

The LMN coordinate bases are shown at some locations on the sheet as red-blue-green arrows. Further, two in-plane null line

locations marked as (a) and (b) are chosen as examples (noting that these coincide with the pathological flap seen in Figure 6a),

and for these locations the local LN plane magnetic field is plotted below in panels (c) and (d), showing that these null lines

indeed are correctly found and classified.270
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Figure 11. Dawn flank of the magnetosphere, with FOTE detections as outlined cells, using the β∗ parameter on the vertical slice and on a

magnetopause proxy at β∗ = 0.5.

To validate the observed null lines with both methods in the case of the tail CS, Figure 10b shows both contouring and FOTE

detections at work; with the contoured in-plane null lines shown as black curves, and the FOTE-detected null-line containing

cells as wireframes, colored with ∂LBN . The methods agree well, even if the FOTE method may have some stray detections.

We may note that the local coordinate systems spanned by our LMN basis describe well the in-plane X and O lines in

the simulation. However, this leads to the observation that the X and O line axes might not be aligned with the M̂ direction,275

as also observed by Pathak et al. (2022) with MMS data. Figure 10 demonstrates this in the Vlasiator tail CS, with X and

O lines necessarily breaking their alignment from the M̂ direction when forming into loops, for example. The effect of this

mis-alignment on reconnection in Vlasiator simulations is an ongoing subject of study.
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4.2 Null lines in global Vlasiator 6D magnetosphere

To extend our analysis to the global Vlasiator magnetosphere, we use the generic FOTE method that is not limited by construc-280

tion of consistently oriented neighborhoods. The FOTE method reveals a sinuous and alternating neutral line structure on the

magnetopause flanks, shown on Figure 11. The figure uses a magnetopause proxy from Xu et al. (2016) β∗ parameter, defined

as

β∗ =
Pthermal + Pdynamic

PB
(6)

Especially notable are the sinuous X and O lines extending out to the flank from the dayside magnetopause, indicating FTEs285

extended to the magnetopause flanks. Regions with small values of |∂LBN | (grey) should be inspected here for their validity,

in general. The alternating pattern on the magnetopause at X < 20 still suggests that these are indeed real magnetic structures,

with alternating positive and negative BN regions. We note, however, that the behaviour of the magnetopause on the flank in

the present simulation is not yet studied in detail, and the shown time state (1267s) may still contain initialization artefacts

deep in the tail.290

4.3 Dimensionality of magnetic structures in Vlasiator

Additional arguments for the usability of the LMN coordinate system may be given in terms of dimensionality of the magnetic

structures, but the dimensionality measures are a result in and of themselves. Figure 12 shows an overview of the dimensionality

measures D1, D2, and D3 (Equations 2–4, described in Sect. 1.1) applied to a Vlasiator 6D simulation. Red color corresponds

to regions dominated by one-dimensional variation (sheet-like structures), green to two-dimensional structures (e.g. plasmoids295

and flux ropes), and blue to three-dimensional structures. The upstream appears noisy as the magnetic field is nearly constant.

The regions of interest for reconnection are naturally found in CSs, that is, mostly one-dimensional structures with some

embedded 2D features. These can be used to constrain the local basis analysis to compatible regions.

An interesting finding in the dimensionality parameters in the 6D Vlasiator run can be observed in the lack of dominantly

three-dimensional structures, as shown in Figure 13. D3 appears to be limited so that values of D3/D1 larger that 1 are300

increasingly rare as D3 → 1. The prominent collection of cells having D3 = D1 is found to be explained by the lobe regions

of the magnetosphere. Whether or not these features are related to the divergence-free condition ∇ ·B, intrinsic properties of

magnetic field being convected by plasma, the boundary conditions, or other constraints remains to be studied. One one hand,

Zeiler et al. (2002) note that without guide field, reconnection is still essentially two-dimensional, coinciding with the purely

southward IMF in the studied case.305

5 Discussion and conclusions

Here, we have presented two local methods to acquire X and O topologies of magnetic field from plasma simulations of Earth’s

magnetosphere, enabling fast efficient identification of possible reconnection sites and flux transfer events. These methods use

solely the magnetic field and its Jacobian, and so the found X-lines may or may not be actively reconnecting—other methods
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Figure 12. Overview of local MDD dimensionality, shown on the planes Y = 0, Z = 0. The dimensionality values D = (D1,D2,D3) ∈
[0,1]3 are mapped to RGB color channels via rgb = D/2+ (0.5,0.5,0.5) to obtain a three-channel representation of the triplet. See the

ternary diagram on top left for reference: the more red there is, the more one-dimensional the local magnetic field structure is, green domi-

nance signifies two-dimensionality and blue dominance three-dimensionality.
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Figure 13. Local dimensionality of a Vlasiator simulation obtained via the MDD analysis; ternary histogram over most of the magnetosphere.

Each cell outside of the inner boundary with r > 5RE and constrained to −40RE < X < 20RE and ±40RE in Y, Z) is shown here. The

lack of completely three-dimensional structures indicates that the in-plane approximation is usable.

need to be used to characterize the reconnection activity at the found sites, but the present methods have the advantage of being310

constrained to a local neighborhood and only requiring knowledge about the magnetic field and its derivatives.

Using the dimensionality measures introduced by Rezeau et al. (2018) shows well that the magnetopause, the bow shock

and the tail CS are essentially one-dimensional structures, with intermittent, embedded two-dimensional features. As we have

a purely southward IMF driving in the prototype case, this is consistent with Zeiler et al. (2002) observing that non-guide field

reconnection is mostly two-dimensional. Future simulations including an IMF By component will provide stronger guide field315

reconnection and possibly different dimensionality of detected structures.

The construction of the local coordinate system involves some choices. The first in-plane direction L̂ is given by the local

MVA analogue (MGA). The normal direction N̂ is chosen to be the primary eigenvector of the MDD system, orthogonalized

with respect to L̂, to ensure good behaviour in nearly one-dimensional CSs; the vector ∇BL could be a conceivable option to

supplant the secondary MDD vector, but this vector is not readily available from the magnetic field and its Jacobian.320

For the contouring method, the limitation of requiring consistently oriented local coordinates is a slight issue. It could be

mitigated by automated construction of local neighborhood charts of consistent orientation, as well as automatically finding the

extents where the local coordinate charts are sensible. As presented here, the contouring method relies on manual restriction

of neighborhoods for analysis. The FOTE method is given as a generalized alternative, operating cell-wise in the full domain,

with the caveat that in contrast to the contouring method, the FOTE method does not produce topological connectivity for the325

in-plane null lines.
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In comparison to topological methods, such as the magnetic skeleton method of Haynes and Parnell (2010), the present

method does not require field-line tracing, nor knowledge on boundary flows like the method proposed by Titov et al. (2009).

On the other hand, Lapenta (2021) proposed a local Lorentz transformation method using both magnetic and electric fields,

the latter of which the present method does not require. The present method can acquire useful null line objects via con-330

touring, presenting something of a middle ground between local and topological analyses, adding another tool for studies of

reconnection.

The presented FOTE and contouring methods are fundamental to investigate magnetic structures in a physically meaningful

coordinate system, supporting reconnection studies. The quantification of dimensionalities of magnetic structures may also

provide new insights into plasma processes.335
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