
Benefits of Net Zero policies for future ozone pollution in China
Zhenze Liu1,2, Oliver Wild2, Ruth M. Doherty3, Fiona M. O’Connor4,5, and Steven T. Turnock4,6

1Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of
Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing
University of Information Science and Technology, Nanjing, China
2Lancaster Environment Centre, Lancaster University, Lancaster, UK
3School of GeoSciences, The University of Edinburgh, Edinburgh, UK
4Met Office Hadley Centre, Exeter, UK
5Department of Mathematics and Statistics, Global Systems Institute, University of Exeter, Exeter, UK
6University of Leeds Met Office Strategic Research Group, School of Earth and Environment, University of Leeds, Leeds, UK

Correspondence: Zhenze Liu (zhenze.liu@nuist.edu.cn)

Abstract. Net Zero emission policies principally target climate change, but may have a profound influence on surface ozone

pollution. To investigate this, we use a chemistry-climate model to simulate surface ozone changes in China under a Net Zero

pathway, and examine the different drivers that govern these changes. We find large monthly mean surface ozone decreases of

up to 16 ppb in summer and small ozone decreases of 1 ppb in winter. Local emissions are shown to have the largest influence on

future ozone changes, outweighing the effects of changes in emissions outside China, changes in global methane concentrations5

and a warmer climate. Impacts of local and external emissions show strong seasonality, with the largest contributions to surface

ozone in summer, while changes in global methane concentrations have a more uniform effect throughout the year. We find

that while a warmer climate has a minor impact on ozone change compared to the Net Zero scenario, it will alter the spatial

patterns of ozone in China, leading to ozone increases in the south and ozone decreases in the north. We also apply a deep

learning model to correct biases in our ozone simulations, and to provide a more robust assessment of ozone changes. We10

find that emission controls may lead to a surface ozone decrease of 5 ppb in summer. The number of days with high ozone

episodes with daily mean ozone greater than 50 ppb will be reduced by 65 % on average. This is smaller than that simulated

with the chemistry-climate model, reflecting overestimated ozone formation under present-day conditions. Nevertheless, this

assessment clearly shows that the strict emission policies needed to reach Net Zero will have a major benefit in reducing surface

ozone pollution and the occurrence of high ozone episodes, particularly in high-emission regions in China.15

1 Introduction

Rapid changes in air pollution have occurred in China over the last few decades because of dramatic transformations in eco-

nomic development and air pollutant emissions. Following substantial increases in emissions in the 1990s and 2000s, nation-

wide pollutant emission controls since 2013 have led to remarkable reductions in fine particular matter (PM2.5), with national

population-weighted annual mean concentrations decreasing from 62 to 42 µg/m3 during 2013-2017 (Zhang et al., 2019).20

However, surface ozone (O3) pollution is becoming increasingly prevalent in China despite these emission controls, as recent
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emission policies have primarily targeted fine particles (Wang et al., 2022a). Reductions in the emissions of nitrogen oxides

(NOx), a precursor of both O3 and fine particles, may lead to increased O3 concentrations due to non-linear O3 chemistry

(Liu et al., 2021) and to strengthened incoming solar radiation (Hollaway et al., 2019). In addition, anthropogenic emissions of

other O3 precursors that contribute to O3 formation e.g. volatile organic compounds (VOCs) and methane (CH4) are less well25

regulated (Li et al., 2019). Observed summertime surface maximum 8h average (MDA8) O3 concentrations in China showed a

consistent annual increase of 1.9 ppb between 2013 and 2019 (Li et al., 2020), and this increase is greater in high-emission re-

gions, reaching 3.3 ppb per year on the North China Plain. Given that O3 production in these regions tends to be VOC-limited

(Wang et al., 2022b), reducing emissions of NOx and VOCs simultaneously has become crucial. There are also significant

natural sources of O3 precursors from vegetation and soils that may increase due to a warmer climate (Doherty et al., 2013;30

Fiore et al., 2015). Since surface O3 is detrimental for human health, plant growth and crop yields (WHO, 2021), robust and

effective emission controls on O3 precursors are needed.

The Intergovernmental Panel on Climate Change (IPCC) calls for cutting global greenhouse emissions to as close to zero

to reduce the risks of climate change (IPCC, 2022). Many countries have recently adopted such Net Zero policies to reduce

net greenhouse gas emissions to zero by 2050, and China has also implemented emission policies that aim to achieve a carbon35

peak before 2030 and carbon neutrality by 2060 (Tay, 2022). These low-carbon policies alongside reductions in anthropogenic

air pollutant emissions will have co-benefits for both global climate and air quality (UNEP, 2022). However, since surface O3

changes are not directly proportional to emission changes, it is challenging to quantify the benefits for O3 accurately. Future O3

is also influenced by climate change through changes in atmospheric stagnation, natural emission sources, chemical reaction

rates, and deposition rates (Hong et al., 2019; Zanis et al., 2022; Brown et al., 2022). Regional surface O3 changes also depend40

on emissions pathways in other parts of the world, which influence the long-range transport of O3 and its precursors across

continents (Wild et al., 2012; Doherty, 2015). The combination of these factors shapes the changes in future O3 but imposes

large uncertainties in O3 projections (Turnock et al., 2020), which poses a challenge to assess the underlying impacts of Net

Zero policies on future air quality.

While the general relationships between O3, its precursor emissions and climate change are known well (Zeng et al., 2008;45

Hedegaard et al., 2013; Doherty et al., 2013; Griffiths et al., 2021), the relative importance of these drivers remains very

uncertain. Challenges remain in the capability of chemistry-climate models to simulate O3 changes accurately because pro-

cesses occurring at small scales cannot be resolved adequately. Young et al. (2018) show that there are systematic biases in the

simulation of present-day O3 concentrations in current chemistry-climate models, and this raises questions over their skill in

representing long-term O3 changes (Parrish et al., 2021). Averaging output from a number of different models is a common50

way to obtain more robust results, but does not eliminate the O3 biases that are shown to be systematic (Revell et al., 2018).

In addition, the models tend to use different parametrizations to represent different processes (Wild et al., 2020), and may

misrepresent the importance of local emission controls or the risks caused by climate change. It is hence valuable to correct

model simulations to produce more robust O3 projections.

A practical way to address this is to apply deep learning models. Deep learning approaches have developed quickly in the55

last decade due to advances in computational speed that allow intensive training, and they have been applied widely in scientific
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fields (LeCun et al., 2015). Deep learning models have been shown to be a universal approximator (Hornik et al., 1989) and can

thus be applied to compensate for discrepancies between physical model simulations and observations. We have demonstrated

a successful application of deep learning to correct the biases in surface O3 simulations from a global chemistry-climate model

(Liu et al., 2022b), and found that changes in surface O3 in high-emission regions across the world may be overestimated with60

the process-based model. This bias correction approach allows us to provide a more robust and reliable assessment of future

surface O3 projections under the effect of different emission policies and facilitates an examination of their effectiveness.

The aim of this study is to produce reliable estimates of future O3 changes associated with changing emissions and climate

under a Net Zero pathway in China, and to determine how well strict emission controls can tackle the increasing frequency

of high O3 episodes. We introduce the chemistry-climate model used in Sect. 2 along with different emission and climate65

scenarios, and we describe the deep learning model that we have implemented to correct surface O3 biases. In order to highlight

the value of bias correction, we show the results of UKESM1 before showing the corrected results. We first investigate surface

O3 changes in China from the present day to the future under a Net Zero emission pathway simulated with UKESM1 in Sect.

3. The influences of emission changes outside China, changes in global CH4 concentrations, and climate change are examined

in Sect. 4. We demonstrate the capability of the deep learning model in simulating the biases in surface O3, and apply this bias70

correction technique to estimate future O3 changes and high O3 episodes in Sect. 5. Conclusions are presented in Sect. 6.

2 Approach

2.1 Description and application of the chemistry-climate model

We use version 1 of the United Kingdom Earth System Model, UKESM1 (Sellar et al., 2019) to simulate surface O3 mixing

ratios in the present-day (2013–2017) and the future (2060-2070) under different scenarios. UKESM1 consists of a physical75

climate model, the Hadley Centre Global Environment Model version 3 (HadGEM-GC3.1), configured with the Global At-

mosphere 7.1 and Global Land 7.0 (GA7.1/GL7.0) components (Walters et al., 2019), to which other Earth system processes

are coupled (Sellar et al., 2019). A state-of-the-art module for modelling atmospheric composition in the troposphere and the

stratosphere, the United Kingdom Chemistry and Aerosol model (UKCA; Morgenstern et al., 2009; O’Connor et al., 2014) is

included. A gas-phase chemistry scheme, StratTrop (Archibald et al., 2020b) and an aerosol scheme, GLOMAP-mode (Mulc-80

ahy et al., 2020) are used in UKCA. An extended chemistry scheme based on StratTrop that incorporates more reactive VOC

species including alkenes, alkanes, and aromatics is used in this study to permit a more realistic representation of the chemical

environment in China (Liu et al., 2021). The model resolution is N96L85 in the atmosphere, with 1.875◦ in longitude by 1.25◦

in latitude, 85 terrain-following hybrid height layers, and a model top at 85 km.

We use the atmosphere-only configuration of UKESM1 with prescribed present-day and future sea surface temperatures85

(SST) and sea ice (SICE) in the form of monthly mean time-evolving fields to investigate the transient impacts of changing

emissions under different climates. These fields alongside global values for greenhouse gas and methane concentrations are

generated from fully coupled UKESM1 runs for historical and future simulations conducted as part of the Coupled-Model
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Intercomparison Project 6 (Eyring et al., 2016). We nudge the model with ERA-Interim meteorological reanalysis data for the

present-day simulations, and allow the model to run freely in the simulations of future scenarios.90

2.2 Emissions and experiments

We use CMIP6 year-2014 emissions, the latest year available, to represent present-day anthropogenic (Hoesly et al., 2018)

and biomass burning emissions (Van Marle et al., 2017) for the globe, but replace anthropogenic emissions in China with

an up-to-date regional emission inventory over 2013-2017, the Multi-resolution Emission Inventory for China (MEIC; Li

et al., 2017). Biogenic VOC emissions are calculated interactively with the iBVOC emissions scheme in the Joint UK Land95

Environmental Simulator (JULES) land-surface scheme (Pacifico et al., 2011), which is coupled to UKCA. Other online natural

emissions such as sea salt, dust and lightning NOx are the same as in UKESM1 simulations for CMIP6 (Turnock et al., 2020).

Anthropogenic emissions for five sectors (industry, power plants, transport, residences, and agriculture) are provided for the

model, and independent diurnal and vertical emission profiles are applied for each sector (Bieser et al., 2011; Mailler et al.,

2013).100

For the future, emissions under the shared socio-economic pathways (SSPs) of CMIP6 are used that account for future

social, economic, and environmental developments (O’Neill et al., 2014; Van Vuuren et al., 2014). We use the SSP1-1.9

pathway to represent Net Zero emission as net emissions of greenhouse gases drop down to zero at about 2060 in this scenario.

We note that this scenario has the potential to limit global warming to 1.5 degrees Celsius by the end of this century. Future

scenarios for China are taken from the Dynamic Projection model for Emissions in China (DPEC; Tong et al., 2020), and105

we use the “Ambitious pollution neutral goal” scenario to represent a net zero pathway in China. For comparison, we use the

SSP3-7.0 pathway from CMIP6, along with the corresponding “Baseline” scenario from DPEC, to represent a low mitigation

scenario and to evaluate future O3 pollution with high emissions. In addition, to assess the impacts of CH4 on surface O3, CH4

concentrations from SSP1-1.9 and SSP3-7.0 are used to represent low and high CH4 respectively.

We perform several model experiments to investigate surface O3 changes and to quantify the contribution of emission110

changes inside and outside China, global CH4 concentrations, changes in climate, see Table 1. For each of the future scenarios

the model is spun up for six years and then run for five years for data analysis. Table 2 summarises the global mean total surface

emissions calculated from CMIP6, MEIC, and DPEC and the global CH4 abundance.

2.3 Development of the deep learning model

A deep learning model is developed here to correct the biases in surface O3 simulated with UKESM1. Like many other115

chemistry-climate models, UKESM1 exhibits systematic biases in surface O3 (Turnock et al., 2020; Liu et al., 2022c; Archibald

et al., 2020a), but it is hard to determine the origin of these biases. While some of these biases may be attributed to simplified

chemistry, improvement in the chemical scheme in UKESM1 has been shown to increase biases in some locations (Archer-

Nicholls et al., 2021). However, this problem can be addressed through deep learning to simulate the differences between the

chemistry-climate model simulations and real-world observations. The model is trained on present-day conditions to establish120

a relationship between O3 biases and key outputs of the chemistry-climate model, referred to as features. Future O3 biases
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Table 1. Model configurations used for the present-day (2013-2017) and six future (2060-2070) simulations. “Hist.” means that the emissions,

CH4 concentrations or SST/SICE evolve as for the historical simulations. “NZ” means that they evolve under a net zero pathway. “High”

means that they evolve under a high emission scenario, SSP3-7.0.

Experiment Emis. in China Emis. outside China CH4 SST/SICE

Present day Hist. Hist. Hist. Hist.

Net Zero NZ NZ NZ NZ

Local emis. High NZ NZ NZ

External emis. NZ High NZ NZ

High CH4 NZ NZ High NZ

Warmer climate NZ NZ NZ High

SSP3-7.0 High High High High

Table 2. Overview of annual mean time-varying surface emissions of NOx, VOCs, CO from anthropogenic (ANT), biomass burning (BB),

and biogenic (BIO) sources for the present day (2013–2017) and the future (2060–2070) Net Zero and SSP3-7.0 pathway in China. Annual

mean surface CH4 mixing ratios (ppb) are also shown.

Emission

(Tg(species)/yr)
Present day Net Zero SSP3-7.0

NOx ANT 24.2 2.9 33.9

BB 0.3 0.2 0.3

Total 24.5 3.1 34.2

VOCs ANT 28.5 10.7 29.2

BB 2.0 1.1 1.6

BIO 38.0 56.4 56.9

Total 68.5 68.2 87.6

CO ANT 154.3 43.1 143.6

BB 10.1 5.6 8.6

Total 164.4 48.7 152.1

CH4 (ppb) 1844.4 1266.6 2733.5

can then be predicted using features that are generated from simulations of the future with the chemistry-climate model. We

adopt the approach applied by Liu et al. (2022b) to use 20 physical, meteorological and chemical variables as features, and

these include variables associated with location, season, temperature, humidity, wind speed, photolysis and deposition rates and
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concentrations of key precursors, see Liu et al. (2022b). We do not use O3 concentration as a variable, as this is highly correlated125

with O3 biases and thus masks the contribution of other factors. This approach has shown good performance in reproducing

monthly mean surface O3 biases over the globe, with a mean bias error of 0.1 ppb. In this study, we further develop and extend

this deep learning model to predict the biases in daily mean O3, which enables the examination of the occurrence of high

O3 episodes. We note that the CH4 concentration is not included as an input feature because its variation under present-day

conditions is much smaller than the changes expected in future. We therefore adopt the non-linear parameterisation developed130

by Wild et al. (2012) to quantify the response of surface O3 to changing CH4 concentrations in future, and consider this feature

independently of the others.

The Chinese air quality reanalysis dataset (CAQRA; Kong et al., 2021) assimilates hourly mean surface O3 observations

during 2013-2017 from the China National Environmental Monitoring Centre (CNEMC), and we use this as a reference to

derive surface O3 biases in UKESM1 simulations. The surface O3 reanalyses are shown to match observations well, with small135

mean errors of -2.3 µg/m3 (Kong et al., 2021). We account for these errors and uncertainties, and represent them as noise

which we add to the original dataset in model training. We assume that this noise follows a normal distribution with a mean

of 2.3 µg/m3 and one standard deviation of 2.3 µg/m3, and generate three datasets with random noise to reduce overfitting

in training. The CAQRA data at 15 × 15 km resolution are regridded to the coarser resolution of UKESM1. A key advantage

of the CAQRA data is that it provides complete spatial and temporal coverage for comparison with UKESM1, thus avoiding140

issues with the poor coverage of observations in some areas. However, we only examine data in areas below 2000 m altitude

that have relatively high populations and where there are more measurement sites. For training, we pre-process the data to

distribute them randomly across time and location, and then split them into a training set (80%), a validation set (10 %) and a

testing set (10 %). The validation data are used to evaluate the model performance at each iteration of the training process, and

the test data provide an independent evaluation when the model training is completed.145

3 Future surface O3 changes in China under Net Zero policies

Seasonal mean surface O3 mixing ratios in China simulated with UKESM1 are shown in Fig. 1 for the present day and the

Net Zero pathway, without bias correction. There is a clear seasonal variation in surface O3, with high summertime O3 and

low wintertime O3 (Fig. 1a, d). However, this variation is reduced under Net Zero (Fig. 1b, e) due to O3 decreases in summer

(Fig. 1c) and O3 increases in parts of eastern China in winter (Fig. 1f) in future. Surface O3 mixing ratios decrease by about150

16 ppb in summer, demonstrating the great benefits of emission controls in mitigating summertime O3 pollution. Other studies

show similar results, with 18 ppb decreases in MDA8 O3 mixing ratios achieved from Net Zero policies (Shi et al., 2021;

Xu et al., 2022). However, smaller changes are seen in the most polluted industrial areas of China, namely the North China

Plain, the Yangtze River Delta and the Pearl River Delta, even though reductions in anthropogenic emissions in these areas

are substantially larger than other regions (Fig. S1a-b). This is principally due to VOC-limited O3 formation regimes there in155

which decreased NOx emissions increase O3 mixing ratios (Liu et al., 2021). Much greater reductions in NOx emissions or

further reductions in VOC emissions are needed to reduce surface O3 mixing ratios in these high-emission regions. In contrast,
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higher emissions following SSP3-7.0 will greatly increase summertime O3 (Fig. S2a-c), and the transport sector is shown to

have the largest impact with 10 ppb O3 increases.

In wintertime, surface O3 mixing ratios generally decrease by 1 ppb in the mainland China, but increase in eastern China160

by up to 20 ppb in heavily populated industrial regions. This results in a reduced latitudinal gradient of O3 mixing ratios

in China in wintertime under the Net Zero scenario. These contrasting responses further demonstrate regional differences

in the chemical environment for O3 production. Polluted urban environments are dominated by VOC-limited O3 formation,

particularly in winter when weak boundary layer mixing permits greater NOx accumulation at the surface and rapid local O3

destruction. Therefore, increased NOx emissions from the main emission sectors such as power plants, industry and transport165

under SSP3-7.0 cause notable decreases in O3 mixing ratios of up to 3 ppb in winter (Fig. S2e-g) although the effect of the

residential sector is relatively small (Fig. S2h) as small changes in NOx emissions are accompanied by substantial changes in

VOC emissions (Cheng et al., 2021).
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Figure 1. Seasonal surface O3 mixing ratios in East Asia simulated with UKESM1 from present day to the future following a Net Zero

pathway. Mean O3 mixing ratios are shown for June-July-August (JJA; a, b) and December-January-February (DJF; d, e) along with the

corresponding seasonal changes (c, f), with values of O3 changes in mainland China shown in ppb in the top right corner.

4 Drivers of future surface O3 changes in China

While local emission changes directly influence surface O3 changes in future, there are a number of other important drivers170

that govern surface O3. We investigate four independent drivers: changes in emissions inside (Local emis.) and outside China
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(External emis.), changes in atmospheric CH4 concentrations (High CH4) and a warmer climate (Warmer climate) relative to

the Net Zero pathway, see Fig. 2. Local anthropogenic emission changes in China are shown to have the largest impact in

both seasons (Fig. 2a, e), but other drivers also contribute to surface O3 changes and show substantial regional and seasonal

differences.175

The effect of changes in emissions outside China reflects the importance of transport of O3 from other countries and higher

background O3 concentrations. If the rest of the world did not follow a Net Zero emission pathway, surface O3 mixing ratios

would be more than 10 ppb higher in summer (Fig. 2b). The contribution to O3 in winter is generally smaller, estimated here as

4 ppb (Fig. 2f). The contribution of external emissions is much larger near the country’s borders than on central China. Changes

in atmospheric CH4 abundance have a relatively uniform influence on surface O3 in eastern China, with slightly greater effects180

in western China where altitudes are higher. A 4 ppb O3 increase due to higher CH4 is seen for both seasons (Fig. 2c, g). The

O3 changes due to CH4 are comparable to those across central China due to higher emissions outside China. In contrast, a

warmer climate under the SSP3-7.0 scenario compared to the Net Zero pathway has minor impacts on surface O3 changes (<

1 ppb). In general, surface O3 mixing ratios decrease likely due to increased humidity under a warm climate but may increase

locally due to higher temperatures, natural emissions and reduced O3 deposition rates (Zanis et al., 2022). There are increased185

natural BVOC emissions in China under both Net Zero and SSP3-7.0 scenarios (Fig. S1c, f), particularly in southern China

where vegetation is more abundant than in the north. Regional surface O3 responds differently to different future climates (Fig.

2d, h), with O3 increases in the south and O3 decreases in the north under a warmer climate. The regional differences are

consistent with those found under the effects of changing BVOC emissions in future (Liu et al., 2022a). These O3 increases

occur in both seasons but are more pronounced in summer. Overall, we show that while local emissions are critical to O3190

pollution, emissions outside China and global CH4 concentrations are also important drivers of concern.

The seasonality of surface O3 changes in China and globally are shown in Fig 3. In summer, local emissions dominate surface

O3 increases, while in winter and spring, O3 transport from other countries and O3 increases due to elevated CH4 concentrations

are more important. Strong NO titration of O3 leads to substantial O3 decreases in winter, but its effects are suppressed by more

efficient O3 production over summer (Fig. 3a). Emissions outside China increase O3 mixing ratios throughout the year, with195

the greatest impact in late spring and early summer when intercontinental transport is strongest. The seasonal variation in

the influence of local and external emissions is relatively small on a global scale, reflecting a limited sensitivity of global

O3 changes to emissions (Fig. 3b). The uniform influence of changes in CH4 concentration is comparable both in China and

globally. The warmer climate under SSP3-7.0 leads to slightly larger O3 decreases on a global scale relative to the Net Zero

scenario. We emphasize that seasonal O3 responses to emission changes are more pronounced at a regional scale, and become200

weaker in winter, and that O3 continental transport and background O3 concentrations may still contribute to O3 pollution.

To examine how the occurrence of high O3 episodes may change in future, we show the frequency distributions of daily

mean surface O3 mixing ratios for all grid cells over China under different scenarios in Fig. 4. We find that surface O3 mixing

ratios under the Net Zero pathway follow an approximate normal distribution, with a mean O3 of about 20 ppb (Fig. 4a). The

frequency of high O3 greater than 40 ppb can be greatly reduced under Net Zero. This is substantially different from the present205

day and SSP3-7.0 scenarios. SSP3-7.0 assumes that there are no emission controls in China, leading to a higher frequency of
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Figure 2. Contribution of changes in (a) internal emissions in East Asia, (b) external emissions outside China, (c) global CH4 concentrations

and (d) a warmer climate following the SSP3-7.0 pathway to seasonal surface O3 changes relative to the Net Zero pathway. Mean O3 changes

over mainland China in ppb are shown in the top right corner.
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Figure 3. Seasonal surface O3 changes relative to Net Zero due to changes in emissions in and outside China, global CH4 concentrations

and differences in 2060 climate under SSP3-7.0 in (a) China and (b) the globe.
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high O3 mixing ratios (> 50 ppb). However, the faster NO titration on O3 with higher NOx emissions also increases the

frequency of low O3 mixing ratios (< 10 ppb). In Fig. 4b, we show that the O3 distribution shifts to higher values of O3 under

the high internal emission scenario and is substantially different from the other scenarios shown here, indicating that there is a

large change in local O3 production due to local emission changes. The frequency of O3 mixing ratios between 30 and 50 ppb210

are highest in the scenarios of high external emissions and high CH4 concentrations, demonstrating that these factors can lead

to an overall increase in daily mean O3. In addition, we do not find significant changes in O3 mixing ratios due to a warmer

climate under SSP3-7.0.
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Figure 4. Whole year distributions of daily mean surface O3 mixing ratios (a) in the present day, the Net Zero and the SSP3-7.0 scenarios in

China, and (b) in the scenarios with higher internal emissions, external emissions, CH4 concentrations and a warmer climate relative to Net

Zero.

5 Bias corrected surface O3 under the Net Zero pathway

Since there are systematic biases in surface O3 simulations with UKESM1 (Fig. S3a, b), the reliability of future O3 projections215

remains uncertain. We estimate the biases in surface O3 through the deep learning model, and apply this to generate a more

robust assessment of O3 changes under the Net Zero pathway. A fully independent evaluation for the deep learning model

is conducted using a testing dataset, see Fig. 5. We show that the magnitudes and distributions of biases in the UKESM1

simulations are reproduced well by the deep learning model, with a correlation coefficient of 0.96, a mean bias error of 0.1

ppb and a root-mean-square error of 4.0 ppb, which demonstrates the robustness of this approach. We also subtract the biases220

from UKESM1 and examine the spatial and temporal distribution of O3 mixing ratios in China in Fig. 6. Spatial distributions

of surface O3 in China over 2013-2017 can be also captured well (Fig. 6a, b, d, e), with the highest summertime O3 and the
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lowest wintertime O3 in the North China Plain. The magnitudes of surface O3 mixing ratios with bias correction are in close

agreement to the observations. The time series of daily mean O3 can be also simulated well in Beijing and Guangzhou (Fig. 6c,

f), which represent two different locations in northern and southern China with rather different chemical and meteorological225

environments. The evaluation demonstrates the capability of the deep learning model in correcting the seasonal and daily

UKESM1 simulation of surface O3. This approach shows great promise in reducing current model errors, and hence has the

potential to improve simulations of surface O3 under future scenarios.
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Figure 5. Independent evaluation of the deep learning model in simulating daily mean surface O3 biases at each UKESM1 grid point over

China. (a) Surface O3 biases (UKESM1 minus CAQRA) and biases predicted by the deep learning model. (b) Probability density function

(PDF) of O3 biases (labelled here as Reference) and predicted O3 biases. Statistics are shown in the top right corner.

Spatial distributions of future bias-corrected surface O3 under the Net Zero pathway are shown in Fig. 7 to compare and

contrast with UKESM1 outputs (Fig. 1), and to assess the effectiveness of emission controls. With bias correction, summertime230

O3 mixing ratios generally decrease under Net Zero (Fig. 7a, b), consistent with UKESM1 results (Fig. 1c). We find that there

are larger O3 decreases in summer in the North China Plain and the Yangtze River Delta (Fig. 7c) than in other less-polluted

regions. However, the overall magnitudes of surface O3 decreases are not as large as simulated with UKESM1. There are

noticeable differences in the latitudinal mean surface O3 decreases, with the maximum changes estimated as 10 ppb in the bias

corrected simulation, smaller than 20 ppb predicted with UKESM1 (Fig. 7d). This indicates that the underlying impacts of235

emission controls on O3 may not be as large as the model suggests, and that the O3 responses to changing emissions may be

overestimated. This is also reflected in the overestimation of O3 changes in southern China in the SSP3-7.0 scenario (Fig. S4a,

b, c).

In wintertime, while surface O3 mixing ratios increase in high-emission regions under Net Zero, as seen in both UKESM1

and the bias-corrected results, areas with O3 increases are smaller than those predicted by UKESM1 (Fig. 7). This again240
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Figure 6. Surface mean O3 mixing ratios derived from CAQRA (Ref.) in December-January-February (DJF) and June-July-August (JJA)

over 2013-2017 (a, d), compared with bias-corrected O3 using deep learning (b, e). Mean surface O3 mixing ratios (ppb) over the Eastern

part of mainland China are shown in the top right corner. Timeseries of daily mean O3 mixing ratios in Beijing and Guangzhou in 2017 are

shown in (c, f), with mean O3 values and correlation coefficients between CAQRA and the UKESM1 simulations and deep learning results

shown in the legend.

suggests that the magnitude and spatial extent of O3 titration by NO may be overestimated in UKESM1. The same effect is

seen in the bias-corrected wintertime O3 under SSP3-7.0 (Fig. S4). In general, biases in O3 simulations from UKESM1 are

smaller in the Net Zero scenario but still remain large in the SSP3-7.0 scenario (Fig. S3b-d). These two scenarios correspond to

low and high emission pathways, respectively, which indicates that the accuracy of O3 simulations in UKESM1 may decrease

when emission changes become larger. The bias-corrected results show that only industrial regions with high NOx emissions245

in China show substantial O3 increases under Net Zero, while surface O3 mixing ratios decrease in less polluted regions in

winter. This leads to a general decrease in latitudinal surface O3 mixing ratios in wintertime (Fig. 7h).

With bias correction, the average surface O3 mixing ratios are estimated to decrease in both seasons in the eastern part of

China in the future under the Net Zero pathway. O3 decreases of 5 ppb are predicted to occur in summer, which are slightly

larger than the 4 ppb decreases predicted in winter. This demonstrates the overall advantages of net zero policies in achieving a250

surface ozone air quality co-benefit. Furthermore, in high-emission regions, the directions of surface O3 changes are different

in summer and winter, as shown in both UKESM1 and the corrected UKESM1, indicating that VOC-limited O3 formation still

dominates there in winter.
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Figure 7. Seasonal mean surface O3 mixing ratios corrected with the deep learning model in the present day (a, b) and the Net Zero scenario

(e, f) in the Eastern part of mainland China, and the expected O3 changes in summertime and wintertime (c, g). Latitudinal mean O3 changes

in UKESM1 and bias-corrected UKESM1 are shown in (d, h), where shading indicates one standard deviation of the changes in latitudinal

O3 mixing ratios.

We also calculate the annual average number of days with daily mean O3 over 50 ppb as a measure to quantify high

O3 pollution episodes, see Fig. 8. The number of days per year with high O3 episodes under present-day conditions can be255

reproduced well following bias correction (Fig. 8a, b, Table 3), with intensive areas of high O3 pollution in the North China

Plain (60 days) particularly in summertime, and relatively low occurrence in the Pearl River Delta (31 days). There is an

average of 33 days per year with high O3 pollution over China. We find that the Net Zero policies will succeed in reducing

the number of high O3 pollution days markedly by 65 % in future. In contrast, following higher emission control policies will

increase high O3 episodes by almost a factor of four (Table 3).260

Following Net Zero emission controls, the Yangtze River Delta and the Pearl River Delta only have high O3 episodes for a

few days each year. However, high O3 episodes still occur for almost one month (30 days) on the North China Plain and parts

of central China in the future, demonstrating that O3 pollution cannot be fully eliminated in this region. The Sichuan basin is

also a region where high O3 pollution cannot be fully addressed, likely due to the favorable meteorological conditions leading

to O3 formation associated with the complex topography. Nevertheless, Net Zero policies are expected to deliver great benefits265

in mitigating O3 pollution in China. Indeed, O3 pollution is likely to become much worse if emissions continue to rise (Fig.

8d; Table 3). Even stricter controls on anthropogenic emissions than proposed to meet Net Zero may be required to avoid high

O3 pollution in the North China Plain.
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Figure 8. Annual average number of days with daily mean surface O3 mixing ratios higher than 50 ppb in the present day calculated from

(a) the surface O3 reanalysis and (b) bias corrected UKESM1. Future high O3 episodes under Net Zero (c) and SSP3-7.0 (d) pathways are

shown from bias corrected UKESM1.

Table 3. Annual average number of days with daily mean surface O3 mixing ratios higher than 50 ppb in China, the North China Plain

(NCP), the Yangtze River Delta (YRD), the Pearl River Delta (PRD) and the Sichuan Basin (SCB). Conditions in the present day and under

the Net Zero and SSP3-7.0 pathways are presented, calculated from the bias corrected UKESM1 simulations. The percentage change in the

number of days in the future relative to the present day are shown.

Number of days Present day Present day Net Zero SSP3-7.0

with daily mean (Reanalysis) (Corrected (Corrected (Corrected

O3 > 50 ppb/Regions UKESM1) UKESM1) UKESM1)

China 32.1 33.9 11.9 (-65 %) 115.8 (242 %)

NCP 56.9 60.5 30.6 (-49 %) 123.7 (104 %)

YRD 45.0 45.3 4.8 (-89 %) 140.4 (210 %)

PRD 31.2 31.4 1.6 (-95 %) 117.0 (273 %)

SCB 34.4 34.1 16.5 (-52%) 139.3 (309 %)

6 Conclusions

Net Zero emission polices are important for reducing regional surface O3 pollution as well as for mitigating climate change.270

We use a chemistry-climate model to quantify the O3 changes in China under a Net Zero pathway, and investigate the relative

importance of different drivers of these changes. We also place our results in context by comparing to a scenario, SSP3-7.0 in

which weak climate mitigation leads to continued increases in precursor emissions. Surface O3 responses to Net Zero emission

control policies in China are distinctly different in different seasons, with substantial O3 decreases in summer and O3 increases

in winter in high-emission regions due to decreased O3 titration by NO. This demonstrates the large benefits of emission275

controls in reducing summertime average O3 pollution in China by as much as 16 ppb.

Local emission changes are shown to be the most important driver influencing regional O3 changes, which generally out-

weighs other drivers such as transport of O3 from other countries, increased background O3 formation through rising CH4
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abundance and a warmer climate. We do not find substantial changes in surface O3 in China between Net Zero and SSP3-7.0

scenarios due to a warmer climate, but there are surface O3 increases in southern China. Impacts of future local and external280

emissions on surface O3 show strong seasonal variation, while increasing future CH4 concentrations have a relatively uniform

effect on O3 throughout the year. In winter and spring, future external emissions outside China and higher CH4 concentrations

are more important than local emissions at a regional average scale.

We further demonstrate the capability of deep learning approaches to correct the biases in simulated daily mean O3.

UKESM1 shows systematic biases in simulated O3 like many other chemistry-climate models; these are expected to influ-285

ence their projections of future O3. Deep learning can provide improved assessment of the impacts of Net Zero policies on

surface O3. We find that surface O3 changes are overestimated by UKESM1 in summertime, and therefore the benefits of

emission controls may be overestimated by chemistry-climate models. UKESM1 estimates that the mean latitudinal surface

O3 decreases due to emission controls could be up to 20 ppb in summer but bias correction shows that these may only be up to

10 ppb.290

We acknowledge that there are uncertainties associated with the choice of deep learning model used and with the variables

and parameters it is trained on, but the biases are sufficiently well predicted here that we are confident in the robustness of our

results. The prediction might be further improved by employing more advanced deep learning architectures and considering a

wider range of variables. The prediction of future surface O3 biases may be slightly different under these conditions, but we

believe that our principal results are likely to remain robust. The driving variables under the Net Zero scenario typically lie295

in the ranges associated with the present-day conditions that were used to train the model, suggesting that the relationships

between inputs and outputs derived from the deep learning model are suitable for predicting future situations.

However, Net Zero emission policies succeed in reducing the number of days of high O3 pollution by 65 % in China per

year, with the number dropping from 33 days under present-day conditions to 11 days each year under Net Zero. The North

China Plain will still be affected by high O3 pollution in the future, meaning that stricter emission policies are needed in this300

region. In the Yangtze River Delta and the Pearl River Delta, O3 pollution is likely to be less of a concern in the future as

there are only a few days with high O3 pollution under Net Zero. It is also clear that if emissions continue to rise, air quality in

China will be substantially worse than at present, and therefore emission controls are essential. However, it is clear from these

studies that emission controls can be very effective in reducing surface O3 pollution, and that Net Zero emission policies can

substantially mitigate O3 pollution in China.305

Data availability. The data generated in this study are available upon request.

Author contributions. All authors participated in designing the study. ZL conducted UKESM1 simulations, built the deep learning model,

and performed the analysis with input and discussions from OW, RD, FO’C and ST. ZL, OW and RD prepared the paper, with contributions

from all co-authors.

15



Competing interests. The contact author has declared that none of the authors has any competing interests.310

Acknowledgements. Zhenze Liu, Oliver Wild, Ruth M. Doherty thank the project of the UK-China collaboration to optimise net-zero policy

options for air quality and health (COP-AQ) under grants 2021GRIP02COP-AQ. Oliver Wild and Ruth M. Doherty thank the Natural

Environment Research Council (NERC) for funding under grants NE/N006925/1, NE/N006976/1 and NE/N006941/1. Fiona M. O’Connor

was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and also acknowledges support from the EU Horizon

2020 Research Programme CRESCENDO (grant agreement number 641816). Steven Turnock would like to acknowledge support from the315

UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part

of the Newton Fund.

16



References

Archer-Nicholls, S., Abraham, N. L., Shin, Y., Weber, J., Russo, M. R., Lowe, D., Utembe, S., O’Connor, F., Kerridge, B., Latter, B., et al.:

The Common Representative Intermediates Mechanism version 2 in the United Kingdom Chemistry and Aerosols Model, Journal of320

Advances in Modeling Earth Systems, 13, e2020MS002 420, 2021.

Archibald, A., Neu, J., Elshorbany, Y., Cooper, O., Young, P., Akiyoshi, H., Cox, R., Coyle, M., Derwent, R., Deushi, M., et al.: Tropospheric

Ozone Assessment ReportA critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100, Elementa: Science

of the Anthropocene, 8, 2020a.

Archibald, A. T., O’Connor, F. M., Abraham, N. L., Archer-Nicholls, S., Chipperfield, M. P., Dalvi, M., Folberth, G. A., Dennison, F.,325

Dhomse, S. S., Griffiths, P. T., et al.: Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn

1.0) implemented in UKESM1, Geoscientific Model Development, 13, 1223–1266, 2020b.

Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Van Der Gon, H. D.: Vertical emission profiles for Europe based on plume rise

calculations, Environmental Pollution, 159, 2935–2946, 2011.

Brown, F., Folberth, G. A., Sitch, S., Bauer, S., Bauters, M., Boeckx, P., Cheesman, A. W., Deushi, M., Dos Santos Vieira, I., Galy-Lacaux,330

C., et al.: The ozone–climate penalty over South America and Africa by 2100, Atmospheric Chemistry and Physics, 22, 12 331–12 352,

2022.

Cheng, J., Tong, D., Zhang, Q., Liu, Y., Lei, Y., Yan, G., Yan, L., Yu, S., Cui, R. Y., Clarke, L., et al.: Pathways of China’s PM2.5 air quality

2015–2060 in the context of carbon neutrality, National Science Review, 8, nwab078, 2021.

Doherty, R., Wild, O., Shindell, D., Zeng, G., MacKenzie, I., Collins, W., Fiore, A. M., Stevenson, D., Dentener, F., Schultz, M., et al.:335

Impacts of climate change on surface ozone and intercontinental ozone pollution: A multi-model study, Journal of Geophysical Research:

Atmospheres, 118, 3744–3763, 2013.

Doherty, R. M.: Ozone pollution from near and far, Nature Geoscience, 8, 664–665, 2015.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercom-

parison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937–1958, 2016.340

Fiore, A. M., Naik, V., and Leibensperger, E. M.: Air quality and climate connections, Journal of the Air & Waste Management Association,

65, 645–685, 2015.

Griffiths, P. T., Murray, L. T., Zeng, G., Shin, Y. M., Abraham, N. L., Archibald, A. T., Deushi, M., Emmons, L. K., Galbally, I. E., Hassler,

B., et al.: Tropospheric ozone in CMIP6 simulations, Atmospheric Chemistry and Physics, 21, 4187–4218, 2021.

Hedegaard, G. B., Christensen, J. H., and Brandt, J.: The relative importance of impacts from climate change vs. emissions change on air345

pollution levels in the 21st century, Atmospheric Chemistry and Physics, 13, 3569–3585, 2013.

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., et al.:

Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS),

Geoscientific Model Development, 11, 369–408, 2018.

Hollaway, M., Wild, O., Yang, T., Sun, Y., Xu, W., Xie, C., Whalley, L., Slater, E., Heard, D., and Liu, D.: Photochemical impacts of haze350

pollution in an urban environment, Atmospheric Chemistry and Physics, 19, 9699–9714, 2019.

Hong, C., Zhang, Q., Zhang, Y., Davis, S. J., Tong, D., Zheng, Y., Liu, Z., Guan, D., He, K., and Schellnhuber, H. J.: Impacts of climate

change on future air quality and human health in China, Proceedings of the national academy of sciences, 116, 17 193–17 200, 2019.

17



Hornik, K., Stinchcombe, M., and White, H.: Multilayer feedforward networks are universal approximators, Neural networks, 2, 359–366,

1989.355

IPCC: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the

Intergovernmental Panel on Climate Change, IPCC, 2022.

Kong, L., Tang, X., Zhu, J., Wang, Z., Li, J., Wu, H., Wu, Q., Chen, H., Zhu, L., Wang, W., et al.: A 6-year-long (2013–2018) high-resolution

air quality reanalysis dataset in China based on the assimilation of surface observations from CNEMC, Earth System Science Data, 13,

529–570, 2021.360

LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, nature, 521, 436–444, 2015.

Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface ozone pollution in China from 2013 to 2019: anthro-

pogenic and meteorological influences, Atmospheric chemistry and physics, 20, 11 423–11 433, 2020.

Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., et al.: Anthropogenic emission inventories in

China: a review, National Science Review, 4, 834–866, 2017.365

Li, M., Zhang, Q., Zheng, B., Tong, D., Lei, Y., Liu, F., Hong, C., Kang, S., Yan, L., Zhang, Y., et al.: Persistent growth of anthropogenic non-

methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential,

Atmospheric Chemistry and Physics, 19, 8897–8913, 2019.

Liu, S., Sahu, S. K., Zhang, S., Liu, S., Sun, Y., Liu, X., Xing, J., Zhao, B., Zhang, H., and Wang, S.: Impact of Climate-Driven Land-Use

Change on O3 and PM Pollution by Driving BVOC Emissions in China in 2050, Atmosphere, 13, 1086–, 2022a.370

Liu, Z., Doherty, R. M., Wild, O., Hollaway, M., and O’Connor, F. M.: Contrasting chemical environments in summertime for atmospheric

ozone across major Chinese industrial regions: the effectiveness of emission control strategies, Atmospheric Chemistry and Physics, 21,

10 689–10 706, 2021.

Liu, Z., Doherty, R. M., Wild, O., O’Connor, F. M., and Turnock, S. T.: Correcting ozone biases in a global chemistry–climate model:

implications for future ozone, Atmospheric Chemistry and Physics, 22, 12 543–12 557, 2022b.375

Liu, Z., Doherty, R. M., Wild, O., O’connor, F. M., and Turnock, S. T.: Tropospheric ozone changes and ozone sensitivity from the present

day to the future under shared socio-economic pathways, Atmospheric Chemistry and Physics, 22, 1209–1227, 2022c.

Mailler, S., Khvorostyanov, D., and Menut, L.: Impact of the vertical emission profiles on background gas-phase pollution simulated from

the EMEP emissions over Europe, Atmospheric Chemistry and Physics, 13, 5987–5998, 2013.

Morgenstern, O., Braesicke, P., O’connor, F., Bushell, A., Johnson, C., Osprey, S., and Pyle, J.: Evaluation of the new UKCA climate-380

composition model–Part 1: The stratosphere, Geoscientific Model Development, 2, 43–57, 2009.

Mulcahy, J. P., Johnson, C., Jones, C. G., Povey, A. C., Scott, C. E., Sellar, A., Turnock, S. T., Woodhouse, M. T., Abraham, N. L., Andrews,

M. B., et al.: Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3. 1 CMIP6 historical simulations, Geoscientific

Model Development, 13, 6383–6423, 2020.

O’Connor, F., Johnson, C., Morgenstern, O., Abraham, N., Braesicke, P., Dalvi, M., Folberth, G., Sanderson, M., Telford, P., Voulgarakis, A.,385

et al.: Evaluation of the new UKCA climate-composition model–Part 2: The Troposphere, Geoscientific Model Development, 7, 41–91,

2014.

O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., and Van Vuuren, D. P.: A new scenario framework

for climate change research: the concept of shared socioeconomic pathways, Climatic change, 122, 387–400, 2014.

18



Pacifico, F., Harrison, S., Jones, C., Arneth, A., Sitch, S., Weedon, G., Barkley, M., Palmer, P., Serça, D., Potosnak, M., et al.: Evaluation390

of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate

conditions, Atmospheric Chemistry and Physics, 11, 4371–4389, 2011.

Parrish, D. D., Derwent, R. G., Turnock, S. T., O’Connor, F. M., Staehelin, J., Bauer, S. E., Deushi, M., Oshima, N., Tsigaridis, K., Wu, T.,

et al.: Investigations on the anthropogenic reversal of the natural ozone gradient between northern and southern midlatitudes, Atmospheric

Chemistry and Physics, 21, 9669–9679, 2021.395

Revell, L. E., Stenke, A., Tummon, F., Feinberg, A., Rozanov, E., Peter, T., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Butchart, N.,

et al.: Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate

model, Atmospheric chemistry and physics, 18, 16 155–16 172, 2018.

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O’connor, F. M., Stringer, M., Hill, R., Palmieri, J., et al.:

UKESM1: Description and evaluation of the UK Earth System Model, Journal of Advances in Modeling Earth Systems, 11, 4513–4558,400

2019.

Shi, X., Zheng, Y., Lei, Y., Xue, W., Yan, G., Liu, X., Cai, B., Tong, D., and Wang, J.: Air quality benefits of achieving carbon neutrality in

China, The Science of the total environment, 795, 148 784–148 784, 2021.

Tay, A.: By the numbers: China’s net-zero ambitions., Nature, 2022.

Tong, D., Cheng, J., Liu, Y., Yu, S., Yan, L., Hong, C., Qin, Y., Zhao, H., Zheng, Y., Geng, G., et al.: Dynamic projection of anthropogenic405

emissions in China: methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution

control scenarios, Atmospheric Chemistry and Physics, 20, 5729–5757, 2020.

Turnock, S. T., Allen, R. J., Andrews, M., Bauer, S. E., Deushi, M., Emmons, L., Good, P., Horowitz, L., John, J. G., Michou, M., et al.:

Historical and future changes in air pollutants from CMIP6 models, Atmospheric Chemistry and Physics, 20, 14 547–14 579, 2020.

UNEP: Emissions Gap Report 2022: The Closing Window — Climate crisis calls for rapid transformation of societies, 2022.410

Van Marle, M. J., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M.,

et al.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire

models (1750–2015), Geoscientific Model Development, 10, 3329–3357, 2017.

Van Vuuren, D. P., Kriegler, E., O’Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., et al.:

A new scenario framework for climate change research: scenario matrix architecture, Climatic Change, 122, 373–386, 2014.415

Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., et al.: The Met Office

Unified Model global atmosphere 7.0/7.1 and JULES global land 7.0 configurations, Geoscientific Model Development, 12, 1909–1963,

2019.

Wang, T., Xue, L., Feng, Z., Dai, J., Zhang, Y., and Tan, Y.: Ground-level ozone pollution in China: a synthesis of recent findings on

influencing factors and impacts, Environmental Research Letters, 17, 063 003, 2022a.420

Wang, W., Parrish, D. D., Wang, S., Bao, F., Ni, R., Li, X., Yang, S., Wang, H., Cheng, Y., and Su, H.: Long-term trend of ozone pollution

in China during 2014–2020: distinct seasonal and spatial characteristics and ozone sensitivity, Atmospheric chemistry and physics, 22,

8935–8949, 2022b.

WHO: Global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide:

executive summary, 2021.425

Wild, O., Fiore, A. M., Shindell, D., Doherty, R., Collins, W., Dentener, F., Schultz, M., Gong, S., MacKenzie, I., Zeng, G., et al.: Modelling

future changes in surface ozone: a parameterized approach, Atmospheric Chemistry and Physics, 12, 2037–2054, 2012.

19



Wild, O., Voulgarakis, A., O’Connor, F., Lamarque, J.-F., Ryan, E. M., and Lee, L.: Global sensitivity analysis of chemistry–climate model

budgets of tropospheric ozone and OH: exploring model diversity, Atmospheric Chemistry and Physics, 20, 4047–4058, 2020.

Xu, B., Wang, T., Ma, D., Song, R., Zhang, M., Gao, L., Li, S., Zhuang, B., Li, M., and Xie, M.: Impacts of regional emission reduction and430

global climate change on air quality and temperature to attain carbon neutrality in China, Atmospheric research, 279, 106 384–, 2022.

Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M., Neu, J., Parrish, D., Rieder, H., Schnell, J., et al.: Tropospheric Ozone

Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends,

Elementa: Science of the Anthropocene, 6, 2018.

Zanis, P., Akritidis, D., Turnock, S., Naik, V., Szopa, S., Georgoulias, A. K., Bauer, S. E., Deushi, M., Horowitz, L. W., Keeble, J., et al.:435

Climate change penalty and benefit on surface ozone: a global perspective based on CMIP6 earth system models, Environmental Research

Letters, 17, 024 014, 2022.

Zeng, G., Pyle, J., and Young, P.: Impact of climate change on tropospheric ozone and its global budgets, Atmospheric Chemistry and

Physics, 8, 369–387, 2008.

Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., et al.: Drivers of improved PM2. 5 air440

quality in China from 2013 to 2017, Proceedings of the National Academy of Sciences, 116, 24 463–24 469, 2019.

20


