Supplement of

Benefits of Net Zero policies for future ozone pollution in China

Zhenze Liu et al.

Correspond to: Zhenze Liu (zhenze.liu@nuist.edu.cn)

Figure S1. Differences in annual mean surface emissions in anthropogenic and biomass burning NO_x , VOCs, and biogenic VOCs (BIO) between the present day (PD) and the scenarios of Net Zero (NZ; $\mathbf{a}, \mathbf{b}, \mathbf{c}$) and SSP3-7.0 ($\mathbf{d}, \mathbf{e}, \mathbf{f}$).

Figure S2. Changes in seasonal (JJA and DJF) surface O_3 mixing ratios between the scenario of Net Zero and SSP3-7.0 (SSP3-7.0 – Net Zero). Influences of higher emissions in different individual sectors, (**a**, **e**) power, (**b**, **f**) industry, (**c**, **g**) transport and (**d**, **h**) residence on surface O_3 changes are shown separately. Mean O_3 changes over China are given in the top right corner.

Figure S3. Annual mean biases in surface O_3 simulations (ppb) from (a) UKESM1, and the predicted biases in (b) the present day (PD), (c) the Net Zero (NZ), and (d) the SSP3-7.0 scenarios.

Figure S4. Seasonal mean changes in surface O_3 mixing ratios from the present day to the future under SSP3-7.0 in China. Changes from UKESM1 and the corrected UKESM1 by the deep learning model in (\mathbf{a}, \mathbf{b}) summertime and (\mathbf{d}, \mathbf{e}) wintertime are shown. Mean latitudinal O_3 change between UKESM1 and the corrected UKESM1 are shown in (\mathbf{c}, \mathbf{f}) , with one standard deviation of O_3 changes in latitude shown in shaded areas.